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Abstract—Distributed online learning is gaining increased
traction due to its unique ability to process large-scale datasets
and streaming data. To address the growing public awareness
and concern on privacy protection, plenty of algorithms have
been proposed to enable differential privacy in distributed
online optimization and learning. However, these algorithms often
face the dilemma of trading learning accuracy for privacy. By
exploiting the unique characteristics of online learning, this paper
proposes an approach that tackles the dilemma and ensures
both differential privacy and learning accuracy in distributed
online learning. More specifically, while ensuring a diminishing
expected instantaneous regret, the approach can simultaneously
ensure a finite cumulative privacy budget, even in the infinite
time horizon. To cater for the fully distributed setting, we
adopt the local differential-privacy framework, which avoids the
reliance on a trusted data curator that is required in the classic
“centralized” (global) differential-privacy framework. To the best
of our knowledge, this is the first algorithm that successfully
ensures both rigorous local differential privacy and learning
accuracy. The effectiveness of the proposed algorithm is evaluated
using machine learning tasks, including logistic regression on the
the “mushrooms” datasets and CNN-based image classification
on the “MNIST” and “CIFAR-10” datasets.

Index Terms—Distributed online optimization and learning,
local differential privacy, instantaneous regret.

I. INTRODUCTION

The modern data landscape, fueled by advances in web
technologies, social media, and sensory devices, calls for
evolved machine learning methods to handle the “big data”
challenge [2]. Due to its unique ability to handle streaming
data, online learning has emerged as an attractive paradigm to
address this challenge [3]. In online learning, data are accessed
and processed in a sequential manner, thereby obviating the
requirement to process the entire dataset at once. This feature
makes online learning algorithms particularly appealing for
large-scale datasets and dynamic scenarios, where data are
continually generated, ranging from financial markets, social
media streams, to real-time sensor interpretation.

Traditional online learning algorithms (e.g., [4]–[6]) require
transmitting all data streams to a central location for process-
ing, leading to potential security risks like information leakage
or model compromises in the event of a server attack [7]–
[9]. Distributed online learning algorithms mitigate these risks
by dispersing data among multiple networked learners, each
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updating its model with local streaming data, and then sharing
updates across the network for parameter synchronization (see,
e.g., [10]–[15]). While these algorithms eliminate the need for
centralized data storage and associated security risks, informa-
tion leakage during parameter transmission remains a concern,
particularly via unencrypted communication channels. In fact,
using these shared parameters, not only can an adversary
infer sensitive attributes of the original data [8], but it can
also precisely reversely infer raw training data (pixel-wise
accurate for images [9]). To mitigate privacy breaches in
distributed online learning, one natural approach is to patch an
online learning algorithm with existing privacy mechanisms.
For example, partially homomorphic encryption has been
employed in both our prior results as well as others’ to ensure
privacy in distributed optimization [16]–[18]. However, such
approaches suffer from heavy communication and computation
overheads. Alternatively, time or spatially correlated noise-
based approaches preserve privacy while maintaining accuracy
by canceling out injected noises [19]–[23]. However, such
approaches require each learner to have at least one neighbor
not sharing information with potential adversaries, a condition
that is difficult to guarantee in many multi-agent networks.

A. Related Literature

As differential privacy (DP) is gaining increased traction due
to its mathematical rigor, implementation simplicity, and post-
processing immunity [24], [25], plenty of results have been
proposed to enable differential privacy in distributed optimiza-
tion/learning [26]–[37]. However, most existing differential-
privacy results for distributed optimization/learning explicitly
rely on a trusted curator to aggregate and publish data in
a centralized manner [26]–[29]. Recently, some differential-
privacy solutions have been proposed for fully distributed
optimization algorithms, including [30]–[35] as well as our
own prior work [36]–[38]. However, since these results still
use the classical centralized differential-privacy framework1,
they do not explicitly address protection against information
inference by participating learners [38]. To ensure privacy
in the scenario where a learner does not trust anyone else
(including other participating learners) and aims to protect

1By centralized differential privacy, we mean the traditional differential-
privacy framework, where a data aggregator/curator is needed to collect data
from all learners and inject differential-privacy noises. Note that although
results such as [31], [33]–[38] do not explicitly assume the existence of a data
aggregator/curator, they still require participating learners to trust each other
to cooperatively determine the amount of noises needed to achieve a certain
level of privacy protection (privacy budget). Hence, they are also somewhat
“centralized,” and hence, different from the local model of differential privacy
in this paper.
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against an adversary that can observe every message shared in
the network, we have to use local differential privacy (LDP),
which obviates the need for a data curator/aggregator that
is required in the traditional centralized differential-privacy
framework to collect data and inject noises [39]–[41].

Unfortunately, the benefit of LDP comes at a great cost in
optimization/learning accuracy. To the best of our knowledge,
all existing differential-privacy solutions for distributed online
learning have to either sacrifice learning accuracy [42]–[44] or
allow the cumulative privacy budget to grow to infinity with
time, implying diminishing privacy protection as time tends
to infinity [45]–[53]. It is worth noting that our own prior
work [36], [37] as well as others’ [35], [54] have managed to
retain provable convergence accuracy and differential privacy
in distributed offline optimization. However, they still use the
classical centralized DP framework, and it is unclear if the
offline learning approaches can be extended to the online
learning scenario, where data arrive sequentially.

B. Contributions

In this paper, we propose a locally differentially private
distributed online learning algorithm that efficiently circum-
vents the tradeoff between privacy and learning accuracy.
Our key idea is to exploit both the unique data patterns in
online learning and a decaying interaction strength which
enables the injection of DP noises with increasing variances
(in contrast to decreasing DP-noise variances commonly used
in the literature). The main contributions are summarized as
follows:

• We demonstrate that for both strongly convex and gen-
eral convex objective functions, our proposed locally
differentially private distributed online learning algorithm
ensures that the expected instantaneous regret decreases
to zero, even in the presence of increasing DP-noise
variances. Moreover, in the strongly convex scenario,
we further prove that the expected tracking error (the
deviation between the online algorithm’s output and the
optimal solution) also converges to zero. To the best of
our knowledge, no such results have been reported before.

• In addition to ensuring provable convergence, we prove
that our algorithm can simultaneously ensure rigorous
LDP, even in the infinite time horizon. To our knowledge,
this is the first time that both goals of LDP and provable
convergence are achieved simultaneously in distributed
online learning. This is in sharp contrast to existing
results on differentially private distributed online learning
in [45]–[53], where the cumulative privacy budget grows
to infinity when time tends to infinity.

• Moreover, our LDP framework allows individual learn-
ers to choose heterogeneous privacy budgets in a fully
distributed manner, making individual learners free to
choose desired privacy strengths depending on practical
needs.

• Besides providing a theoretic approach to selecting step-
sizes based on global parameters such as graph Laplacian
and the global Lipschitz constant (which is common
in most existing distributed online optimization algo-

rithms [10]–[15]), we also provide an approach for in-
dividual learners to select stepsizes independently of any
global parameters, which is more amenable to distributed
implementations.

• We evaluated the performance of our approach using
several benchmark machine learning datasets, including
the “mushrooms” dataset for logistic regression and the
“MNIST” and “CIFAR-10” datasets for CNN-based im-
age classification. The results corroborate the effective-
ness of our approach. Notably, compared with exist-
ing differentially private distributed learning/optimization
methods in [30], [45], [55], our algorithm demonstrates
higher training and test accuracies.

The organization of the paper is as follows. Sec. II in-
troduces the problem formulation and definitions for LDP.
Sec. III presents a locally differentially private distributed
online learning algorithm and discusses its computational
complexity. Sec. IV analyzes the learning accuracy of the
proposed algorithm. Sec. V provides an approach to selecting
stepsizes independently of any global parameters. Sec. VI
establishes the LDP guarantees. Sec. VII presents experimental
results on benchmark datasets. Sec. VIII concludes the paper.

Notations: We use Rn to denote the n-dimensional Eu-
clidean space. We also use N and N+ to denote the natural
number and the positive natural number, respectively. In repre-
sents the identity matrix of dimension n and 1n represents the
n-dimensional column vector with all entries equal to 1. We
use ∥·∥ and ∥·∥1 to represent the Euclidean norm and l1-norm
of a vector, respectively. The Kronecker product is denoted by
⊗. The stacked column vector of vectors or scalars θ1, · · · , θm
is denoted by col{θ1, · · · , θm}. The transpose of a matrix A is
written as AT . The notation ⌈a⌉ refers to the smallest integer
no less than a, and ⌊a⌋ represents the largest integer no greater
than a. We use [m] to denote the set {1, 2, · · · ,m}. For any
θ ∈ Rn, we use ProΘ(θ) = argminθ′∈Θ∥θ − θ′∥2 to represent
the Euclidean projection onto a set Θ ⊆ Rn. We also use
Lap(ϱ) to denote Laplace distribution with parameter ϱ > 0,
featuring a probability density function pϱ(x) ≜ 1

2ϱe
−|x|

ϱ .
Lap(ϱ) has a mean of zero and a variance of 2ϱ2.

II. PROBLEM STATEMENT

A. Distributed online learning

In distributed online learning, each Learner i, i ∈ [m] must
perform learning on streaming data that arrive sequentially.
More specifically, at time t, Learner i acquires a data point
ait, which is independently and identically sampled from an
unknown distribution over a sample space Ωi. Using model
parameter θit learned from data prior to time t, which is usually
constrained in a convex subset Θ of Rn, Learner i predicts a
label b̂it for the data xi

t acquired at time t. When the true label
bit ∈ R is revealed, Learner i experiences a loss l(θit, ξ

i
t), where

ξit=(ait, b
i
t) resides in Pi=Ωi×R. The loss prompts Learner i

to adjust its model parameter θit. The goal of distributed online
learning is to let the m learners cooperatively find a common
optimal parameter, based on sequentially acquired streaming
data, for the following stochastic optimization problem:
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minθ∈Θ F (θ) :=
1

m

m∑
i=1

fi(θ), (1)

where fi(θ)=Eξi∼Pi

[
l(θ, ξi)

]
satisfies the following assump-

tion:

Assumption 1. (i) Θ is a convex and compact subset of Rn

with nonempty interior; (ii) for all i ∈ [m] and x, y ∈ Θ, there
exists some µ ≥ 0 such that fi(y) ≥ fi(x)+∇fi(x)

T (y−x)+
µ
2 ∥x− y∥2 holds; and (iii) there exists some positive constant
D such that ∥∇fi(θ)∥ ≤ D holds for all θ ∈ Θ.

We describe the communication pattern among learners us-
ing an m×m matrix W . If Learners i and j can communicate
with each other, then wij is positive, and wij = 0 otherwise.
The set of learners that can directly interact with Learner i is
called the neighboring set of Learner i and is represented as
Ni. We let wii = −

∑
j∈Ni

wij . The matrix W satisfies the
following assumption:

Assumption 2. The matrix W 2 satisfies 1TW = 0T and
W1 = 0. The eigenvalues of W satisfy (after arranged in an
increasing order) −2 < δm ≤ · · · ≤ δ2 < δ1 = 0.

To solve for (1) with fi equal to the expected value of
the loss function l(θ, ξi), we have to know the distribution
Pi of ξi. However, in practice, the distribution Pi is usually
unknown, which makes it impossible to directly compute
Eξi∼Pi

[
l(θ, ξi)

]
. To circumvent this problem, a common

approach is reformulating (1) as the following Empirical Risk
Minimization (ERM) problem:

minθ∈ΘFt(θ) ≜
1

m

m∑
i=1

f i
t (θ), f i

t (θ) =
1

t+ 1

t∑
k=0

l(θ, ξik).

(2)
According to the law of large numbers, we have

limt→∞ Ft(θ) = F (θ), implying that the solution θ∗t to
the ERM problem (2) will gradually approach the solution
θ∗ to the problem (1) as time t tends to infinity (detailed
proofs can be found in Lemma 2 in [57] and Section 5.1.2
in [58]). This is an intrinsic property of our ERM problem
setting. It is worth noting that different from the conventional
ERM problem, where all data are accumulated prior to per-
forming training, here we have to perform online training
from experience as more data are observed. In addition, since
ξi ∼ Pi are randomly streaming data, the gradients ∇l(θ, ξi)
are stochastic, which we assume to satisfy the following
standard assumption [54]:

Assumption 3. The random data points {ξi} are indepen-
dent of each other. In addition, (i) E[∇l(θ, ξi)] = ∇fi(θ);
(ii) E[∥∇l(θ, ξi) − ∇fi(θ)∥2] ≤ κ2; and (iii) ∥∇l(x, ξi) −
∇l(y, ξi)∥ ≤ L∥x− y∥ for any x, y ∈ Θ.

Furthermore, given the streaming nature of data, the ob-
jective function Ft(θ) in (2) varies with time, which further
leads to time-varying optimal solutions θ∗t . Hence, to evaluate
the quality of the parameters learned by learners through a
distributed online learning algorithm at each time instant, we

2Our matrix I + ϵW corresponds to the Perron matrix Pϵ = I − ϵL used
in [56], where L is the Laplacian matrix.

employ metrics of the expected tracking error E[∥θit − θ∗t ∥2]
and the expected instantaneous regret E[Ft(θ

i
t)− Ft(θ

∗
t )].

Remark 1. The expected tracking error and the expected
instantaneous regret are commonly used metrics in existing
literature on online optimization and learning [59]–[62]. They
capture the real-time performance of an online algorithm, and,
hence, are well-suited in the online learning setting where data
arrive sequentially [63].

B. Local differential privacy

Local differential privacy is a local (distributed) model
of differential privacy for scenarios where no trusted data
aggregator (curator) exists to aggregate data and execute a
privacy mechanism. It is contrasted with the classic centralized
differential privacy, where a trusted aggregator gathers all raw
data and then executes a differentially private data publishing
mechanism. In distributed learning and optimization, each
learner maintains a local dataset and shares learned parameters
with neighbors to collaboratively optimize these parameters.
This information exchange has the risk of information leakage
as malicious external attackers or curious neighbors might
try to recover raw training data from shared parameters [7],
[8]. To protect the privacy of all learners, we adopt LDP to
address the most severe scenario: all communication channels
can be compromised by malicious attackers and no learners
are trustworthy. Consequently, not only does our LDP-based
approach deters external adversaries from extracting raw data
through shared information, but it also shields against neigh-
boring curious learners within the network.

To facilitate privacy analysis, we need the definition of
adjacency of local datasets [45], [50], [54]:

Definition 1. (Adjacency) For any t ∈ N+ and any learner
i ∈ [m], given two local datasets Di

t = {ξi1, · · · , ξik, · · · , ξit}
and Di

t
′
= {ξi1, · · · , ξik

′
, · · · , ξit}, Di

t is said to be adjacent to
Di

t
′ if there exists a time instant k ∈ [1, t] such that ξik ̸= ξik

′

while ξip = ξip
′ for all p ∈ [1, t] and p ̸= k.

It can be seen that for any given time t, Di
t is adjacent to Di

t
′

if and only if Di
t and Di

t
′ differ in a single entry while all other

entries are the same. Definition 1 also implies that for any
given time t, two adjacent datasets Dt = D1

t ∪· · · Di
t∪· · ·∪Dm

t

and D′
t = D1

t
′ ∪ · · · Di

t
′ ∪ · · · ∪ Dm

t
′ differ in m entries. We

use Adj(Di
t,Di

t
′
) to denote the adjacent relationship between

two local datasets Di
t and Di

t
′.

Remark 2. It is worth noting that our definition of adja-
cency corresponds to event-level LDP in the literature [25].
It allows m entries in the global datasets of all learners to
be different, and is more stringent than most existing online
results using the traditional centralized version of DP (e.g.,
[46]–[49], [51]–[53]), where at each time instant t, only one
agent’s one entry is allowed to be different. It is also worth
noting that allowing one learner to have all data entries to be
different (called user-level DP [25]) has been proven infeasible
in distributed optimization/learning under the local model of
DP [64]–[66].
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Algorithm 1 Locally differentially private distributed online
learning for i ∈ [m]

1: Input: Random initialization θi0 ∈ Θ; λt = λ0

(t+1)v with
λ0 > 0 and v ∈ ( 12 , 1); decaying sequence γt = γ0

(t+1)u

with γ0 > 0 and u ∈ ( 12 , 1).
2: for t = 0, 1, · · · , T − 1 do
3: Use all available data up to time t, i.e., ξik ∈ Di

t, k ∈
[0, t] and the current parameter θit to compute:

4: dit(θ
i
t) =

1
t+1

∑t
k=0 ∇l(θit, ξ

i
k).

5: Add DP noises ζit to θit, and then send the obscured
value yit ≜ θit + ζit to neighbors j ∈ Ni.

6: Receive yjt from neighbors j ∈ Ni.
7: θ̂it+1 = θit +

∑
j∈Ni

γtwij(y
j
t − θit)− λtd

i
t(θ

i
t);

8: θit+1 = ProΘ(θ̂it+1).
9: end for

Given a distributed online learning problem (2), we denote
the implementation of an online algorithm by Learner i ∈ [m]
as Ai. Now we are in a position to present the definition of
LDP [25]:

Definition 2. (Local differential privacy). Let Ai(Di, θ−i)
denote the output of Learner i under a distributed learning al-
gorithm with its local dataset Di and all received information
from neighbors θ−i. Then, Learner i’s implementation Ai is ϵi
locally differentially private if the following inequality always
holds for any two adjacent datasets Di, Di′:

P[Ai(Di, θ−i) ∈ Oi] ≤ eϵiP[Ai(Di′, θ−i) ∈ Oi], (3)

where Oi represents the set of all possible observations.

The parameter ϵi measures the similarity (indistinguisha-
bility) of Learner i’s output distributions under two adjacent
datasets. A smaller value of ϵi indicates greater indistinguisha-
bility between the outputs for two adjacent datasets, implying
a higher level of privacy protection.

In our definition of LDP, for Learner i, all received informa-
tion from neighbors, i.e., θ−i, is regarded as external informa-
tion and beyond its control. This is different from the classic
centralized DP definition used in existing differentially private
distributed optimization/learning approaches [31], [33]–[38],
which, in the absence of a data aggregator/curator, requires
participating learners to trust each other and cooperatively de-
termine the amount of noises needed to achieve a certain level
of privacy protection (privacy budget). In fact, when no data
aggregator/curator exists, such a centralized DP framework
even allows agents to cooperatively decide (like a centralized
data curator) how to mask shared information [38].

III. LOCALLY DIFFERENTIALLY PRIVATE DISTRIBUTED
ONLINE LEARNING ALGORITHM

A. Algorithm design

Our locally differentially private distributed online learning
algorithm to solve problem (2) is summarized in Algorithm 1,
in which DP noises ζit ∈ Rn satisfy the following assumption:

Assumption 4. For every learner i ∈ [m] and t ∈ N, each
element of the DP-noise vector ζit follows Laplace distribution

Lap(ϱit) with ϱit =
σi
√
2
(t+1)ς

i

, where σi is a positive constant
and the increasing rate of noise variances ςi ∈ (0, 1

2 ) satisfies

max
i∈[m]

{ςi}+ 1

2
< u < v < 1, (4)

with u and v the decaying rates of the decaying sequence γt
and the stepsize λt in Algorithm 1, respectively.

Instead of using DP noises with decaying variances, we
employ DP noises with increasing variances in Algorithm 1.
This is fundamentally different from existing results on dif-
ferentially private distributed optimization, such as [30]–[32],
[34], [45]–[52], and is key for us to ensure both accurate
convergence and strong differential privacy with a finite cumu-
lative privacy budget even in the infinite time horizon. In fact,
most existing results on differentially private distributed op-
timization have to either sacrifice accurate convergence [42]–
[44] or allow the cumulative privacy budget to grow to infinity
(meaning diminishing privacy protection as iteration tends to
infinity) [45]–[53], and, to our knowledge, our approach is
the first to achieve both accurate convergence and differential
privacy in the infinite time horizon for online learning.

One key reason for our algorithm to ensure robustness to DP
noises is using a decaying sequence γt, which can effectively
suppress the influence of DP noises with increasing variances,
and, hence, ensuring accurate convergence. This approach is
inspired by our recent result on distributed offline optimiza-
tion [36]. Nevertheless, it is worth noting that compared with
the result in [36], where the objective function is predeter-
mined and the same for all iterations, the objective function
here changes over iterations due to sequentially arriving data.
Furthermore, unlike [36] where the optimal solutions can be
any point in Rn, here we consider optimization problems
where the optimal solutions have to be restricted in a convex
set Θ. This constraint makes convergence analysis much more
challenging because the nonlinearity induced by projection
(necessary to address set constraints) poses challenges to both
optimality analysis and consensus characterization.

Moreover, we propose a novel gradient computation strategy
that exploits historical data. This strategy improves learning
accuracy and reduces the sensitivity of our algorithm, which
is key to ensuring a finite cumulative privacy budget even in
the infinite time horizon. This is in sharp contrast to existing
DP solutions for distributed online optimization/learning [45]–
[53], whose cumulative privacy budgets explode to infinity as
the number of iterations tends to infinity, implying diminishing
privacy protection in the infinite time horizon. In addition,
as the data point at any single iteration t might be lost or
corrupted, our strategy of using all available data up to time t
also enhances the robustness of the learning algorithm. The
advantage of this strategy is clearly demonstrated later in
experimental results (see Fig. 1-Fig. 3) and privacy analysis
(see Eq. (25)).

Remark 3. Note that all existing results on differentially
private distributed online optimization follow the approach
of patching DP noises with a given existing distributed opti-
mization/learning algorithm (e.g., [45]–[53]), which does not
fully exploit the flexibilities in DP design and optimization
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algorithm design. In fact, almost all existing distributed opti-
mization algorithms (which are designed without considering
privacy) are not robust to DP noises (since directly incorporat-
ing DP noises into these optimization algorithms renders them
unable to guarantee convergence to the exact optimal solution).
Hence, a direct combination of these existing algorithms with
DP designs has to sacrifice either DP strength or convergence
accuracy. In contrast, by incorporating a judiciously designed
decaying factor γt to gradually attenuate the influence of
DP noises, we co-design the optimization algorithm and DP-
noise injection mechanism, which enables us to achieve both
differential privacy and accurate convergence.

Remark 4. A commonly used approach to enabling privacy
protection in distributed optimization/learning is to broadcast
θit + γtζ

i
t and make the consensus of optimization variables

θit unaffected by the decaying sequence γt [30]. Although
this approach reduces the amount of noises injected into the
algorithm, and, hence, will make convergence easier to happen,
its diminishing noise variance also jeopardizes the strength of
privacy protection, leading to an exploding cumulative privacy
budget (implying diminishing privacy protection as iteration
proceeds) under the stepsize strategy used in our paper.

B. Algorithm complexity discussion

In this subsection, we discuss the computational complexity
of our strategy that uses historical data in our Algorithm 1. It is
intuitive that using all data available at time t can increase ex-
ecution time of the algorithm compared with traditional online
optimization/learning algorithms [10]–[15] that use only one
current data sample. However, here we show that the increased
computational complexity can be mitigated by exploiting the
characteristics of learning problems. More specifically, if the
loss function l(θ, ξi) is a polynomial function of θ, we can
make sure that our strategy of using all historical data has the
same order of computational complexity as those only using
one data point at each time instant.

We illustrate the idea by using the Ridge regression prob-
lem [67]. In the Ridge regression problem, the loss func-
tion is a quadratic function of θ, i.e., l(θ, ξik) = (bik −
aikθ)

T (bik − aikθ) + αt∥θ∥2. The gradient dit(θ
i
t) at each time

t is given as dit(θ
i
t) =

1
t+1

∑t
k=0 ∇l(θit, ξ

i
k) with ∇l(θ, ξik)=

−2(aik)
T (bik − aikθ) + 2αtθ. Hence, we have

dit(θ
i
t) =

dit−1(θ
i
t)× t+∇l(θit, ξ

i
t)

t+ 1
. (5)

Using the linear interpolation (two-point interpolation)
method, we can obtain dit−1(θ

i
t) as follows:

dit−1(θ
i
t)=dit−1(θ

i
t−1)

θit−θit−2

θit−1−θit−2

+ dit−1(θ
i
t−2)

θit−θit−1

θit−2−θit−1

.

(6)
In the preceding equality, dit−1(θ

i
t−2) can be expressed as

dit−1(θ
i
t−2) =

dit−2(θ
i
t−2)× (t− 1) +∇l(θit−2, ξ

i
t−1)

t
, (7)

where the term dit−2(θ
i
t−2) has been calculated at time t − 2

and ∇l(θit−2, ξ
i
t−1) can be computed at time t.

Therefore, by combining (5), (6), and (7), we can see that
the gradient dit(θ

i
t) =

1
t+1

∑t
k=0∇l(θit, ξ

i
k) needed at time t

can be computed in a recursive manner. By simply storing
two gradients computed in the prior two time instants, we can
keep the computational complexity invariant with time.

Using a similar argument, we can show that when the loss
function is a polynomial function (like in Lasso and polyno-
mial regression) of θ of order n, we can exploit the iterative
formulation in (5) and the Lagrange interpolation method to
control the computational complexity of the gradient to be
O(n+ 1).

It is worth noting that since every continuous function
can be approximated as closely as desired by a polynomial
function according to the Weierstrass approximation theo-
rem [68], the interpolation-based approach can be used in
other non-polynomial loss functions to mitigate the compu-
tational complexity of our gradient computation strategy. In
fact, the sigmoid and logarithmic loss functions in logistic
regression have been shown to be easily approximated by
polynomials [69]. Even the cross-entropy and focal losses in
neural networks have also been shown to be approximatable
efficiently by a series of weighted polynomial bases [70].

IV. TRACKING ACCURACY ANALYSIS

In this section, we systematically analyze the learning
accuracy of Algorithm 1 under both strongly convex and
general convex objective functions.

A. Tracking analysis with strongly convex objective functions
(µ in Assumption 1 is positive)

We first analyze the time variation of the optimal parameter:

Lemma 1. Denote θ∗t as the optimal solution to the online
optimization problem (2) at time t. Under Assumption 1 with
µ > 0 and Assumption 3, we have

E[∥θ∗t+1 − θ∗t ∥2] ≤ O
(
(t+ 1)−2

)
, (8)

which implies limt→∞ E[∥θ∗t+1 − θ∗t ∥2] = 0.

Proof. Due to space limitations, we leave the proof to the
extended version available at [1].

Remark 5. Lemma 1 reveals a key property of our learning
problem (2): as learning progresses, the variation in optimal
parameters decreases with time at a rate of O((t+1)−2). This
decreasing rate is an intrinsic property of the problem setting
in (2). Specifically, the objective function is the average of
loss functions over a growing number of samples. As more
data points are acquired, any single data point’s impact on the
overall loss becomes progressively smaller. The cumulative
moving average acts as a form of memory, which makes the
learning process smoother and more stable.

Notably, only when the data distribution Pi is time-
invariant, the optimal parameter to the problem (2) could
converge to a fixed constant. However, our result in Lemma 1
is applicable even when the data distribution Pi is not time-
invariant, or in other words, the optimal parameter does not
have to converge to a constant value. For example, if the
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optimal parameter follows the sequence θ∗t = 1, 1 + 1
2 , 1 +

1
2 + 1

3 , · · · , it can be verified that the result in Lemma 1 still
applies, whereas the sequence never converges.

We now characterize the expected tracking error of Algo-
rithm 1 for strongly convex objective functions.

Theorem 1. Under Assumptions 1-4 with µ > 0, if 0 <
γ0 ≤ 1

−3δm
and 0 < λ0 ≤ −γ0δ2µ

µ2+8L2 hold, the expected tracking
error of Algorithm 1 satisfies

E[∥θit+1 − θ∗t+1∥2] ≤ O(t−β), (9)

for all t > 0, where the rate β satisfies β = min{1− v, 2u−
2ς − 1} with ς ≜ mini∈[m]{ςi}.

Proof. See Appendix B.
Theorem 1 shows that even in the presence of time-

increasing DP-noise variances ϱit (ςi > 0), Algorithm 1 can
still track time-varying optimal parameters with time, with
the expected tracking error diminishing at a rate of O(t−β).
This proves that Algorithm 1 is capable of preserving learning
accuracy even in the presence of large DP noises.

In the following corollary, we quantify the dynamic regret
of Algorithm 1, which measures accumulated losses [10] of
our algorithm in all T iterations:

Corollary 1. Under the conditions in the statement of
Theorem 1, the dynamic regret of Algorithm 1 satisfies

T∑
t=1

E
[
Ft(θ

i
t)
]
−

T∑
t=1

E [Ft(θ
∗
t )] ≤ O

(
T 1− β

2

)
, (10)

for any i ∈ [m].

Proof. According to the definition fj(θ)=E[l(θ, ξj)], we have

E
[
Ft(θ

i
t)
]
− E [Ft(θ

∗
t )]

=
1

m

m∑
j=1

E

[
1

t+ 1

t∑
k=0

l(θit, ξ
j
k)−

1

t+ 1

t∑
k=0

l(θ∗t , ξ
j
k)

]

=
1

m

m∑
j=1

(fj(θ
i
t)− fj(θ

∗
t )) =

1

m

m∑
j=1

E
[
∇fj(φ

ij
t )

T (θit − θ∗t )
]

≤ DE
[
∥θit − θ∗t ∥

]
≤O(t−

β
2 ),

(11)
with φij

t ≜ qjθ
i
t + (1 − qj)θ

∗
t for any qj ∈ (0, 1). Here,

we have used the mean value theorem in the third equality,
Assumption 1-(iii) in the first inequality, and relationship (9)
in the last inequality.

By using (11) and the relation
∑T

t=2 t
−α ≤

∫ T

t=1
1
xα dx ≤

1
1−αT

1−α valid for any α ∈ (0, 1), we arrive at

T∑
t=1

E
[
Ft(θ

i
t)
]
−

T∑
t=1

E [Ft(θ
∗
t )]

≤ O
(
T 1− β

2

)
+DE

[
∥θi1 − θ∗1∥

]
≤ O

(
T 1− β

2

)
,

(12)

where we have omitted the constant 2D
2−β in the first inequality

and O(1) in the last inequality.

Corollary 1 proves that Algorithm 1 can achieve a sublinear
dynamic regret even under LDP constraints. This result is

consistent with the dynamic regret result in [10], which shows
that the dynamic regret is bounded by the path length of
an online optimization problem. In fact, under our ERM
formulation in (2), the path length can be quantitatively
bounded by E[∥θ∗t+1 − θ∗t ∥] ≤ O((t + 1)−1), as established
in Lemma 1 (see Eq. (8)). Moreover, this upper bound has
been incorporated into our convergence result in Theorem 1
(see Eq. (38) for details). Therefore, we can derive a sublinear
dynamic regret in Corollary 1 based on Theorem 1.

B. Tracking analysis with convex objective functions (µ in
Assumption 1 is nonnegative)

In this section, we examine the tracking performance of
Algorithm 1 for general convex objective functions.

Theorem 2. Under Assumptions 1-4 with µ ≥ 0, if 2
3 <

1+2u
3 < v < 1, 0 < γ0 ≤ 1

−3δm
, and 0 < λ0 ≤ −δ2γ0

2(L2+κ2+D2)
hold, the expected instantaneous regret of Algorithm 1 satisfies

E
[
Ft(θ

i
t)− Ft(θ

∗
t )
]
≤ O(t−β), (13)

for all t > 0, where the rate β satisfies β = 1−v
2 .

Proof. See Appendix C.

Theorem 2 presents the expected instantaneous regret of Al-
gorithm 1 when the objective functions are convex. However,
analyzing parameter tracking errors is challenging for convex
objective functions due to the possible existence of multiple
optimal solutions with identical gradients. In such cases, the
gradient’s change does not provide sufficient information to
establish an upper bound on the parameter tracking error.

V. EXTENSION: STEPSIZE SELECTION WITHOUT GLOBAL
PARAMETERS

In Theorem 1 and Theorem 2, the design of the stepsize
sequence λt and the decaying sequence γt for Algorithm 1
requires knowledge of global parameters, such as the eigenval-
ues of the matrix W , the Lipschitz constant L, and the strongly
convex coefficient µ of the objective function. Obtaining these
global parameters might be challenging for individual learners
in practical distributed implementations. Therefore, in this
section, we discuss the tracking performance of Algorithm
1 when the stepsize and decaying sequences are designed
without any knowledge of global parameters.

More specifically, we establish the following theorems for
strongly convex and convex objective functions, respectively.

Theorem 3. Under Assumptions 1-4 with µ > 0, if 1
2 <

u < v < 1 holds, then for any positive constants λ0 and γ0,
the expected tracking error of Algorithm 1 satisfies

E[∥θit+1 − θ∗t+1∥2] ≤ O
(
(t− t0)

−β
)
, (14)

for all t > t0, where the rate β satisfies β = min{1− v, 2u−
2ς − 1} with ς ≜ mini∈[m]{ςi} and the positive constant t0 is
given by

t0 =

⌈
max

{
(−3δmγ0)

1
u − 1,

(
(µ2 + 8L2)λ0

−δ2µγ0

) 1
v−u

− 1

}⌉
.

Proof. Due to space limitations, we leave the proof to the
extended version available at [1].
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Theorem 4. Under Assumptions 1-4 with µ ≥ 0, if 2
3 <

2u+1
3 < v < 1 holds, then for any positive constants λ0 and

γ0, the expected instantaneous regret of Algorithm 1 satisfies

E
[
Ft(θ

i
t)− Ft(θ

∗
t )
]
≤ O

(
t−β
)
, (15)

for all t > t′0, where the rate β satisfies β = 1−v
2 and the

positive constant t′0 is given by

t′0 =
⌈
max

{
(−3δmγ0)

1
u − 1,(

2(L2 + κ2 +D2)λ0

−δ2γ0

) 2
3v−2u−1

− 1

}⌉
.

Proof. Due to space limitations, we leave the proof to the
extended version available at [1].

The compactness of the parameter set Θ in Algorithm 1
ensures that both the expected tracking error and the expected
instantaneous regret are bounded before time instant t0 in
Theorem 3 (or t′0 in Theorem 4).

Remark 6. The convergence results in Theorems 1 and 2
need global information, such as the eigenvalues δ2 and δm
of the matrix W , the Lipschitz constant L, and the strongly
convex coefficient µ, to determine the values of λ0 and γ0.
To the contrary, the results in Theorems 3 and 4 hold for
any positive constants λ0 and γ0, and, hence, are applicable
even when global information, such as the eigenvalues of the
matrix W , the Lipschitz constant L, and the strongly convex
coefficient µ, are inaccessible.

Remark 7. The decaying sequence γt leads to a decaying
coupling strength. However, we prove in Theorems 1 through 4
that this decaying coupling strength is still sufficient to ensure
that all learners converge to the global optimal solution.
Of course, the decaying coupling strength will reduce the
convergence rate. We use the convergence result in Theorem 2
as an example to illustrate this tradeoff. It is clear that the
convergence rate O(t−

1−v
2 ) in Theorem 2 decreases with an

increase in the decaying rate v of the stepsize λt. Given the
condition 2

3 < 1+2u
3 < v < 1 presented in the statement of

Theorem 2, we can see that an increase in the parameter u
(corresponding to a faster decaying sequence γt) corresponds
to an increase in the parameter v, resulting in a decreased
convergence rate O(t−

1−v
2 ) from Theorem 2.

VI. LOCAL-DIFFERENTIAL-PRIVACY ANALYSIS

In this section, we prove that besides accurate convergence,
Algorithm 1 can simultaneously ensure rigorous ϵi-LDP for
each learner, with the cumulative privacy budget guaranteed to
be finite even when the number of iterations T tends to infinity.
To this end, we first provide a definition for the sensitivity of
Learner i’s implementation Ai of Algorithm 1:

Definition 3. (Sensitivity) The sensitivity of Learner i’s
implementation Ai at each time instant t is defined as

∆i
t = max

Adj(Di
t,Di

t
′)
∥Ai(Di

t, θ
−i
t )−Ai(Di

t

′
, θ−i

t )∥1, (16)

where Di
t represents Learner i’s dataset and θ−i

t represents
all messages received by Learner i at time instant t.

With the defined sensitivity, we have the following lemma:

Lemma 2. For any given T ∈ N+ or T = ∞, if Learner
i injects to each of its transmitted messages at each time
t ∈ {1, · · · , T} a noise vector ζit consisting of n independent
Laplace noises with parameter ϱit, then Learner i’s implemen-
tation Ai is ϵi locally differentiable private with the cumulative
privacy budget from time t = 1 to t = T upper bounded by∑T

t=1
∆i

t

ϱi
t

.

Proof. Due to space limitations, we leave the proof to the
extended version available at [1].

For our privacy analysis, we also utilize the ensuing result:

Lemma 3. ([71]) Let {vt} denote a nonnegative sequence,
and {αt} and {βt} be positive non-increasing sequences sat-
isfying

∑∞
t=0 αt = ∞, limt→∞ αt = 0, and limt→∞

βt

αt
= 0.

If there exists a T ≥ 0 such that vt+1 ≤ (1−αt)vt+βt holds
for all t ≥ T , and then we always have vt ≤ c βt

αt
for all t,

where c is some positive constant.

For the convenience of privacy analysis, we represent the
different data points between two adjacent datasets Di

t and
Di

t
′ as k-th one, i.e., ξik in Di

t and ξik
′ in Di

t
′, without loss

of generality. We further denote θit and θit
′ as the parameters

generated by Algorithm 1 based on Di
t and Di

t
′, respectively.

We also use the following assumption, which is standard in
existing DP analysis for distributed optimization/learning (see
e.g., [35]):

Assumption 5. For any data ξ and ξ′, there exists some
constant C such that supθ∈Θ∥∇l(θ, ξ)−∇l(θ, ξ′)∥2≤C holds.

Remark 8. Assumption 5 is standard for privacy analy-
sis [35]. It relaxes the bounded-gradient assumption in [27]–
[31], [33] because if one has ∥∇l(θ, ξ)∥2 ≤ C, then one
always has ∥∇l(θ, ξ) − ∇l(θ, ξ′)∥2 ≤ 2C. In general, As-
sumption 5 can be satisfied under our problem setting since
the optimization variable is restricted in a compact set Θ. For
example, under the commonly used loss function l(θ, ξ) =
θTQθ + ξT θ for given data ξ and Q > 0, we can easily
obtain ∥∇l(θ, ξ) − ∇l(θ, ξ′)∥2 ≤ ∥ξ − ξ′∥2 and, hence,
the boundedness of gradient differences in Assumption 5.
In addition, in many machine learning applications, gradient
clipping is used to make the norm of the gradient vector
be at most C [72], [73]. In this case, we can easily obtain
the upper bound in Assumption 5 by using the inequality
∥∇l(θ, ξ)−∇l(θ, ξ′)∥2 ≤ 2∥∇l(θ, ξ)∥2 ≤ 2C.

Theorem 5. Under Assumptions 1-5, if nonnegative se-
quences λt and γt satisfy the conditions in the statement of
Theorem 1, and each element of ζit independently follows a
Laplace distribution Lap(ϱit) satisfying Assumption 4, then the
tracking error of Algorithm 1 will converge in mean square to
zero. Furthermore,

(i) For any finite number of iterations T , under Algorithm 1,
Learner i is ensured to be ϵi locally differentially private with
the cumulative privacy budget bounded by

∑T
t=1

√
2nCτt

σi(t+1)ςi
.

Here, C is given in the statement of Assumption 5 and τt is
given by τt ≜

∑t−1
p=1

(∏t−1
q=p(1− w̄γq + λqL)

)
λp−1 + λt−1.
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(ii) The cumulative privacy budget is finite for T → ∞.

Proof. Since the Laplace DP noise satisfies Assumption 4, the
tracking result follows naturally from Theorem 1.

(i) To prove the statements on privacy, we first analyze the
sensitivity of Learner i under Algorithm 1.

According to the definition of sensitivity in (16), we have
θjt + ζjt = θjt

′
+ ζjt

′
for all t ≥ 0 and j ∈ Ni. Since we

assume that only the k-th data point is different between Di
t

and Di
t
′, when t < k, we have θit = θit

′. However, when
t ≥ k, since the difference in loss functions kicks in at
time k, i.e., l(θ, ξik) ̸= l(θ, ξik

′
), we have θit ̸= θit

′. Hence,
for Learner i’s implementation of Algorithm 1, we use the
projected inequality to obtain

∥θit+1 − (θit+1)
′∥2 = ∥ProΘ(θ̂it+1)− ProΘ((θ̂it+1)

′)∥2
≤∥θ̂it+1 − (θ̂it+1)

′∥2 ≤
∥∥(1+wiiγt)(θ

i
t − θit

′
)

− λt

t+ 1

t∑
p=k

(∇l(θit, ξ
i
p)−∇l(θit

′
, ξip

′
))
∥∥
2
,

(17)

for all t ≥ k and any k ≥ 0, where we have used the definition
wii = −

∑
j∈Ni

wij . Letting w̄ ≜ min{|wii|}, i ∈ [m] and
Φi

t ≜ ∥θit − θit
′∥2, we obtain

Φi
t+1 ≤(1− w̄γt)Φ

i
t +

λt

t+ 1

t∑
p=k

∥∇l(θit, ξ
i
p)−∇l(θit

′
, ξip

′
)∥2

≤(1−w̄γt)Φ
i
t+

λt

t+ 1

t∑
p=0

∥∇l(θit, ξ
i
p)−∇l(θit

′
, ξip

′
)∥2, (18)

where we have used
∑k−1

p=0 ∇l(θit, ξ
i
p) =

∑k−1
p=0 ∇l(θit

′
, ξip

′
)

in the second inequality. Since ∥∇l(θit, ξ
i
p)−∇l(θit

′
, ξip

′
)∥2 =

∥∇l(θit, ξ
i
p)−∇l(θit, ξ

i
p
′
)+∇l(θit, ξ

i
p
′
)−∇l(θit

′
, ξip

′
)∥2 ≤ C+

LΦi
t holds, the inequality (18) can be rewritten as

Φi
t+1 ≤ (1− w̄γt + λtL)Φ

i
t + λtC. (19)

By iterating (19) from 0 to t and using the relationship
∥θ∥1 ≤

√
n∥θ∥2 valid for any θ ∈ Rn, we obtain

∆i
t ≤

√
nC

(
t−1∑
p=1

(
t−1∏
q=p

(1− ω̄γq + λqL)

)
λp−1 + λt−1

)
.

Therefore, for Learner i, the cumulative privacy budget for
any finite T iterations is bounded by

T∑
t=1

∆i
t

ϱit
≤

T∑
t=1

√
2nCτt

σi(t+ 1)ςi
, (20)

where τt is defined in the theorem statement.
(ii) Based on (18) and ξip = ξip

′ for p ̸= k, we have

Φi
t+1 ≤ (1− w̄γt)Φ

i
t +

λt

t+ 1
∥∇l(θit, ξ

i
k)−∇l(θit, ξ

i
k

′
)∥2

+
λt

t+ 1
∥∇l(θit, ξ

i
k

′
)−∇l(θit

′
, ξik

′
)∥2

+
λt

t+ 1

t∑
p=0, p ̸=k

∥∇l(θit, ξ
i
p)−∇l(θit

′
, ξip)∥2, (21)

for all t ≥ k and any k ≥ 0. By using Assumption 3-(iii) and

Assumption 5, we can rewrite (21) as follows:

Φi
t+1 ≤

(
1− w̄γt +

Lλt(t+ 1)

t+ 1

)
Φi

t +
λtC

t+ 1
. (22)

Recalling the definitions γt =
γ0

(t+1)u and λt =
λ0

(t+1)v with
v > u from the statement of Theorem 1, there must exist a
T0 > 0 and some constant C1 > 0 such that

w̄γt − Lλt=
w̄γ0

(t+ 1)u
− Lλ0

(t+ 1)v
≥ C1

(t+ 1)u
, (23)

holds for all t ≥ T0. Combining (22) and (23) yields Φi
t+1 ≤(

1− C1

(t+1)u

)
Φi

t +
λ0C

(t+1)1+v for all t ≥ T0. Using Lemma 3

yields for some constant C2, we have Φi
t = ∥θit − θit

′∥2 ≤
C2

λ0C
C1(t+1)1+v−u for all t > 0.

Based on the relationship ∥x∥1 ≤
√
n∥x∥2 valid for any

x ∈ Rn, we can prove that the sensitivity ∆i
t satisfies

∆i
t ≤

√
nΦi

t ≤
√
nλ0CC2

C1(t+ 1)1+v−u
, (24)

for all t > 0. Recalling the Laplace-noise parameter ϱit =
σi(t+1)ς

i

√
2

from the statement of Assumption 4, we have the
cumulative privacy budget bounded by

∞∑
t=1

∆i
t

ϱit
≤

∞∑
t=1

√
2nλ0CC2

C1σi(t+ 1)1+v−u+ςi
, (25)

according to Lemma 2 when T → ∞. Since v − u+ ςi > 0,
the cumulative privacy budget is finite when T → ∞.

Theorem 5-(i) implies that for any given cumulative privacy
budget ϵi, Learner i’s implementation Ai of Algorithm 1 is ϵi
locally differentially private when the noise parameter satisfies
σi =

∑T
t=1

√
2nCτt

ϵi(t+1)ςi
with τt defined in Theorem 5. Therefore,

each learner can choose its desired privacy budget based on
its own practical and personalized need. This differs from ex-
isting centralized DP frameworks used in differentially private
distributed optimization/learning approaches [31], [33]–[38],
which, in the absence of a data aggregator/curator, require
participating learners to trust each other and cooperatively
determine the amount of noises needed to achieve a universal
global privacy budget ϵ.

Theorem 5-(ii) proves that in addition to accurate conver-
gence, Algorithm 1 can ensure a finite cumulative privacy
budget even when the number of iterations tends to infinity.
The key reason for our approach to achieve rigorous LDP
is the judicious design of the decaying factor γt, gradient
computation strategy, and the stepsize λt. These designs can
ensure a fast diminishing sensitivity (see Eq. (24)), which,
combined with increasing DP-noise variances, ensures a finite
cumulative privacy budget even in the infinite time horizon
(see Eq. (25)).

Remark 9. Theorem 5 proves that our algorithm can
circumvent the tradeoff between privacy and learning accuracy.
However, this does not mean that our algorithm achieves
privacy protection for free. In fact, resolving the tradeoff
between privacy and learning accuracy comes at the expense of
sacrificing the convergence rate. Specifically, the rate O(t−β)
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in Theorem 1 is determined by the decaying parameter u of the
sequence γt, the decaying parameter v of the stepsize sequence
λt, and the noise parameter maxi∈[m]{ςi}. The condition
maxi∈[m]{ςi}<u<v < 1 indicates that an increase in noise
parameter ςi (corresponding to stronger privacy protection)
necessitates an increase in decaying parameter v, resulting in
a slower convergence rate O(t−β) from Theorem 1.

Remark 10. The parameters u, v, and ςi are crucial for
our algorithm’s performance. More specifically, according to
the convergence results in Theorems 1 through 4, a smaller
v, a larger u, and a smaller ςi lead to a faster convergence
rate. Therefore, for applications requiring fast convergence, a
small v, a large u, and a small ςi are preferable. In addition,
according to (25) in our privacy analysis, a smaller v, a larger
u, and a smaller ςi result in weaker privacy protection. Hence,
for privacy-sensitive applications, a large v, a small u, and a
large ςi are preferable. Therefore, there is a tradeoff between
convergence rate and privacy. In applications, we can select
these parameters based on practical needs.

Remark 11. Our approach can ensure both DP and mean
square convergence of the optimization variable to the
optimal solution (the variance of the distance between the
optimization variable and the optimal solution converges to
zero). It is much stronger than [74] that only characterizes
the convergence of the expected value of the optimization
variable to the optimal solution in the presence of DP noises
(which cannot exclude the possibility that the optimization
error can have an arbitrarily large variance). In addition, [74]
only ensures DP of the data (sample) label but does not
consider the privacy of the content of data. In contrast, we
enable DP for both the label and the content of data.

VII. NUMERICAL EXPERIMENTS

In this section, we use three numerical experiments to vali-
date our theoretical results. In the first experiment, we consider
distributed online training of a logistic regression classifier
using the “mushrooms” dataset [75]. In the second experiment,
we consider distributed online training of a convolutional
neural network (CNN) using the “MNIST” dataset [76]. In
the third experiment, we train a CNN distributively using the
“CIFAR-10” dataset [77], which is a more diverse and chal-
lenging dataset than “MNIST”. For each test, we considered
heterogeneous data distributions, which are particularly likely
in distributed learning where data are collected by multiple
learners from multiple sources. In all three experiments, we
compared Algorithm 1 with the distributed stochastic gradient
descent algorithm (DSGD) in [55], the DP approach for dis-
tributed online learning (DOLA) in [45], and the DP approach
for distributed optimization (PDOP) in [30]. The convex set
was set as Θ = {θ ∈ Rn|∥θ∥ ≤ 105}. We considered five
learners connected in a circle, where each learner can only
communicate with its two immediate neighbors. For the matrix
W , we set wij = 0.3 if Learners i and j are neighbors, and
wij = 0 otherwise.

A. Logistic regression using the “mushrooms” dataset
We first evaluated the effectiveness of Algorithm 1 by

using an l2-logistic regression classification problem on the

“mushrooms” dataset [75]. We spread data samples among the
learners according to their target values. Specifically, Learners
1, 2, and 3 have samples with the target value of 0, while
Learners 4 and 5 have samples with the target value of 1. All
learners cooperatively track the optimal parameter θ∗t to the
online optimization problem (2), in which the loss function is
given by l(θ, ξi) = 1

Ni

∑Ni

j=1(1−bij)(a
i
j)

T θ−log(s((aij)
T θ))+

ri
2 ∥θ∥

2. Here, Ni represents the number of data points per
iteration, ri > 0 is a regularization parameter proportional to
1
Ni

, ξi = (aij , b
i
j) represents the j-th data sample on Learner

i, and s(q) = 1/(1 + e−q) is the sigmoid function.
In each iteration, we incorporated Laplace DP noises with

parameter ϱit = (t + 1)ς
i

to all shared messages, where
ςi = 0.1 + 0.01i. Note that the multiplier i in ςi leads
to different noise amplitudes and further different privacy
budgets ϵi for different learners. We configured the stepsize
sequence and diminishing sequence as λt =

1
(t+1)0.77 and γt =

1
(t+1)0.65 , respectively. All configurations satisfy the conditions
in Theorems 1-5. The algorithm was implemented for 2, 000
iterations, during which time-varying optimal parameters θ∗t
were calculated using a noise-free, centralized gradient descent
algorithm.

In the comparison, we selected the near-optimal stepsize
sequences for DSGD, DOLA, and PDOP such that doubling
the stepsize results in nonconverging behavior. The resulting
average tracking error and average instantaneous regret are
shown in Fig. 1-(a) and Fig. 1-(b), respectively. It is clear that
the proposed approach has a much better learning accuracy
under the constraint of local differential privacy. We also
plotted the cumulative privacy budgets of all algorithms in
Fig. 1-(c), which shows that our algorithm always has a finite
cumulative privacy budget whereas the cumulative privacy
budgets for DSGD, PDOP, and DOLA all grow with time
to infinity as iteration proceeds, implying diminishing privacy
protection as iteration proceeds.

To show that Algorithm 1’s achievement of both rigorous
LDP and optimization accuracy comes at the expense of
sacrificing convergence rate, we compared the number of
iterations needed to achieve a certain optimization accuracy
under different cumulative privacy budgets. The results, sum-
marized in Table I, clearly show that a smaller cumulative
privacy budget (i.e., stronger privacy protection) corresponds
to a greater number of iterations (i.e., a slower convergence
rate).

B. Neural network training using the “MNIST” dataset

In the second experiment, we assessed Algorithm 1’s perfor-
mance through distributed online training of a convolutional
neural network (CNN) using the “MNIST” dataset [76]. We
assigned 40% of the data from the i-th class to Learner i, while
splitting the remaining 60% evenly among the other learners.
The training process spanned 600 iterations.

In this experiment, we utilize Laplace DP noises with
parameter ϱit =

√
2(t + 1)ς

i

for all shared messages, where
ςi = 0.1+0.02i. We set the stepsize sequence and decaying
sequence to λt=

1
(t+1)0.71 and γt=

0.01
(t+1)0.7 , respectively.

We compared our algorithm with the algorithm DSGD
in [55] by training the same CNN, utilizing the same stepsize
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TABLE I
THE NUMBER OF ITERATIONS TO ACHIEVE ∥ 1

m

∑m
i=1 θ

i
t − θ∗t ∥2 ≤ 1 UNDER DIFFERENT CUMULATIVE PRIVACY BUDGETS

Noise levela ×1 ×1.5 ×2 ×2.5 ×3 ×3.5 ×4 ×4.5 ×5 ×5.5 ×6
Cumulative privacy budget 23.34 16.59 12.65 11.97 11.54 10.50 9.64 8.79 7.98 7.47 7.03
Iteration number 8 11 12 34 127 269 575 934 1119 2292 4999
a Considering the Laplace noise Lap(0.1(t+ 1)0.1+0.01i ) as the base level.
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Fig. 1. Comparison of online logistic regression results by using the “mushrooms” dataset.
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(a) Training accuracy
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Fig. 2. Comparison of neural network training results by using the “MNIST” dataset.
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Fig. 3. Comparison of neural network training results by using the “CIFAR-10” dataset.

sequence and the same Laplace DP noise. Additionally, we
implemented existing DP methods, DOLA in [45] and PDOP
in [30], using DP noises with decaying and homogeneous
parameters ϱt =

0.07
0.2(t+1) and ϱt = 0.5(0.98)t for DOLA and

PDOP, respectively). The stepsize sequences for DOLA and
PDOP followed their default parameters suggested in [45]
and [30], respectively. Fig. 2-(a) and Fig. 2-(b) illustrate the
training and test accuracies, respectively.

The results reveal that under the given DP noise, the DSGD
algorithm falls short in training the CNN model. Besides, both
the DOLA and PDOP algorithms are incapable of effectively
training the CNN model (Note that when the test data led to
an exploding loss function — all happened when the training
accuracy stalled around 0.1 in existing algorithms —, we used
the initial parameter for validation, which always gave a test

accuracy of 0.1). These results confirm the advantages of our
proposed algorithm.

To compare the strength of enabled privacy protection, we
ran the DLG attack model proposed in [78], which is a
powerful inference algorithm capable of reconstructing raw
data from shared gradient/model updates. The training/test
accuracies and the DLG attacker’s inference errors under
different levels of DP noise are summarized in Table II. It
can be seen that stronger privacy protection (i.e., a larger
DLG inference error) leads to lower training/test accuracies
under a fixed number of 3, 000 iterations (implying a slower
convergence rate).

C. Neural network training using the “CIFAR-10” dataset

In our third experiment, we appraised Algorithm 1’s per-
formance via distributed online training of a CNN on the
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“CIFAR-10” dataset, which is one of the most widely used
datasets for machine learning research (it is also more difficult
to train than the “MNIST” dataset). In this experiment, the
CNN architecture and all parameter designs are identical to
those employed in the previous “MNIST” dataset experiment.

The results in Fig. 3 once again confirms the effectiveness
of our distributed online learning algorithm for training the
complex CNN model under the constraint of LDP.

TABLE II
TRAINING/TEST ACCURACIES AND DLG ATTACKER’S INFERENCE ERRORS

UNDER DIFFERENT LEVELS OF DP NOISE

Noise levela ×0.5 ×1 ×1.5 ×2
Training accuracy 0.9402 0.9350 0.8862 0.8180

Test accuracy 0.9449 0.9380 0.8964 0.8259
DLG inference error 0.2696 0.2786 0.2898 0.3110
a Considering Laplace noise Lap(0.05(t+1)0.1+0.01i ) as the base level.

VIII. CONCLUSION

In this study, we have introduced a differentially private
distributed online learning algorithm that successfully circum-
vents the tradeoff between privacy and learning accuracy.
More specifically, our proposed approach ensures a finite
cumulative privacy budget in the infinite time horizon. This is
in sharp contrast to existing DP methods for distributed online
learning/optimization, which allow the privacy budget to grow
to infinity, implying losing privacy protection when time tends
to infinity. In addition, our approach also guarantees the
convergence of expected instantaneous regret to zero. To the
best of our knowledge, our approach is the first to achieve both
rigorous local differential privacy and provable convergence
in distributed online learning. Our numerical experiments on
benchmark datasets confirm the advantages of the proposed
approach over existing counterparts.

APPENDIX

A. Technical Lemmas

In this subsection, we introduce two auxiliary lemmas. For
the sake of notational simplicity, we add an overbar to a letter
to denote the average of all learners, e.g., θ̄t = 1

m

∑m
i=1 θ

i
t.

We also use bold font to represent the stacked vectors of all
learners, e.g., θt = col(θ1t , · · · , θmt ). We also denote θ̃t ≜ θt−
θ∗
t , θ̌t ≜ θt − θ̄t, dt(θt) ≜ col(d1t (θ

1
t ), · · · , dmt (θmt )), ζwi

t ≜∑
j∈Ni

wijζ
j
t , σi

t ≜ σi(t+ 1)ς
i

, and σ+ ≜ maxi∈[m]{σi}.

Lemma 4. Under the conditions in the statement of Theo-
rem 1, the following inequality always holds:

E
[
∥θ̃t+1∥2

]
≤
(
1 +

µλt

8

)[(
1− λtµ

4

)
E[∥θ̃t∥2]

+2γtE[θ̃
T

t (W ⊗ In)θ̃t] + 3γ2
t E[∥(W ⊗ In)θ̃t∥2]

+λt

(
µ+

8L2

µ

)
E[∥θ̌t∥2] + 3γ2

t ∥σt∥2 + 3λ2
tE[∥dt(θt)∥2]

+
12mκ2λt

µ(t+ 1)

]
+

(
1 +

8

λtµ

)
E
[
∥θ∗

t+1 − θ∗
t ∥2
]
. (26)

Proof. Due to space limitations, we leave the proof to the
extended version available at [1].

For the convenience of analysis, we introduce s ∈ [0, t] and
denote θ̃t−s ≜ θt−s − θ∗

t+1 and θ̃t+1−s ≜ θt+1−s − θ∗
t+1.

Lemma 5. Under the conditions in the statement of Theo-
rem 2, the following inequality always holds:

E[∥θ̃t+1−s∥2] ≤ (1 + λt−s(ηs + ηt−s))E[∥θ̃t−s∥2]
− 2mλt−sE[Ft+1(θ

i
t−s)− Ft+1(θ

∗
t+1)] + 3γ2

t−s∥σt−s∥2

+ 3λ2
t−sE[∥dt−s(θt−s)∥2]+2γt−sE[θ̃

T

t−s(W ⊗ In)θ̃t−s]

+ 3γ2
t−sE[∥(W ⊗ In)θ̃t−s∥2] +mλt−sηt−s

+
8λt−s(κ

2 +D2)(s+ 1)

ηs(t+ 2)(t− s+ 1)
+

4mκ2λt−s

ηt−s(t+ 1)
+

2mκRλt−s√
t+ 1

+
2(L2 + κ2 +D2)λt−sE[∥θ̌t−s∥2]

ηt−s
, (27)

where the sequence ηt is given by ηt =
1

(t+1)r with r = 1−v
2 .

Proof. Due to space limitations, we leave the proof to the
extended version available at [1].

B. Proof of Theorem 1

The proof is divided into three steps: in Step 1), we simplify
the result in Lemma 4 to obtain (32); in Step 2), we iterate (32)
from 0 to t to derive (35); in Step 3), we estimate an upper
bound on each term on the right hand side of (35) and
obtain (54).

1) To simplify the result in Lemma 4, we first prove that
the sum of the following three terms in (26) is negative:

2γtE[θ̃
T

t (W ⊗ In)θ̃t] + 3γ2
t E[∥(W ⊗ In)θ̃t∥2]

+ λt

(
µ+

8L2

µ

)
E[∥θ̌t∥2] ≤ 0.

(28)

Given γt ≤ γ0 ≤ 1
−3δm

in the statement of Theorem 1, we
have γtδi + 3γ2

t δ
2
i ≤ 0, ∀i ∈ [m], which implies

γtE[θ̃
T

t (W ⊗ In)θ̃t] + 3γ2
t E[∥(W ⊗ In)θ̃t∥2] ≤ 0. (29)

By using the relation θ̌t = θt − θ∗
t − (θ̄t − θ∗

t ), we obtain

θ̌t = θ̃t −
((

1m1T
m

m
⊗ In

)
θt − 1m

(
1T
m1m

m

)
⊗ θ∗t

)
.

Given 1m

(
1T
m1m

m

)
⊗θ∗t =

(
1m1T

m

m ⊗ In

)
(1m⊗θ∗t ), we have

θ̌t =

(
Imn −

(
1m1T

m

m
⊗ In

))
θ̃t,

which further leads to

θ̃t = θ̌t +

(
1m1T

m

m
⊗ In

)
θ̃t.

By using θ̌
T

t (W ⊗ In)θ̌t ≤ δ2∥θ̌t∥2, 1TW = 0T , and W1 =
0, we obtain

γtθ̃
T

t (W ⊗ In)θ̃t = γtθ̌
T

t (W ⊗ In)θ̌t ≤ γtδ2∥θ̌t∥2. (30)

Noting the relationships λt ≤ λ0 ≤ −γ0δ2µ
µ2+8L2 and γt ≤ γ0 ≤

1
−3δm

with v > u from the statement of Theorem 1, we have

γtE[θ̃
T

t (W ⊗ In)θ̃t] + λt

(
µ+

8L2

µ

)
E[∥θ̌t∥2] ≤ 0. (31)
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Combining (29) with (31) yields (28).
By using the inequality (31), we can rewrite (26) as follows:

E[∥θ̃t+1∥2] ≤
(
1− µλt

8

)
E[∥θ̃t∥2] + ∆t, (32)

where in the derivation we have used the definitions at =
1 + µλt

8 and bt = 1 + 8
λtµ

from the statement of Lemma 4.
Moreover, the term ∆t in (32) is given by

∆t ≜

(
1 +

µλt

8

)
12mκ2λt

µ(t+ 1)
+

(
1 +

8

λtµ

)
E[∥θ∗

t+1 − θ∗
t ∥2]

+

(
3 +

3µλt

8

)(
λ2
tE[∥dt(θt)∥2] + γ2

t ∥σt∥2
)
.

(33)
2) Iterating (32) from 0 to t, we arrive at

E[∥θ̃t+1∥2] ≤
t∏

p=0

(
1− µλp

8

)
E[∥θ̃0∥2]

+
t∑

p=1

t∏
q=p

(
1− µλq

8

)
∆p−1 +∆t.

(34)

Since ln(1−u) ≤ −u holds for all u > 0, and, hence, we have∏t
p=0

(
1− µλp

8

)
≤ e−

1
8µ

∑t
p=0 λp . Then, the inequality (34)

can be rewritten as follows:

E[∥θ̃t+1∥2] ≤ e−
1
8µ

∑t
p=0 λpE[∥θ̃0∥2]

+
t∑

p=1

∆p−1e
− 1

8µ
∑t

q=p λq +∆t,
(35)

where the term ∆t is given in (33).
3) We proceed to estimate an upper bound on the right hand

side of (35).

By using the relationships e−
µ
8

∑t
q=p λq ≤ e

−µ
8

∑t

q=⌈ t
2
⌉ λq

valid for all p ∈ [1, ⌈ t
2⌉] and e

−µ
8

∑t

q=⌈ t
2
⌉+1

λq
< 1, the last

two terms on the right hand side of (35) satisfies
t∑

p=1

∆p−1e
−µ

8

∑t
q=p λq +∆t

≤
⌈ t
2 ⌉∑

p=1

∆p−1e
−µ

8

∑t

q=⌈ t
2
⌉ λq

+
t∑

p=⌈ t
2 ⌉+1

∆p−1 +∆t

≤
⌊ t
2 ⌋∑

p=0

∆pe
−µ

8

∑t

q=⌈ t
2
⌉ λq

+
t∑

p=⌈ t
2 ⌉

∆p.

(36)

Next, we estimate an upper bound on ∆t in (33):
(a) Since λt ≤ λ0 always holds, we have(

1 +
µλt

8

)
12mκ2λt

µ(t+ 1)
≤ c1

λt

t+ 1
, (37)

where c1 is given by c1 = 12mκ2

µ (1 + µλ0

8 ).
(b) By using (8) in Lemma 1, we have(

1 +
8

λtµ

)
E
[
∥θ∗

t+1 − θ∗
t ∥2
]
≤ c2

λt(t+ 1)2
, (38)

where c2 is given by c2 = 16m(κ2+D2)(λ0+8)
µ ( 2

µ2 + 1
L2 ).

(c) Assumption 1-(iii) and Assumption 3-(ii) imply
E[∥∇l(θit, ξ

i)∥2] ≤ 2(κ2 +D2), which further leads to(
3 +

3µλt

8

)
λ2
tE
[
∥dt(θt)∥2

]
≤ c3λ

2
t , (39)

where c3 is given by c3 = 6m(1 + λ0µ
8 )(κ2 +D2).

(d) We denote ς ≜ maxi∈[m]{ςi} and σ+ ≜ maxi∈[m]{σi}.
Then, we have(

3 +
3µλt

8

)
γ2
t ∥σt∥2 ≤ c4γ

2
t (t+ 1)2ς , (40)

where c4 is given by c4 = m(σ+)2(3 + 3µλ0

8 ).
By substituting (37)-(40) into (33), we obtain

∆t ≤
c1λt

t+ 1
+

c2
λt(t+ 1)2

+ c3λ
2
t + c4γ

2
t (t+ 1)2ς . (41)

Substituting (41) into the second term on the right hand side
of (36), one yields

t∑
p=⌈ t

2 ⌉

∆p ≤
∞∑

p=⌈ t
2 ⌉

c1λp

p+ 1
+

∞∑
p=⌈ t

2 ⌉

c2
λp(p+ 1)2

+

∞∑
p=⌈ t

2 ⌉

c3λ
2
p +

∞∑
p=⌈ t

2 ⌉

c4γ
2
p(p+ 1)2ς .

(42)

Recalling the definition λp = λ0

(p+1)v , we have

∞∑
p=⌈ t

2 ⌉

c1λp

p+ 1
≤ c1λ0

∫ ∞

⌈ t
2 ⌉

1

x1+v
dx ≤ c1λ02

v

vtv
. (43)

Following an argument similar to that of (43), we can derive
that the following inequalities always hold:

∞∑
p=⌈ t

2 ⌉

c2
λp(p+ 1)2

≤ c2
λ0

∫ ∞

⌈ t
2 ⌉

1

x2−v
dx ≤ c22

1−v

(1− v)λ0t1−v
,

∞∑
p=⌈ t

2 ⌉

c3λ
2
p ≤ c3λ

2
0

∫ ∞

⌈ t
2 ⌉

1

x2v
dx ≤ c3λ

2
02

2v−1

(2v − 1)t2v−1
,

∞∑
p=⌈ t

2 ⌉

c4γ
2
p(p+ 1)2ς ≤ c4γ

2
02

2u−2ς−1

(2u− 2ς − 1)t2u−2ς−1
,

(44)
where we have used

∑∞
p=⌈ t

2 ⌉
γ2
p(p+1)2ς ≤ γ2

0

∫∞
⌈ t
2 ⌉

1
x2u−2ς dx

and maxi∈[m]{ςi}+ 1
2 < u in the last inequality.

Substituting (43)-(44) into (42), we have
t∑

p=⌈ t
2 ⌉

∆p ≤
∞∑

p=⌈ t
2 ⌉

∆p ≤ c1λ02
v

vtv
+

c22
1−v

(1− v)λ0t1−v

+
c3λ

2
02

2v−1

(2v − 1)t2v−1
+

c4γ
2
02

2u−2ς−1

(2u− 2ς − 1)t2u−2ς−1
,

(45)

where the positive constants c1, c2, c3, and c4 are given
in (37), (38), (39), and (40), respectively.

Based on the result in (45), we proceed to characterize the
first term on the right hand side of (36). To this end, we first

characterize the term e
−µ

8

∑t

q=⌈ t
2
⌉ λq

. By using the inequality
(t+1)v ≤ 3(t−1)v valid for all t ≥ 2 and the fact t−⌈ t

2⌉ =
⌊ t
2⌋, we can obtain
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t∑
q=⌈ t

2 ⌉

λq ≥
∫ t

⌈ t
2 ⌉

λ0

(x+ 1)v
dx =

λ0

1− v
(x+ 1)1−v

∣∣∣t
⌈ t
2 ⌉

≥ λ0

(1− v)2
× ξ−v ×

⌊
t

2

⌋
≥ λ0(t− 1)1−v

6(1− v)2
, (46)

with ξ ∈
(⌈

t
2

⌉
+ 1, t+ 1

)
. By combining the relations e−x <

1
x valid for all x > 0, (t − 1)v−1 ≤ 21−vtv−1 valid for all
t ≥ 2, and the inequality (46), we have

e
−µ

8

∑t

q=⌈ t
2
⌉ λq

<
48(1− v)221−vtv−1

µλ0
, (47)

for all t ≥ 2. Moreover, when we consider the case t = 1
(i.e., q = 1), the relationship e−

µ
8

∑1
q=1 λq < 1 always holds.

Combining e−
µ
8

∑1
q=1 λq < 1 and (47), we obtain the following

inequality for all t ≥ 1:

e
−µ

8

∑t

q=⌈ t
2
⌉ λq

<
c5
t1−v

, (48)

where c5 is given by c5 = max{1, 48(1−v)221−v

µλ0
}.

Substituting (48) into the first term on the right hand side
of (36) yields

⌊ t
2 ⌋∑

p=0

∆pe
−µ

8

∑t

q=⌈ t
2
⌉ λq

<

(
∆0 +

∞∑
p=1

∆p

)
c5
t1−v

. (49)

By using the relationship ∆0 ≤ c1λ0 + c2
λ0

+ c3λ
2
0 + c4γ

2
0

derived from (41) and the upper bound obtained in (45), we
can rewrite (49) as

⌊ t
2 ⌋∑

p=0

∆pe
−µ

8

∑t

q=⌈ t
2
⌉ λq

<
c6
t1−v

, (50)

where the positive constant c6 is given by c6 = c5[c1λ0+
c2
λ0

+

c3λ
2
0 + c4γ

2
0 +

c1λ02
v

v + c22
1−v

(1−v)λ0
+

c3λ
2
02

2v−1

(2v−1) +
c4γ

2
02

2u−2ς−1

(2u−2ς−1) ].

By substituting (45) and (50) into (36), we have
t∑

p=1

∆p−1e
−µ

8

∑t
q=p λq +∆t

≤ c1λ02
v

vtv
+

c22
1−v

(1− v)λ0t1−v
+

c3λ
2
02

2v−1

(2v − 1)t2v−1

+
c4γ

2
02

2u−2ς−1

(2u− 2ς − 1)t2u−2ς−1
+

c6
t1−v

.

(51)

We further incorporate (51) into (35) to arrive at

E[∥θ̃t+1∥2]≤e−
1
8µ

∑t
p=0 λpE[∥θ̃0∥2]+

c1λ02
v

vtv
+

c22
1−v

(1− v)λ0t1−v

+
c3λ

2
02

2v−1

(2v − 1)t2v−1
+

c4γ
2
02

2u−2ς−1

(2u− 2ς − 1)t2u−2ς−1
+

c6
t1−v

. (52)

Using the relation (t+1)v ≤ 2tv valid for all t > 0, we have
t∑

p=0

λp ≥
∫ t

0

λ0

(x+ 1)v
dx >

λ0t

(1− v)2(t+ 1)v
≥ λ0t

1−v

2(1− v)2
,

which further leads to

e−
µ
8

∑t
p=0 λp <

1
µ
8

∑t
p=0 λp

<
16(1− v)2

µλ0t1−v
. (53)

Incorporating (53) into (52), we arrive at

E[∥θ̃t+1∥2] ≤
16(1− v)2E[∥θ̃0∥2]

µλ0t1−v
+
c1λ02

v

vtv
+

c22
1−v

(1− v)λ0t1−v

+
c3λ

2
02

2v−1

(2v − 1)t2v−1
+

c4γ
2
02

2u−2ς−1

(2u− 2ς − 1)t2u−2ς−1
+

c6
t1−v

, (54)

which implies (9) in Theorem 1 since min{1−v, v, 2v−1, 2u−
2ς − 1} = min{1− v, 2u− 2ς − 1} always holds.

C. Proof of Theorem 2
The proof is divided into three steps: in Step 1), we simplify

the result in Lemma 5 to obtain (59); in Step 2), we estimate
an upper bound on the item on the right hand side of (59) and
obtain (70); in Step 3), we characterize (70) to arrive at (71).

1) Given γt−s ≤ 1
−3δm

, λt−s ≤ −δ2γ0

2(L2+κ2+D2) , and v >
1+2u

3 in the statement of Theorem 2, the sum of the following
three terms in (27) is negative, whose proof is similar to that
of (28) and thus is omitted here.

2γt−sE[θ̃
T

t−s(W ⊗ In)θ̃t−s] + 3γ2
t−sE[∥(W ⊗ In)θ̃t−s∥2]

+
λt−s

ηt−s
2(L2 + κ2 +D2)E[∥θ̌t−s∥2] ≤ 0. (55)

Substituting the inequality (55) into (27) and further sum-
ming both sides of (27) from s = 0 to s = t, we obtain

t∑
s=0

E[∥θ̃t+1−s∥] ≤ −2m
t∑

s=0

λt−sE[Ft+1(θ
i
t−s)− Ft+1(θ

∗
t+1)]

+
t∑

s=0

(
1 +

λt−s

(s+ 1)r
+

λt−s

(t− s+ 1)r

)
E[∥θ̃t−s∥2]

+ 3m(σ+)2
t∑

s=0

γ2
t−s(t− s+ 1)2ς +m

t∑
s=0

λt−s

(t− s+ 1)r

+ 8m(κ2+D2)
t∑

s=0

λt−s(s+ 1)r+1

(t+ 2)(t− s+ 1)

+ 4mκ2
t∑

s=0

λt−s(t− s+ 1)r

t+ 1
+ 2mκR

t∑
s=0

λt−s√
t+ 1

, (56)

where in the derivation we have used the definition ηs =
1

(s+1)r with r = 1−v
2 from the statement of Lemma 5.

We characterize the second term on the right hand side
of (56). To this end, we make the following decomposition:
t∑

s=0

E[∥θ̃t+1−s∥2]=
t∑

s=0

E[∥θ̃t−s∥2]+E[∥θ̃t+1∥2]− E[∥θ̃0∥2].

(57)
By using (57), we have

t∑
s=0

(
1 +

λt−s

(s+ 1)r
+

λt−s

(t+ 1− s)r

)
E[∥θ̃t−s∥2]

−
t∑

s=0

E[∥θ̃t+1−s∥2]

≤
t∑

s=1

(
λt−s

(s+ 1)r
+

λt−s

(t+ 1− s)r

)
E[∥θ̃t+1−s∥2]

− E[∥θ̃t+1∥2] +
(
1 +

λ0

(t+ 1)r
+ λ0

)
E[∥θ̃0∥2],

(58)
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where we have used the relation
∑t

s=0 ηt−s =
∑t

s=1 ηt+1−s+
η0 valid for any sequence {ηp}, p ∈ N in the last inequality.

Furthermore, since θit is restricted in a compact set Θ, we
have E[∥θp−θ∗

t+1∥2] ≤ mR2 valid for all p ≥ 0. By using the
relationship E[Ft+1(θ

i
t−s) − Ft+1(θ

∗
t+1)] ≥ E[Ft+1(θ

i
t+1) −

Ft+1(θ
∗
t+1)], we can substitute (58) into (56) and omit the

negative term −E[∥θ̃t+1∥2] to obtain

2
t∑

s=0

λt−sE[Ft+1(θ
i
t+1)− Ft+1(θ

∗
t+1)] ≤ ∆t, (59)

where

∆t =
t∑

s=1

(
λt−s

(s+ 1)r
+

λt−s

(t+ 1− s)r

)
R2

+

(
1 +

λ0

(t+ 1)r
+ λ0

)
R2 + 3(σ+)2

t∑
s=0

γ2
t−s(t− s+ 1)2ς

+ 8(κ2 +D2)
t∑

s=0

λt−s(s+ 1)r+1

(t+ 2)(t− s+ 1)
+

t∑
s=0

λt−s

(t+ 1− s)r

+ 4κ2
t∑

s=0

λt−s(t− s+ 1)r

t+ 1
+ 2κR

t∑
s=0

λt−s√
t+ 1

. (60)

2) Using the relation
∑t

s=0 λt−s =
∑t

s=0 λs, the first term
on the left hand side of (59) satisfies

2
t∑

s=0

λt−s ≥ 2

∫ t+1

0

λ0

(x+ 1)v
dx =

2λ0((t+ 2)1−v − 1)

1− v
.

(61)
We proceed with the calculation of the upper bound on ∆t.
(a) The rearrangement inequality states

x1yn + · · ·+ xny1 ≤ x1yσ(1) + · · ·+ xnyσ(n)

≤ x1y1 + · · ·+ xnyn,

for all real numbers satisfying x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤
yn and for all permutations yσ(1), · · · , yσ(1) of y1, · · · , yn.

Therefore, for two decreasing sequences λs−1 and 1
(s+1)r

with s = 1, · · · , t, we have
t∑

s=1

λt−s

(s+ 1)r
=

t∑
s=1

λs−1

(s+ 1)r
≤

t∑
s=1

2λs

(s+ 1)r

≤
∫ t+1

1

2λ0

xr+v
dx ≤ 2λ0

1− r − v
((t+ 1)1−r−v − 1).

(62)

(b) Given the fact
∑t

s=1
λt−s

(t−s+1)r=
∑t−1

s=0
λs

(s+1)r , we obtain

t∑
s=1

λt−s

(t− s+ 1)r
=

t−1∑
s=0

λs

(s+ 1)r
≤

t∑
s=0

λs

(s+ 1)r

≤ λ0 +

∫ t+1

1

λ0

xr+v
dx ≤ λ0

1− r − v
(t+ 1)1−r−v.

(63)

(c) By using Assumption 4 with u > ς + 1
2 , we have

t∑
s=0

γ2
t−s(t− s+ 1)2ς =

t∑
s=0

γ2
s (s+ 1)2ς

≤ γ2
0 +

∫ ∞

1

γ2
0

x2u−2ς
dx =

γ2
0(2u− 2ς)

2u− 2ς − 1
.

(64)

(d) Given λt =
λ0

(t+1)v with v ∈ ( 12 ), we have

t∑
s=0

λt−s(s+ 1)r+1

(t+ 2)(t− s+ 1)

=
λ0

t+ 2

t∑
s=0

(s+ 1)r+1

(t− s+ 1)1+v

=
λ0

t+ 2

(
t−1∑
s=0

(s+ 1)r+1

(t− s+ 1)1+v
+ (t+ 1)r+1

)
,

(65)

which can be further simplified by using the following in-
equality:

t−1∑
s=0

(s+ 1)r+1

(t− s+ 1)1+v
≤
∫ t

0

(x+ 1)r+1

(t− x+ 1)1+v
dx

=
1

v

∫ t

0

(x+ 1)r+1d(t− x+ 1)−v

=
1

v
((t+ 1)r+1 − (t+ 1)−v)

− 1

v
(1 + r)

∫ t

0

(t− x+ 1)−v(x+ 1)rdx

≤ 1

v
((t+ 1)r+1 − (t+ 1)−v).

(66)

We substitute (66) into (65) to obtain
t∑

s=0

λt−s(s+ 1)r+1

(t+ 2)(t− s+ 1)
≤ λ0

(
1

v
+ 1

)
(t+ 1)r. (67)

(e) Using the relation
∑t

s=0 λt−s(t−s+1)r =
∑t+1

s=1
1

sv−r ,
we have

t∑
s=0

λt−s(t− s+ 1)r

t+ 1
=

1

t+ 1

t+1∑
s=1

1

sv−r

≤ 1

t+ 1

∫ t+1

0

1

xv−r
dx ≤ 1

(1 + r − v)(t+ 1)v−r
. (68)

(f) Following an argument similar to that of (68), we have
t∑

s=0

λt−s√
t+ 1

=
1√
t+ 1

t+1∑
s=1

1

sv
≤ 1

(1− v)(t+ 1)v−
1
2

. (69)

Incorporating (61)-(69) into (60) and further multiplying
both sides of (59) by 1−v

4λ0((t+2)1−v−1) yield

E
[
Ft+1(θ

i
t+1)− Ft+1(θ

∗
t+1)

]
≤ c1(1− v)

4λ0((t+ 2)1−v − 1)
+

R2(1− v)

4(t+ 1)r((t+ 2)1−v − 1)

+
(3R2 + 1)(1− v)

4(1− r − v)(t+ 1)r+v−1((t+ 2)1−v − 1)

+
2(κ2 +D2)(1 + v)(1− v)

v(t+ 1)−r((t+ 2)1−v − 1)

+
κR

2λ0(t+ 1)v−
1
2 ((t+ 2)1−v − 1)

+
κ2(1− v)

λ0(1 + r − v)(t+ 1)v−r((t+ 2)1−v − 1)
,

(70)

with c1 = (1 + λ0)R
2 +

3(σ+)2γ2
0(2u−2ς)

2u−2ς−1 .
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3) Using that the relation (t+2)1−v(t+1)r ≥ 21−v(t+1)r

implies (t+ 1)r ≤ 1
21−v (t+ 2)1−v(t+ 1)r, we obtain

(t+ 1)r((t+ 2)1−v − 1) ≥
(
1− 1

21−v

)
(t+ 1)1−v+r.

By using a similar argument for each item on the right hand
side of (70) and substituting r = 1−v

2 given in the statement
of Lemma 5 into (70), we can arrive at

E
[
Ft+1(θ

i
t+1)− Ft+1(θ

∗
t+1)

]
≤ c2

(t+ 1)1−v
+

c3

(t+ 1)
3(1−v)

2

+
c4 + c5

(t+ 1)
1−v
2

+
c6

(t+ 1)
1
2

+
c7

(t+ 1)
1+v
2

= O((t+ 1)−β),

(71)

for any t ≥ 0, where β is given by β = 1−v
2 and the constants

c2 to c6 are given by c2 = c1(1−v)21−v

4λ0(21−v−1) , c3 = R2(1−v)21−v

4(21−v−1) ,

c4 = (3R2+1)(1−v)21−v

4(1−r−v)(21−v−1) , c5 = 2(κ2+D2)(1−v2)21−v

v(21−v−1) , c6 =
κR21−v

2λ0(21−v−1) , and c7 = κ2(1−v)21−v

λ0(1+r−v)(21−v−1) , respectively. The
inequality (71) implies (13) in Theorem 2.
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