Light Field Display Point Rendering

Fig. 1. Results generated by our gold standard (GStd) (first column), light field display point rendering
(LFDPR) (middle column), and standard multiview rendering (MVR) (last column) as viewed through
the lens from left (top row), center (middle row), and right (bottom row) viewing angles. Each renderer
generates 48 distinct views. While they generate very similar imagery, LFDPR makes imagery up to 8X
faster than MVR.

Rendering for light field displays (LFDs) requires rendering of dozens or hundreds of views, which must
then be combined into a single image on the display, making real-time LFD rendering extremely difficult. We
introduce light field display point rendering (LFDPR), which meets these challenges by improving eye-based
point rendering [12] with texture-based splatting, which avoids oversampling of triangles mapped to only a
few texels; and with LFD-biased sampling, which adjusts horizontal and vertical triangle sampling to match
the sampling of the LFD itself. To improve image quality, we introduce multiview mipmapping, which reduces
texture aliasing even though compute shaders do not support hardware mipmapping. We also introduce
angular supersampling and reconstruction to combat LFD view aliasing and crosstalk. The resulting LFDPR is
2-8X times faster than multiview rendering, with similar comparable quality.

CCS Concepts: « Computing methodologies — Rendering; Graphics processors; Point-based models; «
Hardware — Displays and imagers.
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1 INTRODUCTION

In emerging light field displays (LFDs), each pixel emits several different colors, one for each of
several angles of view, supporting unique views for stereoscopy and multiple simultaneous viewers,
and simulating the experience of looking out (and around the edges) of a window. LFDs require
multiview rendering to support angular variation in the light field they create.

Graphics hardware is primarily optimized for rendering scenes from a single perspective, making
multiview rendering challenging. view independent rendering (VIR), improved view independent
rendering (iVIR), and eye-based point rendering (EPR) [11, 12, 24] avoid multiple passes by gener-
ating and rendering points in real time. Frame by frame, they convert the model’s triangles into a
set of points fit to the views the current frame needs. With the points, they then render views in
parallel, requiring nearly an order of magnitude fewer passes.

In this paper, we describe how we marshal and improve on the techniques of both iVIR and EPR
to speed rendering for LFDs further. To achieve this, our light field display point rendering (LFDPR)
includes the following innovations:

o LFD-biased sampling matches triangle sampling bias to LFD display sampling bias, reducing
the size of the point cloud and improving efficiency.

o Texture-based splatting samples triangles coarsely when the textures mapped to them are
also coarse, again reducing the point cloud and improving rendering speed.

o Multiview mipmapping supports texture antialiasing without requiring (currently unsup-
ported) use of hardware mipmaps in the compute shader. This improves image quality with
only a small impact on render speed.

These innovations enable rendering of LFD views 2 —8X faster than standard multiview rendering
(MVR), with nearly the same — and sometimes better — image quality.

2 RELATED WORK
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Fig. 2. Viewpoints distributed across an LFD horizontally see different pixels and views through the
lenticular lens. Each view corresponds to one panel pixel under each lenslet, creating a tradeoff between
angular and spatial resolution.

Light field rendering aims to capture and reproduce all views of a scene, including not only
how color varies across space, but also across angle. At a given moment, the light field is radiance
defined as a function of position and direction in an illuminated scene [13]. Light field displays show



Light Field Display Point Rendering 3

Display Native Format

Scene Light Field m Multiscopic View

For lenticular-based

display
S Light
m 3 m ? . ,;’“ . Field
nghl Display ~%§ Display/ Display
Field Specific 4 —> Optics —>
Renderlng i i F’rocessmg A SO Technology \ \ N Y
For lenslet-based h Perceived\ [N/

display Left and \/ |
— = Right Y @
Views 1

Viewer

For tensor display

Fig. 3. Conventional image formation process for light field displays. A 3D scene is processed to
generate a fronto-parallel light field which is then processed to be compatible with the LFD. When
viewed from the LFD, the displayed image is perceived as a 3D scene [9].

the portion of the light field visible through the display surface, typically a rectangle. Light fields
were first introduced to computer graphics in 1996 [14, 21]. Since then, a great deal of research has
followed, including generation of light fields with machine learning [28, 38], and capture of them
with cameras [25, 29, 40].

Our focus here is on LFDs. In most, each pixel represents not only the position and color of a light
ray passing through the display surface, but also a range of orientations, with color varying across
that range. Each pixel emits a different color based on the direction from which it is viewed, giving
viewers different imagery as they move. Most often, to present views varying only horizontally,
displays use parallax barriers that mask pixels not displaying the current view [19]; or a lenticular
lens, an array of narrow cylindrical lenses that redirects the light rays emitted by pixels to the
same end [26]. Both these types of LFDs offer stereoscopic and binocular depth (3D) cues, without
requiring viewers to wear glasses or other technology. Fig. 2 demonstrates light flow for lenticular
lens display systems. Note that such support for multiple views on a single display panel introduces
a tradeoff between spatial and angular resolution.

LFDs supporting horizontal view change are now commercially available. Examples include
products by FOVi3D, Dimenco and Leialnc [2], Looking Glass Display [3], Light Field Lab [16]
and AYE3D [1]. In particular, LeiaInc and Dimenco recently collaborated with ASUS and launched
16" light field display (LFD) laptops. LFDs are also finding their way into head-mounted displays
(HMDs). NVIDIA proposed a near-eye LFD [20] that is light-weight and slim, incorporated into
eyeglasses. These displays use the angular flexibility of light fields to eliminate the need for
heavy, fixed lenses; to allow the use of HMDs without prescription eyeglasses; and to mitigate the
vergence-accommodation conflict faced in most HMDs.

2.1 Light Field Rendering

Light field rendering is the process of generating synthetic light fields that form input for LFDs.
Fig. 3 illustrates the full LFD image formation process; light field rendering is the first step it depicts.

To produce visual content for LFDs, it is crucial to capture the 3D spatial data of a scene from
various viewing angles. This can be achieved by configuring a virtual camera array to capture
a scene from multiple viewing directions. The resulting views are then combined into a format



compatible with a native LFD presentation [9]. One of the first examples is Levoy et al. [21], who
simplified the 7D plenoptic function [4] (six degrees of angular and spatial freedom and radiance),
into a 4D representation (a matrix of 2D images). This representation allowed computational
efficiencies, uniform sampling of light fields, and control over the set of rays.

The standard approach to rendering light fields with GPUs is to make multiple passes over the
scene description, with one pass per view (standard MVR). Because this is quite slow, Hiibner et
al. [18] proposed a single-pass solution that generates multiview splats and performs per-pixel
ray-splat intersections in the fragment shader. In [17], they improved performance further with
volume rendering method based on 3D textures. But their approach cannot directly render triangles
and produces a maximum of eight views — not enough for modern LFDs. Sorbier et al. [8] duplicated
geometry to reduce CPU-GPU bandwidth, rendering twice as fast as standard MVR for 80k triangles
and 20 views. Our work also uses points to accelerate light field rendering with GPUs, but achieves
much higher speedups.

Recently, Al has been employed to rapidly generate high-quality light fields within a specific
viewing range for static scenes [10, 28, 38, 41] or even for scenes that have views changing over
time [6, 36]. However, these approaches have limitations: they do not support scenes with moving
objects, and were applied to scenes captured with cameras, rather than scenes rendered in real
time. There is still considerable progress needed to achieve real-time rendering of high-quality
content with Al-generated light fields.

2.2 Points, iVIR, and EPR

Using points as a rendering primitive can avoid many of the limitations of triangle rasterization
[15, 22]. Unfortunately when views change, surface gaps can appear in projected point clouds.
Preventing such artifacts often requires a prohibitive number of points, or similarly prohibitive
filtering of sparser point sets (e.g., [34]). However, newer algorithms can avoid such painful tradeoffs.
Ritschel et al. [32-34] adaptively sample according to brightness and view. Schutz et al. [35] apply
compute shaders to render points more quickly.

Marrs et al’s VIR [24] utilized the GPU rasterizer to generate frame-specific point clouds for
off-screen views, enabling parallel rendering of views with significantly fewer geometry traversals
than MVR. However, as views become more heterogeneous (as with environment maps or omnidi-
rectional shadows), point cloud size grows, making real-time performance challenging. Gavane
and Watson’s iVIR [11] addresses this by optimizing triangle sampling and resizing off-screen
buffers to match eye buffer resolution. This reduces the number of points and shader loads, enabling
rendering of environment maps 2 — 4X faster than MVR.

Gavane and Watson’s EPR [12] further improved the performance and generality of point
rendering for multiview effects. EPR tailors point clouds to the sampling rate required by the eye
(frame) buffer instead of off-screen buffers, and by splatting resulting points across many off-screen
pixels. EPR also deferred shading further by calculating off-screen lighting only when visible to the
eye, and enabled very fast no-pass recursive reflection for dynamic environment mapping. As a
result, EPR is 6 — 7X faster than MVR and iVIR, with nearly identical image quality.

3 LFD POINT RENDERING

LFDPR combines iVIR’s triangle sampling with EPR’s point splatting to form a foundation for
rendering LFD views. Fig. 4 shows an overview of the LFDPR pipeline. Like iVIR [11], the vertex
shader checks vertex visibility, but uses views defined by the LFD rather than shadows or environ-
ment maps. Also like iVIR, the geometry shader adjusts sampling density, but to LFD view images
with rectangular aspect ratios, and to match texture density (Section 3.1). Similar to EPR, LFDPR’s
fragment shader often splats points across multiple pixels when textures are coarser than the view
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Fig. 4. LFDPR pipeline as implemented in the GPU. Improvements of iVIR and EPR are marked in red
and green font respectively, and LFDPR innovations are marked in blue font.

buffer. However, it also implements multiview mipmapping (Section 3.3). Finally, a single image
pass constructs the elemental image array (EIA), which interweaves rendered images for display
on the panel, and viewing through the LFD’s lenticular lens.

3.1 Determining Sampling Density

The geometry shader adjusts the point sampling density for each triangle using iVIR logic [11]
by computing the projection matrix T4, applied to the triangle. However, LFDPR introduces
three improvements: sampling according to LFD aspect ratio, texture-based sampling, and setup
for multiview mipmapping.

With the angular-spatial tradeoff LFDs introduce (see Section 2), the individual views generated
by LFD rendering often have rectangular aspect ratios, with more pixels in the vertical dimension.
Furthermore, unlike off-screen views for shadows and reflections, the centers of projection for
these views change predictably, being distributed horizontally across the LFD. Thus, triangles need
not be sampled as densely in the horizontal as in the vertical direction.

To leverage this fact, LFDPR not only aligns triangles parallel to iVIR’s view point-sampling plane,
it also aligns the vertical and horizontal axes in iVIR’s sampling view to the vertical and horizontal
axes in the light field views. Thus T4, [11] not only orients the triangle’s normal perpendicular to

iVIR’s view plane, but also maintains two sampling densities (§0,th0) for the horizontal and vertical
dimensions. To achieve this, instead of computing sampling density per unit area, we compute it
horizontally and vertically by projecting pixel edges, see Fig. 5.

To make LFDPR sampling still more parsimonious, we introduce texture-based sampling. In iVIR
and EPR, many points required to meet buffer sampling requirements may in fact be sampling the
same texels, resulting in the same color. Texture-based sampling reduces point density to avoid
this. In the geometry shader, we compute the maximum texel density on the triangle (denoted as
size,,) by dividing the area of triangle in the world space, A,,s, by the maximum number of texels
Ntex a triangle spans over all the textures attached to it. This value is independent of any particular
LFD view. Eq. 1 and Eq. 2 describe this process.

Niex = Max (Aps X Xp X V) (1)
teT

sizeyy = (AWS) (2)

Ntex
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Fig. 5. Reverse projection of pixel edges around the closest point on the polygon from the eye. The
horizontal and vertical pixel edges often differ in length on LFDs.

where Ay is the area of triangle in texture space, and T is the set of all the textures attached to a
triangle with each texture t of resolution [X}, Y;]. In iVIR, triangles are scaled by S, to set the
point sampling rate [11]. In LFDPR, when the size,,, is greater than the size of the reverse projected
view pixel sizey,, we adjust our sampling density using the formula given in Equation (3).

2 size
> Sortho X A| == if sizey, > sizey
Sortho = { Stzéus v (3)

-

Sortho otherwise

The geometry shader also sets up multiview mipmapping, discussed in Section 3.3.

3.2 Splatting

With texture-based sampling producing points sized larger than buffer pixels, we can no longer rely
on iVIR’s simple point projection. Instead, LFDPR uses EPR’s splatting logic in the compute shader
[12]. This not only avoids holes between points, but also improves image quality by enabling use
of EPR’s inside-triangle test during point splatting [12], resulting in near-rasterization edge quality.
This is particularly important for light field rendering, when view and display are sampled at nearly
the same rate, in contrast to shadow and reflection buffers.

3.3 Multiview Mipmapping

When texturing, mipmapping ensures good image quality by removing much of the aliasing that
results when many texels project to the same view pixel. In iVIR and EPR, multiview point splatting
in the compute shader does not support hardware mipmapping, but only shadows and reflections
were rendered with points, leaving the majority of the eye view mipmapped. However when
rendering light fields, every visible pixel is rendered with points, making the lack of mipmapping
much more problematic. We introduce multiview mipmapping to address this problem.

When the geometry shader is processing a triangle, we compute both the minimum and maximum

min

size any pixel on the triangle reaches in texture space across all views, represented as size,,, and

P pmax 3 1,2
sizey .y, respectively™*.

'When triangle textures do not share the same mapping, size’u”’p"l'],J and sizey;, will also depend on texture.

These equations assume that geometric and texture space are proportionally isomorphic across the triangle, e.g. we assume
that when X changes by 10%, so does U.
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Fig. 6. The proportion of an entire texture covered by pixels (LOD maps), as generated by LFDPR and
MVR. LFDPR’s multiview mipmapping generates two level of detail (LOD) values for each texture in
each triangle: (a) the minimum LOD over all views, and (b) the maximum LOD over all views. In (c), a
particular view’s LOD map is produced by interpolating between the minimum and maximum LOD
values. (d) presents the corresponding LOD map in MVR.

; A[

. min . . 0 S
size = min |size,, X 4
vpuv UEV ( Xy ws ( )

At

._ _max .0 S
size = max | size,, X 5
Upuv UEV ( Xy Aws ( )

where size}, is the area of a pixel from view v projected into the triangle.

Eq. 6 and Eq. 7 show how the fragment shader transforms these size variables into the range
typically used by graphics libraries such as OpenGL, often called level of detail or LOD. Given
that each texture may have varying resolutions (e.g., albedo, normal, roughness, ao, metallic, etc.),
the fragment shader calculates the minimum (LOD!, . ) and maximum (LOD},,.) LOD values for
each texture, uses those values to fetch minimum and maximum texture values from each texture’s

hardware mipmap (tv,,i, and tvp,ayx), and stores those in the point buffer along with sizez'g,iﬁv and
sizey .- Fig. 6a and Fig. 6b show min and max LOD maps for the sponza scene.
LOD!,;, = 0.5 x log, (sizez',;’ffv x Xp X Yt) (6)
(a) LFDPR without mipmap (b) LFDPR with mipmap

Fig. 7. Perceptual quality of the EIA rendered by LFDPR (a) without multiview mipmapping and (b)
with it. Here, HDR-VDP3 compares each image against our MVR gold standard, with blue indicating
rarely perceived differences, green slightly more perceivable, and red usually seen.



LOD! . =0.5xlog, (size’"‘”‘ X Xp X Yt) )

max vpuv

During view generation in the compute shader, for each combination of view and point splat we
interpolate a distinct displayed texture value tv in the range [t0;,in,t0max ], as described in Eq. 9.
To perform this interpolation, we must first estimate the amount of texture the point splat covers
in the current view, sizes. To do this, we take the area of the splat in texture space, and increase
it in inverse proportion to the part of the view pixel the splat covers (we never decrease a splat’s
texture area, since we render per splat, not per pixel). We then clamp the area to the range [sizez’,’;jgz),
sizeyyo]- In Eq. 8, size; is the estimated texture area adjusted by the proportion of the pixel it
covers, size, is the size of the splat in view space, in normalized device coordinates, and X, and
Y, are the view resolution.

- use Sizeyy
Sty = min(1, size®, x0.25X X, X Y,)
> ndc ’ v v (8)
size,, = clamp(size,y’, sizeyp,,, Sizeyy,
iy pUS i pmin
sizey;, — sizegp,
t0 = tomin + (t0max — tOmin) X | — max —min )
sizepy, — sizeph,

Fig. 6¢ shows the interpolation of the LOD in a view, and Fig. 7 shows the HDR-VDP3 perceptual
quality map [23] comparing an LFDPR rendering of an EIA for the sponza scene with and without
our mipmapping against the MVR gold standard (GStd) — a slowly rendered, very high quality
image we use to evaluate image quality.

4 INTERLEAVING, RECONSTRUCTION, AND SUPERSAMPLING

Having rendered the necessary view images with LFDPR, we construct the EIA for the LFD by
interleaving the views in a final image pass, as described in [9]. As we built these EIAs, we sometimes
applied antialiasing and supersampling [5, 7]. While the benefits of these techniques in space are
familiar, the value of their angular analogs are less well known. For reconstruction, we used
Gaussian filters with a spatial diameter of 2.25 pixels, and an angular support of 2 view intervals.
To integrate these filters, we sampled them 8 times using a random Gaussian distribution. We
also investigated the value of supersampling, including modest 2X supersampling across space
(view images with twice the resolution) and across angle (with splats projected into twice as many
views, at random angles in view intervals). We discuss the benefits of this reconstruction and
supersampling in Section 5.

5 RESULTS

In this section, we assess the effectiveness of LFDPR as measured by memory usage, rendering
quality, and computation time. We begin by outlining the experimental setup we employed. Subse-
quently, we delve into rendering performance and image quality.
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Scene Performance Error / Quality Measures for EIA (SV)
: Method | ptgen . EIA tot
#tris - -
(#tris) Gpiy viewgen o . | RMSE P-det Q QJOD SSIM
1.81 0.74 9.84 9.95 0.91
MVR i 30.74 818 3892 | 159y (073) (883) (9.36) (0.93)
LFDPR | g7 0.57 043 1281 | 230 034 966 987 086
no AA | (220M) : : (3.09) | (1.91) (0.70) (8.56) (9.17)  (0.90)
LFDPR 2.07 0.32 9.75 9.91 0.89
Sponza 2.78 13.99
(11) oMy | SPAA | M) 970 151 GE5d | (1.86) (0.68) (8.60) (9.20) (0.91)
' LFDPR | 579 0.69 Ly 1368 | 229 034 965 987 087
View AA | (229M) : : (2.84x) | (1.91) (0.71) (8.56) (9.17) (0.90)
LFDPR | 473 071 16 1460 | 207 032 975 991 088
Vi-Sp AA | (229M) : : (266x) | (1.87) (0.67) (8.59) (9.19) (0.90)
MVR ) 25.06 8.20 33.26 1.50 0.29 9.91 9.98 0.96

(1.23)  (0.75) (9.09) (9.54) (0.97)
217 035 970 989  0.92

LEDPR 1 6.80 1217 043 1940

no AA | (2.60M) (171x) | (1.92) (0.74) (8.42) (9.07) (0.93)

(998.9K) | Sp AA | (2.60M) (1.63%) | (1.87) (0.73) (8.46) (9.10) (0.93)
LFDPR 6.81 1216 s 2022 | 218 035 970 989 092

ViAA | (260M) ‘ : (164x) | (1.92) (0.74) (8.42) (9.07) (0.93)

LFDPR 6.79 1216 14 2100 | 205 035 974 991 093

Vi-Sp AA | (2.60M) (158x) | (1.87) (0.73) (8.46) (9.10) (0.93)

052 016 998 999 0.8

MVR - 4445 8235268 | 61y (075) (946) (976) (0.98)

LFDPR | 1453 5 04 041 2199 | 059 017 997 999 098

no AA | (1.15M) : : (240%) | (0.57) (0.62) (9.54) (9.81) (0.96)

Coconut LFDPR 16.55 5.02 1.45 23.02 0.51 0.13 9.99 9.98 0.98
(2.0M) Sp AA | (1.15M) ‘ ‘ (2.29%) | (0.54) (0.56) (9.56) (9.83) (0.98)
LFDPR | 1461 502 1p1 2284 | 057 016 997 999 098

ViAA | (151M) (231x) | (0.57) (0.62) (9.54) (9.81) (0.98)

LFDPR | 1462 5 02 s10 2374 | 050 012 998 999 098

Vi-Sp AA | (1.15M) : : (222x) | (0.54) (0.55) (9.59) (9.84) (0.98)

021 006 999 999  0.99

MVR - 3871 823 4694 | a5y (072) (973) (9.90) (0.99)

LFDPR 219 3.0 042 582 | 052 031 99 999 098

no AA | (669.4K) ‘ : (8.06x) | (0.57) (0.83) (9.53) (9.80) (0.98)

Car LFDPR 2.16 3.91 1.44 6.81 0.45 0.32 9.97 9.99 0.99
(300.6K) | Sp AA | (669.4K) (6.90x) | (0.54) (0.82) (9.57) (9.83) (0.99)
LFDPR 217 399 Lol 659 | 050 031 996 999 098

ViAA | (669.4K) (7.12x) | (0.57) (0.83) (9.53) (9.80) (0.98)

LFDPR 2.90 3.0 s00 751 | 044 032 997 999 099

Vi-Sp AA | (6694K) : : (6:25%) | (0.54) (0.80) (9.58) (9.83) (0.99)

Table 1. Rendering time and quality results for MVR and LFDPR across four models, as the recon-
struction technique (AA or antialiasing) varied between none, spatial, view (angular) and view-spatial.
No supersampling was used.
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Fig. 8. EIA generated using GStd, MVR, LFDPR without AA, LFDPR with spatial AA, LFDPR with view AA, and LFDPR with view and spatial AA;
in the sponza, gallery, coconuts, and car scenes (from top to bottom). All rendering techniques generated 48 views (except GStd with 96 views). 5.



Light Field Display Point Rendering 11

5.1 Experimental Setup

We compared the light fields made by LFDPR and MVR. We used OpenGL 4.5 on a PC with an Intel
i5-7600K @ 3.80 GHz CPU and an NVIDIA RTX 3070 GPU, running Windows 10. We rendered the
sponza, gallery, car, and coconut scenes [27, 37] shown in Fig. 8. The sponza and gallery scenes
are like many used in games, filling the entire view and making heavy use of textures. The gallery
scene in particular has very large (16Kx16K) textures. The coconuts do not fill the entire view, but
still have a large number of triangles, and large textures. Finally the car has fewer triangles and no
textures, but significant depth complexity (occluded components). All the scenes were dynamic,
rotating around their centers, and used a physically-based rendering shader [31] that accessed
albedo, roughness, metallic and normal textures. Our light field views used 64-bit unsigned integer
buffers, with a resolution of 480 X 360. The MVR implementation rendered the light fields using
multiple pipeline passes, each using hardware mipmapping. We compare all of our results to a
slowly rendered, high quality MVR implementation with 96 4K resolution views using anisotropic
mipmapping and Gaussian spatial reconstruction filters, sampled 32 times using a random Gaussian
sampling scheme. We call this high quality image our gold standard (GStd). We displayed our
rendering results on an LFD with a tilted lens [42], with a tilt angle of -9.66 degrees, 3840 x 2160
resolution, pixel width of 345.40 mm, height of 194.30 mm, lens count of 479.36, lens width of 0.72
mm, pixel pitch of 0.09 mm, and subpixel pitch of 0.03 mm.

5.2 Memory Comparison

In LFDPR, each view buffer required 1.32MB of memory; MVR’s needed 2.63MB. LFDPR required
63.36MB for 48 view buffers and 80MB per million points; MVR required 126.24MB for 48 view
buffers. Current GPU memories can contain more than a dozen GB.

5.3 Speed and Error Comparison

To compare performance, we averaged GPU run-time and the number of points generated over
1000 frames, with each technique generating the same views. Tables 1 and 2 compare LFDPR’s
speed to MVR’s for the sponza, gallery, coconut, and car scene with no and 2x supersampling,
respectively.

In Table 1, the leftmost and adjacent columns are the name of the scene and the method used
to generate the imagery: MVR without anti-aliasing (AA) reconstruction; and LFDPR without
AA, with spatial AA, with angular AA, and with spatial-angular AA. The next two columns show
LFDPR’s point generation time with the number of points in parentheses, and view generation
time. The fifth and sixth columns report the EIA construction time and the total rendering time,
along with the performance improvement as the ratio of LFDPR time over MVR’s. The next five
columns present the error and quality measures for both the EIA and a single view (in parentheses)
compared against our gold standard. The first column of these five reports root mean-squared error
(RMSE); the next three report quality measurements from HDR-VDP3 [23] including probability of
detection P-det, quality correlate Q, and quality correlate in units of just objectionable differences
Q-JOD; and the last is the structural similarity index measure (SSIM) [39]. RMSE ranges from 0
to 255, with lower values better; P-det is probability of detection ranging from 0 to 1, with lower
values better; Q (quality correlate) ranges from 10 at best quality down to negative values; and
lastly Q-JOD is similar to Q but scaled to JOD units, each corresponding to 75% of the population
noticing the difference between the pair of images [30].

LFDPR renders these views up to 8% faster than MVR with comparable image quality. In the
sponza scene, LFDPR’s P-det was thrice as good as MVR’s. LFDPR speed slowed as the number
of triangles grew (see the coconuts), particularly when the number of texels per pixel was high
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Performance Error / Quality Measures for EIA (SV)

(S#Cter?se) SS | Method [ ptgen EIA  tot
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Gallery Sp AA | (557M) : : (1L07%) | (1.32) (0.54) (8.99) (9.47) (0.96)
1.38 0.29 9.91 9.98 0.96
(998.9K) MVR - 4951 1239 6190 | (o 000 000) (054) (0.97)
ViAA | (2:60M) : : (163%) | (1.92) (0.66) (8.39) (9.04) (0.93)
0.37 0.06 9.99 9.99 0.99
MVR |- S041 826 5867 | (131) (037) (9.85) (9.95) (0.99)
Coconuts Sp AA | (L16M) 20x) | (0.42) (0.34) (9.75) (9.91) (0.99)
(2.0M) MVR B 89.07 1083 99.91 0.50 0.14 9.98 9.99 0.98
: : : (0.61) (0.75) (9.46) (9.76)  (0.98)
ViAA | (114M) : : (294%) | (0.55) (0.68) (9.58) (9.83) (0.98)
0.21 0.04 9.99 9.99 0.99
MVR - 4622 821 5444 | o el 000 097)  (0.99)
Spatial | LFDPR | 5 60 o3 794 1776 | 032 005 999 999 099
Car Sp AA | (1.82M) : ’ (3.07x) | (0.36) (0.48) (9.80) (9.93) (0.99)
0.20 0.05 9.99 9.99 0.99
(300.6K) MVR - 7527 1092  86.19 033) (072 (673 (©90) (099)
View | LEDPR | 599 0z 71 1645 | 045 032 997 999 099
ViAA | (669.4K) : : (5:24) | (0.54) (0.81) (9.56) (9.82) (0.99)

Table 2. Results structured similarly to Table 1, but with all renderers using 2x supersampling. LFDPR

did not use combined spatial-angular AA here.

(coconuts and gallery). Our mid-range GPU has limited bandwidth, which began saturating when
the number of points was particularly high (gallery). LFDPR’s quality was always close to and

sometimes exceeded MVR’s quality.

Table 2 shows the results when using 2x supersampling in space (48 views, each with a resolution
of 960 x 720) and views (96 views, each with a resolution of 480 x 360). To reach the displayed
resolution, MVR performs a pixel-by-pixel unweighted average of the supersampled image. The
leftmost column names the scene, and the adjacent two indicate either spatial or view supersampling,
and the rendering method. The remaining columns follow Table 1’s layout.




2xSS Spatial 2xSS Spatial 2xSS View 2xSS View
GStd MVR LFDPR MVR LFDPR

Fig. 9. EIA generated using GStd, 2Xx spatial SS MVR and LEDPR with spatial AA, 2Xx view SS MVR and LFDPR with view AA; in the sponza, gallery,
coconuts, and car scenes (from top to bottom). 2X spatial SS generates 48 views at a resolution of 960 X 720, and 2Xx view SS generates 96 views at a
resolution of 480 X 360.
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Fig. 10. Quality comparison of GStd vs MVR and LEDPR with angular-spatial reconstruction. The
leftmost column shows the GStd, the adjacent and central column show MVR and its HDR-VDP3
diifference image, and the right two columns show LFDPR and its difference image. The top four rows
are the sponza, the bottom two the gallery.

Here, LFDPR is up to 3X faster for spatial supersampling, and up to 5% faster for view super-
sampling, while maintaining nearly equivalent quality. In one case (spatial supersampling with
the sponza), LFDPR became slightly slower than MVR. Note that spatial supersampling slows
LFDPR more than angular, since filling two times more pixels can require roughly two times more
points, while projecting the same set of points into random nearby views did not increase point
cloud size. The reduction in rendering speed to achieve supersampling was not matched with a
proportional improvement in quality. In general, spatial supersampling improved quality more than
angular supersampling. However, angular supersampling is an essentially multiview technique,
while our quality measures are single view techniques. We hope to assess the impact of angular
supersampling more accurately using studies with human observers.
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Fig. 11. Quality comparison of GStd vs MVR and LFDPR with angular-spatial reconstruction, both
with 2x spatial supersampling. The layout is the same as in Fig. 10.

5.4 Quality Comparison

As we noted, while speed varied greatly, quality did not. Fig. 8 shows the differences in the sponza
(top row), gallery (second), coconuts (third) and car (bottom row) as rendered by GStd (left column),
MVR (second), LFDPR (third), LFDPR with spatial AA (fourth), with view AA (fifth), and view-
spatial AA (rightmost column). The visual quality of LFDPR is quite comparable to MVR in all of
these and LFDPR renders them much more quickly.

Fig. 10 zooms in on quality differences between MVR and LFDPR with angular-spatial reconstruc-
tion. Here, GStd is in the leftmost column, MVR and its HDR-VDP3 difference are in the second
and third columns, and LFDPR is in the fourth and rightmost columns. LFDPR renders fine details
in the sponza (top four rows), more clearly than MVR does. This can be seen clearly in the second
row’s red boxes. This may be due to LFDPR’s flexible multiview mipmapping.
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Fig. 9 is laid out similarly to Fig. 8, but uses 2x supersampling. These images look nearly identical
to those in Fig. 8, despite being rendered much more slowly. Zooming in on the differences in
Fig. 11 does not change this impression much, though the error images do reveal a reduction in
error salience. Again, while supersampling did bring a modest improvement in quality, it came at a
steep price in rendering speed. This tradeoff might be mitigated on a GPU with higher bandwidth
buses.

6 CONCLUSIONS AND FUTURE WORK

Rendering for light field displays (LFDs) requires creating dozens or hundreds of views, which must
then be combined into a single EIA image on the display. Multiview rendering at such scales is
extremely challenging, making real-time LFD rendering extremely difficult.

Our innovations meet these challenges by marshaling and improving on the techniques of
both iVIR and EPR. Unlike many multiview effects, all of the pixels generated for LFD rendering
are (potentially) visible, making the eye-based efficiencies of EPR insignificant. We address these
problems by introducing texture-based splatting, which avoids oversampling of triangles mapped
to only a few texels; and with LFD-biased sampling, which adjusts horizontal and vertical triangle
sampling to match the sampling of the LFD itself. LFD rendering’s "every pixel" visibility not only
makes high frame rates more difficult, it also makes higher quality imagery more difficult. To
produce such quality, we introduce multiview mipmapping, which reduces texture aliasing even
though compute shaders do not support hardware mipmapping; and use EPR’s splatting, which
avoids iVIR’s edge bloat [11]. We also introduce angular supersampling and reconstruction to
combat LFD view aliasing and crosstalk. The resulting LFDPR is 2-8x times faster than MVR, with
similar comparable quality. Texture splatting and multiview mipmapping may also prove to be
valuable in EPR.

In future work, we hope to examine LFDPR speed on higher bandwidth GPUs, which should
make rendering with spatial supersampling much more performant. We also plan to study the effect
on quality of angular reconstruction and supersampling in human experiments, since the error
measures and single frame comparisons we present here do not capture the effects of view change
well. In particular, we hope that these view angle quality improvements may reduce crosstalk, an
LFD limitation in which LFD users see two images at the same time.
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