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Abstract—Distributed online learning is gaining increased
traction due to its unique ability to process large-scale datasets
and streaming data. To address the growing public awareness
and concern on privacy protection, plenty of algorithms have
been proposed to enable differential privacy in distributed
online optimization and learning. However, these algorithms often
face the dilemma of trading learning accuracy for privacy. By
exploiting the unique characteristics of online learning, this paper
proposes an approach that tackles the dilemma and ensures
both differential privacy and learning accuracy in distributed
online learning. More specifically, while ensuring a diminishing
expected instantaneous regret, the approach can simultaneously
ensure a finite cumulative privacy budget, even in the infinite
time horizon. To cater for the fully distributed setting, we
adopt the local differential-privacy framework, which avoids the
reliance on a trusted data curator that is required in the classic
“centralized” (global) differential-privacy framework. To the best
of our knowledge, this is the first algorithm that successfully
ensures both rigorous local differential privacy and learning
accuracy. The effectiveness of the proposed algorithm is evaluated
using machine learning tasks, including logistic regression on the
the “mushrooms” datasets and CNN-based image classification
on the “MNIST” and “CIFAR-10" datasets.

Index Terms—Distributed online optimization and learning,
local differential privacy, instantaneous regret.

I. INTRODUCTION

The modern data landscape, fueled by advances in web
technologies, social media, and sensory devices, calls for
evolved machine learning methods to handle the “big data”
challenge [2]. Due to its unique ability to handle streaming
data, online learning has emerged as an attractive paradigm to
address this challenge [3]. In online learning, data are accessed
and processed in a sequential manner, thereby obviating the
requirement to process the entire dataset at once. This feature
makes online learning algorithms particularly appealing for
large-scale datasets and dynamic scenarios, where data are
continually generated, ranging from financial markets, social
media streams, to real-time sensor interpretation.

Traditional online learning algorithms (e.g., [4]-[6]) require
transmitting all data streams to a central location for process-
ing, leading to potential security risks like information leakage
or model compromises in the event of a server attack [7]-
[9]. Distributed online learning algorithms mitigate these risks
by dispersing data among multiple networked learners, each
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updating its model with local streaming data, and then sharing
updates across the network for parameter synchronization (see,
e.g., [10]-[15]). While these algorithms eliminate the need for
centralized data storage and associated security risks, informa-
tion leakage during parameter transmission remains a concern,
particularly via unencrypted communication channels. In fact,
using these shared parameters, not only can an adversary
infer sensitive attributes of the original data [8], but it can
also precisely reversely infer raw training data (pixel-wise
accurate for images [9]). To mitigate privacy breaches in
distributed online learning, one natural approach is to patch an
online learning algorithm with existing privacy mechanisms.
For example, partially homomorphic encryption has been
employed in both our prior results as well as others’ to ensure
privacy in distributed optimization [16]-[18]. However, such
approaches suffer from heavy communication and computation
overheads. Alternatively, time or spatially correlated noise-
based approaches preserve privacy while maintaining accuracy
by canceling out injected noises [19]-[23]. However, such
approaches require each learner to have at least one neighbor
not sharing information with potential adversaries, a condition
that is difficult to guarantee in many multi-agent networks.

A. Related Literature

As differential privacy (DP) is gaining increased traction due
to its mathematical rigor, implementation simplicity, and post-
processing immunity [24], [25], plenty of results have been
proposed to enable differential privacy in distributed optimiza-
tion/learning [26]-[37]. However, most existing differential-
privacy results for distributed optimization/learning explicitly
rely on a trusted curator to aggregate and publish data in
a centralized manner [26]-[29]. Recently, some differential-
privacy solutions have been proposed for fully distributed
optimization algorithms, including [30]-[35] as well as our
own prior work [36]-[38]. However, since these results still
use the classical centralized differential-privacy framework!',
they do not explicitly address protection against information
inference by participating learners [38]. To ensure privacy
in the scenario where a learner does not trust anyone else
(including other participating learners) and aims to protect

By centralized differential privacy, we mean the traditional differential-
privacy framework, where a data aggregator/curator is needed to collect data
from all learners and inject differential-privacy noises. Note that although
results such as [31], [33]-[38] do not explicitly assume the existence of a data
aggregator/curator, they still require participating learners to trust each other
to cooperatively determine the amount of noises needed to achieve a certain
level of privacy protection (privacy budget). Hence, they are also somewhat
“centralized,” and hence, different from the local model of differential privacy
in this paper.



against an adversary that can observe every message shared in
the network, we have to use local differential privacy (LDP),
which obviates the need for a data curator/aggregator that
is required in the traditional centralized differential-privacy
framework to collect data and inject noises [39]-[41].

Unfortunately, the benefit of LDP comes at a great cost in
optimization/learning accuracy. To the best of our knowledge,
all existing differential-privacy solutions for distributed online
learning have to either sacrifice learning accuracy [42]-[44] or
allow the cumulative privacy budget to grow to infinity with
time, implying diminishing privacy protection as time tends
to infinity [45]-[53]. It is worth noting that our own prior
work [36], [37] as well as others’ [35], [54] have managed to
retain provable convergence accuracy and differential privacy
in distributed offline optimization. However, they still use the
classical centralized DP framework, and it is unclear if the
offline learning approaches can be extended to the online
learning scenario, where data arrive sequentially.

B. Contributions

In this paper, we propose a locally differentially private
distributed online learning algorithm that efficiently circum-
vents the tradeoff between privacy and learning accuracy.
Our key idea is to exploit both the unique data patterns in
online learning and a decaying interaction strength which
enables the injection of DP noises with increasing variances
(in contrast to decreasing DP-noise variances commonly used
in the literature). The main contributions are summarized as
follows:

o We demonstrate that for both strongly convex and gen-
eral convex objective functions, our proposed locally
differentially private distributed online learning algorithm
ensures that the expected instantaneous regret decreases
to zero, even in the presence of increasing DP-noise
variances. Moreover, in the strongly convex scenario,
we further prove that the expected tracking error (the
deviation between the online algorithm’s output and the
optimal solution) also converges to zero. To the best of
our knowledge, no such results have been reported before.

« In addition to ensuring provable convergence, we prove
that our algorithm can simultaneously ensure rigorous
LDP, even in the infinite time horizon. To our knowledge,
this is the first time that both goals of LDP and provable
convergence are achieved simultaneously in distributed
online learning. This is in sharp contrast to existing
results on differentially private distributed online learning
in [45]-[53], where the cumulative privacy budget grows
to infinity when time tends to infinity.

e Moreover, our LDP framework allows individual learn-
ers to choose heterogeneous privacy budgets in a fully
distributed manner, making individual learners free to
choose desired privacy strengths depending on practical
needs.

« Besides providing a theoretic approach to selecting step-
sizes based on global parameters such as graph Laplacian
and the global Lipschitz constant (which is common
in most existing distributed online optimization algo-

rithms [10]-[15]), we also provide an approach for in-
dividual learners to select stepsizes independently of any
global parameters, which is more amenable to distributed
implementations.

e We evaluated the performance of our approach using
several benchmark machine learning datasets, including
the “mushrooms” dataset for logistic regression and the
“MNIST” and “CIFAR-10” datasets for CNN-based im-
age classification. The results corroborate the effective-
ness of our approach. Notably, compared with exist-
ing differentially private distributed learning/optimization
methods in [30], [45], [55], our algorithm demonstrates
higher training and test accuracies.

The organization of the paper is as follows. Sec. II in-
troduces the problem formulation and definitions for LDP.
Sec. III presents a locally differentially private distributed
online learning algorithm and discusses its computational
complexity. Sec. IV analyzes the learning accuracy of the
proposed algorithm. Sec. V provides an approach to selecting
stepsizes independently of any global parameters. Sec. VI
establishes the LDP guarantees. Sec. VII presents experimental
results on benchmark datasets. Sec. VIII concludes the paper.

Notations: We use R™ to denote the n-dimensional Eu-
clidean space. We also use N and N to denote the natural
number and the positive natural number, respectively. I,, repre-
sents the identity matrix of dimension n and 1,, represents the
n-dimensional column vector with all entries equal to 1. We
use ||-|| and ||-||1 to represent the Euclidean norm and /*-norm
of a vector, respectively. The Kronecker product is denoted by
®. The stacked column vector of vectors or scalars 64, --- ,0,,
is denoted by col{f1, - - ,0,,}. The transpose of a matrix A is
written as AT, The notation [a] refers to the smallest integer
no less than a, and | a| represents the largest integer no greater
than a. We use [m] to denote the set {1,2,--- ,m}. For any
6 € R", we use Prog(#) = argming, .|| — 0’| to represent
the Euclidean projection onto a set © C R™. We also use
Lap(p) to denote Laplace distribution with parameter ¢ > 0,
featuring a probability density function p,(z) £ 2%36 &
Lap(o) has a mean of zero and a variance of 20%.

II. PROBLEM STATEMENT

A. Distributed online learning

In distributed online learning, each Learner ¢, ¢ € [m] must
perform learning on streaming data that arrive sequentially.
More specifically, at time ¢, Learner ¢ acquires a data point
al, which is independently and identically sampled from an
unknown distribution over a sample space 2;. Using model
parameter 6! learned from data prior to time ¢, which is usually
constrained in a convex subset © of R™, Learner 7 predicts a
label b for the data 2 acquired at time ¢. When the true label
bi € R is revealed, Learner i experiences a loss [(6%, £1), where
&l =(al, bl) resides in P; =€; x R. The loss prompts Learner i
to adjust its model parameter ;. The goal of distributed online
learning is to let the m learners cooperatively find a common
optimal parameter, based on sequentially acquired streaming
data, for the following stochastic optimization problem:



mingee  F(0) := %Zfi(eﬁ (1)

where f;(0) =E¢ip, [1(0,£")] satisfies the following assump-
tion:

Assumption 1. (i) © is a convex and compact subset of R™
with nonempty interior; (ii) for all i € [m] and x,y € ©, there
exists some p > 0 such that f;(y) > fi(z)+Vfi(z)T (y—z)+
Elle —y||* holds; and (iii) there exists some positive constant
D such that |V f;(0)|| < D holds for all 6 € ©.

We describe the communication pattern among learners us-
ing an m x m matrix W. If Learners 4 and j can communicate
with each other, then w;; is positive, and w;; = 0 otherwise.
The set of learners that can directly interact with Learner ¢ is
called the neighboring set of Learner 7 and is represented as
N;. We let wy; = — ZjeM w;;. The matrix W satisfies the
following assumption:

Assumption 2. The matrix W? satisfies 17W = 07 and
W1 = 0. The eigenvalues of W satisfy (after arranged in an
increasing order) —2 < §p, < --- < 0y < 67 = 0.

To solve for (1) with f; equal to the expected value of
the loss function I(6,£%), we have to know the distribution
P; of £°. However, in practice, the distribution P; is usually
unknown, which makes it impossible to directly compute
Eeip, [1(0,€)]. To circumvent this problem, a common
approach is reformulating (1) as the following Empirical Risk
Minimization (ERM) problem:

m t
. 1 i i 1 i
mingeo Fi(0) £ — > fi(0), fi(0) = —— D 1(0.&).
m = t+1 P
2)
According to the law of large numbers, we have

limy_,oo F1(0) = F(0), implying that the solution 65 to
the ERM problem (2) will gradually approach the solution
0* to the problem (1) as time ¢ tends to infinity (detailed
proofs can be found in Lemma 2 in [57] and Section 5.1.2
in [58]). This is an intrinsic property of our ERM problem
setting. It is worth noting that different from the conventional
ERM problem, where all data are accumulated prior to per-
forming training, here we have to perform online training
from experience as more data are observed. In addition, since
&' ~ P; are randomly streaming data, the gradients VI(6, &%)
are stochastic, which we assume to satisfy the following
standard assumption [54]:

Assumption 3. The random data points {£'} are indepen-
dent of each other. In addition, (i) E[V1(0,£%)] = Vfi(0);
(i) E[|VI(0,£) — V£(0)|?] < &% and (iii) ||Vi(z,&) —
Vi(y, &)l < Lllz — yl| for any =,y € ©.

Furthermore, given the streaming nature of data, the ob-
jective function F3(6) in (2) varies with time, which further
leads to time-varying optimal solutions #;. Hence, to evaluate
the quality of the parameters learned by learners through a
distributed online learning algorithm at each time instant, we

20ur matrix I + eW corresponds to the Perron matrix Pe = I — eL used
in [56], where L is the Laplacian matrix.

employ metrics of the expected tracking error E[||0: — 0;||?]
and the expected instantaneous regret E[F;(0%) — F,(07)].

Remark 1. The expected tracking error and the expected
instantaneous regret are commonly used metrics in existing
literature on online optimization and learning [59]-[62]. They
capture the real-time performance of an online algorithm, and,
hence, are well-suited in the online learning setting where data
arrive sequentially [63].

B. Local differential privacy

Local differential privacy is a local (distributed) model
of differential privacy for scenarios where no trusted data
aggregator (curator) exists to aggregate data and execute a
privacy mechanism. It is contrasted with the classic centralized
differential privacy, where a trusted aggregator gathers all raw
data and then executes a differentially private data publishing
mechanism. In distributed learning and optimization, each
learner maintains a local dataset and shares learned parameters
with neighbors to collaboratively optimize these parameters.
This information exchange has the risk of information leakage
as malicious external attackers or curious neighbors might
try to recover raw training data from shared parameters [7],
[8]. To protect the privacy of all learners, we adopt LDP to
address the most severe scenario: all communication channels
can be compromised by malicious attackers and no learners
are trustworthy. Consequently, not only does our LDP-based
approach deters external adversaries from extracting raw data
through shared information, but it also shields against neigh-
boring curious learners within the network.

To facilitate privacy analysis, we need the definition of
adjacency of local datasets [45], [50], [54]:

Definition 1. (Adjacency) For any t € Nt and any learner
i € [m], given two local datasets D} = {&},--- &L, -+ &}
and ’D};/ ={&,. - ,5};/, o &8}, Dt is said to be adjacent to
Di' if there exists a time instant k € [1,t] such that €& # ¢’
while &), = §]i7/ for all p € [1,t] and p # k.

It can be seen that for any given time ¢, D} is adjacent to D}f/
if and only if D! and Dgl differ in a single entry while all other
entries are the same. Definition 1 also implies that for any
given time ¢, two adjacent datasets D; = D}U- - - DiU- - -UD"
and D} = DY U-.- DI U-..UD differ in m entries. We
use Adj(D;, Dz/) to denote the adjacent relationship between
two local datasets D} and DZQ/.

Remark 2. It is worth noting that our definition of adja-
cency corresponds to event-level LDP in the literature [25].
It allows m entries in the global datasets of all learners to
be different, and is more stringent than most existing online
results using the traditional centralized version of DP (e.g.,
[46]-[49], [51]-[53]), where at each time instant ¢, only one
agent’s one entry is allowed to be different. It is also worth
noting that allowing one learner to have all data entries to be
different (called user-level DP [25]) has been proven infeasible
in distributed optimization/learning under the local model of
DP [64]-[66].



Algorithm 1 Locally differentially private distributed online
learning for i € [m]

1: Input: Random initialization 96 € O; \ = (tj:io)v with
Ao > 0 and v € (3,1); decaying sequence y; = ﬁ
with 79 > 0 and u € (3, 1).

2. fort=0,1,---, 7T —1do

3:  Use all available data up to time ¢, i.e., £, € Di, k €

[0,t] and the current parameter §} to compute:

4 di0)) = 77 Yopeo VI, EL)-

5. Add DP noises ¢} to 6%, and then send the obscured
value yi £ 0} + ¢} to neighbors j € N;.

6:  Receive y/ from neighbors j € N;.

T Oy = 0+ 3 en vy (0] — 0) — Mt (6)):

8: 0, =Proe(b;,,).

9: end for

Given a distributed online learning problem (2), we denote
the implementation of an online algorithm by Learner i € [m]
as A;. Now we are in a position to present the definition of
LDP [25]:

Definition 2. (Local differential privacy). Let A;(D*,07?)
denote the output of Learner i under a distributed learning al-
gorithm with its local dataset D' and all received information
from neighbors 0°. Then, Learner i’s implementation A; is €;
locally differentially private if the following inequality always
holds for any two adjacent datasets D", D'

PlA;(D,07%) € O] < e“P[A;(DY,607%) € O], (3)
where O represents the set of all possible observations.

The parameter ¢; measures the similarity (indistinguisha-
bility) of Learner ¢’s output distributions under two adjacent
datasets. A smaller value of ¢; indicates greater indistinguisha-
bility between the outputs for two adjacent datasets, implying
a higher level of privacy protection.

In our definition of LDP, for Learner i, all received informa-
tion from neighbors, i.e., 0%, is regarded as external informa-
tion and beyond its control. This is different from the classic
centralized DP definition used in existing differentially private
distributed optimization/learning approaches [31], [33]-[38],
which, in the absence of a data aggregator/curator, requires
participating learners to trust each other and cooperatively de-
termine the amount of noises needed to achieve a certain level
of privacy protection (privacy budget). In fact, when no data
aggregator/curator exists, such a centralized DP framework
even allows agents to cooperatively decide (like a centralized
data curator) how to mask shared information [38].

III. LOCALLY DIFFERENTIALLY PRIVATE DISTRIBUTED
ONLINE LEARNING ALGORITHM
A. Algorithm design

Our locally differentially private distributed online learning
algorithm to solve problem (2) is summarized in Algorithm 1,
in which DP noises ¢} € R" satisfy the following assumption:

Assumption 4. For every learner i € [m] and t € N, each
element of the DP-noise vector (} follows Laplace distribution

Lap(o}) with gt = \%(t—i— 1)S", where o is a positive constant
and the increasing rate of noise variances s* € (0, %) satisfies

. 1
max{s'}+ - <u<v<l, “)
with w and v the decaying rates of the decaying sequence
and the stepsize Ay in Algorithm 1, respectively.

Instead of using DP noises with decaying variances, we
employ DP noises with increasing variances in Algorithm 1.
This is fundamentally different from existing results on dif-
ferentially private distributed optimization, such as [30]-[32],
[34], [45]-[52], and is key for us to ensure both accurate
convergence and strong differential privacy with a finite cumu-
lative privacy budget even in the infinite time horizon. In fact,
most existing results on differentially private distributed op-
timization have to either sacrifice accurate convergence [42]-
[44] or allow the cumulative privacy budget to grow to infinity
(meaning diminishing privacy protection as iteration tends to
infinity) [45]-[53], and, to our knowledge, our approach is
the first to achieve both accurate convergence and differential
privacy in the infinite time horizon for online learning.

One key reason for our algorithm to ensure robustness to DP
noises is using a decaying sequence y;, which can effectively
suppress the influence of DP noises with increasing variances,
and, hence, ensuring accurate convergence. This approach is
inspired by our recent result on distributed offline optimiza-
tion [36]. Nevertheless, it is worth noting that compared with
the result in [36], where the objective function is predeter-
mined and the same for all iterations, the objective function
here changes over iterations due to sequentially arriving data.
Furthermore, unlike [36] where the optimal solutions can be
any point in R™, here we consider optimization problems
where the optimal solutions have to be restricted in a convex
set ©. This constraint makes convergence analysis much more
challenging because the nonlinearity induced by projection
(necessary to address set constraints) poses challenges to both
optimality analysis and consensus characterization.

Moreover, we propose a novel gradient computation strategy
that exploits historical data. This strategy improves learning
accuracy and reduces the sensitivity of our algorithm, which
is key to ensuring a finite cumulative privacy budget even in
the infinite time horizon. This is in sharp contrast to existing
DP solutions for distributed online optimization/learning [45]-
[53], whose cumulative privacy budgets explode to infinity as
the number of iterations tends to infinity, implying diminishing
privacy protection in the infinite time horizon. In addition,
as the data point at any single iteration ¢ might be lost or
corrupted, our strategy of using all available data up to time ¢
also enhances the robustness of the learning algorithm. The
advantage of this strategy is clearly demonstrated later in
experimental results (see Fig. 1-Fig. 3) and privacy analysis
(see Eq. (25)).

Remark 3. Note that all existing results on differentially
private distributed online optimization follow the approach
of patching DP noises with a given existing distributed opti-
mization/learning algorithm (e.g., [45]-[53]), which does not
fully exploit the flexibilities in DP design and optimization



algorithm design. In fact, almost all existing distributed opti-
mization algorithms (which are designed without considering
privacy) are not robust to DP noises (since directly incorporat-
ing DP noises into these optimization algorithms renders them
unable to guarantee convergence to the exact optimal solution).
Hence, a direct combination of these existing algorithms with
DP designs has to sacrifice either DP strength or convergence
accuracy. In contrast, by incorporating a judiciously designed
decaying factor v; to gradually attenuate the influence of
DP noises, we co-design the optimization algorithm and DP-
noise injection mechanism, which enables us to achieve both
differential privacy and accurate convergence.

Remark 4. A commonly used approach to enabling privacy
protection in distributed optimization/learning is to broadcast
0 + ¢} and make the consensus of optimization variables
0} unaffected by the decaying sequence ~y; [30]. Although
this approach reduces the amount of noises injected into the
algorithm, and, hence, will make convergence easier to happen,
its diminishing noise variance also jeopardizes the strength of
privacy protection, leading to an exploding cumulative privacy
budget (implying diminishing privacy protection as iteration
proceeds) under the stepsize strategy used in our paper.

B. Algorithm complexity discussion

In this subsection, we discuss the computational complexity
of our strategy that uses historical data in our Algorithm 1. It is
intuitive that using all data available at time ¢ can increase ex-
ecution time of the algorithm compared with traditional online
optimization/learning algorithms [10]-[15] that use only one
current data sample. However, here we show that the increased
computational complexity can be mitigated by exploiting the
characteristics of learning problems. More specifically, if the
loss function [(6,£%) is a polynomial function of @, we can
make sure that our strategy of using all historical data has the
same order of computational complexity as those only using
one data point at each time instant.

We illustrate the idea by using the Ridge regression prob-
lem [67]. In the Ridge regression problem, the loss func-
tion is a quadratic function of 6, ie., 1(6,&)) = (b} —
at )T (bt — alf) + ou]|0]|*. The gradient di(6;) at each time
tis given as dj(0}) = 7 S0 VI(6:, &) with VI(0, €)=
—2(ai)” (bl — alf) + 20,0. Hence, we have

di_,(0}) x t + VI(6;,&)

dy(07) = 5
J07) P 5)
Using the linear interpolation (two-point interpolation)
method, we can obtain di_,(0:) as follows:
i i i i 0;—0;_, i i 0;—0;_,
dy_1(6%) :dtq(etq)m + dt71(9t72)M'
(6)

In the preceding equality, di_;(6:_,) can be expressed as

di_o(0; o) x (t = 1)+ VIO 5,6 )

% I _
t—l( t—2) - t )

where the term d!_,(0i_,) has been calculated at time ¢ — 2
and VI(0!_,,& ;) can be computed at time .

(7

Therefore, by combining (5), (6), and (7), we can see that
the gradient d}(6}) = 15 1 _VI(6},&L) needed at time ¢
can be computed in a recursive manner. By simply storing
two gradients computed in the prior two time instants, we can
keep the computational complexity invariant with time.

Using a similar argument, we can show that when the loss
function is a polynomial function (like in Lasso and polyno-
mial regression) of 6 of order n, we can exploit the iterative
formulation in (5) and the Lagrange interpolation method to
control the computational complexity of the gradient to be
O(n+1).

It is worth noting that since every continuous function
can be approximated as closely as desired by a polynomial
function according to the Weierstrass approximation theo-
rem [68], the interpolation-based approach can be used in
other non-polynomial loss functions to mitigate the compu-
tational complexity of our gradient computation strategy. In
fact, the sigmoid and logarithmic loss functions in logistic
regression have been shown to be easily approximated by
polynomials [69]. Even the cross-entropy and focal losses in
neural networks have also been shown to be approximatable
efficiently by a series of weighted polynomial bases [70].

IV. TRACKING ACCURACY ANALYSIS

In this section, we systematically analyze the learning
accuracy of Algorithm 1 under both strongly convex and
general convex objective functions.

A. Tracking analysis with strongly convex objective functions
(i in Assumption 1 is positive)

We first analyze the time variation of the optimal parameter:

Lemma 1. Denote 0} as the optimal solution to the online
optimization problem (2) at time t. Under Assumption 1 with
w > 0 and Assumption 3, we have

Efll67, - 0717 < O ((t+1)7?%), (8)
which implies lim,_, o E[||0;,, — 07]]*] = 0.

Proof. Due to space limitations, we leave the proof to the
extended version available at [1]. O

Remark 5. Lemma 1 reveals a key property of our learning
problem (2): as learning progresses, the variation in optimal
parameters decreases with time at a rate of O((t+1)~2). This
decreasing rate is an intrinsic property of the problem setting
in (2). Specifically, the objective function is the average of
loss functions over a growing number of samples. As more
data points are acquired, any single data point’s impact on the
overall loss becomes progressively smaller. The cumulative
moving average acts as a form of memory, which makes the
learning process smoother and more stable.

Notably, only when the data distribution P; is time-
invariant, the optimal parameter to the problem (2) could
converge to a fixed constant. However, our result in Lemma 1
is applicable even when the data distribution P; is not time-
invariant, or in other words, the optimal parameter does not
have to converge to a constant value. For example, if the



optimal parameter follows the sequence 6; = 1,1 + %,1 +
24 %,---, it can be verified that the result in Lemma 1 still
applies, whereas the sequence never converges.

We now characterize the expected tracking error of Algo-
rithm 1 for strongly convex objective functions.

Theorem 1. Under Assumptions 1-4 with ;n > 0, if 0 <

Yo < —=—and 0 < A\g < _210;'2’; hold, the expected tracking
error of Algorlthm 1 satlsﬁes
E[[|6f4 — 07417 < O(t™7), ©)

for all t > 0, where the rate 3 satisfies § = min{l — v, 2u —
2¢ — 1} with ¢ £ min; e, {'}.

Proof. See Appendix B. O

Theorem 1 shows that even in the presence of time-
increasing DP-noise variances o} (¢* > 0), Algorithm 1 can
still track time-varying optimal parameters with time, with
the expected tracking error diminishing at a rate of O(t7).
This proves that Algorithm 1 is capable of preserving learning
accuracy even in the presence of large DP noises.

In the following corollary, we quantify the dynamic regret
of Algorithm 1, which measures accumulated losses [10] of
our algorithm in all 7" iterations:

Corollary 1. Under the conditions in the statement of
Theorem 1, the dynamic regret of Algorithm 1 satisfies

T T
S E[R@)] - Y EIR@)] <O (T,

t=1
for any i € [m].

(10)

Proof. According to the definition f;(0)=E[I(,£7)], we have

E [F(0))] — E[F,(67)]
LY ﬁzm,gg) — %Zl(ﬁf,ﬁi)l
m j=1 + k=0 * k=0

m

72 fi( 91

—o7l] <ot

50 = - S E [V 0 - )
j=1
< DE |l 2,
- (11)
with ¢y £ ¢;0i + (1 — q;)0; for any ¢; € (0,1). Here,
we have used the mean value theorem in the third equality,
Assumption 1-(iii) in the first inequality, and relationship (9)
in the last inequality.
By using (11) and the relation Zt a7 < ft 13 Ldx <
=T"'~* valid for any o € (0,1), we arrive at

ZIE Fy(0 ZE Fy(67)]

<0 (Tl‘f) + DE [|lo; - 05]]] < 0 (T'),

12)

where we have omitted the constant % in the first inequality
and O(1) in the last inequality. O

Corollary 1 proves that Algorithm 1 can achieve a sublinear
dynamic regret even under LDP constraints. This result is

consistent with the dynamic regret result in [10], which shows
that the dynamic regret is bounded by the path length of
an online optimization problem. In fact, under our ERM
formulation in (2), the path length can be quantitatively
bounded by E[||6;,, — 6;]]] < O((t + 1)~'), as established
in Lemma 1 (see Eq. (8)). Moreover, this upper bound has
been incorporated into our convergence result in Theorem 1
(see Eq. (38) for details). Therefore, we can derive a sublinear
dynamic regret in Corollary 1 based on Theorem 1.

B. Tracking analysis with convex objective functions (u in
Assumption 1 is nonnegative)

In this section, we examine the tracking performance of
Algorithm 1 for general convex objective functions.

Theorem 2. Under Assumptions 1-4 with u > 0, lf <

— 927
1+2u<’l}<1 0<’}/0 357”,and0<)\0_m

hold the expected instantaneous regret of Algorithm I satisfies

E [F(0;) — F.(67)] < O(™7), (13)
for all t > 0, where the rate (3 satisfies 3 = 15”.
Proof. See Appendix C. O

Theorem 2 presents the expected instantaneous regret of Al-
gorithm 1 when the objective functions are convex. However,
analyzing parameter tracking errors is challenging for convex
objective functions due to the possible existence of multiple
optimal solutions with identical gradients. In such cases, the
gradient’s change does not provide sufficient information to
establish an upper bound on the parameter tracking error.

V. EXTENSION: STEPSIZE SELECTION WITHOUT GLOBAL
PARAMETERS

In Theorem 1 and Theorem 2, the design of the stepsize
sequence A; and the decaying sequence 7, for Algorithm 1
requires knowledge of global parameters, such as the eigenval-
ues of the matrix W, the Lipschitz constant L, and the strongly
convex coefficient y of the objective function. Obtaining these
global parameters might be challenging for individual learners
in practical distributed implementations. Therefore, in this
section, we discuss the tracking performance of Algorithm
1 when the stepsize and decaying sequences are designed
without any knowledge of global parameters.

More specifically, we establish the following theorems for
strongly convex and convex objective functions, respectively.

Theorem 3. Under Assumptions 1-4 with p > 0, if 3 <
u < v < 1 holds, then for any positive constants \g and -,
the expected tracking error of Algorithm 1 satisfies

[l — O((t—to)™"),

Sor all t > to, where the rate 8 satisfies § = min{1 —v, 2u —
26 — 1} with ¢ 2 min;ep,){s"} and the positive constant t is
given by

1 2 L2 ﬁ
to = lrmax {(_Sémfyo>u _ 17 ((M—’—S))\O) _ 1}—‘ .
—d2170

Proof. Due to space limitations, we leave the proof to the
extended version available at [1]. O

Oral?] < (14)



Theorem 4. Under Assumptions 1-4 with p > 0, if 3 2 <
2““ < v < 1 holds, then for any positive constants A\ and
70, the expected instantaneous regret of Algorithm 1 satisfies

E [F,(6;) — Fi(67)] <O (t77), (15)

for all t > t{, where the rate § satisfies § = 1;”
positive constant t{, is given by

ty = {max {(—35,”70)% -1,

(2(L2+I€2+D2)A0>3U§“1 _1}—‘

—027%0
Proof. Due to space limitations, we leave the proof to the
extended version available at [1]. ]

and the

The compactness of the parameter set © in Algorithm 1
ensures that both the expected tracking error and the expected
instantaneous regret are bounded before time instant ¢y in
Theorem 3 (or ¢, in Theorem 4).

Remark 6. The convergence results in Theorems 1 and 2
need global information, such as the eigenvalues do and &,
of the matrix W, the Lipschitz constant L, and the strongly
convex coefficient u, to determine the values of Ay and .
To the contrary, the results in Theorems 3 and 4 hold for
any positive constants Ay and 7o, and, hence, are applicable
even when global information, such as the eigenvalues of the
matrix W, the Lipschitz constant L, and the strongly convex
coefficient u, are inaccessible.

Remark 7. The decaying sequence v; leads to a decaying
coupling strength. However, we prove in Theorems 1 through 4
that this decaying coupling strength is still sufficient to ensure
that all learners converge to the global optimal solution.
Of course, the decaying coupling strength will reduce the
convergence rate. We use the convergence result in Theorem 2
as an example to illustrate this tradeoff. It is clear that the
convergence rate O(t*kTu) in Theorem 2 decreases with an
increase in the decaying rate v of the stepsize )\;. Given the

condition 2 < 2% < v < 1 presented in the statement of

3
Theorem 2, we can see that an increase in the parameter u
(corresponding to a faster decaying sequence ;) corresponds
to an increase in the parameter v, resulting in a decreased

convergence rate O(t~ 2 ) from Theorem 2.

VI. LOCAL-DIFFERENTIAL-PRIVACY ANALYSIS

In this section, we prove that besides accurate convergence,
Algorithm 1 can simultaneously ensure rigorous ¢;-LDP for
each learner, with the cumulative privacy budget guaranteed to
be finite even when the number of iterations 7" tends to infinity.
To this end, we first provide a definition for the sensitivity of
Learner i’s implementation A; of Algorithm 1:

Definition 3. (Sensitivity) The sensitivity of Learner i’s
implementation A; at each time instant t is defined as

Aj = 14:(D}, 0;7) = Ai(Df 07, (16)

max
Adj(D§,D}’)

where D represents Learner i’s dataset and ;" represents
all messages received by Learner i at time instant t.

With the defined sensitivity, we have the following lemma:

Lemma 2. For any given T € NT or T = oo, if Learner
i injects to each of its transmitted messages at each time
t € {l,---,T} a noise vector (} consisting of n independent
Laplace noises with parameter o, then Learner i’s implemen-
tation A; is €; locally differentiable private with the cumulative
privacy budget from time t = 1 to t =T upper bounded by

T Al
Zt:1 E
Proof. Due to space limitations, we leave the proof to the
extended version available at [1]. O

For our privacy analysis, we also utilize the ensuing result:

Lemma 3. ([71]) Let {v;} denote a nonnegative sequence,
and {ca;} and {B;} be positive non-increasing sequences sat-
isfying Zt o = 00, limy_,c ay = 0, and lim;_, g— =0.
If there exists a T > 0 such that viy1 < (1— at)vt + ﬁt holds
for all t > T, and then we always have v; < ca—t for all t,
where c is some positive constant.

For the convenience of privacy analysis, we represent the
different data points between two adjacent datasets D! and
D' as k-th one, i.c., & in D} and & in D', without loss
of generality. We further denote 0} and 02 as the parameters
generated by Algorithm 1 based on D! and Dt , respectively.
We also use the following assumption, which is standard in
existing DP analysis for distributed optimization/learning (see
e.g., [35D:

Assumption 5. For any data £ and &', there exists some
constant C such that supycg||V1(0,£)—V1(0,¢")||2 < C holds.

Remark 8. Assumption 5 is standard for privacy analy-
sis [35]. It relaxes the bounded-gradient assumption in [27]-
[31], [33] because if one has ||VI(0,£)]l2 < C, then one
always has |VI(0,€) — VI(0,&)|l2 < 2C. In general, As-
sumption 5 can be satisfied under our problem setting since
the optimization variable is restricted in a compact set ©. For
example, under the commonly used loss function [(6,{) =
07Q0 + €760 for given data ¢ and Q > 0, we can easily
obtain ||VI(0,£) — VI(0,&)]l2 < || — &|l2 and, hence,
the boundedness of gradient differences in Assumption 5.
In addition, in many machine learning applications, gradient
clipping is used to make the norm of the gradient vector
be at most C [72], [73]. In this case, we can easily obtain
the upper bound in Assumption 5 by using the inequality
V10, €) — VIO, &)]l> < 2|[VI(0,€)[> < 2C.

Theorem 5. Under Assumptions 1-5, if nonnegative se-
quences Ay and -y, satisfy the conditions in the statement of
Theorem 1, and each element of (! independently follows a
Laplace distribution Lap (o) satisfying Assumption 4, then the
tracking error of Algorithm 1 will converge in mean square to
zero. Furthermore,

(i) For any finite number of iterations T, under Algorithm 1,
Learner i is ensured to be €; locally differentially private with
the cumulative privacy budget bounded by Z;‘F 1 RVPT el

oi(t+1)s"”
Here, C' is glven in the statement of Assumption 5 and Ty 1S

given by 1, = ng:ll (Ht ' - WYg + A L)) Ap—1+ A1



(ii) The cumulative privacy budget is finite for T — oo.

Proof. Since the Laplace DP noise satisfies Assumption 4, the
tracking result follows naturally from Theorem 1.

(i) To prove the statements on privacy, we first analyze the
sensitivity of Learner ¢ under Algorithm 1.

According to the definition of sensitivity in (16), we have
0] + ¢ = Hj’ + th for all t > 0 and j € N;. Since we
assume that only the k-th data point is dlfferent between D!
and D; , when t < k, we have 91 9z However, when
t > k, since the difference in loss functions kicks in at
time k, i.e., [(0,£1) # 1(0,£."), we have 07 # 0. Hence,
for Learner ¢’s implementation of Algorithm 1, we use the
projected inequality to obtain

(0741)'ll2 = I[Proe (0}, ;) — Proe (A 1)")|2
hi i i
(0t11) M2 < H(l‘i‘wiﬂt)(et —0)

16741 —
<||6i 11 —
M v i g
S (VI -
p=k

for all t > k and any k& > 0, where we have used the definition
Wi = _ZjEM Wij- Letting w2 mm{|w”\}, S [m] and
i A ||pi il
(I)t = ||9t - ot

a7

\ICANGS)

[

5, We obtain

iy <(1—wy) @+ = (65.6,) = VU6, &)z
p=k
- i At . i il i
<(—wn) @i+ D IVI0; &) - VUO! .6 2, (18)
p=0

where we have used Z;;é VI(;, &) =
in the second inequality. Since ||VI(6}, &) — VI, » iy =
V167, €1) — V0], &)+ VI(6;, €11 = VI, &)l < C+
L®; holds, the inequality (18) can be rewritten as

®; + M\ C.

S lvz(el &)

@i, < (1—wy + ML) (19)

By iterating (19) from 0 to ¢ and using the relationship
11l < +/n||f||2 valid for any 6 € R™, we obtain

t—1 /t—1
A} < /nC <Z (H(l — Wyg + AqL)) Ap—1+ >\t1> .

p=1 \q=p

Therefore, for Learner ¢, the cumulative privacy budget for
any finite 7" iterations is bounded by

\/%CT,&
Z Zol t+1)°

tlgt t=

(20)

where 7; is defined in the theorem statement.
(ii) Based on (18) and fi = Ei/ for p # k, we have

By < (1= 09+ S VI - V106,61
05,6 — v, &)
A ¢ o L
+= N VI € - VUe: €Dl @)

t+1
* p=0, p#k

for all ¢t > k and any k£ > 0. By using Assumption 3-(iii) and

Assumption 5, we can rewrite (21) as follows:

: _ L (t+1) A C
d < (1- <I>’ 22
= ( v t+1 1 @
Recalling the definitions v; = (tzi(i)u and \; = w=he +1)” with

v > u from the statement of Theorem 1, there must exist a
To > 0 and some constant C; > 0 such that

@0 L G
(t+1Dw  (t+1)r = (t+ 1w’
holds for all t > Tp. Combmlng (22) and (23) yields <I>t 41 <
(1 (t+1) )‘I)‘ + (t+1)1+v for all ¢ > Tp. Using Lemma 3

yields for some constant Cy, we have ®i = ||} — 0’|, <
CQW for all ¢ > 0.

Ve — LA =

(23)

Based on the relationship ||z||; < v/nljz||2 valid for any
x € R™, we can prove that the sensitivity A} satisfies

VA CCo
Cl (t + 1)1+v7u7

for all ¢ > 0. Recalling the Laplace-noise parameter of =
ol (t+1)"
2

Al < \/ndi < (24)

from the statement of Assumption 4, we have the
cumulative privacy budget bounded by

= V2nXoCCs
Z Z Cl O'Z

t=1 Qt t"‘ 1 Lv—udet?

(25)

according to Lemma 2 when T' — oo. Since v — u + ¢t >0,
the cumulative privacy budget is finite when 1" — oo. O

Theorem 5-(i) implies that for any given cumulative privacy
budget ¢;, Learner i’s implementation 4; of Algorithm 1 is ¢;
locally differentlally private when the noise parameter satisfies
o' = Zt 1 \/ff; t- with 7; defined in Theorem 5. Therefore,
each learner can choose its desired privacy budget based on
its own practical and personalized need. This differs from ex-
isting centralized DP frameworks used in differentially private
distributed optimization/learning approaches [31], [33]-[38],
which, in the absence of a data aggregator/curator, require
participating learners to trust each other and cooperatively
determine the amount of noises needed to achieve a universal
global privacy budget e.

Theorem 5-(ii) proves that in addition to accurate conver-
gence, Algorithm 1 can ensure a finite cumulative privacy
budget even when the number of iterations tends to infinity.
The key reason for our approach to achieve rigorous LDP
is the judicious design of the decaying factor ~,, gradient
computation strategy, and the stepsize \;. These designs can
ensure a fast diminishing sensitivity (see Eq. (24)), which,
combined with increasing DP-noise variances, ensures a finite
cumulative privacy budget even in the infinite time horizon
(see Eq. (29)).

Remark 9. Theorem 5 proves that our algorithm can
circumvent the tradeoff between privacy and learning accuracy.
However, this does not mean that our algorithm achieves
privacy protection for free. In fact, resolving the tradeoff
between privacy and learning accuracy comes at the expense of
sacrificing the convergence rate. Specifically, the rate O(t=?)




in Theorem 1 is determined by the decaying parameter u of the
sequence ~;, the decaying parameter v of the stepsize sequence
A¢, and the noise parameter max;ef,,{<’}. The condition
max;e(,m){<'} <u<wv <1 indicates that an increase in noise
parameter ¢* (corresponding to stronger privacy protection)
necessitates an increase in decaying parameter v, resulting in
a slower convergence rate O(¢t~") from Theorem 1.

Remark 10. The parameters u, v, and ¢t are crucial for
our algorithm’s performance. More specifically, according to
the convergence results in Theorems 1 through 4, a smaller
v, a larger u, and a smaller ¢* lead to a faster convergence
rate. Therefore, for applications requiring fast convergence, a
small v, a large u, and a small * are preferable. In addition,
according to (25) in our privacy analysis, a smaller v, a larger
u, and a smaller ¢? result in weaker privacy protection. Hence,
for privacy-sensitive applications, a large v, a small u, and a
large ¢’ are preferable. Therefore, there is a tradeoff between
convergence rate and privacy. In applications, we can select
these parameters based on practical needs.

Remark 11. Our approach can ensure both DP and mean
square convergence of the optimization variable to the
optimal solution (the variance of the distance between the
optimization variable and the optimal solution converges to
zero). It is much stronger than [74] that only characterizes
the convergence of the expected value of the optimization
variable to the optimal solution in the presence of DP noises
(which cannot exclude the possibility that the optimization
error can have an arbitrarily large variance). In addition, [74]
only ensures DP of the data (sample) label but does not
consider the privacy of the content of data. In contrast, we
enable DP for both the label and the content of data.

VII. NUMERICAL EXPERIMENTS

In this section, we use three numerical experiments to vali-
date our theoretical results. In the first experiment, we consider
distributed online training of a logistic regression classifier
using the “mushrooms” dataset [75]. In the second experiment,
we consider distributed online training of a convolutional
neural network (CNN) using the “MNIST” dataset [76]. In
the third experiment, we train a CNN distributively using the
“CIFAR-10” dataset [77], which is a more diverse and chal-
lenging dataset than “MNIST”. For each test, we considered
heterogeneous data distributions, which are particularly likely
in distributed learning where data are collected by multiple
learners from multiple sources. In all three experiments, we
compared Algorithm 1 with the distributed stochastic gradient
descent algorithm (DSGD) in [55], the DP approach for dis-
tributed online learning (DOLA) in [45], and the DP approach
for distributed optimization (PDOP) in [30]. The convex set
was set as © = {§ € R"|||f|| < 10°}. We considered five
learners connected in a circle, where each learner can only
communicate with its two immediate neighbors. For the matrix
W, we set w;; = 0.3 if Learners 4 and j are neighbors, and
w;; = 0 otherwise.

A. Logistic regression using the “mushrooms” dataset

We first evaluated the effectiveness of Algorithm 1 by
using an [y-logistic regression classification problem on the

“mushrooms” dataset [75]. We spread data samples among the
learners according to their target values. Specifically, Learners
1, 2, and 3 have samples with the target value of 0, while
Learners 4 and 5 have samples with the target value of 1. All
learners cooperatively track the optimal parameter 6; to the
online optimization problem (2), in which the loss function is
given by 1(6, &) = 7= 17 (1-b) (a})T0—log(s((a})76))+
6]|?. Here, N; represents the number of data points per
iteration, r; > 0 is a regularization parameter proportional to
N%, ¢ = (a},b}) represents the j-th data sample on Learner
i, and s(q) = 1/(1 + e~ ?) is the sigmoid function.

In each iteration, we incorporated Laplace DP noises with
parameter o} = (t 4+ 1) to all shared messages, where
¢t = 0.1 + 0.01i. Note that the multiplier i in ¢° leads
to different noise amplitudes and further different privacy
budgets ¢; for different learners. We configured the stepsize
sequence and diminishing sequence as \; = W and y; =

Ti
2

W respectively. All configurations satisfy the conditions
in Theorems 1-5. The algorithm was implemented for 2, 000
iterations, during which time-varying optimal parameters 6;
were calculated using a noise-free, centralized gradient descent
algorithm.

In the comparison, we selected the near-optimal stepsize
sequences for DSGD, DOLA, and PDOP such that doubling
the stepsize results in nonconverging behavior. The resulting
average tracking error and average instantaneous regret are
shown in Fig. 1-(a) and Fig. 1-(b), respectively. It is clear that
the proposed approach has a much better learning accuracy
under the constraint of local differential privacy. We also
plotted the cumulative privacy budgets of all algorithms in
Fig. 1-(c), which shows that our algorithm always has a finite
cumulative privacy budget whereas the cumulative privacy
budgets for DSGD, PDOP, and DOLA all grow with time
to infinity as iteration proceeds, implying diminishing privacy
protection as iteration proceeds.

To show that Algorithm 1’s achievement of both rigorous
LDP and optimization accuracy comes at the expense of
sacrificing convergence rate, we compared the number of
iterations needed to achieve a certain optimization accuracy
under different cumulative privacy budgets. The results, sum-
marized in Table I, clearly show that a smaller cumulative
privacy budget (i.e., stronger privacy protection) corresponds
to a greater number of iterations (i.e., a slower convergence
rate).

B. Neural network training using the “MNIST” dataset

In the second experiment, we assessed Algorithm 1’s perfor-
mance through distributed online training of a convolutional
neural network (CNN) using the “MNIST” dataset [76]. We
assigned 40% of the data from the i-th class to Learner ¢, while
splitting the remaining 60% evenly among the other learners.
The training process spanned 600 iterations.

In this experiment, we utilize Laplace DP noises with
parameter o} = v/2(t 4+ 1)<’ for all shared messages, where
¢ =0.1+0.02i. We set the stepsize sequence and decaying
sequence to A\, = W and v = %, respectively.

We compared our algorithm with the algorithm DSGD
in [55] by training the same CNN, utilizing the same stepsize



TABLE I
THE NUMBER OF ITERATIONS TO ACHIEVE ||-L 37" 0% — 0%||2 < 1 UNDER DIFFERENT CUMULATIVE PRIVACY BUDGETS

Noise level? x1 x1.5 X2 x2.5 X3 x3.5 x4 | x4.5 x5 x5.5 x6
Cumulative privacy budget | 23.34 | 16.59 | 12.65 | 11.97 | 11.54 | 10.50 | 9.64 | 8.79 | 798 | 747 | 7.03
Iteration number 8 11 12 34 127 269 575 | 934 | 1119 | 2292 | 4999
4 Considering the Laplace noise Lap(0.1(t 4 1)0‘1+0'01i) as the base level.
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Fig. 1. Comparison of online logistic regression results by using the “mushrooms” dataset.
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Fig. 3. Comparison of neural network training results by using the “CIFAR-10" dataset.

sequence and the same Laplace DP noise. Additionally, we
implemented existing DP methods, DOLA in [45] and PDOP
in [30], using DP noises with decaying and homogeneous
parameters o; = % and o, = 0.5(0.98)" for DOLA and
PDOP, respectively). The stepsize sequences for DOLA and
PDOP followed their default parameters suggested in [45]
and [30], respectively. Fig. 2-(a) and Fig. 2-(b) illustrate the

training and test accuracies, respectively.

The results reveal that under the given DP noise, the DSGD
algorithm falls short in training the CNN model. Besides, both
the DOLA and PDOP algorithms are incapable of effectively
training the CNN model (Note that when the test data led to
an exploding loss function — all happened when the training
accuracy stalled around 0.1 in existing algorithms —, we used
the initial parameter for validation, which always gave a test

accuracy of 0.1). These results confirm the advantages of our
proposed algorithm.

To compare the strength of enabled privacy protection, we
ran the DLG attack model proposed in [78], which is a
powerful inference algorithm capable of reconstructing raw
data from shared gradient/model updates. The training/test
accuracies and the DLG attacker’s inference errors under
different levels of DP noise are summarized in Table II. It
can be seen that stronger privacy protection (i.e., a larger
DLG inference error) leads to lower training/test accuracies
under a fixed number of 3,000 iterations (implying a slower
convergence rate).

C. Neural network training using the “CIFAR-10" dataset

In our third experiment, we appraised Algorithm 1’s per-
formance via distributed online training of a CNN on the



“CIFAR-10” dataset, which is one of the most widely used
datasets for machine learning research (it is also more difficult
to train than the “MNIST” dataset). In this experiment, the
CNN architecture and all parameter designs are identical to
those employed in the previous “MNIST” dataset experiment.

The results in Fig. 3 once again confirms the effectiveness
of our distributed online learning algorithm for training the
complex CNN model under the constraint of LDP.

TABLE II

TRAINING/TEST ACCURACIES AND DLG ATTACKER’S INFERENCE ERRORS
UNDER DIFFERENT LEVELS OF DP NOISE

Noise level® x0.5 x1 x1.5 X2
Training accuracy | 0.9402 | 0.9350 | 0.8862 | 0.8180
Test accuracy 0.9449 | 0.9380 | 0.8964 | 0.8259
DLG inference error | 0.2696 | 0.2786 | 0.2898 | 0.3110

2 Considering Laplace noise Lap(0.05(t+1)% 1+0.01° ) as the base level.

VIII. CONCLUSION

In this study, we have introduced a differentially private
distributed online learning algorithm that successfully circum-
vents the tradeoff between privacy and learning accuracy.
More specifically, our proposed approach ensures a finite
cumulative privacy budget in the infinite time horizon. This is
in sharp contrast to existing DP methods for distributed online
learning/optimization, which allow the privacy budget to grow
to infinity, implying losing privacy protection when time tends
to infinity. In addition, our approach also guarantees the
convergence of expected instantaneous regret to zero. To the
best of our knowledge, our approach is the first to achieve both
rigorous local differential privacy and provable convergence
in distributed online learning. Our numerical experiments on
benchmark datasets confirm the advantages of the proposed
approach over existing counterparts.

APPENDIX
A. Technical Lemmas

In this subsection, we introduce two auxiliary lemmas. For
the sake of notational simplicity, we add an overbar to a letter
to denote the average of all learners, e.g., 6, = =" 6.
We also use bold font to represent the stacked vectors of all
learners, e.g., 6, = col(f},--- ,07"). We also denote 6, 2 6, —
07, 0,20, -0, di(0,) = col(d} (60}),--- ,d"(6")), ¢ =
ZjGNi withJ’ Ug £ Ji(t + 1)<17 and ot £ maxie[m]{ai}.

Lemma 4. Under the conditions in the statement of Theo-
rem 1, the following inequality always holds:

(16117 < (1+24) [(1-22) s
F2UE(D, (W © 1,0 + 337E[| (W © 1,)8,]”

8L? =
w3 (4 BV BN + 3210 P + 3Rl 00

12mf<;2)\t] ( 8 )

+—— 14+ — |E[|6;, —07]*]. (26)
U(t+1) >\t,UJ [” t+1 t” ]

Proof. Due to space limitations, we leave the proof to the
extended version available at [1]. O

For the convenience of analysis, we introduce s € [0, ] and
denote 6;_, =0, —0;,; and 0411y = 0,15 — 0}, ;.

Lemma 5. Under the conditions in the statement of Theo-
rem 2, the following inequality always holds:

E[[fr1-57] < (14 M—s(ns + ne—s))E[10¢—s %]

— 2w\ E[Fi1(6_,) — Froa (07)] + 372l

~T ~
+ SA?—SE[”dt—s(et—s)HQ] +2'Yt—sE[0t—s(W ® In)ot—S]
+ 37262—5E[|| (W ®1,)8;—s H2] + MA—sN—s

8h\i—s(K2+D?)(s+1)  4mr?XN_s  2mKRN_g
Ns(t+2)(t—s+1) N—s(t+1) Vi+1
2(L? + K2 + D*)\—sE[]|0,— |2
n (L* + &%+ D?) N\ [||f||]7 7
ntfs
where the sequence 1 is given by n; = ﬁ with r = 1*7”

Proof. Due to space limitations, we leave the proof to the
extended version available at [1]. O

B. Proof of Theorem 1

The proof is divided into three steps: in Step 1), we simplify
the result in Lemma 4 to obtain (32); in Step 2), we iterate (32)
from O to ¢ to derive (35); in Step 3), we estimate an upper
bound on each term on the right hand side of (35) and
obtain (54).

1) To simplify the result in Lemma 4, we first prove that
the sum of the following three terms in (26) is negative:

29E[0, (W & 1,)0,] + 357E[| (W © 1,)81]*

8L?2 - (28)
(e 2 ) Bl <.

Given 7 <y < — 16 in the statement of Theorem 1, we

have :0; + 37262 < 0, Vi € [m], which implies

T
t

%E[0, (W ® I,,)0,] + 3v2E[[|(W @ I,)0,]*] < 0. (29)

By using the relation ;, = 8; — 87 — (6, — 6}), we obtain

-~ 1,,17 171
0,=0,— ((mm ®In> 6, —1,, <mm) ®9:) .
m m

Given 1,, ( "") ®OF = (17”13'; ® In> (1, ®67), we have

m

T
171
m

! 1777,1T Y
0t = (Imn - < n ®In>) 0t7
m

which further leads to

~ - 1,17 ~
0,5:0,5—1—( m®]’n)0t
m

By using 6, (W @ I,)0; < 05)|6:))2, 17W = 07, and W1 =
0, we obtain
~T ~ T < «
10y (W @ 1,)0; = 710, (W @ 1,)0; < 7:62(10:[°.  (30)
Noting the relationships Ay < A\g < ;J_ﬁgi’é and v; < vy <
ﬁ with v > u from the statement of Theorem 1, we have

~T ~ 8L? = 112
%E[O, W @ L,)0:] + A\ | p + 7 E[|6:]°] <0. (31)



Combining (29) with (31) yields (28).
By using the inequality (31), we can rewrite (26) as follows:

- A -
BlIfal?) < (1- S0 EIGIE + A G

where in the derivation we have used the definitions a; =
1+ “’\t and by = 1 + /\ from the statement of Lemma 4.
Moreover the term A; in (32) is given by

a pA\ 12mes), i 112
At (14200 By (14 2 ) wiier, - 071

+ (34 224) 2RIl 0) 1) + 7o)

8
(33)
2) Iterating (32) from O to ¢, we arrive at
t
nmﬂn<11( )[WI}
r=0 (34)

S (-

p=1lg

> Ap_y+ Ay

Since In(1—wu) < —u holds for all v > 0, and, hence, we have
I, (1 - %P) < ¢~ ¥15-0%  Then, the inequality (34)
can be rewritten as follows:

E[[|§;41]|%] < e” 5 Xm0 ]| ]

t
+ Z Ap*1€7§HZZ:pA

p=1

(35
7+ At7

where the term A; is given in (33).
3) We proceed to estimate an upper bound on the right hand
side of (39).
By using the relationships e~ & § 2g=p A <

>\q
valid for all p € [1,[£]] and e ° § X0 rgr < 1, the last

two terms on the right hand side of (35) satisfies

_ K t
qu (1

EE:ZSp 1o 8 Tamp do 4 A,

t
qul"\ 4 Z Ap,1+At

p=[51+1

<D Bpre (36)

Next, we estimate an upper bound on A; in (33):
(a) Since A\; < A\g always holds, we have

1 L)\t 12mf$2)\t§61 A ’
8 ) p(t+1) t+1

where c; is given by ¢; = %(1 + #0).
(b) By using (8) in Lemma 1, we have

8 C2
14— =
(14 5 ) E L1030 - 611P) < 5725

w(%+%).

K K

(37

(38)

where ¢, is given by co =

(c) Assumption 1-(iii) and Assumption 3-(ii) imply
E[|VI(6%,£9)|1?] < 2(k? 4+ D?), which further leads to
BRI
(3 + ‘; t) NZE [[|di(6)])%] < s\, (39)
where c3 is given by c3 = 6m(1 + )‘?T“)(RQ + D?).
(d) We denote ¢ £ max;e[,{s'} and 0 £ max;c[n, {o'}.
Then, we have
3pA
(3+ 22 ) RlonlP < cote v, 6o
where ¢, is given by ¢y = m(07)?(3 + 3%0),
By substituting (37)-(40) into (33), we obtain
C1 ¢ Co 9
A A7 t+1 41
it narE T teft+1)%. @D

Substituting (41) into the second term on the right hand side
of (36), one yields

t [e%e) [e’e)
c1
I R IR
p=[%] p= f%] p= fé] 42)
+ Z c3AZ + Z cyp(p+1)*
p=[%5] p=[%]
Recalling the definition A\, = (pﬂ):iol)“’ we have
= A Sl | Ao2¥
> % < [ e O 43)
- D+ 1 [t xltv vtY
p=[3] 2

Following an argument similar to that of (43), we can derive
that the following inequalities always hold:

C2 [e%e] 1 6221—1)
z <2 e
oo

[e%e) 1 c /\2227171
2 2 370
D eshp < csh / WS Gy Ty
p=[%5]
00 292u—2¢—1
5 CaYp2

C4’Yp(P+1) = (2u — 2 — 1)2u—2-1"

p=[5]

(44)
where we have used Z;O [4] ’yg(er 1) <2 f[ £ TZU s dz

and max;e[m]{c’ 3 —|— < u in the last inequality.
Substituting (43)- (44) into (42), we have

t oo
c1 2" o217V
A, < A <
—Zm o —zr:t] R (S
Pl P=lz (45)
n 03)\%221171 047222U 2¢—1
(20 — t2o=l  (2u — 2¢ — 1)t2u=2-17

where the positive constants cj, ¢z, c3, and ¢4 are given
in (37), (38), (39), and (40), respectively.

Based on the result in (45), we proceed to characterize the
first term on the right haEd gide of (36). To this end, we first

characterize the term e ° —7='21"% By using the inequality
(t+1)” < 3(t—1)" valid for all ¢ > 2 and the fact t — [£] =

|£], we can obtain



t
Ao Ao 1—o|t
dxr = 1
Z / i T T Y,
Ao Ao(t—].)liv

SRR BJ SR

with € € ((%1 + 1,1+ 1). By combining the relations e™* <
% valid for all > 0, (t — 1)*=t < 2'=v¢*~! valid for all

t > 2, and the inequality (46), we have
" t 29l—vyv—1
& TN - 48(1 —v)*2' "¢t
Ko
for all ¢ > 2. Moreover, when we con51der the case t = 1
(e, g =1), the relatronshrp e ETem e < ] always holds.

Combining e~ §%0=1% < 1 and (47), we obtain the following
inequality for all £ > 1:

_pm§t
e qu:f%T Aq

m\*

(40)

; (47)

Cs
ti=v’

(48)

48(1—v) 21—“}
Ao
Substituting (48) into the first term on the right hand side
of (36) yields

TR,
D Ape T (Ao +ZA ) A @9
p=0

By using the relationship Ay < c1Ag + i + 33 + cavp
derived from (41) and the upper bound obtained in (45), we
can rewrite (49) as

2 I +
-y A
S Ay FEeErm o

where the positive constant cg is given by cg = c5[c1 Ao + +

v 1—v caA222v—1 4 2u— 2g 9y
c3AG + eang + 2R+ (Cffv)/\o + 3(/;%{1) + 0(232 5Ty
By substituting (45) and (50) into (36), we have

t
Z Ap—le_% Tamp e 4 Ay

where c¢5 is given by ¢; = max{1,

Ce

t1-v’ (50)

p=1
c1Ao2Y o217V 03)\%22”_1 (51)
- oY (1 —v)Xott—v (20 — 1)¢2v—1
64722211, 2¢—1 N s
(2u — 2 — 1)t2u—2<—1 tl-v '
We further incorporate (51) into (35) to arrive at
~ ¢ ~ Ao2v o217V
& 2] < o 51 b0 MR8 ]12] 4 220 2
16us1 )] <e 180l + 2 8+ o
c /\2227171 c 222u 2¢—1 ¢
0 20—1 0 Ju—2—1 1E - 52
(20 — 1)t (2u — 2¢ — 1)t2u—2s ti-v

Using the relation (¢ + 1)” < 2tV valid for all ¢ > 0, we have

Z/\p_/o zil)d

which further leads to

Aot )\otl_v
= 02(+17° = 2(1— 02’

16(1 — v)?

67% Z;:o >‘p < ! .
p)\otlfv

t
% Zp:() >‘P

(53)

Incorporating (53) into (52), we arrive at

5 16(1 — v)2E[[|0,1?] | c1 )02 cy21—
E[6,41]7) < 20— Ell%lT , e1do 2
HAOE vt (1—U))\ot v
c3\g22v-t a1 LG o

(2U - 1)t2v_1 (2u — 2( — 1)t2u—2§—1 tl_v7

which implies (9) in Theorem 1 since min{1—v, v, 2v—1, 2u—
2¢ — 1} = min{1 — v, 2u — 2¢ — 1} always holds.

C. Proof of Theorem 2

The proof is divided into three steps: in Step 1), we simplify
the result in Lemma 5 to obtain (59); in Step 2), we estimate
an upper bound on the item on the right hand side of (59) and
obtain (70); in Step 3), we characterize (70) to arrive at (71).

1) Given y_s < 35 , Ams < m,andv>
1424 ip the statement of Theorem 2, the sum of the following
three terms in (27) is negative, whose proof is similar to that
of (28) and thus is omitted here.

~T ~ ~
27— sE[0, s(W®In)0t—S]+37§—5E[||(W®In)0t—5”2]

A <
+ nt Z09(L2 4 K2 4+ DAE[)|6,-4]2 < 0
t—s
Substituting the inequality (55) into (27) and further sum-

ming both sides of (27) from s = 0 to s = ¢, we obtain

(55)

t t

D E[6i1-s]] € —2m Y A SE[Fia (6i_,) — Fra (674)]

s=0
t
)‘t—s /\t_s _ )
! E[||60:—,
O(t—s+1)r

s=0

+3m(o

Z’Yt s t_5+1)2<

At_S(S + 1)T+1
t+2)(t—s+1)

+ 8m(k*+D?) Z N

Mi—s 1)
+4m/€22¥

(56)
= t+1

where in the derivation we have used the definition 1y =
p w with r = 2
e characterize the second term on the right hand side

of (56). To this end, we make the following decomposition:

t t
D El0er1—slP1 =D Elll6e—slIP]+E[I6:+1]°] — E[116o]]
s=0 5=0
57
By using (57), we have 57)
t
)\t—s /\t—s > A 2
14 + E[||0;_s
;( (s+1)7  (t+1—s) 16— [
"
- ZE [
= (58)
/\t—s

5

> (e

—Eruémn?} T (1 n

) el

i Ao) E[[16o 1),

+1-

Ao
(t+1)r



where we have used the relation ZZ:O Ni—g = 2221 Nit1—s+
7o valid for any sequence {7,},p € N in the last inequality.

Furthermore, since 9,? is restricted in a compact set ©, we
have E[||6,—0} ] < mR? valid for all p > 0. By using the
relationship E[Fy41(0]_,) — Frst(07,1)] > E[Fron(8l,,) —
Fy41(0f,,)], we can substitute (58) into (56) and omit the
negative term —E[[|6;,1]|?] to obtain

22& E[F1(0i41) = Fer (07,01 < A, (59)
s=0
where
t
At—s /\t—s 2
Ay = R
t ;(@H)r*(tﬂs)r)
Ao 2 2
1+ " 1)%
+< +(t+1)r+)\o)R +3(0 Z%S —s+1)

t

)\t S+1T+1
8(k% + D? 2
8 );(Hz t—s+1) +Z +1fs

t t

+ 4k Z—(Hl QRZ A”

s=0
2) Using the relation S0 Ay = SL_ A, the first term
on the left hand side of (59) satisfies

t
2ZAH > 2/
s=0 0
(61)

We proceed with the calculation of the upper bound on A,.
(a) The rearrangement inequality states

(60)

t+1 )\0

2X0((t +2)17v —1)
(z+ 1) '

d =
v 1—w

TiYn + -+ Tpyn < T1Yoa) + o0

Sl‘lyl—i_'

+ TnYo(n)
+ TnYn,

for all real numbers satisfying x; <
yn and for all permutations y, (1), -

anandy1§<

5 Ys(1) Ofylv'" ayn-
Therefore, for two decreasing sequences As_; and (= +1),
with s = 1,--- ,¢, we have
)\t s

t
(s+ 1) Zs—l—l
s=1 s=1

t+1
< / 2Xo de < 2Xo
T 1—r—w

t
s=1

(t+1)m —1).

Mﬁ

(62)

(b) Given the fact Zs 1 (t/\ziﬁ) Zts }) 31y We obtain

(c) By using Assumption 4 with © > ¢ —|— 5, we have

va_s(t —s+1)* = Zv.?(s +1)%
s=0 s=0

o] 2 - 2
70 75 (2u — 2)
<~2 dz = .
<% + /1 22u—2¢ z 2u—2c—1

(64)

(d) Given \; = ﬁ with v € (3), we have
“~ (t + t —s+1)
AO i S + 1)T+1
t+2§ t—s+4 1)V (65)
A i—1 1 r4+1
_ 0 (S + ) + (t + 1)r+1 ’
t+2 \ = (t—s+ 1)1

which can be further simplified by using the following in-
equality:

7+1
Z tferl I+v
s= ()

t
:1/ (z+ 1)t —z+1)""
0

Eo(p 4 1)rtt
</ &

t—ax+ 1)

v

_ %((H et (66)

- 1(1 +7) /t(t —z+ 1)z +1)de
v 0
1

S E((t 4 1)r+1 _

-(t+1)7")

t+1)7").
We substitute (66) into (65) to obtain

t
Ar_s(s + 1)r+1 1
<X (-4+1)@+1).
§t+2 Wi—s+n - ole® (t+1)

(67)

(e) Using the relation 3\ Ap—s(t—s+1)" = S0H Lo

we have
Mos(t—s+1)7 1 gi 1
= t+1 t +1 SV
1t 1
< — dr < . (68)
t_|_ 1 0 xv—T (1 +r— U)(t + 1)1)—r

(f) Following an argument similar to that of (68), we have

t t+1

Z >\t—s o 1 Z 1
SVEHT Vi 513”_(1—v)(t+1)“*%'

Incorporating (61)-(69) into (60) and further multiplying
both sides of (59) by W yield

E [Fii1(0;41) — Fir1(0741)]
c1(1—w) R2(1 —w)
S Do(r2)i—v—1) T4+ ) ((tr2)i— 1)
(BR? +1)(1 —v)
A1 —r— o)t 1) I((t+ 2)1—v — 1)
2(k? 4+ D?)(1 4+ v)(1 —v)
ot + 1) ((t+2) — 1)
kR
T((t+2)17v — 1)
K2(1 — )
Ao(1+7r—v)(t+ 1)v*r((t +2)1-v — 1)’

(1) (2u—29)
2u—2¢—1 :

(69)

+
(70)

+
2(t+ 1)0~

+

with ¢; = (14 Xo)R? +



3) Using that the relation (¢t+2)'70(t4+1)" > 217v(¢t+1)"
implies (t +1)" < o1 (¢ + 2)' 7(t + 1)", we obtain

, > (t+ 1)t—vr,

By using a similar argument for each item on the right hand
side of (70) and substituting r = 15“ given in the statement

of Lemma 5 into (70), we can arrive at

E [Fi41(0;41) — Frra (0711)]

t+D"(t+2)—1)> <1 ~ g

< Co " C3 cq + c5
IR A (S Vi (R DR O

C6 C7 —

+ -+ - =0((t+1)7),
t+1)z  (t+1)=

for any ¢ > 0, where /3 is given by 3 = 15 and the constants
- _ 1—wv 201 _ 1—w
co t0 cg are given by cy = %, c3 = %,

_ (BRZ4+1)(1—w)2!7v
G = qa—r—v)@-vo1) C52 )
R2'~v _ K2 (1—v)2'~"
2A:(217*”71 an.d ¢ = Otr—o) @ -1)°
inequality (71) implies (13) in Theorem 2.

2(k2+D?)(1—v?)2! 7"
v(21-v—1) ’

respectively. The

Cg —
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