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Abstract—The increasing usage of streaming data has raised
significant privacy concerns in decentralized optimization and
learning applications. To address this issue, differential privacy
has emerged as a standard approach for privacy protection in de-
centralized online optimization. Regrettably, existing differential-
privacy solutions for decentralized online optimization face the
dilemma of trading optimization accuracy for privacy. In this
paper, we propose a local-differential-privacy solution for de-
centralized online optimization/learning that ensures both op-
timization accuracy and rigorous differential privacy, even in
the infinite time horizon. Compared with our prior results that
rely on a decaying coupling strength to gradually eliminate the
influence of differential-privacy noises, the proposed approach
allows the coupling strength to be time-invariant, which ensures
a high convergence speed. Moreover, different from prior results
which rely on precise gradient information to ensure optimality,
the proposed approach can ensure convergence in mean square to
the optimal solution even in the presence of stochastic gradients.
We corroborate the effectiveness of our algorithm using multi-
ple benchmark machine-learning applications, including logistic
regression on the “mushrooms” dataset and CNN-based image
classification on the “MNIST” and “CIFAR-10” datasets.

Index Terms—Decentralized stochastic optimization, online
learning, local differential privacy.

I. INTRODUCTION

Decentralized stochastic optimization has become a focal
point of research in machine learning, signal processing, and
control [1], [2]. Its goal is to enable multiple participating
agents to collaboratively learn a global model parameter
0* € R™ that best fits all agents’ local data. Mathematically,
the problem of decentralized stochastic optimization can be
formulated as
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Here, the local objective function f;(#) : R® — R represents
the mathematical expectation of agent i’s loss function (6, £%),
where £ denotes agent i’s data-points drawn from distribution
D;. In practice, because the data distribution D; is generally
unknown, it is impossible to analytically find an optimal
solution to problem (1). To address this issue, empirical
risk minimization (ERM) is usually employed to approximate
the optimal solution to problem (1). In traditional ERM,
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all data are pre-stored and concurrently available [3], [4].
Nevertheless, in emerging applications such as autonomous
vehicles, smart grids, and cloud computing, data are acquired
in serial [5]. This necessitates a rethinking of off-the-shelf
ERM-based solutions and has catalyzed the development of
several decentralized online stochastic optimization/learning
algorithms [6]-[9].

However, existing decentralized online algorithms require
participating agents to share their intermediate parameters
and/or gradient estimates, which can cause serious privacy
leakage as these intermediate parameters or gradient estimates
may contain sensitive information. In fact, recent studies have
demonstrated that an external adversary can precisely recover
the raw training data from intercepted gradient estimates [10]-
[12], posing serious privacy threats to agents participating in
decentralized optimization. To meet the urgent need for privacy
protection, various privacy mechanisms have been proposed.
One mechanism employs homomorphic encryption [13], [14].
While effective, this mechanism is computationally intensive.
Hardware-based solutions like trusted hardware enclaves have
also been explored, which, however, are server-dependent and
cannot prevent data providers from inferring users’ data in
decentralized training [15]. Recent results have investigated
exploiting time or spatially correlated noises for privacy pro-
tection [16]—[21]. Although these approaches ensure optimiza-
tion accuracy by canceling out injected noises, they require
each agent to have at least one neighbor not colluding with
potential adversaries, which is often difficult to satisfy in many
multi-agent applications.

As differential privacy (DP) is evolving as a gold standard
for privacy protection [22], [23], plenty of efforts have been
reported to incorporate DP in decentralized optimization [24]—
[43]. One main difficulty in enabling DP in decentralized
optimization lies in the fact that the conventional DP frame-
work relies on a “centralized” data aggregator to collect raw
data and inject noises, which may not be available in fully
decentralized multi-agent networks [32], [33]. In addition, ex-
isting approaches are usually subject to a fundamental tradeoff
between optimization accuracy and privacy [25]-[31], [35]-
[40], which is undesirable in accuracy-sensitive applications.
To tackle this dilemma, our prior result in [34] achieves
accurate convergence and privacy protection simultaneously in
decentralized offline optimization by introducing a weakening
factor into inter-agent iteration to mitigate the impact of DP
noises. However, this decaying coupling strength reduces the
speed of algorithmic convergence. In addition, this approach
requires all data to be static and predetermined, and hence,



is inapplicable to online optimization/learning applications
where data are acquired in serial. Moreover, by employing
the local-differential-privacy (LDP) framework [44]-[46] to
eliminate the requirement of a data aggregator in the con-
ventional DP framework, we recently proposed an algorithm
that can achieve both LDP and optimality in decentralized
online learning [47]. However, this approach also hinges on
the incorporation of a weakening factor, which significantly
slows down algorithmic convergence.

In this paper, we propose an online approach that can
ensure both LDP and optimality in decentralized stochastic
optimization, even in the infinite time horizon. To facilitate
convergence analysis, we first prove that the decentralized
stochastic optimization problem has the same optimal solution
as a newly formulated ERM problem under online data acqui-
sition. Then, we propose a decentralized online optimization
algorithm and prove that it can ensure convergence in mean
square to the optimal solution to the ERM problem, and
hence, can ensure convergence in mean square to the optimal
solution to the original decentralized stochastic optimization
problem. It is worth noting that our approach can ensure a
finite cumulative privacy budget in the infinite time horizon
without incorporating any weakening factors in inter-agent
iterations, which is crucial in [34], [47] to simultaneously
ensure optimality and DP in decentralized optimization. The
avoidance of such a weakening factor enables us to achieve
a higher convergence speed, as analytically proved in our
theoretical analysis (Sec. IV-B) and numerically confirmed in
our experimental results (Sec. VI).

The main contributions are summarized as follows:

o« We prove that the optimal solution to problem (1) is
the same as that to a newly formulated ERM problem
under serial data acquisition. The result is also true under
persistent DP noises, which, to the best of our knowledge,
has not been reported before.

o In addition to ensuring convergence in mean square
to the exact optimal solution, we also prove that our
algorithm can simultaneously ensure a finite cumulative
privacy budget, even when the number of iterations tends
to infinity. This contrasts sharply with most existing
DP solutions for decentralized optimization in [25]-[31],
[35]-[40], [42], [43], where the privacy budget grows to
infinity as time tends to infinity, implying diminishing DP
protection in the infinite time horizon.

o Unlike existing results in [34], [47] which rely on a
weakening factor in coupling strength to ensure both
DP and optimality, our approach avoids weakening the
coupling strength. Not only does avoiding a weakening
factor simplify algorithm design by reducing the number
of design parameters, but it also permits the coupling
strength to be persistent, which ensures a high conver-
gence speed (see Sec. IV-B for comparison results).

« Different from most existing results, which employ the
traditional DP framework and (implicitly) rely on a “cen-
tralized” data aggregator to collect data and inject noises
(see, e.g., [24]-[41]), our approach employs the LDP
framework, which eliminates the need for any trusted data
aggregators. Our approach also differs from existing LDP

results for parameter-server-assisted federated learning
(see, e.g., [48]-[51]), which are not applicable to the
fully decentralized setting. Moreover, our implementation
of €-LDP provides a stricter privacy guarantee than
the (%, 6%)-LDP framework used in [46].

o We evaluate the effectiveness of our algorithm by using
machine-learning experiments, including logistic regres-
sion on the “mushrooms” dataset and CNN-based image
classification on the “MNIST” and “CIFAR-10" datasets.
Our experimental results confirm that the proposed ap-
proach is superior to existing counterparts in terms of
both learning/test accuracies and convergence speed.

The rest of this paper is organized as follows. Sec. II
formulates the problem and introduces necessary notations for
later use. Sec. III presents the proposed algorithm. Sec. IV
analyzes the optimization accuracy and convergence speed.
Sec. V establishes the differential-privacy guarantee. Sec. VI
provides experimental results. Sec. VII concludes the paper.

Notations: We use R™ to denote the n-dimensional Eu-
clidean space and N(NT) to denote the set of non-negative
(positive) integers. We let ® denote the Kronecker product. We
write 1,, and 0,, for n-dimensional all-one and all-zero column
vectors, respectively; in both cases we suppress the dimension
when clear from the context. We use I,, to denote the n-
dimensional identity matrix. We let W7 denote the transpose
of a matrix WW. We use (-,-) to denote the inner product of

two vectors and || - || for the Euclidean norm of a vector.
We write col{01,---,0,,} for the stacked column vector of
01, ,0,,. The notation [a] refers to the smallest integer no

less than a and |a| represents the largest integer no greater
than a. We use Lap(v;) to denote the Laplace distribution with
a parameter v; > 0, featuring a probability density function
—|a|

1 —

s-e *i . Lap(v;) has a mean of zero and a variance of 2v7.

We abbreviate independent and identically distributed by i.i.d.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we present some background information of
LDP and the problem formulation.

A. Local differential privacy

Local differential privacy addresses the scenario where no
trusted data aggregator exists to gather data and execute the
privacy mechanism. As such, privacy protection for LDP is
enforced at the agent level.

Before providing the definition of LDP, we first introduce
the concept of adjacency on the local dataset of agent ¢:

Definition 1. (Adjacency). For any T € NV and any agent

i € [m], given two local datasets S = {&}, &5, -+, &5} and
S = {85, &}, ' is said to be adjacent to S' if
there exists a time instant k € {1,--- T} such that & # &};

while € = €' for all t € [1,T) and t # k.

According to Definition 1, two local datasets S} and S}
are adjacent if they differ in only one element while all other
elements are the same. We denote this adjacency relationship
as Adj(S%,S’"). With this notation, we present the definition
of LDP:



Definition 2. (LDP) Let A;(S%,07%) be an implementation
of a decentralized algorithm by agent i, which takes agent i’s
dataset S* and all received information =" as input. Then,
agent i’s implementation A; is said to be €'-LDP if for any
adjacent datasets S* and S'', and the set of all possible
observations O, the following inequality holds:

P[A;(S',077) € O] < e PlA(S",07) € 0. (2)

The definition of LDP implies that if datasets S¢ and S’* are
adjacent, i.e., differ by a single data (record), their correspond-
ing observations under A; are very close in distribution. This
ensures that any third party cannot infer agent i’s private data
from shared messages. The ratio of probabilities is bounded
by e, where € is known as the privacy budget or privacy
loss. A smaller ¢’ implies a stronger privacy protection.

For each agent i’s implementation of LDP, the total privacy
budget €’ should be preset. Every data access will consume
some budget €!. Therefore, to maintain LDP throughout 7'
iterations, the cumulative privacy budget must not exceed the
preset budget, i.e., Zthl €l < €.

To achieve €;-LDP at time ¢, each agent i adds Laplace
noises to its shared messages. The amount of noise added
is determined by sensitivity, which quantifies the maximum
impact that a single data-point change can have on the output
of agent ¢’s implementation at time ¢:

Definition 3. (Sensitivity) The sensitivity of each agent i’s
implementation A; at time t is defined as

Ay, = )||Ai<sz',0;"> —A(S5 0, B

max
Adj(S¢,8;°
where S} represents agent i’s dataset and 0; " represents all
received information acquired by agent i at time t.

Based on the concept of sensitivity, we introduce the fol-
lowing lemma that delineates a sufficient condition for €*-LDP
over any time period 71"

Lemma 1. At time t € N, if agent i injects into each of
its transmitted messages a noise vector V, consisting of n
independent Laplace noises Lap(v;) with parameter v; such
that Zle ﬁg’ < €', then agent i’s implementation A; is €
locally differentially private from time t =1 tot=T.

Proof. The lemma can be obtained following the same line of
reasoning of Lemma 2 in [24]. O]

Lemma 1 indicates that the cumulative privacy budget in-
creases with an increase in the number of iterations 7'. In fact,
in many existing DP solutions for decentralized optimization
[25]-[30], [35]-[40], [42], [43], the cumulative privacy budget
is allowed to grow to infinity as 7" tends to infinity. Based on
the definition of DP, this implies that privacy protection will
eventually be lost.

In this paper, to achieve rigorous DP protection, we ensure
the cumulative privacy budget to be finite even when 7' tends
to infinity.

Remark 1. In the LDP definition, each agent ¢ treats all
received information #~*, including the network topology and
all messages received from neighboring agents, as external
information that does not influence its DP design. Therefore,

agents independently choose their privacy budgets ¢’ and cor-
responding DP noises based on their practical needs, irrespec-
tive of other agents’ actions. This differs from the centralized
DP framework in existing algorithms [32], [33], which requires
agents to mutually trust each other to cooperatively determine
the DP-noise needed to guarantee a universal global privacy
budget e.

B. Decentralized online stochastic optimization

We consider a network of m agents that cooperatively
learn an optimal solution #* to the stochastic optimization
problem (1) with data acquired in serial. More specifically, at
time ¢, each agent i acquires a data-point &}, which is drawn
from distribution D;. Each data-point & is associated with a
loss function 1(6, £}), which is a random realization of the local
objective function f;(6). The agents cooperate to minimize the
average objective function F/(6) = = > f;(6). We assume
that the m agents interact on an undirected and connected
graph G = ([m], &), where [m] = {1,---,m} denotes the
set of agents and £ C [m] x [m] denotes the edge set. The
neighboring set of agent 4 is denoted as N; = {j : (4,5) € £}.
We define a weight matrix as W = {w;;} € R™*™, where w;;
gives the weight of edge (i,j) € & with the convention
that w;; > 0 if (¢,j) € &, and w;; = 0 otherwise. We
define w;; = — ZjeNi Wij.

To facilitate subsequent analysis, we make the following
standard assumptions:

Assumption 1. The gradients of local objective functions
fi(0) are uniformly bounded, i.e., there exists some D > 0
such that we have ||V f;(0)|| < D for all i € [m] and 6 € R™.

Assumption 1 is standard in nonconvex optimization (see,
e.g., [52]-[56]). In fact, in many machine learning applica-
tions, the technique of gradient clipping is used to make the
norm of gradients no larger than some threshold value [57],
[58], which will make our bounded-gradient assumption hold
automatically.

Assumption 2. We assume that the random data-points
{€} of agent i are i.i.d across different time instants k € [0, t].
In addition, (i) E[VI(0,&})] = Vfi(0); (i) E[[|VI(0,&}) —
VO] < &% and (i) [|[VI(61,€) — VI(02,)] <
L||61 — 02|| for any 61,02 € R™.

Assumption 2 does not require data-points to be i.i.d. among
different agents. Moreover, Assumptions 2-(i)-(iii) are standard
for convergence analysis in federated learning (see, e.g., [59],
[60]) and decentralized stochastic optimization (see, e.g., [9],
[10], [61]-[63]). In addition, Assumption 2-(iii) ensures the
smoothness of loss functions. A large number of loss functions
satisfy this assumption, with typical examples including the
widely used cross-entropy loss and its variants [64].

Assumption 3. The weight matrix W = {w;;} € R™*™
is symmetric and satisfies 1TW = 0T and W1 = 0. The
eigenvalues of W satisfy (after arranged in an increasing
order) —1 < 0,, <--- <8y <1 =0.

Assumption 3 is standard for achieving average consensus
among agents in fully decentralized optimization/learning (see
discussions in, e.g., [8], [9], [28], [29], [42]). Moreover, the



work [65] has shown that decentralized average consensus
(under constant weights w;;) is achievable if and only if
w;; satisfies 0 < w;; < m, where d; and d;
represent the number of neighbors of agent ¢ and agent j,
respectively. Since d; and d; are always no less than 1, we
have that the weights w;; are always less than 1 (see Section
4.1 in [65] for more detailed discussions).

Given that agent ¢ is not aware of data distribution D; in
problem (1), to solve for (1), it is natural to minimize the
following online empirical objective function:

1 & i i _ 1 - i
0= ;ftw), 1O = ’;lw,gk).
)

Remark 2. The online ERM is inspired by the classic ERM
formulation [66], but has a remarkable difference. Specifically,
in the decentralized ERM formulation [66], a static empirical
objective function F'(#) = Ly fi(6) is minimized, where
fi(0) = ni Somi U6, &) approximates the expected loss
function using a static dataset S* = {&},---, &} }. Obvi-
ously, this dataset S’ is available to agent i before algorithm
implementation, and hence, f;(0) and F(f) are static. In
contrast, our ERM formulation involves dynamic datasets for
each agent that grow over time, leading to time-varying local
empirical objective functions f;(6). The dynamic and evolving
data landscape brings challenges in ensuring both algorithmic
convergence and optimality in algorithm designs.

mineeRn Ft (

Now, we prove that the optimal solution to the proposed
online ERM problem converges in mean square to the optimal
solution to the stochastic optimization problem in (1):

Lemma 2. Denote 0 and 0* as the optimal solution
to the online ERM problem (4) at time t and the optimal
solution to the original stochastic optimization problem (1),
respectively. Under Assumption 2, if F'(0) is u-strongly convex,
the following inequality always holds:

E[|6; — 0°||2] < M en )
K At +1)’ '
Proof. Given the relationship F;(0;) < F(6*), we have
F(07) = F(0%) < (F(67) — F1(07)) — (F(0") = Fy(67)). (6)
The mean value theorem implies
(F(07) — Fi(67)) — (F(07) — Fi(67))
= (VF(x) = VFE(x),0; - 07) (7
< [VF(x) = VEOO0F — 67,
where the variable x is given by x = af} + (1 — «)0* for
some constant « € (0,1).
Defining VF(x) = L 3" E[Vi(x, £')] leads to
E[|VE(x) - VF(x) ZVft VE(x)
T, 1 ¢ ,
E;tﬂ EOE IVI0x ) — EVICx 6] -
®)

Since the data-points {&}} for agent i are i.i.d. across different
time 1nstants we use the Lyapunov inequality E[||X|] <
(BT X]|P ]) for any p>1 and Assumption 2-(ii) to obtain

S E[IVIx € ~ B9 )]

k=0
: 2
< (Z [Vi(x, &) —E[Vl(x,«s@]H) ©)
k=0
t
= JE| DIV €) - VA" | < avi+T
k=0
Incorporating (9) into (8) yields E [||VF:(x) — VE()|] <
\/tK-Tl' By using (6) and (7), we have
* _ * K * _ *
E[F(07) — F(0)] < NES (67 —o*ll}. (10)

Given that F'(0) is strongly convex, we have &6 —6*||* <

F(6F) — F(6*). By using (10), we obtain
1% * * * *
E 0; — 6 0y — 6|1,
which implies E [||0} — 0[] < %“(twL 1)~ and inequality (5).

O

Lemma 2 ensures that the optimal solution to the online
ERM problem in (4) converges in mean square to the optimal
solution to the stochastic optimization problem in (1). With
this understanding, we aim to develop a decentralized online
optimization algorithm that generates a sequence {6} to track
the optimal solution to (4) under LDP constraints. Based on the
results in Lemma 2, this optimal solution will also converge
in mean square to the optimal solution to (1) even under LDP
constraints.

III. LOCALLY DIFFERENTIALLY PRIVATE
DECENTRALIZED ONLINE LEARNING ALGORITHM DESIGN

We propose Algorithm 1 to solve stochastic optimization
problem (1) while ensuring rigorous €’-LDP. The injected DP
noise satisfies the following assumption:

Assumption 4. For each agent i € [m] and at any time
t > 0, the DP noise 1} remains independent across iterations
and sansﬁes E[z?z] 0 and E[||9%|%*] = (0})2. The variance is
given by ol = :{’ — with o, > 0 and <" € (3,
the following inequality always holds:

1). Moreover,

max{g <<,
i€[m

Y

where the constant v is the decaying rate of the stepsize \;.

Our algorithm can ensure accurate convergence despite the
presence of persistent DP noises. This is fundamentally differ-
ent from existing DP solutions for decentralized optimization
that patch DP noises with a given existing decentralized
optimization/learning algorithm (see, e.g., [25]-[31], [35]-
[40]), which do not fully exploit the flexibilities in the design
of optimization algorithm or noise-injection mechanism.



Algorithm 1 Locally differentially private decentralized online
optimization for agent ¢ € [m)]

I: Input Random initialization 96 € R"; stepsize Ay =
e +1)U with A\ > 0O and v € ( 1); and DP-noise variance

ol = (tJl:f)Si with ¢f > 0 and ¢’ € (1,1).

2: fort =0,1,--- ;T —1do

3. Acquire a new data-point & ~ D;

4 Compute the gradient Vf{(0f) = -2 >4, Vio;, &)
by using all available data up to time ¢, ie., &,

. k € [0,1] and the current parameter 6;.

5:  Receive neighbors’ parameters yi =0 + 19% RS N;.
0;,, =0;+ Zje/v wij(yl — 0;) — MV f1(6}).
Add DP noises ¥4 to 07, and then send the obscured
parameter y;,, = 0, + 9}, to its neighbors.

8: end for

One key reason for our algorithm to be robust to DP
noises is the use of all data available at time ¢ to compute
the gradient. This strategy can enhance optimization accuracy
compared with existing online algorithms that only use the sin-
gle data-point of the current time instant in each iteration (see,
e.g., [35]-[40]). The advantage of our proposed strategy is also
clearly demonstrated in our experimental results (see Fig. 3 for
details). Moreover, this strategy also helps achieving rigorous
€'-LDP with a finite cumulative privacy budget in the infinite
time horizon (see Eq. (28)), which is unattainable in most
existing DP solutions for decentralized optimization [25]-[31],
[35]-[40]. One drawback of this strategy is that it increases
the computational complexity compared with the strategy of
using one data-point per iteration. However, for continuous
loss functions, our prior work [47] shows that the increased
computational complexity can be made independent of the
iteration number by using interpolation.

Another key reason for our algorithm’s achieving of both
accurate convergence and rigorous differential privacy is the
co-design of the stepsize and DP-noise injection mechanism.
By judiciously designing the decaying rate of stepsize (v) and
the decaying rate of DP-noise variances (?, see Assumption
4 for details), we can ensure a reduced sensitivity of our
algorithm, which is key to ensure a finite cumulative privacy
budget in the infinite time horizon. This is different from
existing DP approaches for decentralized online optimiza-
tion/learning [35]-[40], which employ the same decaying rate
for stepsizes and DP-noise variances, leading to either the
loss of accurate convergence (when the decaying rate is low)
or a diminishing privacy protection as iteration proceeds (as
the cumulative privacy budget will explode as the number of
iterations tends to infinity when the decaying rate is high).

Remark 3. Our algorithm let each agent add DP noise to
its local parameter before sharing it with neighboring agents.
It has been shown that sharing local parameters directly can
leak sensitive information of local training datasets S;. For
example, in [61], it has been shown that sharing intermediate
parameters allows an adversary to premsely recover the raw
data ¢}. Moreover, our shared parameter y; = GJ + 19] has
the same dimension as the optimization parameter 6!, which
does not incur extra communication overhead in each iteration

compared with traditional distributed optimization algorithms
that do not consider privacy [6]-[9].

Remark 4. Note that the stepsize \; in our algorithm can be
hard-coded in each agent’s program prior to implementation,
and hence, it does not necessitate any adjustment or coordi-
nation among agents during algorithmic implementation.

Remark 5. Our recent works on decentralized batch (of-
fline) optimization [34] and decentralized online learning [47]
employ a weakening factor on inter-agent iteration to attenuate
the influence of DP noises, and hence, enable both optimality
and differential privacy. However, this weakening factor leads
to decaying coupling strength, which in turn reduces the speed
of algorithmic convergence. As rigorously proven in Sec. IV-B
and illustrated in experimental results in Fig. 1-Fig. 3, by
avoiding using the weakening factor, Algorithm 1 ensures
a higher convergence speed compared with our prior results
in [47] while ensuring the same strength of privacy protection.

IV. OPTIMIZATION ACCURACY AND CONVERGENCE
SPEED ANALYSIS

A. Optimization accuracy analysis

In this subsection, we prove that the intermediate parameter
of Algorithm 1 converges in mean square to the optimal
solution to problem (1) when the global objective function is
strongly convex. For general convex global objective functions,
we prove that the objective function value converges in mean
to the minimal objective function value. For nonconvex global
objective functions, we prove that the gradient value of the
objective function converges in mean square to zero. We first
give a preliminary result.

Lemma 3. Denote 0} as the optimal solution to the ERM
problem (4) at time t € N. Under Assumption 2, if the objective
function is strongly convex, then the optimal solution to the

online ERM problem (4) satisfies
2 1
2t

16(k? + D?)
* |12

[WH1—®H]§‘7;157*
Proof. The lemma can be obtained following the same line of
reasoning of Lemma 1 in [47]. O

(12)

Lemma 3 establishes the mean square convergence of the
optimal solution to problem (4). Using Lemma 3, we further
characterize the tracking error between the intermediate pa-
rameter 6! of Algorithm 1 and the optimal solution 6} to the
ERM problem (4).

Theorem 1. Under Assumptions 1-4, if the global objective
function is strongly convex and the initial value of the stepsize

satisfies Ao € (0 ,ﬁ%] then we have:

E[|6; — 0;]*] < O(t™"), vt € N¥, (13)
with 8 = min{32* 2¢ — “I1} and ¢ = min;e ) {<*}.
Proof. See Appendix A. O

Theorem 1 characterizes the deviation between the interme-
diate parameter ¢} and the optimal solution 6} to (4).

Besides providing insights into tuning algorithms to adapt to
spatiotemporal fluctuations, it also enables us to evaluate the



accuracy of intermediate parameters in solving the original
decentralized stochastic optimization problem (1):

Theorem 2. Denote 0* as the optimal solution to the origi-
nal stochastic optimization problem (1). Under the conditions
in Theorem 1, the parameters 0i generated by Algorithm 1
will converge in mean square to 6%, i.e.,

E[l|6; — 0*]°] < 0t ?), (14)

with 8 = min{32* 2¢ — “H} and ¢ = min;e [, {<*}.

Proof. Incorporating (5) from Lemma 2 and (13) from Theo-
rem 1 into the triangle inequality |0} — 0*||? < 2||0; — 07 ]|* +
2(|0; — 6%||%, we arrive at (14). O

Theorem 2 quantifies the expected difference between the
intermediate parameter and the optimal solution to problem
(1). Compared with existing results for decentralized opti-
mization/learning [35]-[39] that focus on characterizing some
regret value with respect to the solution to an approximated
problem of (1), e.g., problem (4), our results directly charac-
terize the tracking error with respect to the optimal solution to
the actual stochastic optimization problem (1). Not only does
our approach provide a direct characterization of the tracking
performance with respect to the actual optimal solution, it also
provides a new perspective to solve decentralized stochastic
optimization problems.

Next, we establish the convergence of Algorithm 1 under
general convex objective functions.

Theorem 3. Under Assumptions 1-4, if the global objective
function is convex, then we have

T
1 .
—— N E[F() - FO)) <o),
7 L EFE) - FE <O a3
Proof. See Appendix B. O

Theorem 3 shows that the objective function value F(6%)
converges in mean to the minimal objective function value
F(6*) of problem (1). This result is stronger and more precise
than the convergence result presented in [47], which only
characterizes the expected distance between the instantaneous
empirical objective function value F}(6%) and the minimal
empirical objective function value F}(6}).

Theorem 4. Under Assumptions 1-4, if the global objective

function is nonconvex and the initial value of the stepsize

satisfies Ao € (0, Q(Lgifm)], then we have

T
1 i\ 112 —(1—
) < (1—v) )
751 LEIVFEIP <o) o
Proof. See Appendix C. O

Theorem 4 shows that the gradient value ||V F(6})| of the
objective function converges in mean square to zero. This
result demonstrates the effectiveness of our Algorithm 1 even
for nonconvex objective functions.

B. Discussion on convergence speed

In this subsection, we compare the convergence speed of
Algorithm 1 with that of our previous decentralized online

learning algorithm in [47], which ensures convergence by
using a weakening factor 7; to mitigate the influence of DP
noises. The detailed algorithm in [47] is given as follows:

0;11 = To [eim D wii (01491 -0) =NV £ 6] |, (A7)

JEN;
where th(va_parameters. are given by Ve = (t_:ﬁ i;\t = (t-ii(l))f”
and E[||9%]|?] = (6%)% with 6 = &4(t + 1)°. Under the

condition ¥ > u > ¢+ 3 with 6zmaxi§[7,L]{§i} € (0, %), [47]
obtains a convergence speed of O(t~7) with f = min{l —
0,2(u — <) — 1} for strongly convex objective functions and
O(t=") with g = 1;‘7 for general convex objective functions
(note that [47] does not consider the nonconvex case).

In our Algorithm 1, by avoiding using the weakening factor
¢, we can keep the inter-agent coupling strength to be per-
sistent, which enables us to achieve faster convergence. More
specifically, noting v > ¢ with ¢ = max;e(n{<'} € (3,1),
we have that the convergence speed of our Algorithm 1 is
O(t=P) with # = min{l — v + 15%,2¢ — 1 + 15%} and
S =min;ey) {c?} for strongly convex objective functions and
O(t=) with B=1—wv for general convex objective functions.
Therefore,

(i) Under the same decaying rates of stepsizes and DP
noises, i.e., ¥ = v and u — ¢ = ¢, the convergence speed
of our Algorithm 1 outpaces that of algorithm (17) by a
factor of O(t%) for strongly convex objective functions. This
improvement is also substantiated by our experimental results
in Fig. 1.

(ii) By observing the prerequisites ¥ > u > ¢ + 3 in
algorithm (17) and v > ¢ in Algorithm 1, our Algorithm 1
allows for more slowly decaying stepsizes than algorithm (17),
i.e., v < 0, which enables Algorithm 1 to acquire a higher
convergence speed than algorithm (17) even in the presence
of general convex objective functions. In this case, the conver-
gence speed of Algorithm 1 outpaces that of algorithm (17) by
a factor of O(t% ). This improvement is also confirmed
by our experimental results in Fig. 2 and Fig. 3, which show
that Algorithm 1 attains higher training and test accuracies
than algorithm (17).

V. LOCAL DIFFERENTIAL PRIVACY ANALYSIS

This section establishes that Algorithm 1 can ensure rigor-
ous €'-LDP for each agent, even in the infinite time horizon.
We first introduce the following preliminary result:

Lemma 4. Denote {Ut/@} as a nonnegative sequence. If there

exists a sequence (3= ﬁ with some [y >0 and s >0 such

that viy1 < (1 — a)vg+ By holds for all o € (0,1), then we
always have vy < CBy for all t € N, where the constant C' is
given by C' = (=25, ))S(vo(lfa) + 2.

eln(525 Bo ]

Proof. The lemma can be obtained following the same line of
reasoning of Lemma 11 in [67]. O

Without loss of generality, we consider adjacent datasets
S% and % that differ at the k-th element, i.e., 5}; in S% and
&} in 8%, where T denotes the total number of iterations.
For the sake of clarity, the parameters learned from S} and
S} are denoted as 6, and 6}’ ,, respectively. In addition,



we introduce the following assumption, which is standard
in existing DP solutions for decentralized optimization and
learning (see, e.g., [24], [28], [35]-[40], [43]):

Assumption 5. There exists some positive constant d such
that ||V1(0,£Y)|1 < d holds for all € R™ and i € [m)].

Theorem 5. Let Assumptions 2-5 hold. If the nonnegative
stepsize sequence )\ satisfies the condition in Theorem 1,
and each component of Vi follows the Laplace distribution
Lap(v}) with (08)? = 2(v})? in line with Assumption 4, then
0% in Algorithm 1 converges in mean square to the optimal
solution to the original stochastic optimization problem (1).
Furthermore,

(1) For any finite number of iterations T, agent i’s implemen-
tation is LDP with a cumulative privacy budget bounded by
€t < Z Q\ngt(t-‘rl)
0 = Z; 11(1 w)t PAp—1+Ai—1 and the constant W is given

by w = min{|wy|}, @ € [m].
(2) The cumulative privacy budget is finite even when T" — o0.

, Where the parameter o; is given by

Proof. The convergence result follows directly from Theo-
rem 2.

(1) To prove the statement on privacy, we begin by analyzing
the sensitivity of agent 4’s implementation under Algorithm 1.
From Definition 3, it is evident that 8] + 9] = 6} + ¥} is
valid for all £ > 0 and j € N;. Given that only the k-th data-
point differs between S% and S7, when ¢ < k, we have 6] =
0,'. When t > k, since the difference i in loss functions kicks
in at time k, ie., VI(0,£L) # VI(6,€}), we have 6] # 6}
from time & up to t. Hence, for agent i’s implementation of
Algorithm 1, we have

1071 — 0741l < || (1 4+ wi) (07 — 07)
s D e (18)
- U ) S0
p=
for all t > k and any k& > 0, where we have used the definition
Wiy = — ZjENi Wi

Letting w = min{|w;;|} for all i € [m] and using the
definition 0}, = A;(S{,0; "), inequality (18) satisfies

A(SE 677 — Ai(SY. 07
< (1) uAuh;l)

A i i
+ #Zﬁ,:kﬂw(@t,ﬁp) -

w)AZi )\ Z = || l(éil’g )
t p=0 D

= Ai(S 1,0l

max
Adj(Si_ .81,

\WICARISIN
\WICARSSIE

(19
Sy VIO, €LY in

<1

where we have used Zﬁ;é VI(0;,&) =
the second inequality. _
Taking the maximum on adjacent datasets S; and S’ on

both sides of (19) and using (3), we obtain
— Ai(S7, 0, = Al

A, Si,ﬂ_i
Adjl(g?,)égi || ( 1104 )
< (1-a)A] Zuvz (65,€8) — Vi), €)1 (20)

Note that we have used the fact that Al in (20) is a positive
constant independent of Adj(S;,S}"). Therefore, the sensitiv-
ity Al satisfies

t

= IVIE ) — ViE; &)
p=0

2D
By iterating (21) from ¢t = 1 to t = T and using A} =
and Assumption 5, we arrive at

t—1
Al < 2d (Z(l

p=1

Aj < (1—w)A]

—w)"PA,_1 + )\H) . (22)

Therefore, for agent i, the cumulative privacy budget €' over

T iterations is bounded by Zthl w, where p; is
defined in the theorem statement.

90

(2) By leveraging inequality (21) and the fact f; = 5; for
all p # k, we have
Al < (1 —w)A; + IIVl(ﬂi,ﬁk) ARSI
A\ t
t i i [
+i Z IVI(6;,65) = VIO, &), (23)

p=0, p#k

for all t > k and any k£ > 0. The Lipschitz condition in
Assumption 2-(iii) implies that for the same data-points £’ ,
we can rewrite (23) as follows:

1- L Al g 22t
( @/ t+1> t+1

For the stepsize A\; = e +1),, , there always exist some Tp > 0
and some constant Cy > 0 satisfying Cow < 1 such that

_ nLAot _
L - > (!
—Vn t+1 YT e =Y

holds for all ¢ > Ty. Combining (24) and (25) yields the
following inequality for all ¢ > Tj:

. 2\d
At-‘rl = :

(24)

(25)

2Xod
% 7/
Furthermore, let Cs —maX{( 4(12)2)@))HU(ASO,\_O(;M)—I-

t+1
Cw) max0<t<Toy,e[m]{ £ )}} Using Lemma 4, we have
that the sensitivity of agent i s implementation of Algorithm
1 satisfies

; 2Xod
A <Cyg——c— 27
t — 3(t+1)1+v) ( )
for all £ > 0. Hence, by using Lemma 2, we arrive at
L 2y Cad .
Z Z t + 1 1+v—g?’ (28)

implying a ﬁnlte cumulatlve privacy budget ¢’ even when T'
tends to infinity given that v — ¢* is always positive. O

Theorem 5 shows that our Algorithm 1 can preserve rig-
orous €'-LDP for the entire iteration process, even when the
number of iterations 7" tends to infinity. It effectively solves the
problem in existing DP solutions for distributed optimization
and learning [25]—[31], [35]-[40] that the cumulative privacy
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Fig. 1. Comparison of online logistic regression results by using the “mushrooms” dataset.

budget grows to infinite as time tends to infinity. Moreover,
we ensure a finite cumulative privacy budget without using
any weakening factors in [34], [47], which enables achieving
faster convergence (see detailed discussions in Sec. IV-B).

Remark 6. A key reason for Algorithm 1 to ensure a
finite cumulative privacy budget in the infinite time horizon
is that our algorithm design leads to diminishing sensitivity.
< € is
satisfied (where A is the sensitivity and v} is the parameter of
DP-noise variances), agent i’s implementation of an iterative
algorithm is e’-locally differentially private in the infinite
time horizon. According to Eq. (27), our algorithm design
ensures that the sensitivity A! (on the order of O(t~ (1))
decays faster than the DP-noise variance v; (on the order of

Specifically, Lemma 1 implies that when Ztoi 1 fi

O(t")). More specifically, our design ensures 35 % <

. t
352, Ot~ (1+v=<)) < o0 by requiring the design parameters
to satisfy 1 4+ v — ¢* > 1. Therefore, we can ensure that the
cumulative privacy budget is always finite.

In fact, our algorithm’s achievement of both ¢-LDP and
accurate convergence does not come for free, but instead,
incurs expense in convergence speed. We use the convergence
speed and the cumulative privacy budget under a nonconvex
F(z) as an example to quantify this tradeoff:

Corollary 1. For any given cumulative privacy budget

€ > 0, i € [m], the convergence speed of Algorithm 1 is
T—1—v)
min; e {(¢*)?} J°

Proof. See Appendix D. O

Corollary 1 implies that a stronger privacy protection (cor-
responding to a smaller cumulative privacy budget €*) leads to
a lower convergence speed.

Remark 7. Compared with the commonly used centralized
DP framework which only allows one agent to change its data
in the adjacency definition, our local model of DP allows
all agents to change their data in the adjacency definition,
and hence, has a sensitivity that is larger than the one in the
conventional centralized DP framework. Hence, when adopted
to the conventional centralized DP framework, the reduced
sensitivity implies a reduced noise level. This reduction in
needed noise leads to an increased convergence speed for
Algorithm 1, as can be seen from the derivation of Eq. (98).

VI. NUMERICAL EXPERIMENTS

In this section, we performed machine-learning experiments
to compare Algorithm 1 with the locally differentially private
decentralized online learning algorithm (LDOL) in [47] (i.e.,
algorithm (17)). We also compared Algorithm 1 with other DP
solutions for decentralized learning/optimization, including the
decentralized online learning algorithm (DOLA) in [35], the
decentralized offline optimization algorithm (PDOP) in [24]
(which uses exponentially decaying stepsizes and DP noises
to ensure a finite cumulative privacy budget), and the decen-
tralized online mirror descent algorithm (DMOD) in [39]. For
DOLA, PDOP, and DMOD, we set their privacy budgets equal
to the maximum privacy budget (corresponding to the weakest
protection) across all agents in our Algorithm 1. Moreover, we
allowed DOLA, PDOP, DMOD, and LDOL to adopt the same
gradient-computation strategy as ours in the “mushrooms” and
the “MNIST” experiments for comparison. In all experiments,
we used decentralized stochastic gradient descent (DSGD)
in [9] without DP noises as a baseline for comparison. In
addition, we considered ten agents connected in a circle, where
each agent can only communicate with its two immediate
neighbors. For the matrix W, we set w;; = 0.3 if agents 4
and j are neighbors, and w;; = 0 otherwise.

A. Logistic regression using the “mushrooms” dataset

In the first experiment, we evaluated the effectiveness of
Algorithm 1 using a logistic regression classification task on
the “mushrooms” dataset [68]. In this case, the loss function
in problem (1) is given by I(6,£") = + Zi\zl(l—bi)(ai)TQ—
log(s((al)76)) + % ||0||%, where N represents the number of
samples per iteration and 7 denotes a positive regularization
parameter that is inversely proportional to N°®. s(a) is the
sigmoid function defined as s(a) = =

In each iteration, we randomly selected 20 samples and
decentralized them to 10 agents. In each iteration, the DP noise

variance and the stepsize were configured as v} = (fff)a with

¢"=0.5+40.01i and \; = W, respectively. The optimal
solution 6* was obtained using a noise-free and centralized
gradient descent algorithm. In our comparison, we used the
same stepsizes for the baseline (i.e., DSGD without DP noises)
and LDOL, where the weakening factor was set as y; =
W, in line with the guidelines provided in [47]. For other
algorithms, we selected near-optimal stepsizes, ensuring that
doubling stepsizes would lead to non-convergent behaviors.
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Fig. 3. Comparison of CNN classification results by using the “CIFAR-10" dataset.

Fig. 1-(a) shows the evolution of average tracking errors,
while Fig. 1-(b) depicts the evolution of average objective
function values. These results confirm that Algorithm 1 has
better optimization accuracy and convergence speed compared
with existing results. Moreover, our Algorithm 1 only slightly
reduces the convergence speed compared with the baseline
(i.e., DSGD without DP noises), implying the robustness of
our algorithm to DP noises.

B. Neural-network training using the “MNIST” dataset

In our second experiment, we executed decentralized on-
line training of a convolutional neural network (CNN) using
the “MNIST” dataset [69]. Each agent trained 32 randomly
selected images per iteration. The DP noise was injected with

parameters v = %T)z{ﬁ’ where ¢ = 0.5+0.01i. The stepsize
was set as \; = ﬁ with v = 0.68.

We compared Algorithm 1 with DOLA, PDOP, DMOD, and
LDOL under the same CNN model. The baseline (i.e., DSGD
without DP noises) used the same stepsize as our algorithm,
while DOLA, PDOP, and DMOD followed their recommended
default stepsizes in [35], [24], and [39], respectively. The
LDOL algorithm in [47] used the slowest allowable stepsize
A = W to satisfy the condition v > u, where u = 0.7
is from its weakening factor v, = in line with
recommendations from [47].

Fig. 2 reveals that DOLA and DMOD are incapable of
effectively training the CNN model under DP noise injections,
even when they use the same gradient-computation strategy
as ours. This ineffectiveness is due to their use of identical
decaying rates for stepsizes and DP-noise variances. Specifi-
cally, under this constraint, rapid decay in stepsizes leads to

1
1)’

a low convergence speed, even with the DP noise decaying
rapidly. Conversely, slow decay in stepsizes can accelerate
convergence, but the corresponding slow decay in DP noises
also damages convergence. Similarly, PDOP fails to effectively
train the CNN model under DP noise injections because
it employs exponentially decaying stepsizes and DP-noise
variances to ensure a finite cumulative privacy budget. Such
rapidly decaying stepsizes prevent the model from adapting
effectively to the data, leading to poor training performance.

C. Neural-network training using the “CIFAR-10" dataset

In the third experiment, we evaluated Algorithm 1 by train-
ing a CNN model using the “CIFAR-10" dataset [70], which
provides a greater diversity and complexity than the “MNIST”
dataset. The DP noise variance was set as I/,f = ()(‘toiilx):/?, where
¢* =0.5 + 0.014. The stepsize was configured as \; = ﬁ
with v = 0.7. All other parameters are the same as those
employed in the previous experiment on the “MNIST” dataset.

The results are summarized in Fig. 3, which once again con-
firms the advantage of our proposed algorithm over existing
counterparts.

VII. CONCLUSIONS

In this study, we have introduced a decentralized online
optimization algorithm that ensures both rigorous local dif-
ferential privacy and optimization accuracy for decentralized
stochastic optimization. More specifically, we have proved
that our algorithm guarantees convergence in mean square to
the optimal solution to the stochastic optimization problem
under streaming data, which differs from most existing results
that only characterize the regret function, an indirect measure
of optimization accuracy. Simultaneously, we have proved



that our algorithm ensures a finite privacy budget over an
infinite time horizon. This stands in stark contrast to most
existing DP solutions for decentralized optimization that have
to sacrifice optimization accuracy for privacy. In addition, our
algorithm does not use any decaying factors to gradually decay
inter-agent coupling strength, which is crucial in existing DP
solutions to guarantee optimality and a finite privacy budget,
but which unavoidably compromises the speed of convergence.
Experimental results on benchmark datasets have been pro-
vided to validate the advantages of our algorithm over existing
counterparts.

APPENDIX

For notational simplicity, we add a bar over a letter to denote
the average of all agents, e.g., f;, = ~ ZZ 1 0%, and use bold
font to represent stacked vectors of all agents, e.g., 0; =
col{f},--- 0/}, For the convenience of derivation, we define
Pwi & EJGN w9, 0, 2 0,-0;,6,20,-6, 19” 29—
9y, VFi(00) = col{VIHO;), -, V" (07")}, Fi(8,) =
o Lizt VI 01), VF(0:) = col{VA(6}), .V fm (67},
and F(6:) = 371, V £i(67).

A. Proof of Theorem 1

We write Line 6 in Algorithm 1 in a compact form 6,1 =
(Inn, + W 1,,)0, + 9" — AV f,(0;), which implies
10141 — 071> < (W @ 1,)8; + 9} — MV £,(0:)]?
+2(0:, (W @ 1,)8: + 9 =NV f(8:))+6:],

where in the derivation we have used W1,, = 0,,.
Assumption 4 ensures E[[|9}||?] = |lo¢||?, which further
implies that the first term on the right hand side of (29) satisfies

E[|[(W © 1,)8, + 9} = AV £,(6,)]%]
< 6llorel|* + SE[I(W © 1,)8:]|] + 6)‘§E[‘|vft(0t)”2g'30)

(29)

Based on the definition of 9% and the fact E[¢]] = 0_from
Assumption 4, we have E[¢}'] = 0. Furthermore, since 8; and
9 are independent, we have E[(6,,9")] = 0, which further
implies the following equality:

2E[(0;, (W ® 1,)0; + 07 — NV £,(6,))] a1
= 2E[0, (W © 1,)0; — (8:, MV £,(0,))].
Substituting (30) and (31) into (29) leads to
E[[|0:41 — 67[1%] < E[|6,]*]+2E[8, (W ® I,,)8,]
— 2ME[(6, VI (00))]+3E[|(W © 1,)6:[*)  (32)

+6lloe]|* + 6ATE[V £,(8,)[17).

To further characterize (32), we decompose the third term
on the right hand side of (32) as follows:

2\E[(0;, V,(6:))] = 2\E[(6:, V£(6,))]
+2ME[(0:, VF(0:)—V £(8,))]

Next, we analyze each item on the right hand side of (33):

(33)

(a) Using the strong convexity of F'(6), the definition mf; =

>, 0%, and the relation (a — b)? > Ja® — b%, we obtain
2ME[(0:, V£ (6)))]
> 2N E[mF (6,) — mF(607) + Hmllét — 07 |1%] (34)
> 2NE[mF(6;) — mF(6;) + *Hg [ HétHQ]-

(b) The Young’s inequality and Assumpt1on 2-(ii1) imply
2ME[(0:, VF(0:) — VF(8))]

~ 8L? <
> - (BEN6I + Sgl161 )
1
(c) The Young’s inequality also implies

20(0:, V£,(8:)~V £(8,))

M| 8\

(35)
16:° o IVF0)-

> — V6,

Based on the definitions of f, and f and Assumption 2-(ii),
the last term on the right hand side of (35) satisfies

E[|V£1(8:) =V f(8,)|°]

m t
e %szwz,s@ -

2

E[VI(0;.¢")]

m t
T 22 2 ElIVUL€) - VRO < 77
1=1 k=0
(36)
Incorporating (34)-(36) into (33), one yields
2\E[(0,,V ,(6:))] > 2mME[(F(8,) — F(67))]
Aept < 8L2> < o 8mK)\
+—]E 0, +— ) E[|6¢]|*] - :
08017 = (14 = ) EIIGIP) — 75
(37)

We incorporate (37) into (32) to obtain an upper bound
on E [||0y+1—67|?]. Then, by using the relation [|6;1[|* <
at||0t+1 —6:”2+bt”0;+1 — 0:”2 for all ay, b; >1 and (at—
1)(bt—1)=1, we can obtain the following inequality:

~ ~ ~T ~
E[16041]1%] < a/E[10,] + 20, (W © 1,8,
_ A 8L?
= 2mA(F(8) = F(6) = 1807 + M (e + = ) 16011
3 ~
+ 51V © L)8|*+6llor |[2+6X2 [V £,(0.) 1
SmAk2ay
p(t +1)

Next, to further simplify inequality (38), we first prove that
the sum of following three terms in (38) is negative:

+0E[107,, - 67117 (38)

~T ~ 3 ~ 9 8L2\ 9
26, (W& L)8i+ 3 | (W )0+ (=) [64])* < 0.
L
(39
Since the eigenvalues of W satisfy d; € (—1, 0], we have §; +
62 < 0 for all i € [m], which further implies

3 -3 ;
20, (W L8+ S|(We L) <0 (40)

Then, we prove %étT(W ® In)ét + Al 8ﬁ2)\\ét\\2 <0.



Using the definitions of ét and 0~t, one obtains

0,=0,-6; (6,6,
=6, — ((1”7‘;% ®In>0t -1

The relationship 1 ( u ”‘) ® 0; = (
(Imn -

171,
(m )®ﬂ)
T
Lok @ L) (1 @ 0F)
Tm ® In)0t7 which further leads to

1,,17 -
m g In)at.
m

< 6]|04]12, 1TW =

implies 0, =

ét:ét+(

By using the relationships étT(W@)In)ét
07, and W1 = 0, we obtain

1~ 1. < <
S0/ (W 01,6, = 56, (W © 1,)6, < 566,

N

Given that the stepsize satisfies \; < A\g < % from

the statement of Theorem 1, we can obtain

1-~T ~ SL2\ .
§0t (W @ 1,)0; + A\ (u + 7) 10:]> <0.  (41)

Combining (40) and (41) leads to inequality (39).
Hence, by omitting the three terms in (39) from (38), we
can simplify (38) as

E[||0:41]%] < —2ma\E[F(6:) — F(6)]

>\ -
ca (1 _ “;) E[[16:]%) + 6acllor. |2 +

+ 6a N[V £, (00)]1%] + bE[|07,1 —

8mAik2a,
pu(t+1)
0; 7. 42

We proceed to characterize the first term on the right hand
side of (42). Using the relation E[F(0;) — F(6*)] > 0 yields

E[F(0,)—F(0;)] = E[F(0,) — F(6")|+E[F(0") — F(6;)]
E[F(67) - F(67)] > (43)

—2K
p(t+1)°
where we have used ]E[HH;‘ - 9*||] < N;ffl from Lemma 2
and Eq. (10) in the last inequality.
By mcorporatmg (43) into (42) and letting a; = 1 + “)‘t

and by =1+ /\ , We can rewrite inequality (42) as follows
- A -
Bllfenl?) < (1- 550 BI04
where the term ®; is given by
8 e\ 12me2 N,
b= (1+-— 0;,, — 07| 1 -
o= (1 ) Bl - P+ (14 ) 2
HA
60 (14 550 ) (BT + ). @)
By iterating (44) from O to ¢, one yields
t
Ell6al) < TT (1- %52 ) E160l?
S (46)
+ZH< )<I>p1+<1>t.
p=1q=

Since In(1 —wu) < —u holds for all u € (0, 1), we always have

H;:O(l - %) < e 54 Zp=0 . Hence, inequality (46) can

be rewritten as follows:

[l < e S“ZL:‘)APE[IIéoIIZ]
+Zq)p71
p=1

We now analyze the first term on the right hand side of (47).
Since i‘i) > (t+1)" holds for all ¢ > p and (¢t + 1) <
29t holds for all £ > 0, we have

iy g,

(t+1)> 20

> S (48)

— . AO
7};(])4-1)“ = (t+1)°

. . . LSty u__Ag .
which further implies es »=0"? > es82vev=T  Using Taylor
expansion er =3, L+, we have that for any ny € N¥,
e” > £-7 holds. By setting ng = [ 1], we have (1—v)ng >

1, Wthh further implies

e%#z;:())‘p > 1 ( H)\O )ﬁt
T (S A DIN8x 2 '

By substituting (49) into the first term on the right hand side
of (47), we arrive at

(49)

e ¥ Tomo ME[[|6]|2] < et (50)

where ¢ = (£ + 1)!(£22) TTE[[16, 2]

We proceed to analyze the second and third terms on the
right hand side of (47). By introducing a variable « € (v, 1), we
have e~ 5 Za=r Y < ¢~ 5 Za=ri—e21 M for all pel, [t —t*]]
and e 5 Zo=ri—ta141 X < 1. Therefore, the second and third
terms on the right hand side of (47) satisfy

t
S0, T 1,

p=1
[t—t] ¢
< Z (I)p_le—%ﬂzzznfmq Aq + Z (I)p—l + &,
= p—ﬁ t*]+1
\_t ]
Z@eszq“f‘”‘ZJr Z D, (51)

=[t—t=]

To proceed, we need to compute an upper bound on ®,. To
this end, we first establish the following relations:

(a) By using inequality (12), we have IE[HOHI - 0717 <
TPz with co1 = 16m(k® + D?)(5 + )
(b) By utilizing the definitions ¢ = min;ep,{<‘} and o™ =

maxie[m]{do}, we have ||"'tH2 < ?Zfl)gﬂ :

(c) Using the definition V f;(0;) = E[VI(0;,£%)], Assump-
tion 1, and Assumption 2-(ii), we obtain

E[||Vi(8;,€)I°]

<2E[|VI(67,€") = V fi(09) 1% + 2E[||V £:(67) 1]

< 2(k* + D?). (52)
Given E[|Vf,(6:)[°] = >~ 1H2.1 > ko BV €I,

we have N2E[||V £,(0:)]%] < 2mA? (k% + D?).
Substituting the above results in (a)-(c) into (45) and using



the relation \; < )\g, we obtain
P, < COl(t + ].)_2 + Coz(t + 1)_2+U + Cog(t + 1)_2§

53
+604<t+1)721}+005(t+1)717 ( )

where cp;, @ = 1,2,3,4,5 are given by co; = 16m(k? +
D2)( + 72), co2= ,\fucm» cos=6m(c+)2(1 4 22L), cos=
1om(x? + D2)(1 + A0)\Z, and cos = (1 + £30)12mAer

I
respectively.
Using inequality (53), we can now analyze the first term on

the right hand side of (51) To this end, we first characterize
the term ¢~ & Za=ft—+=1 e ip (51)

Given that the inequality CEsiEd +1

E is valid for all
q € [[t —t*],t], we have

)'u Z (t+1

t

t
Ao Ao
N = > (t—Tt— "] +1),
2 M= 2 G
> )\0t > )\0t - , (54)
(t+1)v v

where we have used the relations [t—t*| < t—t*+1 and (t+
1)V < 2Y¢Y in the derivation. Inequality (54) further implies

poe—v

t Aot
¥ La=re—ta1Aa > e T, Using an argument similar to the
derivation of (49), we define ng = [aiﬂ (e, (a—v)ng > 1)

for the Taylor expansion and obtain the following inequality:

eF Zo=ri-re1 X > o

- (aivl+ 1)! <8 x zv)a . (55)

Incorporating (55) into the first term on the right hand side
of (51) leads to

ZU ¢} bpe s § Tamri-een M < ((I’OJFZ;(D:l q)p)clfl7
59

where the constant ¢ is given by ¢/ = (2=tt1)] (%) o

By setting ¢ = 0 in (53), we can derive &g = Z?zl Coi.-
We further compute an upper bound on Z;il ®, in (56). By
using (53), one yields

- - €02 - Co3
(0]
Z P—Z p+12+; p+12 v+;(p_~_1)2€
) H ey

All items on the right hand side of (57) can be simplified. For
example, the third item can be bounded as follows:

oo oo 1

dp+1)* < /1

p=1

—dr < ———.
R x < Sy— (58)

Applying the same argument to the other items on the right
hand side of (57) yields

ad 1 1 1
z_:((erl) 2T “> =ty
v NG

> 1 1 1
<
Z(erl) +(p+1)1+“) 2v—1+

Substituting inequalities (58)-(59) into (57), we have

Co5
+ =2
v

D@y S con+ g g ol (60)

—v 2§—1+2v—1

Incorporating &y = Ele co; and (60) into (56) yields that
the first term on the right hand side of (51) is bounded by

[t—t7]

1,5 _
S e i Simre M <yt (61)
p=0
. 5
where ¢z is given by c2 = (3_;_; coi + co1 + 1% + 525 +

sodn  5)¢ with ¢, = 1,2,3,4,5 given in (53) and ¢’
given in (56).

We proceed to characterize the second term on the right
hand side of (51). By using (53), we obtain

t

Co1 Co2
¢, <
p= g:fa p= g—:tﬂ (p+1)* (P12 (62)
Co3 Co4 Co5
+ -+ ).
(p+ 1)2g (p+ 1)2'11 (p+1)1+v

All items on the right hand side of (62) can be simplified. We
compute an upper bound on the third item as an example.

Given (p_:l)zg < (H_t(}Hl)gg valid for all p € [[t —t*], ],
we have
! 1 1 N
D e e (e T B VL Ul AR G

p=[t—t=]
To simplify the expression on the right hand side of (63), we
first prove the following inequality:

[t—t*]+1>t(1—-a), VteN. (64)

Considering the relation [t —t*] +1 —¢t(1 —a) > ¢t —t* +
1—-t(1—a)=at —t*+1, we construct a function f(t) =
at —t* +1 : N — R. The derivative of this function is
f't) =a—at*" . With f(t =0) =1, f(t =1) = a, and
f'(¢) > 0 for all t > 1, f(t) > 0 holds for all ¢ € N. This
implies that (64) always holds for all ¢ € N. Using both (64)
and the relation t* + 1 < 2¢t%, we can rewrite (63) as follows:

: o+ 1 2102

1
< < .
26 = 126(1 — )25 — (1 — )2
DV e (e R (e
Applying the same argument to the other items on the right
hand side of (62) yields

(65)

zt: 1 " 1 ) 9p—2 N gpa—2+v
p e D2 (12 T (1) (L a)
Z 1 T 1 )< 9pa—2v N opa—v—1
:lrtfta-l (p + 1)2U (p + 1)1+U _(1 — a)QU (1 _ a)l-‘,—v .
(66)

Substituting (65) and (66) into (62), we have that the second
term on the right hand side of (51) is bounded by

t
> @, <ot gt P ot
p=[t—te]

(67)
+ CGt(x—Qv + C7ta—v—1,



2c 2c
(1,0322—219 C5 = (1,2‘3%" Ce =

with c3 = 7(12f‘23)2, cy =
(12_6(2312v ,and c7 = (1_2(3§J+1 .
We incorporate (61) and (67) into (51) and further substi-

tute (50) and (51) into (47) to arrive at
E[||0:41]7] < (1 4+ e2)t ™! 4 et 2 4 cut* 24
+ o5t YT 4 et 4 et >0,

(63)

where c; is given in (50), co is given in (61), and c3 to c7 are
given in (67).

We further analyze an upper bound on E[||6; |?]. By incor-
porating By = >7_, co; into (44), we derive E[[|8:]?] < co,
with ¢g = (1 — “AU) 1160 — 65| ]—1-2?21 ¢oi- Combining
this relationship with (68), we arrive at

E[|0:]%] < (co + 1 + ca)t ™ 4 eat® 2 4 cgt® 2
+05ﬁ(y—2§ + C6ta—2v 4 C7ta—v—1 S O(t_ﬁ>,

(69)

where 3 is given by 8 = min{2 — v — &, 2¢ — a} due to the
relation min{1,2 —a,2—v—a,2¢ —a,2v—a,v+1—a} =
min{2—v—a, 2¢—a}. Since « can selected within the interval
(v,1), we let @ = L and further obtain (13) in Theorem 1.

B. Proof of Theorem 3

To facﬂltate the derivation, we define 6; 2 6, — * and

= with 0" = max; e, {0’} and ¢ = min;ep, {<'}.

2 a5e
Recalling the definitions of F;(0:) and 6, we use Line 6
in Algorithm 1 and Assumption 4 to obtain

E[||641]1%] = E[10:][%] + E[16}°[*] + A?E[VF.(6:)]1%]
— 2\ E[(0;, VF(6,))]- (70)

By using Assumption 1 and Assumption 2-(ii), we have that
the third term on the right hand side of (70) satisfies

E[|VEF(6)[°] < %ZE[HWZ(@E) = Vi(0) + V()]

K2

<
Tt+1
We proceed to characterize the last term on the right hand
side of (70) by using the following decomposition:

2E[(0;, VE(0:))] = 2E[(0;, VF(6,))]

+ D2, (71)

. (72)

+ 2E[(6,, VE,(0,) — VF(0,))].

The first term on the right hand side of (72) satisfies
2E((0;, VF(0,))] = 2E[(6;, VF(6;) — VF(6"))] (73)

+ 2E[(0;, VF(8;) — VF(6,))].
Since the Lipschitz property in Assumption 2-(iii) implies

E[|VF(6;) — VF(Gt)H | <% E[||6,]|?] and the convexity of
F(6) implies E[(6,, VF(6,) ~ VF(69°))] > E[F(6,) — F(6°)]
equality (73) can be rewritten as
2E[(60;, VF(6,))] > 2E[F(0,) — F(607)]
1 " L? 74
- WE[H@H J—(t+ 1) E[[16:]1%],

where the constant a satisfies a € (%, v).

The second term on the right hand side of (72) satisfies
2E[(0;, VF(8;) — VF(Btm
1 R
> — El||6 t+1)°
Substituting (74) and (75) into (72) and further Substitut-
ing (71) and (72) into (70), we obtain
Ellfen ] < (14 s ) BG4 o

L2\~
“E[[16:]
m

(75)

(t+ 1)
F(6")] +

° KAAT 242
| DA

We proceed to characterize the fourth term on the right
hand side of (76). According to Algorithm 1, we have ét—i—l =
(I + W @ 1,)0, + 9, — X\ (VF,(0;) — 1,, @ VF,(6,)).
By using Assumption 3 and the Young’s inequality, we have

E[[|0:+1]%) < (1 + 62)E[[|6¢[|*] + 2mo?
+8<1 1) m(k® + D)7,
02

where in the derivation we have used relatlonshlps

E[|V £,(8)]] < D and B[V £ (6])~V f,(6]) 2] < £ < 2
Given that the decaying rate of the stepsize (v) is higher than

the decaying rate of the DP-noise variance (<), inequality (77)

can be rewritten as

E[[|6e41]*) <

(76)

—2ME[F(6;) — (t+1)

+ At + 1)

(77)

&1

(1+ 62)E[[|6:]°] + (G

(78)
with ¢; = 2m(c7)? + 8 (1 + é) m(k? + D?)A3.
Applying Lemma 4 to (78) with ¢ = —d5 € (0,1) yields
2
o 2

where ¢ is given by ¢z = (- B )2§(E[|‘éo‘|21(1+62) %)

Substituting (79) into (76) and summlng both sides of (76)
from ¢t =0 to ¢ = T to obtain
T T

(79)

2\ A
201l < 3 (1+ s ) ELIAI
t= t=0
T T (80)
—2 ) ME[F(0) — F(0")] + Y D,
t=0 —0
with &, = o7 + M(Ctz—%LlQ)/Z\;*“ T (tfj)Alt*ﬂ + i+f + D?A7.
By using the relationship ZtT:O ]E[HotH | = ]E[HQOH ] +

— E[||0741]]%], we can rewrite (80) as fol-

S o Elllfe+11I?]

lows:
2ZAt
r 2\
2 ((t 1)

t=1

F(67)] < (1+220)E[100]]

)E[ém Y e,

where in the derivation we have omitted the negative term
) 2
—E[[|0741]]%)-
We proceed to characterize the second term on the right

1)




hand side of (81). By iterating (76) from 0 to ¢ and omitting
the negative term —2)\,E[F(0;) — F(6*)] in (76), we obtain

R ¢ 2

E[||fe+11%) < g@ (1 * <t+1§+>

+i< 2 +
(t+ 1)2§

k=0

E[[100]°]

L262)\0
m(t + 1)x+v—a
Aok? KZA2 D?)2
+ D — + :
(t + 1)1+v7a (t + 1)1+2v (t + 1)21}

(82)

Since In(1 + u) < w holds for all v > 0, we always have

[Ti—o (1 + (t+1)2v+a) Se
items on the right hand side of (82) can be simplified. For
example, the second term can be bounded as follows:

t

Zot—i—l?g— +Z t_|_12s
2¢(0*)?

< (c7)? )2 < .

<ERe [ e

Applying the same argument to the other items on the right
hand side of (82), we arrive at

2 t 1
A0 Lk—o Tz | Moreover, all

(83)
> 1
s

. 220 (v+a) A 26(01)?
E[|0e41]%] < e =r | E[ll6o]1*] + = >—
2¢—1
2 L?Xo(26 +v —a)  Nr?(1+v—a) 84)
m(2s+v—a—1) v—a

KNG (2v+ 1) 20D?N%| A
2 w—_1|

for all t > 0. Then, substituting (84) into the second term on
the right hand side of (81), we obtain
“a4+v—-1"

S ((t in)a) E[I0:]1%] < /1°°
(85)

t=1
Using an argument similar to the derivation of (83) yields
that the third term on the right hand side of (81) satisfies

263)\0

203)\0
zaJer d

Z ® 2§ 0+)2 caL?Xo(26 +v —a)  Nk*(1+v—a)
= -1 m(2c+v—a—1) v—a
242 242
+ 2 AO(;: +b 22”7?7?0 2 ¢, (86)

Substituting (85) and (86) into (81), we have

T

Y NE[F(6,) — F(67)]

t=0

T T
=Y NE[F(6]) — F(0,)] + Z ME[F(6;) — F(67)]

D)o
DE||6; - 6, +C5<Z e

e+
t=0
) (87)
with ¢5 = LZ2R[|[0o]?] + 20 + % and ¢ =
(s+v)/c2DXo

P + c¢5, where we have used (79) in the second

inequality and used an argument similar to the derivation
of (83) in the last inequality. Since inequality (87) ensures
Ar Zt _oE[F(0;) — F(0")] < cg, we have

C6

T+IZ]E POV e O

C. Proof of Theorem 4
The Lipschitz property in Assumption 2-(iii) implies

F(0i41) < F(0;) +

9

We characterize the second term on the right hand (szlgdg

of (89). Using the definition of F;(6;) and Line 6 in Algo-

rithm 1, we have ;.1 —0; = 9% — \;VF}(8;), which implies
E[(VF(0:),0r41 — 00)] = E(VF(0;), 9y — MV E;(61))]

= —NE[|[VF(0:)|°] + ME(VEF (0:), VF(0:) — VFi(6,))]

< ~ZE(IVF@I) + LEIIVFE) - VFO,)I)

_ _ 2 _ _
(VE(0), 01 = 00) + - [10r41 — 01>

(90)

The second term on the right hand side of (90) satisfies

E[|[VF(6:) — VF(0¢)|%] < 2E[|VF(6;) — VF(6,)°]
+ 2E[|VF(8:) = VF(8:)]%] (O1)
Smce Assumption 2-(iii) implies E[|VF(6;) — VF(8,)|?] <

E[||6;]|?] and Assumption 2-(ii) implies E[|VF(8;) —

VFt(Bt)H ] < {47, we have
_ 2L% 252
E[|[VF(6:) — VF,(6:)[*] < —E[[6:]*] + 1 92
Substituting (92) into (90), we arrive at
E[(VF(6:),0:11 — 01)]
A N 23V K2\ (93)
< 2t
< ~SEINVF@)IP) + — B8 + 2.

We proceed to estimate an upper bound on the last term
on the right hand side of (89). By using again the relation

Oi11 — 0; = 9 — \;VF;(0;) and an argument similar to the
derivation of (71), we have
E[|0:+1 — 0:]°] = E[||0]1%] + A7E[| VF.(6,)]%]
K22 (94)
<ol + D\ + t+;.
Substituting (93) and (94) into (89) yields
A = ~ L2\
JE[IIVF(%)IP] <E[F(0;) — F(f141)] + ——E[||0¢]|"]
D2)2 2 ;
t+1 )‘t+t+1' ©3)

Following an argument similar to the derivation of (77), we
have

< 1) <
ElI6l) < (142 ) BB + 2mo?
+38 <1+62>m(/12+D2) A7
2

By using E[|VF(6,)[*] = 3E[|VF(6))]]°] ~E[|VF(6;) ~
VF(6)%] and (96), we sum both sides of (95) from 0 to T'

(96)



to obtain

Yo FENVEG)I?)+3 o Elll 14111 <E[F (60)
+ 50 (1+ % + L2 E[67] + (m + 1)2& o?
+ 0 S +2D2 (14 4m (1— 7)) ST A
+262 (14+4m (1- 2)) Sl 25

By applying 3,y iy < 1+ [17 ; dr < ;=7 valid for
any r > 1 to (97), we obtain 2~ Zt W ElIVE(6))]? | < e,
where ¢; is glven by ¢; = E[F(QO) F(0")] + IE[||00|| |+

o7)

2{(022 (;n-&-l) + K )\0(1+v) + 2D2(1 + 4m(1 _ 7)))\ (2v) +
2k2(1 4+ 4m(1 — 53))M Therefore, we arrive at
d c
FOH|?] € ———— 98
; IVFOI] < oy ©®)

D. Proof of Corollary 1

We first characterize inequality (28). By using the relation-
. T —
ship >2,_, (t+11)r fo (x+1yd$ = 1T(<T + 1) - 1)
valid for all » € (0,1), inequality (28) satisfies ¢ <

2\/§A003d 3 1 1-
il maxee e D) Therefore, for any given cu\n}ulatlve pri
2v/2X0¢C3d

vacy budget € > 0, we have o} = (e
in which v and ¢* are predetermined parameters satisfying
Assumption 4. It is clear that a small €’ result in a larger o}.

Next, we analyze the convergence speed of Algorithm 1
when F(z) is nonconvex. Based on (98), we have

T

1 c
77 2 EIVEON] < ey 99)
T+1 — (T+ 1)t
with €' = 3 (E[F(6o) — F(6)] + E[[|6o]|2] + 250 1
M0 9 p2(1 4 4m(1 — 2)) 2D 4 262(1 + 4m(1

2))229) — o((0+)2).

Given that v is independent of o}, the accurate convergence
of Algorithm 1 remains attainable even if ¢ tends to zero.
However, C = O((c7)?) is a positive constant that is
positively correlated with DP-noise parameter (o7)2. Given
that ot = max;c[,,{o}} is inversely proportional to €', we
can obtain the f0110w1ng inequality based on (99):

ZT: E[|VF(6)]?] < < o ) (100)
min;ep, { (€))%} )
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