
Light Field Display Point Rendering

Fig. 1. Results generated by our gold standard (GStd) (first column), light field display point rendering

(LFDPR) (middle column), and standard multiview rendering (MVR) (last column) as viewed through

the lens from left (top row), center (middle row), and right (bottom row) viewing angles. Each renderer

generates 48 distinct views. While they generate very similar imagery, LFDPR makes imagery up to 8×
faster than MVR.

Rendering for light field displays (LFDs) requires rendering of dozens or hundreds of views, which must

then be combined into a single image on the display, making real-time LFD rendering extremely difficult. We

introduce light field display point rendering (LFDPR), which meets these challenges by improving eye-based

point rendering [12] with texture-based splatting, which avoids oversampling of triangles mapped to only a

few texels; and with LFD-biased sampling, which adjusts horizontal and vertical triangle sampling to match

the sampling of the LFD itself. To improve image quality, we introduce multiview mipmapping, which reduces

texture aliasing even though compute shaders do not support hardware mipmapping. We also introduce

angular supersampling and reconstruction to combat LFD view aliasing and crosstalk. The resulting LFDPR is

2-8× times faster than multiview rendering, with similar comparable quality.

CCS Concepts: · Computing methodologies → Rendering; Graphics processors; Point-based models; ·

Hardware → Displays and imagers.
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1 INTRODUCTION

In emerging light field displays (LFDs), each pixel emits several different colors, one for each of

several angles of view, supporting unique views for stereoscopy and multiple simultaneous viewers,

and simulating the experience of looking out (and around the edges) of a window. LFDs require

multiview rendering to support angular variation in the light field they create.

Graphics hardware is primarily optimized for rendering scenes from a single perspective, making

multiview rendering challenging. view independent rendering (VIR), improved view independent

rendering (iVIR), and eye-based point rendering (EPR) [11, 12, 24] avoid multiple passes by gener-

ating and rendering points in real time. Frame by frame, they convert the model’s triangles into a

set of points fit to the views the current frame needs. With the points, they then render views in

parallel, requiring nearly an order of magnitude fewer passes.

In this paper, we describe how we marshal and improve on the techniques of both iVIR and EPR

to speed rendering for LFDs further. To achieve this, our light field display point rendering (LFDPR)

includes the following innovations:

• LFD-biased sampling matches triangle sampling bias to LFD display sampling bias, reducing

the size of the point cloud and improving efficiency.

• Texture-based splatting samples triangles coarsely when the textures mapped to them are

also coarse, again reducing the point cloud and improving rendering speed.

• Multiview mipmapping supports texture antialiasing without requiring (currently unsup-

ported) use of hardware mipmaps in the compute shader. This improves image quality with

only a small impact on render speed.

These innovations enable rendering of LFD views 2−8× faster than standard multiview rendering

(MVR), with nearly the same Ð and sometimes better Ð image quality.

2 RELATEDWORK

Fig. 2. Viewpoints distributed across an LFD horizontally see different pixels and views through the

lenticular lens. Each view corresponds to one panel pixel under each lenslet, creating a tradeoff between

angular and spatial resolution.

Light field rendering aims to capture and reproduce all views of a scene, including not only

how color varies across space, but also across angle. At a given moment, the light field is radiance

defined as a function of position and direction in an illuminated scene [13]. Light field displays show
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Fig. 3. Conventional image formation process for light field displays. A 3D scene is processed to

generate a fronto-parallel light field which is then processed to be compatible with the LFD. When

viewed from the LFD, the displayed image is perceived as a 3D scene [9].

the portion of the light field visible through the display surface, typically a rectangle. Light fields

were first introduced to computer graphics in 1996 [14, 21]. Since then, a great deal of research has

followed, including generation of light fields with machine learning [28, 38], and capture of them

with cameras [25, 29, 40].

Our focus here is on LFDs. In most, each pixel represents not only the position and color of a light

ray passing through the display surface, but also a range of orientations, with color varying across

that range. Each pixel emits a different color based on the direction from which it is viewed, giving

viewers different imagery as they move. Most often, to present views varying only horizontally,

displays use parallax barriers that mask pixels not displaying the current view [19]; or a lenticular

lens, an array of narrow cylindrical lenses that redirects the light rays emitted by pixels to the

same end [26]. Both these types of LFDs offer stereoscopic and binocular depth (3D) cues, without

requiring viewers to wear glasses or other technology. Fig. 2 demonstrates light flow for lenticular

lens display systems. Note that such support for multiple views on a single display panel introduces

a tradeoff between spatial and angular resolution.

LFDs supporting horizontal view change are now commercially available. Examples include

products by FOVi3D, Dimenco and LeiaInc [2], Looking Glass Display [3], Light Field Lab [16]

and AYE3D [1]. In particular, LeiaInc and Dimenco recently collaborated with ASUS and launched

16" light field display (LFD) laptops. LFDs are also finding their way into head-mounted displays

(HMDs). NVIDIA proposed a near-eye LFD [20] that is light-weight and slim, incorporated into

eyeglasses. These displays use the angular flexibility of light fields to eliminate the need for

heavy, fixed lenses; to allow the use of HMDs without prescription eyeglasses; and to mitigate the

vergence-accommodation conflict faced in most HMDs.

2.1 Light Field Rendering

Light field rendering is the process of generating synthetic light fields that form input for LFDs.

Fig. 3 illustrates the full LFD image formation process; light field rendering is the first step it depicts.

To produce visual content for LFDs, it is crucial to capture the 3D spatial data of a scene from

various viewing angles. This can be achieved by configuring a virtual camera array to capture

a scene from multiple viewing directions. The resulting views are then combined into a format
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compatible with a native LFD presentation [9]. One of the first examples is Levoy et al. [21], who

simplified the 7D plenoptic function [4] (six degrees of angular and spatial freedom and radiance),

into a 4D representation (a matrix of 2D images). This representation allowed computational

efficiencies, uniform sampling of light fields, and control over the set of rays.

The standard approach to rendering light fields with GPUs is to make multiple passes over the

scene description, with one pass per view (standard MVR). Because this is quite slow, Hübner et

al. [18] proposed a single-pass solution that generates multiview splats and performs per-pixel

ray-splat intersections in the fragment shader. In [17], they improved performance further with

volume rendering method based on 3D textures. But their approach cannot directly render triangles

and produces a maximum of eight views Ð not enough for modern LFDs. Sorbier et al. [8] duplicated

geometry to reduce CPU-GPU bandwidth, rendering twice as fast as standard MVR for 80k triangles

and 20 views. Our work also uses points to accelerate light field rendering with GPUs, but achieves

much higher speedups.

Recently, AI has been employed to rapidly generate high-quality light fields within a specific

viewing range for static scenes [10, 28, 38, 41] or even for scenes that have views changing over

time [6, 36]. However, these approaches have limitations: they do not support scenes with moving

objects, and were applied to scenes captured with cameras, rather than scenes rendered in real

time. There is still considerable progress needed to achieve real-time rendering of high-quality

content with AI-generated light fields.

2.2 Points, iVIR, and EPR

Using points as a rendering primitive can avoid many of the limitations of triangle rasterization

[15, 22]. Unfortunately when views change, surface gaps can appear in projected point clouds.

Preventing such artifacts often requires a prohibitive number of points, or similarly prohibitive

filtering of sparser point sets (e.g., [34]). However, newer algorithms can avoid such painful tradeoffs.

Ritschel et al. [32ś34] adaptively sample according to brightness and view. Schutz et al. [35] apply

compute shaders to render points more quickly.

Marrs et al.’s VIR [24] utilized the GPU rasterizer to generate frame-specific point clouds for

off-screen views, enabling parallel rendering of views with significantly fewer geometry traversals

than MVR. However, as views become more heterogeneous (as with environment maps or omnidi-

rectional shadows), point cloud size grows, making real-time performance challenging. Gavane

and Watson’s iVIR [11] addresses this by optimizing triangle sampling and resizing off-screen

buffers to match eye buffer resolution. This reduces the number of points and shader loads, enabling

rendering of environment maps 2 − 4× faster than MVR.

Gavane and Watson’s EPR [12] further improved the performance and generality of point

rendering for multiview effects. EPR tailors point clouds to the sampling rate required by the eye

(frame) buffer instead of off-screen buffers, and by splatting resulting points across many off-screen

pixels. EPR also deferred shading further by calculating off-screen lighting only when visible to the

eye, and enabled very fast no-pass recursive reflection for dynamic environment mapping. As a

result, EPR is 6 − 7× faster than MVR and iVIR, with nearly identical image quality.

3 LFD POINT RENDERING

LFDPR combines iVIR’s triangle sampling with EPR’s point splatting to form a foundation for

rendering LFD views. Fig. 4 shows an overview of the LFDPR pipeline. Like iVIR [11], the vertex

shader checks vertex visibility, but uses views defined by the LFD rather than shadows or environ-

ment maps. Also like iVIR, the geometry shader adjusts sampling density, but to LFD view images

with rectangular aspect ratios, and to match texture density (Section 3.1). Similar to EPR, LFDPR’s

fragment shader often splats points across multiple pixels when textures are coarser than the view
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Fig. 4. LFDPR pipeline as implemented in the GPU. Improvements of iVIR and EPR are marked in red

and green font respectively, and LFDPR innovations are marked in blue font.

buffer. However, it also implements multiview mipmapping (Section 3.3). Finally, a single image

pass constructs the elemental image array (EIA), which interweaves rendered images for display

on the panel, and viewing through the LFD’s lenticular lens.

3.1 Determining Sampling Density

The geometry shader adjusts the point sampling density for each triangle using iVIR logic [11]

by computing the projection matrix 𝑇𝑎𝑙𝑖𝑔𝑛 applied to the triangle. However, LFDPR introduces

three improvements: sampling according to LFD aspect ratio, texture-based sampling, and setup

for multiview mipmapping.

With the angular-spatial tradeoff LFDs introduce (see Section 2), the individual views generated

by LFD rendering often have rectangular aspect ratios, with more pixels in the vertical dimension.

Furthermore, unlike off-screen views for shadows and reflections, the centers of projection for

these views change predictably, being distributed horizontally across the LFD. Thus, triangles need

not be sampled as densely in the horizontal as in the vertical direction.

To leverage this fact, LFDPR not only aligns triangles parallel to iVIR’s view point-sampling plane,

it also aligns the vertical and horizontal axes in iVIR’s sampling view to the vertical and horizontal

axes in the light field views. Thus𝑇𝑎𝑙𝑖𝑔𝑛 [11] not only orients the triangle’s normal perpendicular to

iVIR’s view plane, but also maintains two sampling densities (𝑆𝑜𝑟𝑡ℎ𝑜 ) for the horizontal and vertical

dimensions. To achieve this, instead of computing sampling density per unit area, we compute it

horizontally and vertically by projecting pixel edges, see Fig. 5.

To make LFDPR sampling still more parsimonious, we introduce texture-based sampling. In iVIR

and EPR, many points required to meet buffer sampling requirements may in fact be sampling the

same texels, resulting in the same color. Texture-based sampling reduces point density to avoid

this. In the geometry shader, we compute the maximum texel density on the triangle (denoted as

𝑠𝑖𝑧𝑒𝑢𝑣) by dividing the area of triangle in the world space, 𝐴𝑤𝑠 , by the maximum number of texels

𝑛𝑡𝑒𝑥 a triangle spans over all the textures attached to it. This value is independent of any particular

LFD view. Eq. 1 and Eq. 2 describe this process.

𝑛𝑡𝑒𝑥 = max
𝑡 ∈𝑇

(𝐴𝑡𝑠 × 𝑋𝑡 × 𝑌𝑡 ) (1)

𝑠𝑖𝑧𝑒𝑢𝑣 =

(︃

𝐴𝑤𝑠

𝑛𝑡𝑒𝑥

)︃

(2)
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Fig. 5. Reverse projection of pixel edges around the closest point on the polygon from the eye. The

horizontal and vertical pixel edges often differ in length on LFDs.

where 𝐴𝑡𝑠 is the area of triangle in texture space, and T is the set of all the textures attached to a

triangle with each texture t of resolution [𝑋𝑡 , 𝑌𝑡 ]. In iVIR, triangles are scaled by 𝑆𝑜𝑟𝑡ℎ𝑜 to set the

point sampling rate [11]. In LFDPR, when the 𝑠𝑖𝑧𝑒𝑢𝑣 is greater than the size of the reverse projected

view pixel 𝑠𝑖𝑧𝑒𝑥𝑦 , we adjust our sampling density using the formula given in Equation (3).

𝑆𝑜𝑟𝑡ℎ𝑜 =

{︄

𝑆𝑜𝑟𝑡ℎ𝑜 ×
√︂

𝑠𝑖𝑧𝑒𝑥𝑦
𝑠𝑖𝑧𝑒𝑢𝑣

if 𝑠𝑖𝑧𝑒𝑢𝑣 > 𝑠𝑖𝑧𝑒𝑥𝑦

𝑆𝑜𝑟𝑡ℎ𝑜 otherwise
(3)

The geometry shader also sets up multiview mipmapping, discussed in Section 3.3.

3.2 Splatting

With texture-based sampling producing points sized larger than buffer pixels, we can no longer rely

on iVIR’s simple point projection. Instead, LFDPR uses EPR’s splatting logic in the compute shader

[12]. This not only avoids holes between points, but also improves image quality by enabling use

of EPR’s inside-triangle test during point splatting [12], resulting in near-rasterization edge quality.

This is particularly important for light field rendering, when view and display are sampled at nearly

the same rate, in contrast to shadow and reflection buffers.

3.3 Multiview Mipmapping

When texturing, mipmapping ensures good image quality by removing much of the aliasing that

results when many texels project to the same view pixel. In iVIR and EPR, multiview point splatting

in the compute shader does not support hardware mipmapping, but only shadows and reflections

were rendered with points, leaving the majority of the eye view mipmapped. However when

rendering light fields, every visible pixel is rendered with points, making the lack of mipmapping

much more problematic. We introduce multiview mipmapping to address this problem.

When the geometry shader is processing a triangle, we compute both the minimum andmaximum

size any pixel on the triangle reaches in texture space across all views, represented as 𝑠𝑖𝑧𝑒𝑚𝑖𝑛𝑣𝑝𝑢𝑣 and

𝑠𝑖𝑧𝑒𝑚𝑎𝑥𝑣𝑝𝑢𝑣 respectively
1,2.

1When triangle textures do not share the same mapping, 𝑠𝑖𝑧𝑒𝑚𝑖𝑛
𝑣𝑝𝑢𝑣 and 𝑠𝑖𝑧𝑒𝑚𝑎𝑥

𝑣𝑝𝑢𝑣 will also depend on texture.
2These equations assume that geometric and texture space are proportionally isomorphic across the triangle, e.g. we assume

that when X changes by 10%, so does U.
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(a) LFDPR Min LOD (b) LFDPR Max LOD (c) LFDPR Interp LOD (d) MVR LOD

Fig. 6. The proportion of an entire texture covered by pixels (LOD maps), as generated by LFDPR and

MVR. LFDPR’s multiview mipmapping generates two level of detail (LOD) values for each texture in

each triangle: (a) the minimum LOD over all views, and (b) the maximum LOD over all views. In (c), a

particular view’s LOD map is produced by interpolating between the minimum and maximum LOD

values. (d) presents the corresponding LOD map in MVR.

𝑠𝑖𝑧𝑒𝑚𝑖𝑛𝑣𝑝𝑢𝑣 = min
𝑣∈𝑉

(︃

𝑠𝑖𝑧𝑒𝑣𝑥𝑦 ×
𝐴𝑡𝑠

𝐴𝑤𝑠

)︃

(4)

𝑠𝑖𝑧𝑒𝑚𝑎𝑥𝑣𝑝𝑢𝑣 = max
𝑣∈𝑉

(︃

𝑠𝑖𝑧𝑒𝑣𝑥𝑦 ×
𝐴𝑡𝑠

𝐴𝑤𝑠

)︃

(5)

where 𝑠𝑖𝑧𝑒𝑣𝑥𝑦 is the area of a pixel from view 𝑣 projected into the triangle.

Eq. 6 and Eq. 7 show how the fragment shader transforms these size variables into the range

typically used by graphics libraries such as OpenGL, often called level of detail or LOD. Given

that each texture may have varying resolutions (e.g., albedo, normal, roughness, ao, metallic, etc.),

the fragment shader calculates the minimum (𝐿𝑂𝐷𝑡𝑚𝑖𝑛) and maximum (𝐿𝑂𝐷𝑡𝑚𝑎𝑥 ) LOD values for

each texture, uses those values to fetch minimum and maximum texture values from each texture’s

hardware mipmap (𝑡𝑣𝑚𝑖𝑛 and 𝑡𝑣𝑚𝑎𝑥 ), and stores those in the point buffer along with 𝑠𝑖𝑧𝑒𝑚𝑖𝑛𝑣𝑝𝑢𝑣 and

𝑠𝑖𝑧𝑒𝑚𝑎𝑥𝑣𝑝𝑢𝑣 . Fig. 6a and Fig. 6b show min and max LOD maps for the sponza scene.

𝐿𝑂𝐷𝑡𝑚𝑖𝑛 = 0.5 × 𝑙𝑜𝑔2

(︂

𝑠𝑖𝑧𝑒𝑚𝑖𝑛𝑣𝑝𝑢𝑣 × 𝑋𝑡 × 𝑌𝑡

)︂

(6)

(a) LFDPR without mipmap (b) LFDPR with mipmap

Fig. 7. Perceptual quality of the EIA rendered by LFDPR (a) without multiview mipmapping and (b)

with it. Here, HDR-VDP3 compares each image against our MVR gold standard, with blue indicating

rarely perceived differences, green slightly more perceivable, and red usually seen.
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𝐿𝑂𝐷𝑡𝑚𝑎𝑥 = 0.5 × 𝑙𝑜𝑔2

(︂

𝑠𝑖𝑧𝑒𝑚𝑎𝑥𝑣𝑝𝑢𝑣 × 𝑋𝑡 × 𝑌𝑡

)︂

(7)

During view generation in the compute shader, for each combination of view and point splat we

interpolate a distinct displayed texture value tv in the range [𝑡𝑣𝑚𝑖𝑛 ,𝑡𝑣𝑚𝑎𝑥 ], as described in Eq. 9.

To perform this interpolation, we must first estimate the amount of texture the point splat covers

in the current view, 𝑠𝑖𝑧𝑒𝑣𝑠𝑢𝑣 . To do this, we take the area of the splat in texture space, and increase

it in inverse proportion to the part of the view pixel the splat covers (we never decrease a splat’s

texture area, since we render per splat, not per pixel). We then clamp the area to the range [𝑠𝑖𝑧𝑒𝑚𝑖𝑛𝑣𝑝𝑢𝑣 ,

𝑠𝑖𝑧𝑒𝑚𝑎𝑥𝑣𝑝𝑢𝑣]. In Eq. 8, 𝑠𝑖𝑧𝑒𝑣𝑠𝑒𝑢𝑣 is the estimated texture area adjusted by the proportion of the pixel it

covers, 𝑠𝑖𝑧𝑒𝑣𝑠
𝑛𝑑𝑐

is the size of the splat in view space, in normalized device coordinates, and 𝑋𝑣 and

𝑌𝑣 are the view resolution.

𝑠𝑖𝑧𝑒𝑣𝑠𝑒𝑢𝑣 =

𝑠𝑖𝑧𝑒𝑢𝑣

min(1, 𝑠𝑖𝑧𝑒𝑣𝑠
𝑛𝑑𝑐

× 0.25 × 𝑋𝑣 × 𝑌𝑣)

𝑠𝑖𝑧𝑒𝑣𝑠𝑢𝑣 = clamp(𝑠𝑖𝑧𝑒𝑣𝑠𝑒𝑢𝑣 , 𝑠𝑖𝑧𝑒
𝑚𝑖𝑛
𝑣𝑝𝑢𝑣, 𝑠𝑖𝑧𝑒

𝑚𝑎𝑥
𝑣𝑝𝑢𝑣)

(8)

𝑡𝑣 = 𝑡𝑣𝑚𝑖𝑛 + (𝑡𝑣𝑚𝑎𝑥 − 𝑡𝑣𝑚𝑖𝑛) ×

(︄

𝑠𝑖𝑧𝑒𝑣𝑠𝑢𝑣 − 𝑠𝑖𝑧𝑒𝑚𝑖𝑛𝑣𝑝𝑢𝑣

𝑠𝑖𝑧𝑒𝑚𝑎𝑥𝑣𝑝𝑢𝑣 − 𝑠𝑖𝑧𝑒𝑚𝑖𝑛𝑣𝑝𝑢𝑣

)︄

(9)

Fig. 6c shows the interpolation of the LOD in a view, and Fig. 7 shows the HDR-VDP3 perceptual

quality map [23] comparing an LFDPR rendering of an EIA for the sponza scene with and without

our mipmapping against the MVR gold standard (GStd) Ð a slowly rendered, very high quality

image we use to evaluate image quality.

4 INTERLEAVING, RECONSTRUCTION, AND SUPERSAMPLING

Having rendered the necessary view images with LFDPR, we construct the EIA for the LFD by

interleaving the views in a final image pass, as described in [9]. As we built these EIAs, we sometimes

applied antialiasing and supersampling [5, 7]. While the benefits of these techniques in space are

familiar, the value of their angular analogs are less well known. For reconstruction, we used

Gaussian filters with a spatial diameter of 2.25 pixels, and an angular support of 2 view intervals.

To integrate these filters, we sampled them 8 times using a random Gaussian distribution. We

also investigated the value of supersampling, including modest 2× supersampling across space

(view images with twice the resolution) and across angle (with splats projected into twice as many

views, at random angles in view intervals). We discuss the benefits of this reconstruction and

supersampling in Section 5.

5 RESULTS

In this section, we assess the effectiveness of LFDPR as measured by memory usage, rendering

quality, and computation time. We begin by outlining the experimental setup we employed. Subse-

quently, we delve into rendering performance and image quality.
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Scene
(#tris) Method

Performance Error / Quality Measures for EIA (SV)

pt gen
(#pts) view gen

EIA

constr

tot

time
RMSE P-det Q Q-JOD SSIM

Sponza

(1.0M)

MVR - 30.74 8.18 38.92
1.81

(1.52)

0.74

(0.73)

9.84

(8.83)

9.95

(9.36)

0.91

(0.93)

LFDPR

no AA
2.81

(2.29𝑀 )
9.57 0.43 12.81

(3.04×)

2.30

(1.91)

0.34

(0.70)

9.66

(8.56)

9.87

(9.17)

0.86

(0.90)

LFDPR

Sp AA
2.78

(2.29𝑀 )
9.70 1.51 13.99

(2.78×)

2.07

(1.86)

0.32

(0.68)

9.75

(8.60)

9.91

(9.20)

0.89

(0.91)

LFDPR

View AA
2.72

(2.29𝑀 )
9.69 1.27 13.68

(2.84×)

2.29

(1.91)

0.34

(0.71)

9.65

(8.56)

9.87

(9.17)

0.87

(0.90)

LFDPR

Vi-Sp AA
2.73

(2.29𝑀 )
9.71 2.16 14.60

(2.66×)

2.07

(1.87)

0.32

(0.67)

9.75

(8.59)

9.91

(9.19)

0.88

(0.90)

Gallery

(998.9K)

MVR - 25.06 8.20 33.26
1.50

(1.23)

0.29

(0.75)

9.91

(9.09)

9.98

(9.54)

0.96

(0.97)

LFDPR

no AA
6.80

(2.60𝑀 )
12.17 0.43 19.40

(1.71×)

2.17

(1.92)

0.35

(0.74)

9.70

(8.42)

9.89

(9.07)

0.92

(0.93)

LFDPR

Sp AA
6.79

(2.60𝑀 )
12.15 1.48 20.42

(1.63×)

2.00

(1.87)

0.35

(0.73)

9.74

(8.46)

9.91

(9.10)

0.93

(0.93)

LFDPR

Vi AA
6.81

(2.60𝑀 )
12.16 1.25 20.22

(1.64×)

2.18

(1.92)

0.35

(0.74)

9.70

(8.42)

9.89

(9.07)

0.92

(0.93)

LFDPR

Vi-Sp AA
6.79

(2.60𝑀 )
12.16 2.14 21.09

(1.58×)

2.05

(1.87)

0.35

(0.73)

9.74

(8.46)

9.91

(9.10)

0.93

(0.93)

Coconut
(2.0M)

MVR - 44.45 8.23 52.68
0.52

(0.61)

0.16

(0.75)

9.98

(9.46)

9.99

(9.76)

0.98

(0.98)

LFDPR

no AA
16.53
(1.15𝑀 )

5.04 0.41 21.99
(2.40×)

0.59

(0.57)

0.17

(0.62)

9.97

(9.54)

9.99

(9.81)

0.98

(0.96)

LFDPR

Sp AA
16.55
(1.15𝑀 )

5.02 1.45 23.02
(2.29×)

0.51

(0.54)

0.13

(0.56)

9.99

(9.56)

9.98

(9.83)

0.98

(0.98)

LFDPR

Vi AA
16.61
(1.51𝑀 )

5.02 1.21 22.84
(2.31×)

0.57

(0.57)

0.16

(0.62)

9.97

(9.54)

9.99

(9.81)

0.98

(0.98)

LFDPR

Vi-Sp AA
16.62
(1.15𝑀 )

5.02 2.10 23.74
(2.22×)

0.50

(0.54)

0.12

(0.55)

9.98

(9.59)

9.99

(9.84)

0.98

(0.98)

Car
(300.6K)

MVR - 38.71 8.23 46.94
0.21

(0.33)

0.06

(0.72)

9.99

(9.73)

9.99

(9.90)

0.99

(0.99)

LFDPR

no AA
2.19

(669.4𝐾 )
3.22 0.42 5.82

(8.06×)

0.52

(0.57)

0.31

(0.83)

9.96

(9.53)

9.99

(9.80)

0.98

(0.98)

LFDPR

Sp AA
2.16

(669.4𝐾 )
3.21 1.44 6.81

(6.90×)

0.45

(0.54)

0.32

(0.82)

9.97

(9.57)

9.99

(9.83)

0.99

(0.99)

LFDPR

Vi AA
2.17

(669.4𝐾 )
3.22 1.21 6.59

(7.12×)

0.50

(0.57)

0.31

(0.83)

9.96

(9.53)

9.99

(9.80)

0.98

(0.98)

LFDPR

Vi-Sp AA
2.20

(669.4𝐾 )
3.22 2.09 7.51

(6.25×)

0.44

(0.54)

0.32

(0.80)

9.97

(9.58)

9.99

(9.83)

0.99

(0.99)

Table 1. Rendering time and quality results for MVR and LFDPR across four models, as the recon-

struction technique (AA or antialiasing) varied between none, spatial, view (angular) and view-spatial.

No supersampling was used.
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GStd

38.2𝑚𝑠

MVR

13.2𝑚𝑠

LFDPR
no AA

14.3𝑚𝑠

LFDPR
Spatial AA

14.3𝑚𝑠

LFDPR
View AA

14.9𝑚𝑠

LFDPR
View-Spat AA

33.3𝑚𝑠 19.3𝑚𝑠 20.3𝑚𝑠 20.1𝑚𝑠 20.6𝑚𝑠

52.7𝑚𝑠 36.7𝑚𝑠 37.9𝑚𝑠 37.9𝑚𝑠 38.2𝑚𝑠

46.9𝑚𝑠 9.2𝑚𝑠 10.3𝑚𝑠 10.3𝑚𝑠 11.0𝑚𝑠

Fig. 8. EIA generated using GStd, MVR, LFDPR without AA, LFDPR with spatial AA, LFDPR with view AA, and LFDPR with view and spatial AA;

in the sponza, gallery, coconuts, and car scenes (from top to bottom). All rendering techniques generated 48 views (except GStd with 96 views). 5.
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5.1 Experimental Setup

We compared the light fields made by LFDPR and MVR. We used OpenGL 4.5 on a PC with an Intel

i5-7600K @ 3.80 GHz CPU and an NVIDIA RTX 3070 GPU, running Windows 10. We rendered the

sponza, gallery, car, and coconut scenes [27, 37] shown in Fig. 8. The sponza and gallery scenes

are like many used in games, filling the entire view and making heavy use of textures. The gallery

scene in particular has very large (16K×16K) textures. The coconuts do not fill the entire view, but

still have a large number of triangles, and large textures. Finally the car has fewer triangles and no

textures, but significant depth complexity (occluded components). All the scenes were dynamic,

rotating around their centers, and used a physically-based rendering shader [31] that accessed

albedo, roughness, metallic and normal textures. Our light field views used 64-bit unsigned integer

buffers, with a resolution of 480 × 360. The MVR implementation rendered the light fields using

multiple pipeline passes, each using hardware mipmapping. We compare all of our results to a

slowly rendered, high quality MVR implementation with 96 4K resolution views using anisotropic

mipmapping and Gaussian spatial reconstruction filters, sampled 32 times using a random Gaussian

sampling scheme. We call this high quality image our gold standard (GStd). We displayed our

rendering results on an LFD with a tilted lens [42], with a tilt angle of -9.66 degrees, 3840 x 2160

resolution, pixel width of 345.40 mm, height of 194.30 mm, lens count of 479.36, lens width of 0.72

mm, pixel pitch of 0.09 mm, and subpixel pitch of 0.03 mm.

5.2 Memory Comparison

In LFDPR, each view buffer required 1.32MB of memory; MVR’s needed 2.63MB. LFDPR required

63.36MB for 48 view buffers and 80MB per million points; MVR required 126.24MB for 48 view

buffers. Current GPU memories can contain more than a dozen GB.

5.3 Speed and Error Comparison

To compare performance, we averaged GPU run-time and the number of points generated over

1000 frames, with each technique generating the same views. Tables 1 and 2 compare LFDPR’s

speed to MVR’s for the sponza, gallery, coconut, and car scene with no and 2× supersampling,

respectively.

In Table 1, the leftmost and adjacent columns are the name of the scene and the method used

to generate the imagery: MVR without anti-aliasing (AA) reconstruction; and LFDPR without

AA, with spatial AA, with angular AA, and with spatial-angular AA. The next two columns show

LFDPR’s point generation time with the number of points in parentheses, and view generation

time. The fifth and sixth columns report the EIA construction time and the total rendering time,

along with the performance improvement as the ratio of LFDPR time over MVR’s. The next five

columns present the error and quality measures for both the EIA and a single view (in parentheses)

compared against our gold standard. The first column of these five reports root mean-squared error

(RMSE); the next three report quality measurements from HDR-VDP3 [23] including probability of

detection P-det, quality correlate Q, and quality correlate in units of just objectionable differences

Q-JOD; and the last is the structural similarity index measure (SSIM) [39]. RMSE ranges from 0

to 255, with lower values better; P-det is probability of detection ranging from 0 to 1, with lower

values better; Q (quality correlate) ranges from 10 at best quality down to negative values; and

lastly Q-JOD is similar to Q but scaled to JOD units, each corresponding to 75% of the population

noticing the difference between the pair of images [30].

LFDPR renders these views up to 8× faster than MVR with comparable image quality. In the

sponza scene, LFDPR’s P-det was thrice as good as MVR’s. LFDPR speed slowed as the number

of triangles grew (see the coconuts), particularly when the number of texels per pixel was high
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Scene
(#tris) SS Method

Performance Error / Quality Measures for EIA (SV)

pt gen
(#pts) view gen

EIA

constr

tot

time
RMSE P-det Q Q-JOD SSIM

Sponza

(1.0M)

Spatial

MVR - 33.33 8.21 41.54
1.43

(0.98)

0.34

(0.29)

9.92

(9.44)

9.98

(9.75)

0.94

(0.97)

LFDPR

Sp AA
5.14

(6.66𝑀 )
29.54 7.42 42.10

(0.99×)

1.68

(1.52)

0.29

(0.48)

9.89

(8.93)

9.97

(9.43)

0.92

(0.93)

View

MVR - 69.04 11.56 80.60
1.83

(1.52)

0.74

(0.73)

9.84

(8.82)

9.95

(9.36)

0.91

(0.93)

LFDPR

Vi AA
2.89

(2.37𝑀 )
21.33 7.13 31.34

(2.57×)

2.10

(1.90)

0.32

(0.67)

9.75

(8.58)

9.91

(9.19)

0.88

(0.90)

Gallery

(998.9K)

Spatial

MVR - 31.08 8.22 39.30
1.21

(0.89)

0.08

(0.54)

9.96

(9.42)

9.99

(9.74)

0.97

(0.98)

LFDPR

Sp AA
7.35

(5.57𝑀 )
22.26 7.26 36.86

(1.07×)

1.40

(1.32)

0.13

(0.54)

9.94

(8.99)

9.99

(9.47)

0.96

(0.96)

View

MVR - 49.51 12.39 61.90
1.38

(1.23)

0.29

(0.75)

9.91

(9.09)

9.98

(9.54)

0.96

(0.97)

LFDPR

Vi AA
7.01

(2.60𝑀 )
23.78 7.14 37.93

(1.63×)

2.01

(1.92)

0.34

(0.66)

9.75

(8.39)

9.91

(9.04)

0.93

(0.93)

Coconuts
(2.0M)

Spatial

MVR - 50.41 8.26 58.67
0.37

(0.31)

0.06

(0.37)

9.99

(9.85)

9.99

(9.95)

0.99

(0.99)

LFDPR

Sp AA
17.05
(1.16𝑀 )

5.27 6.98 29.30
(2.0×)

0.40

(0.42)

0.04

(0.34)

9.99

(9.75)

9.99

(9.91)

0.99

(0.99)

View

MVR - 89.07 10.83 99.91
0.50

(0.61)

0.14

(0.75)

9.98

(9.46)

9.99

(9.76)

0.98

(0.98)

LFDPR

Vi AA
16.88
(1.14𝑀 )

10.22 6.85 33.95
(2.94×)

0.51

(0.55)

0.12

(0.68)

9.98

(9.58)

9.99

(9.83)

0.98

(0.98)

Car
(300.6K)

Spatial

MVR - 46.22 8.21 54.44
0.21

(0.19)

0.04

(0.33)

9.99

(9.90)

9.99

(9.97)

0.99

(0.99)

LFDPR

Sp AA
2.60

(1.82𝑀 )
7.92 7.24 17.76

(3.07×)

0.32

(0.36)

0.05

(0.48)

9.99

(9.80)

9.99

(9.93)

0.99

(0.99)

View

MVR - 75.27 10.92 86.19
0.20

(0.33)

0.05

(0.72)

9.99

(9.73)

9.99

(9.90)

0.99

(0.99)

LFDPR

Vi AA
2.22

(669.4𝐾 )
7.02 7.21 16.45

(5.24×)

0.45

(0.54)

0.32

(0.81)

9.97

(9.56)

9.99

(9.82)

0.99

(0.99)

Table 2. Results structured similarly to Table 1, but with all renderers using 2× supersampling. LFDPR

did not use combined spatial-angular AA here.

(coconuts and gallery). Our mid-range GPU has limited bandwidth, which began saturating when

the number of points was particularly high (gallery). LFDPR’s quality was always close to and

sometimes exceeded MVR’s quality.

Table 2 shows the results when using 2× supersampling in space (48 views, each with a resolution

of 960 x 720) and views (96 views, each with a resolution of 480 x 360). To reach the displayed

resolution, MVR performs a pixel-by-pixel unweighted average of the supersampled image. The

leftmost column names the scene, and the adjacent two indicate either spatial or view supersampling,

and the rendering method. The remaining columns follow Table 1’s layout.
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GStd

41.5𝑚𝑠

2xSS Spatial
MVR

53.3𝑚𝑠

2xSS Spatial
LFDPR

80.6𝑚𝑠

2xSS View
MVR

31.5𝑚𝑠

2xSS View
LFDPR

39.3𝑚𝑠 48.7𝑚𝑠 61.9𝑚𝑠 44.2𝑚𝑠

58.7𝑚𝑠 46.4𝑚𝑠 99.9𝑚𝑠 68.1𝑚𝑠

58.7𝑚𝑠 46.4𝑚𝑠 99.9𝑚𝑠 68.1𝑚𝑠

Fig. 9. EIA generated using GStd, 2× spatial SS MVR and LFDPR with spatial AA, 2× view SS MVR and LFDPR with view AA; in the sponza, gallery,

coconuts, and car scenes (from top to bottom). 2× spatial SS generates 48 views at a resolution of 960 × 720, and 2× view SS generates 96 views at a

resolution of 480 × 360.
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GStd MVR MVR LFDPR LFDPR

GStd MVR MVR LFDPR LFDPR

GStd

GStd

MVR

MVR

MVR

MVR

LFDPR

LFDPR

LFDPR

LFDPR

GStd MVR MVR LFDPR LFDPR

Fig. 10. Quality comparison of GStd vs MVR and LFDPR with angular-spatial reconstruction. The

leftmost column shows the GStd, the adjacent and central column show MVR and its HDR-VDP3

diifference image, and the right two columns show LFDPR and its difference image. The top four rows

are the sponza, the bottom two the gallery.

Here, LFDPR is up to 3× faster for spatial supersampling, and up to 5× faster for view super-

sampling, while maintaining nearly equivalent quality. In one case (spatial supersampling with

the sponza), LFDPR became slightly slower than MVR. Note that spatial supersampling slows

LFDPR more than angular, since filling two times more pixels can require roughly two times more

points, while projecting the same set of points into random nearby views did not increase point

cloud size. The reduction in rendering speed to achieve supersampling was not matched with a

proportional improvement in quality. In general, spatial supersampling improved quality more than

angular supersampling. However, angular supersampling is an essentially multiview technique,

while our quality measures are single view techniques. We hope to assess the impact of angular

supersampling more accurately using studies with human observers.
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GStd MVR MVR LFDPR LFDPR

GStd MVR MVR LFDPR LFDPR

GStd

GStd

MVR

MVR

MVR

MVR

LFDPR

LFDPR

LFDPR

LFDPR

GStd MVR MVR LFDPR LFDPR

Fig. 11. Quality comparison of GStd vs MVR and LFDPR with angular-spatial reconstruction, both

with 2x spatial supersampling. The layout is the same as in Fig. 10.

5.4 Quality Comparison

As we noted, while speed varied greatly, quality did not. Fig. 8 shows the differences in the sponza

(top row), gallery (second), coconuts (third) and car (bottom row) as rendered by GStd (left column),

MVR (second), LFDPR (third), LFDPR with spatial AA (fourth), with view AA (fifth), and view-

spatial AA (rightmost column). The visual quality of LFDPR is quite comparable to MVR in all of

these and LFDPR renders them much more quickly.

Fig. 10 zooms in on quality differences between MVR and LFDPR with angular-spatial reconstruc-

tion. Here, GStd is in the leftmost column, MVR and its HDR-VDP3 difference are in the second

and third columns, and LFDPR is in the fourth and rightmost columns. LFDPR renders fine details

in the sponza (top four rows), more clearly than MVR does. This can be seen clearly in the second

row’s red boxes. This may be due to LFDPR’s flexible multiview mipmapping.
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Fig. 9 is laid out similarly to Fig. 8, but uses 2× supersampling. These images look nearly identical

to those in Fig. 8, despite being rendered much more slowly. Zooming in on the differences in

Fig. 11 does not change this impression much, though the error images do reveal a reduction in

error salience. Again, while supersampling did bring a modest improvement in quality, it came at a

steep price in rendering speed. This tradeoff might be mitigated on a GPU with higher bandwidth

buses.

6 CONCLUSIONS AND FUTURE WORK

Rendering for light field displays (LFDs) requires creating dozens or hundreds of views, which must

then be combined into a single EIA image on the display. Multiview rendering at such scales is

extremely challenging, making real-time LFD rendering extremely difficult.

Our innovations meet these challenges by marshaling and improving on the techniques of

both iVIR and EPR. Unlike many multiview effects, all of the pixels generated for LFD rendering

are (potentially) visible, making the eye-based efficiencies of EPR insignificant. We address these

problems by introducing texture-based splatting, which avoids oversampling of triangles mapped

to only a few texels; and with LFD-biased sampling, which adjusts horizontal and vertical triangle

sampling to match the sampling of the LFD itself. LFD rendering’s "every pixel" visibility not only

makes high frame rates more difficult, it also makes higher quality imagery more difficult. To

produce such quality, we introduce multiview mipmapping, which reduces texture aliasing even

though compute shaders do not support hardware mipmapping; and use EPR’s splatting, which

avoids iVIR’s edge bloat [11]. We also introduce angular supersampling and reconstruction to

combat LFD view aliasing and crosstalk. The resulting LFDPR is 2-8× times faster than MVR, with

similar comparable quality. Texture splatting and multiview mipmapping may also prove to be

valuable in EPR.

In future work, we hope to examine LFDPR speed on higher bandwidth GPUs, which should

make rendering with spatial supersampling much more performant. We also plan to study the effect

on quality of angular reconstruction and supersampling in human experiments, since the error

measures and single frame comparisons we present here do not capture the effects of view change

well. In particular, we hope that these view angle quality improvements may reduce crosstalk, an

LFD limitation in which LFD users see two images at the same time.
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