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Abstract—Distributed online learning has been proven ex-
tremely effective in solving large-scale machine learning problems
over streaming data. However, information sharing between
learners in distributed learning also raises concerns about the
potential leakage of individual learners’ sensitive data. To mit-
igate this risk, differential privacy, which is widely regarded
as the ‘“gold standard” for privacy protection, has been widely
employed in many existing results on distributed online learning.
However, these results often face a fundamental tradeoff between
learning accuracy and privacy. In this paper, we propose a locally
differentially private gradient-tracking-based distributed online
learning algorithm that successfully circumvents this tradeoff.
We prove that the proposed algorithm converges in mean square
to the exact optimal solution while ensuring rigorous local dif-
ferential privacy, with the cumulative privacy budget guaranteed
to be finite even when the number of iterations tends to infinity.
The algorithm is applicable even when the communication graph
among learners is directed. To the best of our knowledge, this is
the first result that simultaneously ensures learning accuracy and
rigorous local differential privacy in distributed online learning
over directed graphs. We evaluate our algorithm’s performance
by using multiple benchmark machine-learning applications,
including logistic regression of the ‘“mushrooms” dataset and
CNN-based image classification of the “MNIST” and “CIFAR-
10” datasets, respectively. The experimental results confirm that
the proposed algorithm outperforms existing counterparts in both
training and test accuracies.

Index Terms—Decentralized online learning, local differential
privacy, directed graph, gradient tracking.

I. INTRODUCTION

Machine learning is rapidly reshaping the landscape of var-
ious engineering domains, ranging from wireless sensor net-
works [1], autonomous driving [2] to image classification [3].
Different from the conventional centralized learning scheme,
where all data are stored on one device, distributed learning
enables multiple participating learners to cooperatively learn
a common optimal solution while each participating learner
only trains on its own local dataset. Hence, compared with
centralized learning, distributed learning provides inherent
advantages in scalability and privacy, and thereby has garnered
increased attention over the past decade [4]-[7].

In existing distributed learning approaches, the most com-
monly used algorithm is distributed stochastic gradient descent
(DSGD) [8]. While DSGD is communication-efficient and
simple to implement, it suffers from slow convergence when
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data are heterogeneous among learners [9], [10]. To mitigate
the issue brought by data heterogeneity, gradient-tracking-
based distributed optimization algorithms have emerged [11]-
[15], which replace the local gradient in every learner’s update
in DSGD with an estimated global gradient. Besides the
classical gradient-tracking approach which requires balanced
network topologies, this approach has also been extended to
the case with general directed network topologies in both
others’ works [16]-[21] and our prior work [22]. All aforemen-
tioned gradient-tracking-based algorithms consider a fixed and
static objective function, which, in machine learning, amounts
to requiring all training data to be available beforehand.
However, in numerous real-world applications, the data are
sequentially acquired [23], which prompts the investigation of
online gradient-tracking-based algorithms [24]-[26].
Moreover, in existing online gradient-tracking-based al-
gorithms, repeated message exchanges are required among
neighboring learners, which poses significant privacy threats to
individual learners’ sensitive datasets. As shown in [27], [28],
even though raw data are not shared during distributed training,
external adversaries could infer individuals’ sensitive infor-
mation from shared messages. To address privacy concerns
in distributed learning/optimization, various approaches have
been proposed. For example, partially homomorphic cryptog-
raphy has been widely considered in distributed optimization
[29]. But this approach incurs a high communication and
computation cost. Another approach involves the injection of
spatially- or temporally-correlated noises to obfuscate infor-
mation shared in distributed optimization [30]-[34]. However,
to protect the privacy of a learner, this approach requires this
learner to have at least one trustworthy neighbor, which is
undesirable for fully distributed applications. As the de facto
standard for privacy protection, differential privacy (DP) is
gaining increased traction, and has been employed in many
distributed learning and optimization algorithms [35]-[47].
Most existing DP solutions for distributed learning and op-
timization only consider undirected or balanced graph topolo-
gies [35]-[37], [40]-[42]. Recently, results have emerged
on DP design for distributed learning under directed graph
topologies, for both online learning [43]-[45] and conven-
tional (offline) learning where data are predetermined [46],
[47]. However, existing results on differentially private dis-
tributed online learning over directed graphs usually build
on the combination of push-sum [43] based or eigenvector-
estimation [44], [45] based and DSGD, which limits their
achievable convergence speeds. To the best of our knowledge,
no results have been reported on DP design for gradient-
tracking-based online learning over directed graphs.



Another limitation with existing DP solutions [35]-[37],
[40]-[46] for distributed learning and optimization applica-
tions is that these solutions are subject to a fundamental
tradeoff between privacy and learning accuracy. Recently, our
work [47] for distributed offline optimization successfully
circumvents this tradeoff and achieves both optimality and
privacy. Nevertheless, the gradient-tracking-based approach
therein relies on incorporating two weakening factors (two
decaying sequences that are multiplied on coupling weights to
make the weights decay with time) into inter-agent interaction
to mitigate the impact of DP noises, which consequently slows
down algorithmic convergence. Furthermore, this approach is
designed for an offline setting, where all data are predeter-
mined. Our recent work [48] proposed a local differential
privacy (LDP) approach for distributed online learning that can
ensure learning accuracy and privacy simultaneously. How-
ever, this approach requires undirected graphs. In addition,
it also hinges on a weakening factor, which significantly
decreases the speed of algorithm convergence.

In this work, we introduce an LDP approach for distributed
online learning over directed graphs that ensures both learning
accuracy and rigorous LDP (with the privacy budget guaran-
teed to be finite even when the number of iterations tends
to infinity). Specifically, we first modify the conventional
architecture of gradient tracking to ensure learning accuracy
despite the presence of DP noises. This modification is crucial
because DP noises will accumulate in the estimate of the
global gradient in conventional gradient-tracking algorithms.
In fact, in the presence of DP noises, the variance of accu-
mulated noises will grow to infinity in conventional gradient-
tracking-based distributed optimization, which significantly
affects learning accuracy, as confirmed in our theoretical
analysis in Sec. III-A and experimental results in Sec. VI
It is worth noting that while the approach in [18] for offline
optimization can prevent the accumulated noise variance in
gradient estimation from growing to infinity, it cannot entirely
eliminate the influence of noises on optimization accuracy.
In contrast, our algorithm effectively eliminates the influence
of DP noises on local gradient estimation, and thus ensures
accurate convergence. Then, we prove that the proposed
algorithm can ensure LDP with a finite cumulative privacy
budget, even in the infinite time horizon. Furthermore, by
leveraging the online eigenvector-estimation technique in [49],
our proposed algorithm enables each learner to locally estimate
the left normalized Perron eigenvector of the interaction graph,
which allows the treatment of imbalanced graphs and hence
applications in general directed networks. To the best of our
knowledge, this is the first work that successfully achieves
LDP in gradient-tracking-based distributed online learning and
optimization over directed graphs. The main contributions are
summarized as follows:

o We prove that the proposed distributed online learning al-
gorithm converges in mean square to the optimal solution,
even when the DP noises are present and the communica-
tion graph is directed. Note that existing online gradient-
tracking algorithms in [24]-[26] employ the conventional
gradient-tracking approach, which is susceptible to noises

due to the accumulation of variance in gradient estimation
[18], [22], [47].

o In addition to ensuring accurate convergence, our algo-
rithm also achieves rigorous LDP with a finite cumulative
privacy budget, even in the infinite time horizon. This
stands in stark contrast to most existing DP solutions
for distributed learning and optimization [35]-[37], [40]-
[46], where the cumulative privacy budget grows to infin-
ity as the number of iterations tends to infinity (implying
diminishing DP protection). A key enabler for our ap-
proach to ensure a finite cumulative privacy budget in the
infinite time horizon is to employ diminishing stepsizes
rather than the commonly used constant stepsizes.

e Compared with existing DP solutions for distributed
learning and optimization in [35]-[37], [40]-[42] which
require balanced network topologies, our proposed algo-
rithm is applicable to general directed network topologies.

o The adopted LDP framework preserves agent-level pri-
vacy for each learner’s dataset without relying on any
trusted third parties. This differs from the traditional DP
framework employed in [35]-[37], [40]-[47], where a
“centralized” data aggregator is implicitly assumed to
determine the amount of injected noises.

« Different from our prior results in [47] and [48] relying on
weakening factors in inter-agent coupling to ensure both
learning accuracy and privacy, which unavoidably reduce
the speed of convergence, our algorithm here avoids using
any weakening factors, and hence can attain faster conver-
gence speed, as confirmed in our analytical comparison
in Sec. IV-B and experimental results in Sec. VI.

o We evaluate the performance of our algorithm using mul-
tiple benchmark machine-learning applications, including
online logistic regression of the “mushrooms” dataset
and image classification of the “MNIST” and “CIFAR-
10” datasets, respectively. Moreover, the experimental
results show that compared with existing state-of-the-art
DP solutions in [37], [42], [44], [47], [48], our proposed
algorithm provides better training and test accuracies.

The rest of the paper is organized as follows. Sec. II intro-
duces some preliminaries and the problem formulation. Sec. III
proposes our LDP approach for online gradient tracking. Sec.
IV analyzes the learning accuracy of the proposed algorithm.
Sec. V establishes rigorous LDP guarantees. Sec. VI provides
experimental results. Sec. VII concludes the paper.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. Notations

We use R™ to denote the n-dimensional real Euclidean
space and N (N) to denote the set of non-negative (positive)
integers. We write 1,, and I,, for the n-dimensional column
vector of all ones and the identity matrix, respectively. For
an arbitrary vector x, we denote its ith element by [z];. We
write (-, -) for the inner product of two vectors and || - || for the
standard Euclidean norm of a vector. For an arbitrary matrix
A, we denote its transpose by AT and its Frobenius norm
by || A|| 7. We also use other vector/matrix norms defined under
a certain transformation determined by a matrix W, which will



be represented as || - ||w. We write P[A] for the probability
of an event A and E[z] for the expected value of a random
variable x. The notation [a] refers to the smallest integer not
less than a and |a] represents the largest integer not greater
than a. We use Lap(v) to denote the Laplace distribution with
a parameter v > 0, featuring a probability density function
L=, Lap(v) has a mean of zero and a variance of 2v/2.
We abbreviate independent and identically distributed by i.i.d.
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B. Network model

We model the topology of the network over which learners
communicate with each other as a directed graph G = ([m], ),
where [m] = {1,--- ,m} denotes the agent (learner) set and
& C[m]x|m] represents the edge set consisting of ordered pairs
of agents. Given a nonnegative matrix W = {w;;} € R™*™,
we define its induced directed graph as Gy = ([m],Ew),
where (4,j) € Ew if and only if w;; > 0. For a learner ¢ €
[m], it is able to receive messages from the learners in its in-
neighbor set Ny, = {j € [m]|w;; > 0}; Similarly, learner
1 can also send messages to learners in its out-neighbor
set N, ={j € [m]w;; > 0}. Graph Gy is called strongly
connected if there exists a directed path between any pair
of distinct learners. In this paper, we consider a gradient-
tracking-based algorithm which maintains two optimization
variables [16] that can be shared on two different graphs. We
represent the two directed graphs as Gr and G, which are
induced by matrices R€R™*™ and C' € R™*™, respectively.

Assumption 1. The matrices R € R™*"™ and C € R"™*™
have nonnegative off-diagonal entries, i.e., R;; >0 and C;; >0
for all i # j. Their diagonal entries are negative, satisfy-
ing Ry;=— ZJENI"Q',; Rij and Cy; =— Zje/\/g‘ji Cji, ie, R1 =
0 and 17C = 0T Moreover, the induced graph G, is strongly
connected and Gor contains at least one spanning tree.

Assumption 1 is weaker than requiring both Gr and Go
to be strongly connected in [43]-[45]. We have the following
lemma on matrices R and C:

Lemma 1. [16] Under Assumption 1, the matrix R £ T4+R
has a unique positive left eigenvector uT (corresponding to
eigenvalue 1) satisfying u”1 = m, and the matrix C 2 I +C
has a unique positive right eigenvector w (corresponding to
eigenvalue 1) satisfying 17w = m.

C. Local differential privacy

Differential privacy guarantees that when two datasets differ
by only one data point (record), the output of a DP imple-
mentation does not reveal whether that specific data point
was utilized. This property makes it difficult for an external
adversary to identify individual data entries among all possible
ones, thereby providing strong privacy protection.

In this paper, we consider an agent-level LDP framework,
and thus, changes in a dataset are formalized by an adjacency
relation pertaining to the local dataset of learner i € [m):

Definition 1. (Adjacency) For any t € NV and any learner
i € [m), given two local datasets Dy = {&,--- &, -+ &}

and D) = {¢i,-- & -+ &Y, Diis said to be adjacent to
D}' if there exists a time instant k € [1,t] such that &, # &}
while 5; = g Sforall p € [1,t] and p # k.

Remark 1. Our definition of adjacency corresponds to the
so-called event-level LDP in the literature [50]. For any given
t, it allows m entries in the global datasets of all learners to
be different, and is more stringent than most existing results
using the traditional centralized version of DP (e.g., [41]-
[45]), where for any given ¢, only one data entry is allowed to
be different. It is also worth noting that allowing one learner to
have all data entries to be different (called user-level DP [50])
has been proven infeasible in distributed optimization/learning
under the local model of DP [50]-[53].

According to Definition 1, two local datasets D! and D}’
are adjacent if and only if they differ by only one entry
while all other entries are the same. We denote the adjacency
relationship between D} and D)’ by Adj(Di, D,'). With this
understanding, we formally define LDP as follows:

Definition 2. (Local Differential Privacy) We say that an
implementation A;(D*,0~%) of a randomized algorithm by
learner @ provides ¢;-local differential privacy if for any
adjacent datasets D' and D', the following inequality holds:

P[A; (D!, 077) € O;] < e“P[A;(D), 671 € O], (1)

where 07 denotes all messages received by learner i and O;
represents the set of all possible observations on learner 1.

The privacy budget of learner i’s implementation is quan-
tified by €;. It can be seen that a smaller ¢; indicates closer
distributions of observations under adjacent datasets, thereby
ensuring a higher level of privacy protection.

Remark 2. The conventional centralized DP framework
used in [35]-[37], [41]-[47] implicitly assumes mutual trust
among learners to cooperatively decide each learner’s DP-
noise needed to satisfy a global privacy budget e. In contrast,
our LDP framework removes the need for such trust and allows
individual learners to independently set (potentially heteroge-
neous) privacy budgets €; and choose the corresponding DP
noises according to their individual needs. Therefore, our LDP
framework provides a stronger and more user-friendly privacy
framework.

D. LDP approach for distributed online learning

We consider a distributed online learning problem involving
m learners. Each learner only has access to its own private
dataset. At each iteration ¢, learner i € [m] acquires a data
point & = (ai,b!), which is independent and sampled from
an unknown time-invariant distribution P;. Using the sample
al and the current model parameter ¢, learner i predicts a
label bi = (0 a!) with an associated loss (6%,£!), which
quantifies the deviation between b¢ and the true label bi. This
loss prompts learner 4 to update its model parameter from 6
to 6 ,,. The objective is that, based on sequentially acquired
data, all learners converge to the same optimal solution 6* to
the following stochastic optimization problem:
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where fi(0) =E¢ip, [[(0,£")] represents the local objective
function of learner 7.

Assumption 2. (i) Problem (2) has at least one optimal
solution 0*; (ii) the gradients of local objective functions are
uniformly bounded, i.e., there exists some positive constant D
such that we have |V f;(8)|| < D for all i € [m] and 0 € R™;
and (iii) for any 61,05 € R"”, there exists some pu > 0 such
that F(eg) > F(91)+VF(91)T(92—91)+%Hel —92”5 holds.

Assumption 2(iii) represents a strongly convex (when p > 0)
or a convex (when p = 0) condition on the global objective
function F'(#), which is weaker than requiring all local objec-
tive functions f;(#) to be strongly convex (see, e.g., [40], [41],
[46], [54]) or convex (see, e.g., [42]-[45]). Many loss func-
tions in machine learning satisfy this assumption, with some
typical examples including the linear regression loss F'(0) =
%;Z’;%(bi - (ai)Tﬁ)x2 Tand the cross-entropy loss F§9) =
BT (0 log((a)70)) + (1 — ) log(1 — o ((a!)70))),
where o(p) = 17— is the sigmoid function and (a’,d")
represents learner ¢’s data point. When a regularization term
2116]|3 is added to these functions (to balance overfitting and
underfitting a model during training), they become strongly
convex.

We also need the following assumption, which is a standard
assumption in distributed stochastic optimization [12], [25].

Assumption 3. We assume that the data points {£}} are
i.i.d. across iterations. In addition, (i) E[V1(0,&})] = V fi(0);
(i) E[|VI(0,&) — Vi(0)3] < w% and (i) |VI(01,&f) —
Vi(02,&) |2 < L1 — 022 for any 01,0, € R™

Assumption 3(iii) implies that the function I(0,&!) is L-
smooth. This condition is commonly used in differentially
private distributed learning [38]-[40] and is satisfied by many
loss functions used in machine learning [55].

Since the local objective function f;(#) is defined as an
expectation over random data &’ sampled from an unknown
distribution P;, it is inaccessible in practice and an analytical
solution to problem (2) is unattainable. To tackle this issue,
we focus on solving the following empirical risk minimization
(ERM) problem with sequentially arriving data:

1 o=
mingern F(0), Ft(9)=EZfZ(9)7 3)
i=1

where f{(0) = 5 Sh_o1(6,&}) denotes the empirical local
objective function of each learner i € [m)].

According to the law of large numbers [56], one has
iy o0 725 D jmo L0, §4)=Eeiwp, [1(0, £")]. Hence, problem
(3) serves as an approximation to the original problem (2).
Unlike some existing online optimization results (in, e.g., [57])
where the optimal solution is time-varying, the solution to our
time-varying ERM formulation in (3) converges to a constant
value, i.e., the optimal solution 6* to (2):

Lemma 2. Denote 0} as the optimal solution to problem (3)
at time t and 0* as the optimal solution to the original

stochastic optimization problem (2). Under Assumption 2 with
w > 0 and Assumption 3, we have

E[6; — 0%3) < 4r2u~2(t +1) ", @
Proof. See Appendix A. 0

Remark 3. Although Lemma 2 implies that our ERM
problem (3)’s solution 6; converges with ¢ to a constant
solution #*, it cannot be solved using traditional time-invariant
or offline optimization methods, in, e.g., [11]-[15], due to
its time-varying nature of objective functions caused by the
sequential acquisition of data samples.

With this understanding, our goal is to design a distributed
online learning algorithm on general directed graphs which
enables individual learners to track the optimal solution 6;
to problem (3) under the constraints of LDP and sequentially
arriving data samples. Based on the convergence result in (4),
individual learners’ parameters will also converge to the true
optimal solution to problem (2), even under the constraints of
LDP and sequentially arriving data samples.

III. ONLINE GRADIENT TRACKING WITH LDP

In this section, we develop an online gradient-tracking-
based distributed learning algorithm over directed graphs to
solve problem (2) with ensured ¢;-LDP. Before introducing
our algorithm, we first show the limitation of conventional
gradient-tracking algorithms under LDP constraints.

A. The conventional gradient tracking accumulates DP noises
in gradient estimation

To preserve privacy, DP noises have to be added to messages
shared in each iteration of distributed online learning. In
conventional gradient-tracking-based algorithms, the injected
DP noises will accumulate in the global gradient estimation,
thereby significantly affecting learning accuracy.

We use the classic Push-Pull gradient-tracking algorithm
in [16] as an example to illustrate the idea. In the absence of
LDP constraints, i.e., when no DP noise is introduced into the
information exchange among learners, the Push-Pull algorithm
can be described in matrix form as follows:

0t+1 = Ret — )\tyt,
Y1 = Cy, + vft+1(0t+1) — V£ (6),

where the matrices 0y, y,, and Vf,(0;) are defined as
Oc=[0f, 0" ER™ "y, =[y;, - ,yp"]" ER™™, and
VF(0)=[V 0}, -,V (0m)T eR™*", respectively.
The matrices R and C are from Lemma 1.

Using initialization y, = V£,(6), we obtain 17y, =
17V £,(6;), which means that ensuring the consensus of all
yi, ie., yi = L1Ty,, is sufficient to guarantee each learner
to track the global gradient, i.e., yi = =17V f,(6,).

To achieve ¢;-LDP, DP noises have to be added to both
shared variables 6, and y,. Then, the update of the conven-
tional Push-Pull algorithm becomes

{ 0,11 =RO, +9r; — My,
Yir1 = CY; +Coy + VFii1(0i11) — VFi(0:),

(52)
(5b)



where the DP noises (-, and Jp, are defined as (o, =
(Ghy o G )T € R™T and Opy = [, - 07 ,)T €
R™X" with CZC,t = ZjGNiC'lyi C,LJC; and 193%7)5 = ZjGNE’i RZ]ﬁ%
for all ¢ € [m)], respectively.

It can be seen that even under the condition y, = V f(6o),
we can only establish the following relation through induction:

17y, =17 (vft(et) + 22;10 Cck) ) (6)

which implies that the DP noise accumulates over time in
the estimate of the global gradient. Therefore, when the
gradient-estimate variable y, is directly fed into the model
parameter update (5a), learning accuracy will be compromised.
This prediction is corroborated by our experimental results in
Fig. 2-Fig. 4. The issue of DP-noise accumulations also exists
in other gradient-tracking-based algorithms for distributed
learning and optimization.

Remark 4. To circumvent the accumulation of noises
in gradient estimation, recent work [18] proposes a robust
gradient-tracking method for distributed offline optimization.
However, this method cannot completely eliminate the in-
fluence of information-sharing noises, and thus is subject to
steady-state errors. Although our recent work [22] employs a
weakening factor in inter-agent interaction to attenuate noise
influence and ensure optimization accuracy, such a weakening
factor decreases the coupling strength among learners, which
in turn reduces the speed of algorithmic convergence. More-
over, although [15], [54] consider distributed optimization in
the presence of perturbation/noise, their perturbation/noise is
deterministic and bounded (see Eq. (27) in [15] and Theo-
rem 1 in [54] for details). To the contrary, commonly used
differential-privacy noises (e.g., Gaussian noise and Laplace
noise used in our paper) are stochastic and unbounded (under
Gaussian and Laplace noises, for any given number, no matter
how large it is, there is always a non-zero probability that
the noise amplitude is over this given number). Hence, the
perturbation/noise models considered in [15], [54] are not ap-
plicable in DP design considered here. Notably, none of these
works consider privacy protection. In fact, under the constant
stepsize and noise variance employed in [15], [18], [54] or
the single weakening factor used in [22], it is impossible to
ensure rigorous LDP in the infinite time horizon.

Recent works [37], [46] have investigated DP design for
gradient-tracking algorithms. However, both of the results face
the dilemma of trading optimization accuracy for privacy. To
tackle this dilemma, our recent work [47] achieves accurate
convergence and privacy protection simultaneously. However,
this approach relies on two carefully designed weakening
factors to attenuate the impact of DP noises. Such weakening
factors significantly slow down algorithmic convergence, as
substantiated by our experimental results in Fig. 2-Fig. 4.

Moreover, all the aforementioned works [18], [22], [37],
[46], [47], [54] require static and predetermined datasets,
making them unsuitable to online learning scenarios where
data arrives sequentially. To the best of our knowledge, no
existing work has explored LDP design for gradient-tracking-
based algorithms in an online setting.

B. LDP design for online gradient tracking

We present Algorithm 1 to address problem (2) over directed
graphs under the constraints of LDP and sequentially arriving
data. The injected DP noises satisfy Assumption 4.

Assumption 4. For every i € [m] and any time t > 0, the
DP-noises ({ and 9} are zero-mean and independent across
iterations. The noise variance E[||(}||3] = (024)2 satisfies

ol =ol(t+ 1) with o > 0and ¢, € (3,1). The noise

ob(t + 1)=so
with oy > 0 and <) € (3,1). Moreover, the inequality
maxie[m]{gé,gg} < v < 1 holds, where the parameter v is
the decaying rate of stepsize A\ in Algorithm 1.

variance E[||9¢]3] = ‘(0';19)2 satisfies o} 4

Algorithm 1 LDP design for distributed online learning (from
learner ¢’s perspective)

1: Input: Random initialization 6§ € R™, sj € R", and 2 =
e; € R™, where e; has the ith element equal to one and all
other elements equal to zero; weighting matrices R, C €
R™™; stepsize Ay = ﬁ with Ao > O and v € (3,1);
and DP-noises (; and ¥} satisfying Assumption 4.
2: fort =0,1,--- ;T —1do
Using all available data up to time ¢, i.e., 5}; for k €
[0,t] and the current parameter 6, learner i computes
the gradient V f{(0]) = =5 S0 VI(6E, D).

4: Push s} + ¢/ to neighbors j € Ng% and pull sl 4+¢)
from neighbors j € N .

5:  Update tracking variable: o
Sir1 = (14Ci) s+ jenm | Cig(si+¢)+AV 1 (67)-

6:  Push 6] 4 ¥} to neighbors j € N3* and pull 0] + v/
from j € NI .

7. Update model parameter: _ _
071 = (14 Ri)0; + Zje]\/}g’i Rij(6] +9]) — H=t

. ) m(zi];
where [z}]; denotes the ith element of z;.
8:  Locally estimate the left eigenvector of R:
Zin = 2+ 2wy, Rig(2 — 20)-
9: end for

The Line 5 and Line 7 in Algorithm 1 can be written in the
following matrix form:

{ St+1 = CSt -+ CC,t + )\tVft(Gt), (73)
0:11 =RO,+Vp: — Z;1(3t+1 — 5¢), (7b)

where the matrices 0;, s;, and Z; are given by 6; =
[0F, -, 0T € R™Xn g = [sf,--+,s7]T € R™*", and
Zy=diag(m[z}]1, - -, m[2]"]m)ER™>™, respectively.

In (7b), the difference s;y; — s; is incorporated into the
parameter update. This modification effectively addresses the
issue of accumulating DP noises in global gradient estimation,
as substantiated by the following relation:

1T(3t+1 - St) = 1T(Cc,t + Atvft(et))a ®)

where in the derivation we have used (7a) and 17 C = 07 from
Assumption 1. It is clear that unlike the conventional Push-
Pull gradient-tracking algorithm (5), where global gradient



estimation y, (which is subject to accumulating DP noises
as per (6)) is directly incorporated into the model parameter
update, thereby affecting learning accuracy, our Algorithm 1
effectively circumvents this issue.

In addition, we introduce a local variable 2} in Algorithm 1
to enable each learner to locally estimate the left eigenvector

uT of R. This eliminates the need for global information

u”, ensuring that our algorithm can be implemented in a
fully distributed manner. It is worth noting that since 2}
does not contain sensitive information, adding DP noises to
it is unnecessary. Next, we present the following lemma to

characterize the error of the eigenvector estimator:

Lemma 3. [22] Under Assumption 1, the variables zg
in Line 8 of Algorithm 1, after scaled by m, converge to the
left eigenvector u” = [uy, - ,um|T of R with a geometric
rate, i.e., there exist some constants ¢, > 0 and v, € (0,1)
such that ' - i‘ <c,yL holds for all i € [m] and any

[2{]:
t > 0, where [2}]; denotes the ith element of z}.

Remark 5. Algorithm 1 avoids using weakening factors on
inter-agent interaction to attenuate the influence of DP noises,
which is key in our prior results [47] and [48] to ensure both
optimization accuracy and rigorous DP. Given that a weak-
ening factor will gradually reduce the strength of inter-agent
coupling, and hence, unavoidably decrease the convergence
speed, our algorithm can ensure faster convergence compared
with [47] and [48], which is corroborated by our analytical
comparison in Sec. IV-B and experimental results in Sec. VI.

Remark 6. In Algorithm 1, each learner updates its it-
eration variables at the same iteration count. Although this
approach may increase waiting time (as a learner needs to
wait for the slowest neighbor to complete its update before
moving to the next iteration), it ensures consistent learning
progression among learners, which simplifies the algorithmic
implementation and convergence analysis.

Remark 7. Compared with [15], [18] which consider
communication/quantization noises in gradient tracking, our
algorithm has fundamental differences in both algorithm struc-
ture and parameter design to ensure both rigorous differen-
tial privacy and accurate convergence. More specifically, in
terms of algorithm structure, we place the stepsize in the
update of tracking variables, which is necessary to ensure a
decaying sensitivity and is fundamentally different from [15],
[18] that place the stepsize in the update of optimization
variables. In terms of parameter design, we employ decaying
stepsizes, which is necessary to ensure differential privacy in
the infinite time horizon and is different from the constant
stepsize used in [15], [18]. In addition, the spectral-radius-
based convergence analysis in [15], [18] relies on the stepsize
being constant, making it inapplicable in our case where the
stepsize is varying with time.

V. ONLINE LEARNING ACCURACY ANALYSIS

In this section, we quantify the learning accuracy of Algo-
rithm 1. To this end, we present some useful lemmas.

A. Supporting lemmas

Lemma 4. [16] Under Assumption 1, there exist vector
norms ||x||g £ |Rz||2 and ||z|c £ ||Cx|2 for all x € R™,
where R C € R™*™ gre some reversible matrices', such that
IR — T lr < 1and ||C— Hc < 1 are arbitrarily close

m
to the spectral radius of R —

2 and C — % respectively.

According to Lemma 4 in [16] and [22],Twe can know that
the spectral radius of the matrix R — 1% is equal to 1 —
|vr| < 1, where vg is an eigenvalue of R. Lemma 4 indicates

T SO .

that [|R — %H g is arbitrarily close to the spectral radius
T ; . .

of R — 1:; , , 1 — |vg|. Without loss of generality, we

denote |R — || =1—pr < 1, where pgr serves as an

arbitrarily close approximation of |v|g. Similarly, we denote
IC— %HC =1— pc < 1, where p¢ is an arbitrarily close
approximation of |v¢| with vo an eigenvalue of C.
Following [16] and [22], we proceed to define the ma-
trix norms ||z = |[|@( |z, () |&)llz and yllc =
Illyylie, - lymliclllz for any matrices @, y € R™*",
where ;) and y ;) denote the ith column of x and y for
1 <7 < n, respectively. The subscript 2 denotes the 2-norm.

Lemma 5. [16] Given an arbitrary norm || -
M € R™™ gnd ® € R™*", we have
In particular, for any m € R™1 and x € R'™™", we have
[ma|| = [lm]|]|z|]2-

, for any

Lemma 6. [I16] According to the equivalence of all
norms in a finite-dimensional space, there exist constants
5F,R75R,F;50,F75R,C75F,C > 0 such thatfor all x € R™*",
we have ||z||r < dprllzlr |Z|r < orrlz|r zlc <
Sc.pllzllr lzllr < drcllzle, and |z||F < drcllzllc.

Lemma 7. The relation ayt < <z L always holds for all t > 0

and v €(0,1), where the constant a is given by a = %.
Proof. We consider a convex function f(z) =
x1n(y) R* % R, whose minimal value is f(z*) =

—2In(—j e ))+ (7 In(v) =1In(a). Hence, for any ¢ >0, we
have f (¢ )>1na ie., —21n( )—tIn(y) >1In(a), which is equiv-
alent to In(7*) < In(-}) and further implies Lemma 7. [

—2In(z) —

B. Online learning accuracy analysis

In this subsection, we analyze the learning accuracy of Al-
gorithm 1 under strongly convex and general convex objective
functions, respectively.

For notational simplicity, we define 5; = 1;?‘, 0, =
S¢=min;epy, {qC} and ¢y =min;ep,,{<j }. The following lem-
mas estabhsh the convergence properties for E[||s; — w3:||%]
and E[||@; — 16,||%] under general convex objective functions.

u 01

'As indicated in [16] and [58], R and C are determined by R and C,
respectively. They always exist but are hard to express in a closed form in
the general case. However, in the special case where R and C' are primitive
and stochastic, R and C' can be expressed as R = diag(\/7g) and C =
diag(\/7c) 1, where diag(-) denotes the diagonal matrix with the given
entries on the diagonal and ™ and m¢ denote non-1,, Perron vectors of R
and C, respectively (see details in Section II-B in [58]). A detailed discussion
on R (C) is available in Lemma 5 of [18], as well as Lemma 5.6.10 of [59].



Lemma 8. Under Assumptions 1-4 with yn > 0, the
following relation holds for Algorithm 1:
E[l|s; —wse[|3] < ca1t™2 + caot ™ + cast 72, (9)
where the constants cs1, cso, and cg3 are given in (41).
Proof. See Appendix B. O
Lemma 9. Under Assumptions 1-4 with p > 0, the

following relation holds for Algorithm 1:

E[[|0;—10,]|%] < co1t™H-coat ~2"+co3t ™2 0+coat 2%, (10)
where the constants cgi1, cg2, Co3, and cey are given in (48).
Proof. See Appendix C. O

Based on Lemma 8 and Lemma 9, we present the learning
accuracy of Algorithm 1 against the original optimal solution
to problem (2) under strongly convex objective functions:

Theorem 1. Denote 0* as the optimal solution to the origi-
nal stochastic optimization problem (2). Under Assumptions 1-
4 with j > 0, the parameters 0} in Algorithm 1 will converge
in mean square to 6%, i.e.,

E[[|6; — 6*(13] < 8x°u~ 2t~ +2C1t7F = O@t~P), (11)
for all t > 0, where the rate (3 satisfies § = min{v + 1
a,2—v—a, 269 —a, 26 —at with a € (v, 1Jr”) the posmve
constant K is from Assumption 3(ii), and the constant C1 is

given by C; = max1§i§471§j§17{09i,c(;j} with cg1 to cea
given in (48), and cg; to cgy; given in Egs. (69)-(71).

Proof. See Appendix D. O

Theorem 1 establishes the convergence of Algorithm 1
to the optimal solution to problem (2) under DP noises.
This differs from most existing DP solutions for distributed
learning and optimization [37], [40]-[46], which are always
subject to optimization errors under rigorous DP constraints.
In fact, besides ensuring convergence accuracy, our algorithm
guarantees rigorous LDP even in the infinite time horizon,
which will be substantiated in Sec. V.

Unlike most existing results on distributed online optimiza-
tion [40]-[45] which focus on dynamic or static regrets with
respect to the optimal solution to problem (3) (which only
approximates the optimal solution to (2)), Theorem 1 provides
a direct quantitative measure of the learning error with respect
to the optimal solution 8 to the problem (2) at each iteration.
Moreover, Theorem 1 shows that the convergence speed of
Algorithm 1 is O(t~#) with f=min{v + 3 — @,2 — v —
@, 269 —a, 26 —a}. This speed outpaces that of the distributed
online learning algorithm in our prior work [48] by a factor
of Ot e ) (the convergence speed in [48] is O(t=°")
with 8’=min{1—v, 2¢y—1}). In addition, the algorithm in [48]
only characterizes the deviation between the learned parameter
0} and the optimal solution 6 to an approximated formulation
of (2). Hence, Theorem 1 provides stronger and more precise
convergence than the result in [48].

Remark 8. By characterizing the constant Ch in Theorem 1,
we can obtain E[||0} — 6*]|3] < O((pf/ia + 25)t7F). It is
clear that a larger strongly convex coefffment u, a smaller

Lipschitz constant L, and larger pr and pc (i.e., better-

connected networks) lead to faster convergence.

Next, we establish the convergence result for general convex
objective functions.

Theorem 2. Under Assumptions 1-4 with pn > 0, the

objective function values F(0%) will converge in mean to the
minimal objective function value F(6*), i.e.,
(6] < U= f e

E[F(0;) — F pyyYgm——

for all t > 0, where the rate 3 satisfies f = 1 — v and the
constants cgy to Cgy are given in Egs. (84)-(86), respectively.

Proof. See Appendix E. O

Theorem 2 characterizes the convergence of F(6!) to the
minimal objective function value F'(6*). Moreover, the con-
vergence speed specified in Theorem 2 (i.e., O(t~(1~%))) is
twice as fast as that in our prior work [48], which converges at
a speed of O(t~ ) for general convex objective functions.

Remark 9. According to the definitions of Cg; to Coy
given in Egs. (84)-(86), we have E[F(0)) — F(6*)] <
O(p 3 t— (= ”)) which implies that a smaller Lipschitz con-

stant L and larger pr and pc (i.e., better-connected networks)
lead to faster convergence.

=0(t=P), (12

V. LOCAL DIFFERENTIAL-PRIVACY ANALYSIS

In this section, we prove that besides accurate convergence,
Algorithm 1 can also simultaneously ensure rigorous ¢;-LDP
for each learner, even in the infinite time horizon. To this
end, we first introduce the concept of sensitivity for learner
’s implementation A;:

Definition 3. (Sensitivity) Let D: and D;i be any two
adjacent datasets for learner i at each time instant t. The
sensitivity of learner i’s implementation A; at time t is

Aty = max  [JA(DLO7) — A(DY, 67, (13
t+1 Adi(Di D17 A (D3, 6;°) i{(Dy 50" (13)
where 0, " represents all messages received by learner i at

time instant t.

According to Definition 3, under Algorithm 1, learner
i’s implementation involves two sensitivities: A} , and Aivg,
which correspond to the two shared variables si and 6},
respectively.

With this understanding, we have the following lemma:

Lemma 10. For any given T € NV or T = oo, if learner
i injects to each of its shared variables st and 0} at each
time t € {1,---,T} noise vectors (} and ¥ consisting of
n independent Laplace noises with parameters Z/Z’C and Vti,ﬂ,
respectively, then learner i’s implementation A; is €;-locally
differentially private with the cumulative privacy budget from
time t = 1 to t = T upper bounded by Zt 1(A 2 4 At':).
Proof. The lemma can be obtained following the same line of
reasoning of Lemma 2 in [35]. O

For privacy analysis, we also need the following lemma:

Lemma 11. Denote {11} as a nonnegative sequence. If
there exists a sequence By = (tfi?)q with some By > 0 and
q > 0 such that i1 < (1—c)y+ B¢ holds for all ¢ € (0,1),



then we always have 1y < Cof; for all t € N, where the
constant Cy is given by Cy = (emzlqi))q(vo(ﬁlo ) +2).
2—c

Proof. See Appendix F. O

Assumption 5. There exists some positive constant c¢; such
that |V1(0,£9)|1 < ¢ holds for any 6 € R™ and i € [m].

Assumption 5 is commonly used in DP design for dis-
tributed optimization and learning [42]-[44].

Without loss of generality, we consider adjacent datasets D}
and D}’ that differ in the k-th element, i.e., £, in D} and &} in
D}’ are different. For the sake of clarity, the parameters learned
from D} and D;' are denoted as 6, and 6, ,, respectively.

Theorem 3. Under Assumptions 1-5, if each element
of Vi and ( follows the Laplace distributions Lap(yfﬂg)
and Lap(l/t ), respectively, with (Jz)ﬁ)2 = 2(1/,;19)2 and
(o C) =2} C)2 satisfying Assumption 4, then 0! (resp.

(9’) in the general convex case) in Algorithm 1 converges
in mean square to the optimal solution 0* to the optimization
problem (2) (resp. in mean to F(0*)). Furthermore,

1) For any finite number of iterations T, each learner
i’s implementation of Algorithm 1 is e€;-locally differen-
tially private with a cumulative prlvacy budget bounded by

Zt— (fg, S(:+1) ¢ 4 Y200( t+1) ) with 04, =2¢; szl( —

mlnze[m]{|cm|}) p)\p 1 QOS =0, and 919 = 2221(1 -

mmze[m]{|Ru|})t p(627§ T+ [us I)(st + 0p-1 S)
2) The cumulative privacy budget is finite even when
the number of iterations T' tends to infinity, i.e., when

T — oo, the cumulative privacy budget is bounded by
Z (2fc4(‘zko( z’Yz+CO) 2v2C4ci X0 (czvi+Co) ) < 00
= (t+1)1 (Co— ot (t+1)' % ’

where Cy and Cy are given in (21) and (24) respectively.

Proof. The convergence result follows naturally from Theo-
rem 1 (resp. Theorem 2).

1) To prove the statements on privacy, we first analyze the
sensitivity of learner ¢’s implementation under Algorithm 1.

Accordmg to the definition of sensitivity in (13), we have
si+¢ =7 +¢ and 67 + 9 = 07 + 9/ for each
time ¢t > 0 and j € N;. Since we assume that the k-th
data point is different between D} = {¢f, -+, &L, -+, &} and
D ={&f, -+ &, &} we have & = &7 for all p # k.
However, since the difference in loss functions kicks in at
time k, i.e., 1(6, &) # 1(0,€}), we have s; # s} and 6} # 6;".
Hence, for learner ¢’s implementation of Algorithm 1, we have

sl = ||(1+ Cii) (st — 517)
o0k (VIO E) = VIO L))
\ICARTS)

H52+1 -
At
*’fii
t+1 (VZ(@%, gk)

Letting cc =min, e, {|Cis|}, the sensitivity Aj,, | satisfies

oo IV} ) =VU6; €)1
' (15)
where we have used & = &/ for all p € [0,] and p # k.

(14)

A;Jrl,s = (1 CC)A% s

t+1

By using Assumption 5 and the relation A(ia,s = 0, we
iterate (15) from O to ¢ — 1 to obtain
Al <20, (1= co)PAp. (16)

Similarly, we use Line 7 in Algorithm 1 to obtain
61l = || (1 + Rii) (6 — 67)

Spy1) + ﬁ(si s,

1641 —

L .

o m<5;+1 -

Letting cg =min;e(, {| |} and using Lemma 3, the sensi-
tivity Aj,; 4 satisfies

A?ﬂrl,@ < (1 - CR)A;L.,G + CZ’YEALFLS + CZ’YEA;,S 1

+ AL+ Al {17

Jui] Zt4Ls T Ju [ Ttst

By using the relation AO ¢ = 0 and iterating (17) from 0 to
t — 1, we obtain

0 <Y (lmer) P (et pA) (A,

The inequalities (16) and (18) imply that for learner i,
the T-iteration cumulative privacy budget are bounded by

T V2o (41D | V2o o(t+1)%
ST Qus(tHD)C 4 ot.0(t+1)

7 7
g 0'19

+Ap 1, s) (18)

), with g, s and g, ¢ given
in the theorem statement.

2) The Lipschitz property in Assumption 3(iii) implies that
for the same data &', we can rewrite (14) as

251)\t

7 nLt\;
(I_CC)Ats_Fft A t+1 0

t+1

Apy < (19)

where in the derivation we have used Assumption 5.
By substituting (19) into (17), we have

Ai-’rl,@ < (1 —CR+ M) Aie + \ﬁAiH,s

t+1
+(2— oot 4 e LA (20)
By selecting positive constants:
C,j<mln{cR Eel and C() >max{m,ﬁ}, (21)

we multiply both sides of (19) by Cy and combine (19)
and (20) to obtain

Ao+ (CO - %) Abpis
(1 —Ch+ chter(ivat) i coﬁfm) AL,

)
+ (2= co)ent + Col1 — o) + 1) AL

QClCz’YZ)\t+2CoCz>\t

+ t+1

Since \; and +! are decaying sequences, there must exist some
Le. (tyE M) +Cov/nLtA

Tp > 0 such that <& > vnLe: (t7: ) +Covnltre 4 (2 —

t+1
co)eyt < C‘J—;C hold for all ¢ > Ty. Hence, we arrive at
A11;4—1,9 + (Co -

|u )Aiﬂ s<(1- CB)(Ai,e
+(Co = g

i 2cicavE A +2C0 e\
) tS) + zt+1 ’

(23)

for all ¢ > Tp, where we used (1 — C5)(Co — ) > Co(1—
ey 4 ‘u  according to the definitions of Co and Cs.
We further define a constant C4 > 0 as follows:

C’4=rnax{(e

max
0<t<Tp,i€[m]

14+v
4(14v) 2
ln(72fc ) 1-C3?

{ (a10+(Co-piy) AL ) (t+1) }} .

(24)

2¢cy Cz’yt At+2Coc A\



Combining Lemma 11 and (23), we obtain

L 1 i 2c cz'yz)\ +2Coci A

A:Z£+1,6> + (CO - \ui\) i-‘,—l,s <Oy (t+(1))1+v0 I 07 (25)
for all £ > 0. By using Lemma 10, we arrive at
S Al A} s) S (2\@04Cz>\0(cz’7t +Co)
L —_bLs ) <L z |
Zt:l (szﬂ + ”Z ¢ —Zt*l J%(t+1)1+v7<’ﬂ'
2v2Csci Mo (c2vE+C

aciho(czy 1+UO) )7 (26)

(Co—ip)oi(t+1)

implying that the cumulative privacy budget is finite since 1+
v — max{cj, ¢t} > 1 always holds. O

Theorem 3 proves that the privacy budget is finite even when
the number of iterations 7" tends to infinity, thereby establish-
ing rigorous privacy protection in the infinite time horizon.
We have thus shown that Algorithm 1 can simultaneously
ensure accurate learning and rigorous ¢;-LDP for each learner.
This is fundamentally different from existing DP solutions for
distributed learning and optimization [40]-[45], which allow
the cumulative privacy budget to grow to infinity, implying
diminishing privacy protection as the number of iterations
tends to infinity.

Remark 10. A key reason for Algorithm 1 to ensure a finite
cumulative privacy budget in the infinite time horizon under
diminishing noise variances is that our algorithm design leads
to diminishing sensitivity. Specifically, Lemma 10 implies that

when the cumulative privacy budget > .-, (ﬁt; + ﬁ; ) is
bounded (where A! pand At . are the sensitivities and Vt; and
I/t ¢ are the parameters of DP-noise variances for 91 and sy, re-
spectlvely) learner ¢’s implementation of an iterative algorithm
is ¢;-locally differentially private in the infinite time horizon.
According to Eq. (25), our algorithm design ensures that the
sensitivities A’ o and At o (both of which are on the order

of Ot~ (1‘“’))) decay faster than the DP-noise variances Vi
and l/t)C (on the order of O(t~ q19) and O(t~ :
More specifically, our design ensures » -, (A;*e +i) <
S, o= o))+ Ot~ (Hv- <C)) < oo by requ1r1ncg the

Vig Vi,
parameters to satisfy 14v — max{gﬁ,gg} > 1. Therefore, we
can ensure that the cumulative privacy budget is always finite.

5¢), respectively).

Remark 11. Theorem 3 proves that our algorithm can
circumvent the tradeoff between privacy and learning accuracy.
A key enabler for our algorithm to resolve this tradeoff is to
use diminishing stepsizes and DP-noise variances. Specifically,
if we use a constant stepsize (i.e., making v = 0), the
cumulative privacy budget in Eq. (26) will grow to infinity
since 1 — max{qﬁ,g } < 1 holds. Furthermore, if we use
constant noise variances (i.e., E[[|¢}[13] = E[|9]|3] = o?),
although a finite cumulative privacy budget can be achieved
in the infinite time horizon, a steady-state optimization error
(on the order of mo?) will appear in both E[||0;+1 — 6]|3]
and E[||s;+1 — s:]|3] (see Eq. (7b) and Eq. (8)), making it
impossible for our algorithm to converge in mean square to
an exact optimal solution.

Remark 12. Compared with the privacy analysis in our
prior work [48] for undirected graphs, which only involves a

Fig. 1. The interaction graph Gg of ten learners
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Fig. 2. Comparison of online logistic regression results by using the
“mushrooms” dataset. The error bar represents standard derivation.

single optimization variable, the privacy analysis here is much
more complicated due to the involvement of two optimization
variables s} and 6}, whose dynamics are strongly coupled.

Remark 13. From Theorem 1 and Theorem 3, one can see
that under a given sequence ), if noise parameter sequences
vi g and v . ensure a differential-privacy level of €;, then
scaling the sequences v; 4 and v{ - by a constant 1 >0 can
achieve any desired level of ce;-LDP without losing provable
convergence.

VI. NUMERICAL EXPERIMENTS

We evaluated the performance of Algorithm 1 through
three machine-learning applications: linear regression using
the “mushrooms” dataset and image classification using the
“MNIST” and “CIFAR-10" datasets, respectively. In each
experiment, we compared Algorithm 1 with existing DP
solutions for distributed learning and optimization, including
the DiaDSP algorithm [37], the DP-oriented gradient-tracking-
based algorithm [47], the distributed online stochastic subgra-
dient algorithm [42], the distributed online optimization algo-
rithm [44], and the distributed online learning algorithm [48].
For a fair comparison, we set the privacy budget for these
algorithms as the maximum e¢; across all learners used in our
Algorithm 1, which corresponds to the weakest level of privacy
protection among all learners. Additionally, we evaluated the
conventional Push-Pull gradient-tracking algorithm [16] (i.e.,
algorithm (5)) under the same DP noises as those used in
Algorithm 1. The interaction pattern associated with the weight
matrix R was consistent across all experiments and is depicted
in Fig. 1. The weight matrix C' was set as the transpose of R.

A. Logistic regression using the “mushrooms” dataset

We first evaluated the performance of Algorithm 1 using
l2-logistic regression based classification of the “mushrooms”
dataset [60] The loss function for learner i is glven by

10, 60) = 7 Yooty (1—bi(al) 70 —log(s((a)T6)) + 5 6%,
where N} is the number of samples at time t, s(q) = (1 +
e~%)~! is the sigmoid function defined, (a’,b’) is learner i’s

data point, and 7} >0 is a regularization parameter proportional
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Fig. 4. Comparison of neural network training results by using the “CIFAR-10" dataset.

to N}. In each iteration, we randomly selected 10 samples and
distributed them among the 10 learners.

In this experiment, we set the stepsize as \; = (¢ + 1)70-¢1
and the DP-noise variances as v} 4 = (t + 1)~ and V;(: =
(t+1)‘<2 with ¢} = gé =0.540.01¢ fori =1,2,--- ,10. The
optimal solution 0* was obtained using a noise-free centralized
gradient descent algorithm. In our comparison, we employed
the same stepsize and DP noises for the conventional Push-
Pull gradient-tracking algorithm [16]. For other algorithms,
we selected near-optimal stepsizes, ensuring that doubling
the stepsizes would lead to non-convergent behaviors for
these algorithms. In particular, the weakening factor for the
algorithm in [48] was set to v; = (t + 1)~%7, in accordance
with the guidelines provided in [48]. The weakening factors
for the algorithm in [47] were set to v1,; = (¢ +1)7% and
Y2t = (t+1)7%75, in line with the guidelines provided in [47].

Fig. 2 shows the evolution of the average tracking errors
= 21121 |67 — 6*|| [see Theorem 1]. Clearly, our Algorithm 1
outperforms existing results in terms of optimization accuracy.
Moreover, it can be seen that the DP noise indeed accumulates
in the conventional Push-Pull algorithm in [16], leading to
non-convergent learning results [see Sec. III-A].

B. Neural-network training using the “MNIST” dataset

In the second experiment, we evaluated Algorithm 1 by
training a convolutional neural-network (CNN) ResNet-18
on the “MNIST” dataset [61]. During each iteration, each
learner was trained on 40 randomly selected images. In this
experiment, we chose the stepsize as A\; = 0.6(¢ + 1)7%-61
and the DP-noise variances as V§,q9 = 0.01(¢ + 1)~ and
vie = 0.0L(t + 1)7¢ with ¢j = ¢} = 0.5+ 0.01i for
i = 1,2,---,10. We used the best stepsizes that we could

find for the existing algorithms used in the comparison. The
weakening factors for the algorithms in [48] and [47] remained
consistent with those employed in the previous logistic regres-
sion experiment.

Fig. 3 shows that the conventional Push-Pull algorithm [16],
the algorithm in [37], and the algorithm in [42] are inca-
pable of effectively training the CNN model under DP-noise
injections. Moreover, our Algorithm 1 has better training
and test accuracies than the differentially private distributed
online optimization algorithm [44], the DP-oriented gradient-
tracking-based algorithm [47], and the algorithm in [48].

To compare the strength of enabled privacy protection, we
ran the DLG attack model proposed in [28], which is a
powerful inference algorithm capable of reconstructing raw
data from shared gradient/model updates. The training/test
accuracies and the DLG attacker’s inference errors for all
compared algorithms are summarized in Table I. It can be seen
that our algorithm can provide stronger privacy protection (i.e.,
a higher final DLG inference error) and better training/test
accuracies than existing counterparts.

TABLE I
COMPARISON OF TRAINING AND TEST ACCURACIES AND DLG
ATTACKER’S INFERENCE ERRORS

Algorithms Training Test Final DLG

accuracy (%) | accuracy(%) error

Push-Pull in [16] 9.74 9.80 8.14
Algorithm in [37] 9.18 9.80 2.42
Algorithm in [42] 9.44 9.80 5.11
Algorithm in [44] 82.15 83.80 7.43
Algorithm in [47] 90.48 92.22 14.42
Algorithm in [48] 85.11 86.07 15.15
Proposed algorithm 91.98 92.62 14.85




C. Neural-network training using the “CIFAR-10" dataset

The third experiment evaluated Algorithm 1 using a CNN
model and the “CIFAR-10" dataset [62], which provides a
greater diversity and complexity than the “MNIST” dataset.
The CNN architecture and parameters were the same as those
used in the previous experiment on the “MNIST” dataset.

The results are summarized in Fig. 4, which once again con-
firms the advantage of our proposed algorithm over existing
counterparts in terms of both training and test accuracies.

VII. CONCLUSIONS

In this study, we proposed a distributed learning algorithm
under the constraints of differential privacy and sequentially
arriving data. We proved that the proposed algorithm con-
verges in mean square to the exact optimal solution, even
in the presence of DP noises and general directed graphs.
Simultaneously, we also proved that the proposed algorithm
can ensure rigorous €;-LDP with a finite cumulative privacy
budget, even when the number of iterations grows to infinity.
To the best of our knowledge, this is the first algorithm that
is able to simultaneously achieve provable convergence and
rigorous ¢;-LDP (with a finite cumulative privacy budget) in
distributed online learning over directed graphs. Experimen-
tal comparisons using multiple benchmark machine-learning
applications confirm the advantage of our proposed algorithm
over existing counterparts.

APPENDIX
1T§c,t

m

For the convenience of derivation, we define (¢ =

1§R,t*u '|9Rt Vf( )fm Vf( ):TITVT{(GM’
U:dlag(ul,--~ m), C=C— ,R= R—— Hw:I—
S =1 B Ty =U - 11T Ty =(1-45)(7!

U~1), and O’C = max,e[m]{ag.} 079 = max,;.e[m]{af;}. We
denote (-, -)¢ and (-, -) g by the inner products induced by the
norm || - [[c and || - [|r, respectively.
A. Proof of Lemma 2

Using the relationship F;(0;) < F;(6*) and the mean value
theorem, we obtain

F(07) — F(0%) < IVF(x) = VE(X) 21107 — 0712, 27)

with x = af; + (1 — a)8* for some constant o € (0, 1).
The definitions of VF;(-) and VF'(-) imply

E[|VF,(x) — VF(X)|l2]
<L A S GBIV, &) — E[VI(x, €)]l2].

Given that the data points ! are i.i.d. across iterations, we
use Assumption 3(ii) to obtain

(28)

Ym0 E (VIO ) — EIVIOGE)]l2] < wvEFT (29)

Substituting (29) into (28) yields E[|| VF:(x)—VF(x)l2] <
\/:-Ti' By using (27), we have

E[F(07) — F(07)] < Z#=E[l0; — 0[]  (30)

Assumption 2(iii) with 1 > 0 implies 4 |0; —6*(]3 < F(6;)—
F(6*). Combing this relation and (30), we arrive at £E[||0; —
0%)12] < E[||0; — 6*||2], which implies (4).

B. Proof of Lemma 8

Left multiplying both sides of (7a) by L 17 and using the re-
lation 17°C' = 0, we obtain 5,41 = (st+CC ANV FL(0:)).

Combing this relation with (7a) and Cw = 0 leads to

St41— w81 = Csi—w5p) +11u,Coy + ALV £,(8:), 3D

where we have used the definition of II,,. Using the definition
ICllc = 1—pc < 1 and the inequality (a + b)? < (1 +
€)a® + (1 + e 1)b? for any scalars a, b, and € > 0 (setting

— 1, implying 1 4+ ¢! = plc ), we obtain
(1= pc)E[||s:

where the term ®, , is given by

)\2
O o= SE ML [ZE[IV £ (O)IZ]+ T [ZE(ICe  12]-

We proceed to characterize the ®; ; in (33). By using the
definition of V£;(6), Assumptions 2(11) and 3(ii), we have

E[IVF,(0:)[3] < 2még p(x* + D?). (34)

Substituting the relation E[||¢ ¢, [|2] < mdg p Zi,j(CZ-jaf’C)Q
and (34) into (33) yields

_ 1
6—1_

E[l|st+1 —wSeqalg] < —w5||3]+ P, (32)

(33)

cI:’t,s = (tlil)mi + (t+Tf)22gc7 (35)

2még p M [IZ[[(5*+D?) A3

where 751 and 7,9 are given by 74= oG
and 7y = mog p|ITL |12 3, ;(Cij)* (ol )%, respectively.
Now, we iterate (32) from 0 to ¢ to obtain
E[[|se41 — wses ]3] < (1= po) T E[]|so — wSol|¢]
+ 3 (1= pe) PR, + By
When ¢ = 0, we have E[||s1 —w51||2] < (1 — pc)E]||so —

w3ol|%] + Ts1 + Ts2. When ¢ > 0, we estimate each item on
the right hand side of (36).

1) Lemma 7 and (¢ + 1)=2 < ¢=2 for all ¢ > 0 imply

(36)

(1—pe)E[||so — wiollg] < csot *E[llso — w3oll&], (37)

with the constant ¢y = m

2) For scalars a, b, ¢, d> 0 satisfying £ > , the relationship

b < Zi‘z < < always holds. This 1nequahty 1mphes = )2 <

p+1y2 for all p € |0,%). Using this inequality, Lemma 7, and
t g q y
the relation (241)2 < (2£1)2v (where 2 € (0, 1]), we obtain

a-sg)r 4 .
(p+1)?* = (eln(1—2¢£))2(t—p)2 (p+1)2”

_ 412V
(eln(1—2¢))2"

(38)
2, and Y00 (1—

By using inequality (38), 1—pc < (1-£8)

PCc\t—p 1- (1 ) =
=) < T—a ey a=re) < p , we obtain

t—1 (1—pc)t~P t—1 t—p 4¢~2Y
Zp:() (pi?)2v <Zp:0 ( - ;070) (eln(l—’JTC))Q' (39)
Using an argument similar to the derivation of (39) yields

S pmo(1 = po) PPy < G720 +£72%), (40)
8

pc(eln(1-L£))2"
By substituting (37) and (40), and the relationship ®; , <

with the constant ¢go =



Ts1t 2V + 750t~ 25¢ into (36), we arrive at

IE[Hst—oJEtH%] < o1t T2 +F oot T2V gt T2, 41)

where the constants cgi, Cs2, and cg3 are given by cg1 =
max{1 — pc, cs0 } E[||s0 *W§o||%~]7 Cs2 = Cs0+ Ts1, and cg3 =
Cs0 + Ts2 With 751 and 749 given in (35) and ¢, and ¢4 given
in (37) and (39), respectively.
C. Proof of Lemma 9

Left multiplying both sides of (7b) by % and using the
relations uZU~1 = 17 and u"R = uT, we obtain

T(p—1_rr—1
gt + 2 191“ - (% NELEN e (Ztm v )) (St+1 - St).
(42)

Based on dynamics (7a) and the relation Cv = 0, we have

=CO(st —w5) + (o + AV F(0:).  (43)

Substituting (43) into (42) and using the relationships 17C' =
0" and R1=(I+ R — )1—Oleadto

16241 = 10p11 (% < [[TOr,: — (T +115) C(JtHR
+[IR[&10: = 10: ]| r + (T C|| p+ TG Cl &) || 8¢ — w3t | 7
+>\t(||HUHR + [T [ 2) [V £(60) ]| &)
+2(R(0; — 16,) — (IIy + 1) C (8 — wy)
~A\(Iy + TE)VF(80), MOk — (M +TT5)Cc )
Using an argument similar to the derivation of (36), we have

E[0:1 — 10:41]1%] < (1= pr) T TE[|60 — 100]%]

0t+1

St4+1 — St

- (44)
+ 3 —0(1 = pr) PRy + Dy,
where ®, ¢ is given by
‘I’t 2] —TglE[HSt wstHC]—i- (t+1)2v +(t+1)2g19 +(t+19 250 ) (45)
2
with the positive constants 7g; = 9m, CHCHR(H;TRUHRJrHH yllk ),

2mA26% o (k2+D?)
7922% To3=2||1L, II%%FZ”(RU)Q(Uﬁ)Q’

and 794 =2y + 115 | 0%, p 32, ;(Cij) ()

When ¢ = 0, we have E[||91 —161]|%] < (1 — pr)E[||00 —
100]|%] + 101 E[|| 80 — w3ol|Z] + o2 + To3 + Toa. When t > 0,
we analyze each item on the right hand side of (44).

Using an argument similar to the derivation of (37), the first
term on the right hand side of (44) satisfies

(1= pr)"E[[|60 — 100[|%] < coot "*E[]|00 — 160]%], (46)
with the constant cgg = m

By using (9) and (45) and following an argument similar to

the derivation of (40), we obtain

Yool = pr) PPy 0 < cooE[]|0 — why 2]t
—2 +652t_2v +ngt—2§g)
20 4 Tat™ %),

+ CooTo1(Cs1t (47)

+ Coo(Taat ™2 + Toat ™

where the constants cgg is given by cgo= e T

8
onstal DY 0= 1=
to Tp4 are given in (45), and ¢y is given in (46).

Substituting (46), (47), and (45) into (44) yields
E[||0:—10.||%]< cort *+coat™ *"+cost ™ >"+coat 2, (48)

where the constant cg, cg2, cg3, and cgq are given by cg; =
max{1 — pg, coo }E[||00 — 16 ||%] + max{1, coo } o1 E[||s0 —
wSo||Z]+ 791051 (G0 +1), co2 = (Tor1cs2+T02)(Coo+1), co3 =
To3(Coo + 1), and cgq = (Tg1Cs3 + T04)(Coo + 1), respectively.

D. Proof of Theorem 1
Substituting (8) into (42) and using Assumption 4 yield

B[ — 0713 < (1 %) E[I6: — AV F(16,) - 6; 3

+ (14 2) B[N T7a8) - M6,

Wiz -1 — —
U ) (51— s0) |13 FENTRe — Coll3) 49)

The definition V7(10,) = 2219 implies VF(16,) =

VF(6;). Then, we have
16 — XV f(18:) — 07113 = [16: — 0713
=20 (VE(0,),0: — 07) + NIV E(9,)][3-
By using Assumptlon 2(111) with ¢ > 0, we have F(6;) —
F(0,) > =VF(0;)" (6, — 0;) + &||0, — 67 ||3. Combining this
relationship and Assumption 2(11) with (50), we arrive at

160 — AV F(16:) = 07113 < (1= Mep) 16 — 07 113

(50)

61V

— 2\ (F(0;) — F(07)) + N2 D2
Using the mean value theorem and (4) in Lemma 2, one has
E[F(6:) — F(0;)] > E[F(0") — F(6)] > — 225 (52)

Using Assumption 3(ii)-(iii) and the definitions of V 1:(6),
Vf(6:), and V f;(0%), we have

E[|[VF(16,) =V fi(0.)3] < 25 +20% 5

< O [Hgt — 1ét||2R] -

(53)
By taking the norm || || 7 on both sides of (43) and then using
an argument similar to the derivation of (34), we have

8041 = sell7 < 30 lICIE N5 — wsel|
+3[ICc I + 6m(x® + D*)A.
Incorporating (51)-(54) into (49) and then combining (49) and

the inequality |01 — 07,113 < (1+24) (101 — 0713+ (1+
07|3, one obtains

(54)

SN0 -

Ef|0r+1 — 074113 < (1 24) E010: — 07 13] + @, 5, (55)
where @, 5 is given by

Q5= 660(22\#; + 2003 R L*E[)|6; — 16, %]

+ 36% o lICIE lull5c2 ’YZ E[Hst

e — w5¢[[2]
+ 3H170n|\220 2t E[HCCtHF] 6(52+D;)|\U\|§C§,y§t)\t)
+2(1+)\?TM) 9R.13 3] %TOH(%\/%
+ D7) + (1+ 55 Ell67 — 07113], (56)

A2 6 8
with gy £ 204700 t8

By 1terat1ng (5%) from O to ¢ and using the relation

H (17—)<e =02, we arrive at
E[||fer1 — 6741 13] < e % 20 W E (6o — 6513]

(57)

t —snt N _
+ 21 Oprge T+ 0y g,



We estimate the ﬁrst term on the right hand side of (57).
Since (pj‘_(i), > (t+1) holds for all ¢ > p and t+1)v <
2Yt¥ holds for all ¢ > 0, we have Z 0Ap > (t+1)” (t+1) >
2,@%, which implies e% p=0v > et T . Using Taylor
expansion e” =y > L 0 TT we have that there must exist some
no € N such that e > £+ holds when z is nonnegative.
Setting ng = [-1, we have (1 —v)ng > 1, which implies

no (f#q)livt
1 [ g (1—v)ng x27
2o (83) s

Substituting (58) into the first term on the right hand side
of (57), we arrive at

e~ Simo ME[||y — 03112] < gyt

e Xh=otp (58)

(59)

o \ 72T >
where cg, is given by ¢z = (3=2)!( 2% ) " TE[||60 — 65/3]-
We proceed to analyze the second and third terms on the
right hand side of (57). We select a constant a € (v, 1£2).
t t
Since ¢~ 7 Za=ft—t=1+1 < 1 is valid and e~ T 2a=p e <

e 5 Za=re—e21 X holds for all p € [1, [t — t*]], we obtain
t Byt
2p=1 ®prge " Za=p Aq+q)t 0
t—t™ a1 Ag t _
ZL ] (I) *6 & Zq [t—ta + Zp:]'t—t“"\ (I)p,G'

We now analyze the first term on the right hand side of (60).
To this end we ﬁrst characterize the term e~ 7 2a=
Given 53w for all ¢ € [[t — t*],t], we have

(60)

[t—t] >‘q.
_,'_1)1; > (t_;’_l)v

¢
Dg=ft—to] Aa = (t+1 v (t =
where we have used [t —t%] <t—t*+1and (t+1)” < 2¥¢".
Using an argument similar to the derivation of (58), we set
ng £ [-L U] (i.e., (&« —v)ng > 1) for the Taylor expansion
to obtain e Za=ri—to1 M > i (2 )“1“ t. Then, the

(G 1) \ax2y
first term on the right hand side of (60) satisfies

)ct‘l,
(62)

S @, ge —& Zo=re- NW<(<I>09+Z

A tOL*’U
[t — 107 4+ 1) > 2"

(61)

where the constant c is given by ¢ = (=2E1)! (4‘;%

To proceed, we need to estimate an upper bound on ®, 5
in (56). To this end, we first prove the following relations:

1) By using (10) and ¢=2Y < 4%(t 4+ 1)72%, we have

ME [[16, — 18,)1%] < >\0<(t e (=
4°Ccoy )
(t+1)"7¢ )
16x24

ST 2t 16
2) Lemma 7 implies 72" < Ty < (e yiarne
Combing this relationship with (9) in Lemma 8, we obtain

(63)

4°9 co3
T T

16><24(C‘91t 2+C82t 2v +cg3t™ —32 C)
No (e TR T

Wft E [|ls: —wsil3] <

16x24 )\

3) Lemma 7 implies 2/ \; < W
4) Using the relation E[||0;, , — 6; [|3] < 16(;175?)(2/172 +
L~ ) from Lemma 1 in [48] yields
E[107,—6; 115 16(s24D%) [ 2 1
[ By < o= (P * ﬁ) 64)

Substituting (63)-(64) into (56), we obtain

_ 761 T92 793 Tha
o < e T e T me e

75 Th6 Tor T8
ey T (t+1)6*"’ tEryT T
7612

R G Vel Ve

7913

(t+1)"F 3 (65)

+ il el e

Where 7'91 = Qégoﬁ )\0, T92 = 4r~ 0916FRL27-§I7 Tgs =

v— -1 _
4 c(91 0927'92, 79474 c‘91 CO3Tga, Tos=4¢" 091 CO4Tg2, Toe=—

3x2! Cslceo‘chHCHcHuH _ _ 4Ycs27gg - _4%€Ccs3Tge
m2Xo(eln(y:))*% s TOT= dcgy 08T dcg 0 109
3x2% gy [|ul|3c2 Zi,j(CiJ)Q(Uz—)Q B 3x2%¢50 (k2 +D?)||ul|2c2 /\0
mZXo(en(72))? > To10 = m(eTn(:))"
(A+dow) 3, 5 (Riy)*(0d)? (A+dow) 3, ( i) (0 d)?
To11 = 2 79212 = >
A _ _ ZgouA3D _ 16(x> +D YL+ )
To13 = CgoDKAo, Tgra = 1 > Te15 = W22
___A1s
and 751 = o

By plugging (65) into Zp 1 ®, 5, we can estimate the
second term on the right hand side of (62). To illustrate this
idea, we use Y7 74 (p+1)7' 7" as an example:

o0 Tél [ee] Tgl
Dopet (CESVIET < i de

Applying an argument similar to the derivation of (66) to

<aropeare (66)

. . [o'e) .
the other items on the rlghg hand gf 121):1 @57(1 y1<1alds
oo T§12U T§22v T§32 v T§42 YTV

Zp S 1 ?p ? < ’g + ’U+13 + 321)—1 +3+ U+22§19—1+3
Tg52°°¢ + Tg2° " + T5,2" T + Tgg2 "¢ " Tge2 ¢
v+2¢c—1 5—wv v+3 2¢¢c—v+3 2¢c—v+3
7'@1021}+3 T§1122§’97 7'9’1222%71 "'§13271_% 7'9’14221}71
v+3 + 2{19 1 + 2¢¢—1 + y—% + 20—1 +
791@2 / L =16
27515 + = /. Combining &, 5 = > .2, 75, with (62)

yields that the first term on the right hand side of (60) satisfies

ZLt t JCI) e — & X =ri—ta1 Ag < C§2t_1a (67)

. a—v Ao | —— 16
with cgy = (ST (f555) == (3252, i +¢).

By plugging (65) into Z —t—to] @, 5, we can estimate the
second term on the right hand side of (60). To illustrate this
idea, we use 221: [t—te 762 (p—li— 1)~v=2 as an example: Since
the relation e < (H A ERy L holds for all p e ([t —
t*],t] and any a € (v, 11¥), we have Zp [t—to] W <
W(t—[t—t“] 1). Since [t — t*]+1>t(1 — )
is valid for all a € (0,1), we obtain

27,1~ (VH2)
(1—a)v+2

Zt To2 T (741
p=[t—t](p+ 1) > = T2 (1—)* T2 =

(68)

Using an argument similar to the derivation of (68) to the
other items on the right hand side of Z;: ri—to] Ppg yields

Z;:[t—to‘] (I)p’g < CgStOé*(UJrl) + Cg4ta*(v+2) + cg5ta*30
+ C§6taf(v+2w) + Cé7taf(v+2cg) + Céstaf((ifv)
+ Cégta—(1)+4)+cg_10ta—(4—v+2gg)+Ce_11ta_

+C§13ta_(v+%)+0‘ ta—21)+c_15ta—2+cél to¢—(2—v)7

2 -2
7 tegrat® T

(69)

where cg3 = W’ 094 == a)u+2’ Cos = (1 a)Sv» Co6 =
2754 Con— 275 . 275 s _2(7'97+7910)
(1 a)1;+2s0’ o7 (17 )v+2<<a 08— (1 Q)G vy L99 (1 a)v+4 )
2(7gs+7g0) 27914 214 o
€010~ (1_q) T H2 C911 (1,,1)2%, Co12 = (17(1)2%, Co13 =
27913

(1—a)"*%

27516

_ 27415 dcr .=
> €14 = (1_a)2v » €15 = [T_q)2> AU Cg16 = T_o)2-5-



Substituting (67) and (69) into (60) and then plugging (59) 3) Using an argument similar to the derivation of (34) yields
and (60) into (57), we arrive at T, < 2(/{2 n Dz))\?,s. a7

(|41 — 0711113] < (cgy + cga)t ™ + cggt®™ Y
116241 a_t(:i!)z] (69;_31}692) i (Cfizc : ootz 4 By utilizing Assumption 4, (76), (77), and the relation
+ cgut + cgst + cgel "+ cgrt " 2(a,b) < |lal|® + ||b]|? for any vectors a and b, we have

_ pa—(6—v) _ ja—(v+4) _ go—(4—v+2¢¢) _
e T Py < 2062 + DY, + 61203 o\ [0, — 10,3
+ guat T2 4 gyt T2 4 cgpatT (02 W12 2t 12622
o a—2v 612a_2 01;_(2_“) + 2”,,!‘22 ‘Wf(t )E“|5t+175 - Stfs”%‘] + tferlIS :
+ cprat +cgist” T+ carpt . (70)
5) By using A tion 4 and (76) and defini —
for all £ > 0, where the constants cg; is given in (59), cg, 1S )1 y us.l I;lg ssulm puion Egl .( ) and defining a;
L ) ) L st With r € (3,v), we obtain
given in (67), cg3 toO Cgig are given in (69). (
By plugging @, 5 = >_;_; 7g; into (55), we obtain Ds < ap_ s M- sE[||0p—s — 9*”3]
— % 252 2 _ K2 2
E[[16: - 6513 < ca17, (7 + SRRt B16, - — 10 [F] + e
. A n ® 16 t—s
with cgr7 = (1= 24)E[[|60 — 05113] + 3.2, 74:- + 2elEe 20 prg s I3
By using Lemma 5 and Lemma 6, we obtain e Grmettes
_ _ ; &1 1
160 16713 < 203,16, — 18,1 + 2mf, — 653 (72 O BY defning s = gy With 7 € (5, 0), we have
Taking the expectation on both sides of (72) and combining Po < =20 E[F(0;41) — F(67)] (78)
the result with (10), (70), and (71), we arrive at + )\tfsatfsE[Hétfs _ 9*\\3] + %
i g2 2 —2 —2v -2 —2 o
E[||0;—07115) < 207 & (cort™*+cont™*"+cost " +coat™ ) gubgtituting (76)-(78) into (74), we arrive at
+ 2m( max{cg,, Cgy, Cg17 1L+ cgat® VT g 00702 - N i .
ot o ot T et Ellfes1-c — 0°13) < 2 BIFGL) - PO
O s T L . (1 + 20 sy s )E[||f—s — 07[12] + Dy_s,
+ Cgol™ T T+ cauot™ T et T+ cgpat® T o
o, y _2 ot where the term ®,_, is given by
+ cgat® T T+ cgrat® T+ cqust® T + et ), -
T3) @y = 6L20% 5 (228, + 2= )E[61- — 10, 3]
for all ¢>0. Here, the constant « satisfies a € (v, 152). 5 o -
Substituting (4) and (73) into the triangle inequality |6} — + M (273(%5) + Wf“’/\_s) )E[H«Stﬂ—sfst—s”zp]
0* 1|3 < 2[|07 — 07 1|3 + 2(|0; — 6*||3, we arrive at (11). m? et
20ull3(05)? 32, (Riy)* | 2(0)* 3, ;(Ciy)?
E. Proof of Theorem 2 + m2(t—s+1)2%0 m2(t—s+1)2¢
For the convenience of derivation, we introduce an auxiliary K2(2403_, + %)
variable s € [0,t]. By plugging (8) into (42), we obtain +4(k* + DA, + CErEsy— (80)

E[|fis1—s — 0%||2] <E[|0,—s—0%[2] + 320, Ty, (74) We define t =t — s+ 1 for all ¢ > 0 and drop the negative
term —2\,_ E[F(0;,,) — F(6*)] to rewrite (79) as follows:

E (17 — 07[13] < (1 +2XA;—1a;-1)E [[|05—1 — 07[|3] + i1
(81)

where I'y to I'¢ are given by
Iy = E[Hkt—svﬁ—s(lét—s) - )\t—svft—s(et—s)
_wlz - 2 By iterating (81) from O to ¢ — 1, one yields
B y g y

™ (St+1fs*8tfs)”2
Ly =E[[0r-s = Cou-sllz], Ts =E[|XN-sVFis(10-s)l2],  E[|§7—6%(3] < (TT =6 (1+2Xpa,)) (E[]|00—0% 13+, ©p)-
l_‘4 - 2At—sE[<vft—s(19t—s)_Vft—s(at—s)+19R,t—s_CC,t—s i—1 2\ (82)
Tyt g1 _ _ Since In(JTL_H(1 + 2M\pa,)) < 220049 §s valid, we have
u' (Z, - U") p=0 p='p r4+ov—1
- T(stﬁ»lfs_stfs),)\tfsvftfs(]-etfs)>:|7 i—1 22 (r+v) L .
_ . _ _ _ [I,=0(1 +2X,a,) < e vro=T". We use this inequality and
D5 =2E[(0—s — 0", M sV is(10r—s) = sV frs(8:-:) replace t with ¢t — s + 1 to rewrite (82) as follows
9 C 7MT(Z:7157U_1) — r+v _
+19R_,tfsfcc;,tfs* o (St+175*8t—8)>]7 ]E[Hot—9+1*9*H§] < eQig(vj’l> (E[||9079*H§]+ZZ=0 q)t—s>7
FG = 2]E[<9t75 -0 ,>\t75Vft75(16t75)>2]~ (83)

(75) . .. t—s ot
We further characterize each item in (75): where in the derivation we used 3~ ®, = Zstzo Pys.
1) By using Assumption 3(iii) and Lemma 3, we have We proceed to estimate an upper bound on ) _ ®; :
. . . . 2 Ar—s
9 2 _ ) 126202 1) Considering that a;— s \:—s< Mg implies A\j_ < atis)\o,
1 < 6L705 pAi o E[l|0:—s — 10r—[[7] + 537 we combine (10) and (t — s + 1)? <2P(¢ — s)P to obtain
2(ull3¢2  2(t—s) _ 2 _
+ ==z E[lIseri-s — si—sllF]- (T6) 61263, 5 3! (22 A+ 2=5)E[|0,— 10, | %] < o1, (84)

2) Based on the definitions of Jr ;s and J¢c s, we have

I 4 —r+2) | 4%ceo(3u—
20 432 2 +42 2 with co1 = 6L26%aR)\0(2)\0 + 1)( Ceil)(fvrﬁfl ) + ;zi(r’ilr) +
L, < 2[|ull3(og) ZLJ(Ru) 2(”() Zi,j(cij) 459 coz(v—r+25y9) + 4<<cg4(v—r+2§<))

2 = m2(t—s+1)2 m2(t—s+1)2§< . v—r+2¢9—1 v—r+2¢c—1




2) The relation a;—sA\;—s < A implies 7
Using this relation, (54), Lemma 7, and Lemma 8 yields

2 t 2(t— 2(t=s) _
Alges 5t (272 2 8041 —s—s1-s 3] <o,

with g _ 2(9||1ZH2)C§)(42/\(12+1)(12‘5%,c“c“200s1(6—71—r)
In(~y: m2Xg S5—v—r

(38x4Y6% ¢ ICIIZ cs2) (4+v—T) n (6m(s24+D?)X2)(4+v—r)

3+v—r

3+v—r
;(Ci)* (e ) (a425c— U—T))

+
_|_

(8x4% 8% clICIZess+3 5,
3+2§< v—r
3) Applying the relation Zs:o

L < -2- to the rest
p—1

=ty =
of terms on the right hand side of Zt: ®,_, yields

2y, (Ci)?
Syl e

R2(240F 4, Tt
(t—s+1)
lull3(ed)? 32, (Rij) so LGP (C")2<£85)
9 i,j \ttij i, \&ig
m2(2¢9—1) + m?2(2¢c—1) +
8uN2(k2+D?) | 1252 (20+1)AZ | 13x2Xo(v+1-7)
2v—1 v + v—r :

Summing up both sides of (84)-(85) yields Zi:o P, =
23 cg;. Further substituting this relationship into (83), we
have ]E[||9t sr1 — 07]|3] < & for all s € [0,t], where ¢ =

22 (r+ % 3 _
e T HT (B [[|60 — 0*[13] + S0, Go)-
We sum up both sides of (79) from 0 to ¢ to obtain

23 o M—sE[F(011) = F(0")] < (1+2X0)E[|180 — 07|3]

¢ 2lull3e)? 2, (R
2970 m?2 (19 s+1)%0 )

+ 3o 42+ DA,

Sée?n

with cg3 =

+ o JE[||0 s — 0%]12] < Gou, (86)
27g(r+v)
2(v+r)e THv-1

where g4 is given by gy = el (E [||§0—0*||§]+
S22 @0i)+(142X0)E[||§o—6* ||3]. Using the relation 2Xo((¢+
2)17v—1)>2X0(1 — 52 )(t+1)' 7, we arrive at (12).
FE. Proof of Lemma 11

We first prove the following inequality for all p € [0, ¢]:

== co(l-35)", (87)

where the constant ¢ is given by ¢y = ( %
When constants a, b, c,d > 0 satisfy < < 2 , the relationship

d < ct+d c

b

<2 always holds. This 1nequal1ty further implies

EIH(QEC))Q

t+2—p _ t4+1—p+1 1 t—p+1 1
GT = triptp 2 p and —pi2 > 5. Therefore, we have
Be _ (t=p+l 1
7= ()" 2 me (88)
Consider a convex function f(z) = —¢In(z) —zIn(1-5) :
R+ — R (where RT represents the set of positive real
numbers), whose derivative satisfies f'(z) = —Z —1In(1 - §),
implying the minimum point at * = —ﬁ with the min-
2

imal value f(z*) = —qIn (— ]n(qu%)) + ln(qu%) In(1-%)=
In(co2?). Hence, for any p € N*, we have f( ) > In(cp29),
which is equivalent to In (1 — §)?) < In(577). Combining
this relation with (88) yields (87).

By iterating ¢1 < (1 — ¢)tp; + B¢ from O to ¢, we obtain

iy < (=o)L =)'+ 3o Bip(l — ). (89)
By usting (1—c)? < (1—5)%, we have Z;=o Br—p(l—c)P <
B> o %:” (1 — £)?r. Based on (87), one yields

S Byl < By (1 8)P < 2

— cco

(90)

Using again inequality (87), we obtain

(1= o)t < (1 - £) 9o < -,

Substituting (90) and (91) into (89), we arrive at ¥; <
= (wO(l °) + ) Bt—1. Further using the relationship 5;_1 <
24, and the deﬁnltlon of ¢q yields Lemma 11.

€2y
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