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Abstract—Distributed online learning has been proven ex-
tremely effective in solving large-scale machine learning problems
over streaming data. However, information sharing between
learners in distributed learning also raises concerns about the
potential leakage of individual learners’ sensitive data. To mit-
igate this risk, differential privacy, which is widely regarded
as the “gold standard” for privacy protection, has been widely
employed in many existing results on distributed online learning.
However, these results often face a fundamental tradeoff between
learning accuracy and privacy. In this paper, we propose a locally
differentially private gradient-tracking-based distributed online
learning algorithm that successfully circumvents this tradeoff.
We prove that the proposed algorithm converges in mean square
to the exact optimal solution while ensuring rigorous local dif-
ferential privacy, with the cumulative privacy budget guaranteed
to be finite even when the number of iterations tends to infinity.
The algorithm is applicable even when the communication graph
among learners is directed. To the best of our knowledge, this is
the first result that simultaneously ensures learning accuracy and
rigorous local differential privacy in distributed online learning
over directed graphs. We evaluate our algorithm’s performance
by using multiple benchmark machine-learning applications,
including logistic regression of the “mushrooms” dataset and
CNN-based image classification of the “MNIST” and “CIFAR-
10” datasets, respectively. The experimental results confirm that
the proposed algorithm outperforms existing counterparts in both
training and test accuracies.

Index Terms—Decentralized online learning, local differential
privacy, directed graph, gradient tracking.

I. INTRODUCTION

Machine learning is rapidly reshaping the landscape of var-
ious engineering domains, ranging from wireless sensor net-
works [1], autonomous driving [2] to image classification [3].
Different from the conventional centralized learning scheme,
where all data are stored on one device, distributed learning
enables multiple participating learners to cooperatively learn
a common optimal solution while each participating learner
only trains on its own local dataset. Hence, compared with
centralized learning, distributed learning provides inherent
advantages in scalability and privacy, and thereby has garnered
increased attention over the past decade [4]–[7].

In existing distributed learning approaches, the most com-
monly used algorithm is distributed stochastic gradient descent
(DSGD) [8]. While DSGD is communication-efficient and
simple to implement, it suffers from slow convergence when
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data are heterogeneous among learners [9], [10]. To mitigate
the issue brought by data heterogeneity, gradient-tracking-
based distributed optimization algorithms have emerged [11]–
[15], which replace the local gradient in every learner’s update
in DSGD with an estimated global gradient. Besides the
classical gradient-tracking approach which requires balanced
network topologies, this approach has also been extended to
the case with general directed network topologies in both
others’ works [16]–[21] and our prior work [22]. All aforemen-
tioned gradient-tracking-based algorithms consider a fixed and
static objective function, which, in machine learning, amounts
to requiring all training data to be available beforehand.
However, in numerous real-world applications, the data are
sequentially acquired [23], which prompts the investigation of
online gradient-tracking-based algorithms [24]–[26].

Moreover, in existing online gradient-tracking-based al-
gorithms, repeated message exchanges are required among
neighboring learners, which poses significant privacy threats to
individual learners’ sensitive datasets. As shown in [27], [28],
even though raw data are not shared during distributed training,
external adversaries could infer individuals’ sensitive infor-
mation from shared messages. To address privacy concerns
in distributed learning/optimization, various approaches have
been proposed. For example, partially homomorphic cryptog-
raphy has been widely considered in distributed optimization
[29]. But this approach incurs a high communication and
computation cost. Another approach involves the injection of
spatially- or temporally-correlated noises to obfuscate infor-
mation shared in distributed optimization [30]–[34]. However,
to protect the privacy of a learner, this approach requires this
learner to have at least one trustworthy neighbor, which is
undesirable for fully distributed applications. As the de facto
standard for privacy protection, differential privacy (DP) is
gaining increased traction, and has been employed in many
distributed learning and optimization algorithms [35]–[47].

Most existing DP solutions for distributed learning and op-
timization only consider undirected or balanced graph topolo-
gies [35]–[37], [40]–[42]. Recently, results have emerged
on DP design for distributed learning under directed graph
topologies, for both online learning [43]–[45] and conven-
tional (offline) learning where data are predetermined [46],
[47]. However, existing results on differentially private dis-
tributed online learning over directed graphs usually build
on the combination of push-sum [43] based or eigenvector-
estimation [44], [45] based and DSGD, which limits their
achievable convergence speeds. To the best of our knowledge,
no results have been reported on DP design for gradient-
tracking-based online learning over directed graphs.
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Another limitation with existing DP solutions [35]–[37],
[40]–[46] for distributed learning and optimization applica-
tions is that these solutions are subject to a fundamental
tradeoff between privacy and learning accuracy. Recently, our
work [47] for distributed offline optimization successfully
circumvents this tradeoff and achieves both optimality and
privacy. Nevertheless, the gradient-tracking-based approach
therein relies on incorporating two weakening factors (two
decaying sequences that are multiplied on coupling weights to
make the weights decay with time) into inter-agent interaction
to mitigate the impact of DP noises, which consequently slows
down algorithmic convergence. Furthermore, this approach is
designed for an offline setting, where all data are predeter-
mined. Our recent work [48] proposed a local differential
privacy (LDP) approach for distributed online learning that can
ensure learning accuracy and privacy simultaneously. How-
ever, this approach requires undirected graphs. In addition,
it also hinges on a weakening factor, which significantly
decreases the speed of algorithm convergence.

In this work, we introduce an LDP approach for distributed
online learning over directed graphs that ensures both learning
accuracy and rigorous LDP (with the privacy budget guaran-
teed to be finite even when the number of iterations tends
to infinity). Specifically, we first modify the conventional
architecture of gradient tracking to ensure learning accuracy
despite the presence of DP noises. This modification is crucial
because DP noises will accumulate in the estimate of the
global gradient in conventional gradient-tracking algorithms.
In fact, in the presence of DP noises, the variance of accu-
mulated noises will grow to infinity in conventional gradient-
tracking-based distributed optimization, which significantly
affects learning accuracy, as confirmed in our theoretical
analysis in Sec. III-A and experimental results in Sec. VI.
It is worth noting that while the approach in [18] for offline
optimization can prevent the accumulated noise variance in
gradient estimation from growing to infinity, it cannot entirely
eliminate the influence of noises on optimization accuracy.
In contrast, our algorithm effectively eliminates the influence
of DP noises on local gradient estimation, and thus ensures
accurate convergence. Then, we prove that the proposed
algorithm can ensure LDP with a finite cumulative privacy
budget, even in the infinite time horizon. Furthermore, by
leveraging the online eigenvector-estimation technique in [49],
our proposed algorithm enables each learner to locally estimate
the left normalized Perron eigenvector of the interaction graph,
which allows the treatment of imbalanced graphs and hence
applications in general directed networks. To the best of our
knowledge, this is the first work that successfully achieves
LDP in gradient-tracking-based distributed online learning and
optimization over directed graphs. The main contributions are
summarized as follows:

• We prove that the proposed distributed online learning al-
gorithm converges in mean square to the optimal solution,
even when the DP noises are present and the communica-
tion graph is directed. Note that existing online gradient-
tracking algorithms in [24]–[26] employ the conventional
gradient-tracking approach, which is susceptible to noises

due to the accumulation of variance in gradient estimation
[18], [22], [47].

• In addition to ensuring accurate convergence, our algo-
rithm also achieves rigorous LDP with a finite cumulative
privacy budget, even in the infinite time horizon. This
stands in stark contrast to most existing DP solutions
for distributed learning and optimization [35]–[37], [40]–
[46], where the cumulative privacy budget grows to infin-
ity as the number of iterations tends to infinity (implying
diminishing DP protection). A key enabler for our ap-
proach to ensure a finite cumulative privacy budget in the
infinite time horizon is to employ diminishing stepsizes
rather than the commonly used constant stepsizes.

• Compared with existing DP solutions for distributed
learning and optimization in [35]–[37], [40]–[42] which
require balanced network topologies, our proposed algo-
rithm is applicable to general directed network topologies.

• The adopted LDP framework preserves agent-level pri-
vacy for each learner’s dataset without relying on any
trusted third parties. This differs from the traditional DP
framework employed in [35]–[37], [40]–[47], where a
“centralized” data aggregator is implicitly assumed to
determine the amount of injected noises.

• Different from our prior results in [47] and [48] relying on
weakening factors in inter-agent coupling to ensure both
learning accuracy and privacy, which unavoidably reduce
the speed of convergence, our algorithm here avoids using
any weakening factors, and hence can attain faster conver-
gence speed, as confirmed in our analytical comparison
in Sec. IV-B and experimental results in Sec. VI.

• We evaluate the performance of our algorithm using mul-
tiple benchmark machine-learning applications, including
online logistic regression of the “mushrooms” dataset
and image classification of the “MNIST” and “CIFAR-
10” datasets, respectively. Moreover, the experimental
results show that compared with existing state-of-the-art
DP solutions in [37], [42], [44], [47], [48], our proposed
algorithm provides better training and test accuracies.

The rest of the paper is organized as follows. Sec. II intro-
duces some preliminaries and the problem formulation. Sec. III
proposes our LDP approach for online gradient tracking. Sec.
IV analyzes the learning accuracy of the proposed algorithm.
Sec. V establishes rigorous LDP guarantees. Sec. VI provides
experimental results. Sec. VII concludes the paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations

We use Rn to denote the n-dimensional real Euclidean
space and N (N+) to denote the set of non-negative (positive)
integers. We write 1n and In for the n-dimensional column
vector of all ones and the identity matrix, respectively. For
an arbitrary vector x, we denote its ith element by [x]i. We
write ⟨·, ·⟩ for the inner product of two vectors and ∥·∥ for the
standard Euclidean norm of a vector. For an arbitrary matrix
A, we denote its transpose by AT and its Frobenius norm
by ∥A∥F . We also use other vector/matrix norms defined under
a certain transformation determined by a matrix W , which will
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be represented as ∥ · ∥W . We write P[A] for the probability
of an event A and E[x] for the expected value of a random
variable x. The notation ⌈a⌉ refers to the smallest integer not
less than a and ⌊a⌋ represents the largest integer not greater
than a. We use Lap(ν) to denote the Laplace distribution with
a parameter ν > 0, featuring a probability density function
1
2ν e

−|x|
ν . Lap(ν) has a mean of zero and a variance of 2ν2.

We abbreviate independent and identically distributed by i.i.d.

B. Network model

We model the topology of the network over which learners
communicate with each other as a directed graph G = ([m], E),
where [m] = {1, · · · ,m} denotes the agent (learner) set and
E ⊆ [m]×[m] represents the edge set consisting of ordered pairs
of agents. Given a nonnegative matrix W = {wij} ∈ Rm×m,
we define its induced directed graph as GW = ([m], EW ),
where (i, j) ∈ EW if and only if wij > 0. For a learner i ∈
[m], it is able to receive messages from the learners in its in-
neighbor set N in

W,i = {j ∈ [m]|wij > 0}; Similarly, learner
i can also send messages to learners in its out-neighbor
set N out

W,i = {j ∈ [m]|wji > 0}. Graph GW is called strongly
connected if there exists a directed path between any pair
of distinct learners. In this paper, we consider a gradient-
tracking-based algorithm which maintains two optimization
variables [16] that can be shared on two different graphs. We
represent the two directed graphs as GR and GC , which are
induced by matrices R∈Rm×m and C∈Rm×m, respectively.

Assumption 1. The matrices R ∈ Rm×m and C ∈ Rm×m

have nonnegative off-diagonal entries, i.e., Rij≥0 and Cij≥0
for all i ̸= j. Their diagonal entries are negative, satisfy-
ing Rii=−

∑
j∈N in

R,i
Rij and Cii=−

∑
j∈N out

C,i
Cji, i.e, R1 =

0 and 1TC = 0T . Moreover, the induced graph GR is strongly
connected and GCT contains at least one spanning tree.

Assumption 1 is weaker than requiring both GR and GC
to be strongly connected in [43]–[45]. We have the following
lemma on matrices R and C:

Lemma 1. [16] Under Assumption 1, the matrix R ≜ I+R
has a unique positive left eigenvector uT (corresponding to
eigenvalue 1) satisfying uT1 = m, and the matrix C ≜ I+C
has a unique positive right eigenvector ω (corresponding to
eigenvalue 1) satisfying 1Tω = m.

C. Local differential privacy

Differential privacy guarantees that when two datasets differ
by only one data point (record), the output of a DP imple-
mentation does not reveal whether that specific data point
was utilized. This property makes it difficult for an external
adversary to identify individual data entries among all possible
ones, thereby providing strong privacy protection.

In this paper, we consider an agent-level LDP framework,
and thus, changes in a dataset are formalized by an adjacency
relation pertaining to the local dataset of learner i ∈ [m]:

Definition 1. (Adjacency) For any t ∈ N+ and any learner
i ∈ [m], given two local datasets Di

t = {ξi1, · · · , ξik, · · · , ξit}

and D′i
t = {ξi1, · · · , ξ′

i
k , · · · , ξit}, Di

t is said to be adjacent to
D′i
t if there exists a time instant k ∈ [1, t] such that ξik ̸= ξ′

i
k

while ξip = ξ′
i
p for all p ∈ [1, t] and p ̸= k.

Remark 1. Our definition of adjacency corresponds to the
so-called event-level LDP in the literature [50]. For any given
t, it allows m entries in the global datasets of all learners to
be different, and is more stringent than most existing results
using the traditional centralized version of DP (e.g., [41]–
[45]), where for any given t, only one data entry is allowed to
be different. It is also worth noting that allowing one learner to
have all data entries to be different (called user-level DP [50])
has been proven infeasible in distributed optimization/learning
under the local model of DP [50]–[53].

According to Definition 1, two local datasets Di
t and D′i

t

are adjacent if and only if they differ by only one entry
while all other entries are the same. We denote the adjacency
relationship between Di

t and D′i
t by Adj(Di

t,D′i
t ). With this

understanding, we formally define LDP as follows:

Definition 2. (Local Differential Privacy) We say that an
implementation Ai(Di, θ−i) of a randomized algorithm by
learner i provides ϵi-local differential privacy if for any
adjacent datasets Di and D′i

t , the following inequality holds:

P[Ai(Di, θ−i) ∈ Oi] ≤ eϵiP[Ai(D′i
t , θ

−i) ∈ Oi], (1)

where θ−i denotes all messages received by learner i and Oi

represents the set of all possible observations on learner i.

The privacy budget of learner i’s implementation is quan-
tified by ϵi. It can be seen that a smaller ϵi indicates closer
distributions of observations under adjacent datasets, thereby
ensuring a higher level of privacy protection.

Remark 2. The conventional centralized DP framework
used in [35]–[37], [41]–[47] implicitly assumes mutual trust
among learners to cooperatively decide each learner’s DP-
noise needed to satisfy a global privacy budget ϵ. In contrast,
our LDP framework removes the need for such trust and allows
individual learners to independently set (potentially heteroge-
neous) privacy budgets ϵi and choose the corresponding DP
noises according to their individual needs. Therefore, our LDP
framework provides a stronger and more user-friendly privacy
framework.

D. LDP approach for distributed online learning

We consider a distributed online learning problem involving
m learners. Each learner only has access to its own private
dataset. At each iteration t, learner i ∈ [m] acquires a data
point ξit = (ait, b

i
t), which is independent and sampled from

an unknown time-invariant distribution Pi. Using the sample
ait and the current model parameter θit, learner i predicts a
label b̂it = ⟨θit, ait⟩ with an associated loss l(θit, ξ

i
t), which

quantifies the deviation between b̂it and the true label bit. This
loss prompts learner i to update its model parameter from θit
to θit+1. The objective is that, based on sequentially acquired
data, all learners converge to the same optimal solution θ∗ to
the following stochastic optimization problem:
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minθ∈RnF (θ), F (θ) =
1

m

m∑
i=1

fi(θ), (2)

where fi(θ) = Eξi∼Pi

[
l(θ, ξi)

]
represents the local objective

function of learner i.

Assumption 2. (i) Problem (2) has at least one optimal
solution θ∗; (ii) the gradients of local objective functions are
uniformly bounded, i.e., there exists some positive constant D
such that we have ∥∇fi(θ)∥ ≤ D for all i ∈ [m] and θ ∈ Rn;
and (iii) for any θ1, θ2 ∈ Rn, there exists some µ ≥ 0 such
that F (θ2) ≥ F (θ1)+∇F (θ1)T (θ2−θ1)+ µ

2 ∥θ1−θ2∥
2
2 holds.

Assumption 2(iii) represents a strongly convex (when µ>0)
or a convex (when µ = 0) condition on the global objective
function F (θ), which is weaker than requiring all local objec-
tive functions fi(θ) to be strongly convex (see, e.g., [40], [41],
[46], [54]) or convex (see, e.g., [42]–[45]). Many loss func-
tions in machine learning satisfy this assumption, with some
typical examples including the linear regression loss F (θ) =
1
m

∑m
i=1(b

i − (ai)T θ)2 and the cross-entropy loss F (θ) =
− 1
m

∑m
i=1(b

i log(σ((ai)T θ)) + (1 − bi) log(1 − σ((ai)T θ))),
where σ(p) = 1

1+e−p is the sigmoid function and (ai, bi)
represents learner i’s data point. When a regularization term
λ
2 ∥θ∥

2
2 is added to these functions (to balance overfitting and

underfitting a model during training), they become strongly
convex.

We also need the following assumption, which is a standard
assumption in distributed stochastic optimization [12], [25].

Assumption 3. We assume that the data points {ξit} are
i.i.d. across iterations. In addition, (i) E[∇l(θ, ξit)] = ∇fi(θ);
(ii) E[∥∇l(θ, ξit) − ∇fi(θ)∥22] ≤ κ2; and (iii) ∥∇l(θ1, ξit) −
∇l(θ2, ξit)∥2 ≤ L∥θ1 − θ2∥2 for any θ1, θ2 ∈ Rn.

Assumption 3(iii) implies that the function l(θ, ξit) is L-
smooth. This condition is commonly used in differentially
private distributed learning [38]–[40] and is satisfied by many
loss functions used in machine learning [55].

Since the local objective function fi(θ) is defined as an
expectation over random data ξi sampled from an unknown
distribution Pi, it is inaccessible in practice and an analytical
solution to problem (2) is unattainable. To tackle this issue,
we focus on solving the following empirical risk minimization
(ERM) problem with sequentially arriving data:

minθ∈RnFt(θ), Ft(θ) =
1

m

m∑
i=1

f it (θ), (3)

where f it (θ) =
1
t+1

∑t
k=0 l(θ, ξ

i
k) denotes the empirical local

objective function of each learner i ∈ [m].
According to the law of large numbers [56], one has

limt→∞
1
t+1

∑t
k=0 l(θ, ξ

i
k)=Eξi∼Pi

[
l(θ, ξi)

]
. Hence, problem

(3) serves as an approximation to the original problem (2).
Unlike some existing online optimization results (in, e.g., [57])
where the optimal solution is time-varying, the solution to our
time-varying ERM formulation in (3) converges to a constant
value, i.e., the optimal solution θ∗ to (2):

Lemma 2. Denote θ∗t as the optimal solution to problem (3)
at time t and θ∗ as the optimal solution to the original

stochastic optimization problem (2). Under Assumption 2 with
µ > 0 and Assumption 3, we have

E[∥θ∗t − θ∗∥22] ≤ 4κ2µ−2(t+ 1)−1. (4)

Proof. See Appendix A.

Remark 3. Although Lemma 2 implies that our ERM
problem (3)’s solution θ∗t converges with t to a constant
solution θ∗, it cannot be solved using traditional time-invariant
or offline optimization methods, in, e.g., [11]–[15], due to
its time-varying nature of objective functions caused by the
sequential acquisition of data samples.

With this understanding, our goal is to design a distributed
online learning algorithm on general directed graphs which
enables individual learners to track the optimal solution θ∗t
to problem (3) under the constraints of LDP and sequentially
arriving data samples. Based on the convergence result in (4),
individual learners’ parameters will also converge to the true
optimal solution to problem (2), even under the constraints of
LDP and sequentially arriving data samples.

III. ONLINE GRADIENT TRACKING WITH LDP

In this section, we develop an online gradient-tracking-
based distributed learning algorithm over directed graphs to
solve problem (2) with ensured ϵi-LDP. Before introducing
our algorithm, we first show the limitation of conventional
gradient-tracking algorithms under LDP constraints.

A. The conventional gradient tracking accumulates DP noises
in gradient estimation

To preserve privacy, DP noises have to be added to messages
shared in each iteration of distributed online learning. In
conventional gradient-tracking-based algorithms, the injected
DP noises will accumulate in the global gradient estimation,
thereby significantly affecting learning accuracy.

We use the classic Push-Pull gradient-tracking algorithm
in [16] as an example to illustrate the idea. In the absence of
LDP constraints, i.e., when no DP noise is introduced into the
information exchange among learners, the Push-Pull algorithm
can be described in matrix form as follows:{

θt+1 = Rθt − λtyt,

yt+1 = Cyt +∇f t+1(θt+1)−∇f t(θt),

where the matrices θt, yt, and ∇f t(θt) are defined as
θt=[θ1t , · · · , θmt ]T ∈Rm×n, yt=[y1t , · · · , ymt ]T ∈Rm×n, and
∇f t(θt)=[∇f1t (θ1t ), · · · ,∇fmt (θmt )]T ∈Rm×n, respectively.
The matrices R and C are from Lemma 1.

Using initialization y0 = ∇f0(θ0), we obtain 1Tyt =
1T∇f t(θt), which means that ensuring the consensus of all
yit, i.e., yit =

1
m1Tyt, is sufficient to guarantee each learner

to track the global gradient, i.e., yit =
1
m1T∇f t(θt).

To achieve ϵi-LDP, DP noises have to be added to both
shared variables θt and yt. Then, the update of the conven-
tional Push-Pull algorithm becomes{

θt+1 = Rθt + ϑR,t − λtyt, (5a)
yt+1 = Cyt + ζC,t +∇f t+1(θt+1)−∇f t(θt), (5b)
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where the DP noises ζC,t and ϑR,t are defined as ζC,t =
[ζ1C,t, · · · , ζmC,t]T ∈ Rm×n and ϑR,t = [ϑ1R,t, · · · , ϑmR,t]T ∈
Rm×n with ζiC,t=

∑
j∈N in

C,i
Cijζ

i
t and ϑiR,t=

∑
j∈N in

R,i
Rijϑ

i
t

for all i ∈ [m], respectively.
It can be seen that even under the condition y0 = ∇f0(θ0),

we can only establish the following relation through induction:

1Tyt = 1T
(
∇f t(θt) +

∑t−1
k=0 ζC,k

)
, (6)

which implies that the DP noise accumulates over time in
the estimate of the global gradient. Therefore, when the
gradient-estimate variable yt is directly fed into the model
parameter update (5a), learning accuracy will be compromised.
This prediction is corroborated by our experimental results in
Fig. 2-Fig. 4. The issue of DP-noise accumulations also exists
in other gradient-tracking-based algorithms for distributed
learning and optimization.

Remark 4. To circumvent the accumulation of noises
in gradient estimation, recent work [18] proposes a robust
gradient-tracking method for distributed offline optimization.
However, this method cannot completely eliminate the in-
fluence of information-sharing noises, and thus is subject to
steady-state errors. Although our recent work [22] employs a
weakening factor in inter-agent interaction to attenuate noise
influence and ensure optimization accuracy, such a weakening
factor decreases the coupling strength among learners, which
in turn reduces the speed of algorithmic convergence. More-
over, although [15], [54] consider distributed optimization in
the presence of perturbation/noise, their perturbation/noise is
deterministic and bounded (see Eq. (27) in [15] and Theo-
rem 1 in [54] for details). To the contrary, commonly used
differential-privacy noises (e.g., Gaussian noise and Laplace
noise used in our paper) are stochastic and unbounded (under
Gaussian and Laplace noises, for any given number, no matter
how large it is, there is always a non-zero probability that
the noise amplitude is over this given number). Hence, the
perturbation/noise models considered in [15], [54] are not ap-
plicable in DP design considered here. Notably, none of these
works consider privacy protection. In fact, under the constant
stepsize and noise variance employed in [15], [18], [54] or
the single weakening factor used in [22], it is impossible to
ensure rigorous LDP in the infinite time horizon.

Recent works [37], [46] have investigated DP design for
gradient-tracking algorithms. However, both of the results face
the dilemma of trading optimization accuracy for privacy. To
tackle this dilemma, our recent work [47] achieves accurate
convergence and privacy protection simultaneously. However,
this approach relies on two carefully designed weakening
factors to attenuate the impact of DP noises. Such weakening
factors significantly slow down algorithmic convergence, as
substantiated by our experimental results in Fig. 2-Fig. 4.

Moreover, all the aforementioned works [18], [22], [37],
[46], [47], [54] require static and predetermined datasets,
making them unsuitable to online learning scenarios where
data arrives sequentially. To the best of our knowledge, no
existing work has explored LDP design for gradient-tracking-
based algorithms in an online setting.

B. LDP design for online gradient tracking

We present Algorithm 1 to address problem (2) over directed
graphs under the constraints of LDP and sequentially arriving
data. The injected DP noises satisfy Assumption 4.

Assumption 4. For every i ∈ [m] and any time t ≥ 0, the
DP-noises ζit and ϑit are zero-mean and independent across
iterations. The noise variance E[∥ζit∥22] = (σit,ζ)

2 satisfies
σit,ζ = σiζ(t + 1)−ς

i
ζ with σiζ > 0 and ςiζ ∈ ( 12 , 1). The noise

variance E[∥ϑit∥22] = (σit,ϑ)
2 satisfies σit,ϑ = σiϑ(t + 1)−ς

i
ϑ

with σiϑ > 0 and ςiϑ ∈ ( 12 , 1). Moreover, the inequality
maxi∈[m]{ςiζ , ςiϑ} < v < 1 holds, where the parameter v is
the decaying rate of stepsize λt in Algorithm 1.

Algorithm 1 LDP design for distributed online learning (from
learner i’s perspective)

1: Input: Random initialization θi0 ∈ Rn, si0 ∈ Rn, and zi0 =
ei ∈ Rm, where ei has the ith element equal to one and all
other elements equal to zero; weighting matrices R, C ∈
Rm×m; stepsize λt = λ0

(t+1)v with λ0 > 0 and v ∈ ( 12 , 1);
and DP-noises ζit and ϑit satisfying Assumption 4.

2: for t = 0, 1, · · · , T − 1 do
3: Using all available data up to time t, i.e., ξik for k ∈

[0, t] and the current parameter θit, learner i computes
the gradient ∇f it (θit) = 1

t+1

∑t
k=0 ∇l(θit, ξik).

4: Push sit + ζit to neighbors j ∈ N out
C,i and pull sjt + ζjt

from neighbors j ∈ N in
C,i.

5: Update tracking variable:
sit+1 = (1+Cii)s

i
t+

∑
j∈N in

C,i
Cij(s

j
t+ζ

j
t )+λt∇f it (θit).

6: Push θit + ϑit to neighbors j ∈ N out
R,i and pull θjt + ϑjt

from j ∈ N in
R,i.

7: Update model parameter:
θit+1 = (1+Rii)θ

i
t+

∑
j∈N in

R,i
Rij(θ

j
t +ϑ

j
t )−

sit+1−s
i
t

m[zit]i
,

where [zit]i denotes the ith element of zit .
8: Locally estimate the left eigenvector of R:

zit+1 = zit +
∑
j∈N in

R,i
Rij(z

j
t − zit).

9: end for

The Line 5 and Line 7 in Algorithm 1 can be written in the
following matrix form:{

st+1 = Cst + ζC,t + λt∇f t(θt), (7a)

θt+1 = Rθt + ϑR,t − Z−1
t (st+1 − st), (7b)

where the matrices θt, st, and Zt are given by θt =
[θ1t ,· · ·, θmt ]T ∈ Rm×n, st = [s1t , · · · , smt ]T ∈ Rm×n, and
Zt=diag(m[z1t ]1,· · ·,m[zmt ]m)∈Rm×m, respectively.

In (7b), the difference st+1 − st is incorporated into the
parameter update. This modification effectively addresses the
issue of accumulating DP noises in global gradient estimation,
as substantiated by the following relation:

1T (st+1 − st) = 1T (ζC,t + λt∇f t(θt)), (8)

where in the derivation we have used (7a) and 1TC = 0T from
Assumption 1. It is clear that unlike the conventional Push-
Pull gradient-tracking algorithm (5), where global gradient
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estimation yt (which is subject to accumulating DP noises
as per (6)) is directly incorporated into the model parameter
update, thereby affecting learning accuracy, our Algorithm 1
effectively circumvents this issue.

In addition, we introduce a local variable zit in Algorithm 1
to enable each learner to locally estimate the left eigenvector
uT of R. This eliminates the need for global information
uT , ensuring that our algorithm can be implemented in a
fully distributed manner. It is worth noting that since zit
does not contain sensitive information, adding DP noises to
it is unnecessary. Next, we present the following lemma to
characterize the error of the eigenvector estimator:

Lemma 3. [22] Under Assumption 1, the variables zit
in Line 8 of Algorithm 1, after scaled by m, converge to the
left eigenvector uT = [u1, · · · , um]T of R with a geometric
rate, i.e., there exist some constants cz > 0 and γz ∈ (0, 1)

such that
∣∣∣ 1
m[zit]i

− 1
ui

∣∣∣≤ czγ
t
z holds for all i ∈ [m] and any

t ≥ 0, where [zit]i denotes the ith element of zit .

Remark 5. Algorithm 1 avoids using weakening factors on
inter-agent interaction to attenuate the influence of DP noises,
which is key in our prior results [47] and [48] to ensure both
optimization accuracy and rigorous DP. Given that a weak-
ening factor will gradually reduce the strength of inter-agent
coupling, and hence, unavoidably decrease the convergence
speed, our algorithm can ensure faster convergence compared
with [47] and [48], which is corroborated by our analytical
comparison in Sec. IV-B and experimental results in Sec. VI.

Remark 6. In Algorithm 1, each learner updates its it-
eration variables at the same iteration count. Although this
approach may increase waiting time (as a learner needs to
wait for the slowest neighbor to complete its update before
moving to the next iteration), it ensures consistent learning
progression among learners, which simplifies the algorithmic
implementation and convergence analysis.

Remark 7. Compared with [15], [18] which consider
communication/quantization noises in gradient tracking, our
algorithm has fundamental differences in both algorithm struc-
ture and parameter design to ensure both rigorous differen-
tial privacy and accurate convergence. More specifically, in
terms of algorithm structure, we place the stepsize in the
update of tracking variables, which is necessary to ensure a
decaying sensitivity and is fundamentally different from [15],
[18] that place the stepsize in the update of optimization
variables. In terms of parameter design, we employ decaying
stepsizes, which is necessary to ensure differential privacy in
the infinite time horizon and is different from the constant
stepsize used in [15], [18]. In addition, the spectral-radius-
based convergence analysis in [15], [18] relies on the stepsize
being constant, making it inapplicable in our case where the
stepsize is varying with time.

IV. ONLINE LEARNING ACCURACY ANALYSIS

In this section, we quantify the learning accuracy of Algo-
rithm 1. To this end, we present some useful lemmas.

A. Supporting lemmas

Lemma 4. [16] Under Assumption 1, there exist vector
norms ∥x∥R ≜ ∥R̃x∥2 and ∥x∥C ≜ ∥C̃x∥2 for all x ∈ Rm,
where R̃, C̃ ∈ Rm×m are some reversible matrices1, such that
∥R− 1uT

m ∥R < 1 and ∥C− ω1T

m ∥C < 1 are arbitrarily close
to the spectral radius of R− 1uT

m and C− ω1T

m , respectively.

According to Lemma 4 in [16] and [22], we can know that
the spectral radius of the matrix R − 1uT

m is equal to 1 −
|νR| < 1, where νR is an eigenvalue of R. Lemma 4 indicates
that ∥R − 1uT

m ∥R is arbitrarily close to the spectral radius
of R − 1uT

m , i.e., 1 − |νR|. Without loss of generality, we
denote ∥R − 1uT

m ∥R = 1 − ρR < 1, where ρR serves as an
arbitrarily close approximation of |ν|R. Similarly, we denote
∥C− ω1T

m ∥C = 1− ρC < 1, where ρC is an arbitrarily close
approximation of |νC | with νC an eigenvalue of C.

Following [16] and [22], we proceed to define the ma-
trix norms ∥x∥R= ∥[∥x(1)∥R, · · · , ∥x(n)∥R]∥2 and ∥y∥C =
∥[∥y(1)∥C , · · · , ∥y(n)∥C ]∥2 for any matrices x, y ∈ Rm×n,
where x(i) and y(i) denote the ith column of x and y for
1 ≤ i ≤ n, respectively. The subscript 2 denotes the 2-norm.

Lemma 5. [16] Given an arbitrary norm ∥ · ∥, for any
M ∈ Rm×m and x ∈ Rm×n, we have ∥Mx∥ ≤ ∥M∥∥x∥.
In particular, for any m ∈ Rm×1 and x ∈ R1×n, we have
∥mx∥ = ∥m∥∥x∥2.

Lemma 6. [16] According to the equivalence of all
norms in a finite-dimensional space, there exist constants
δF,R, δR,F , δC,F , δR,C , δF,C > 0 such that for all x ∈ Rm×n,
we have ∥x∥F ≤ δF,R∥x∥R, ∥x∥R ≤ δR,F ∥x∥F , ∥x∥C ≤
δC,F ∥x∥F , ∥x∥R ≤ δR,C∥x∥C , and ∥x∥F ≤ δF,C∥x∥C .

Lemma 7. The relation aγt ≤ 1
t2 always holds for all t > 0

and γ∈(0, 1), where the constant a is given by a = (ln(γ)e)2

4 .

Proof. We consider a convex function f(x) = −2 ln(x) −
x ln(γ) : R+ → R, whose minimal value is f(x∗) =
−2 ln(− 2

ln(γ) )+
2

ln(γ) ln(γ)= ln(a). Hence, for any t> 0, we
have f(t)≥ ln a, i.e., −2 ln(t)−t ln(γ)≥ ln(a), which is equiv-
alent to ln(γt) ≤ ln( 1

at2 ) and further implies Lemma 7.

B. Online learning accuracy analysis

In this subsection, we analyze the learning accuracy of Al-
gorithm 1 under strongly convex and general convex objective
functions, respectively.

For notational simplicity, we define s̄t = 1T st

m , θ̄t = uT θt

m ,
ςζ=mini∈[m]{ςiζ}, and ςϑ=mini∈[m]{ςiϑ}. The following lem-
mas establish the convergence properties for E[∥st − ωs̄t∥2C ]
and E[∥θt−1θ̄t∥2R] under general convex objective functions.

1As indicated in [16] and [58], R̃ and C̃ are determined by R and C,
respectively. They always exist but are hard to express in a closed form in
the general case. However, in the special case where R and C are primitive
and stochastic, R̃ and C̃ can be expressed as R̃ = diag(

√
πR) and C̃ =

diag(
√
πC)−1, where diag(·) denotes the diagonal matrix with the given

entries on the diagonal and πR and πC denote non-1m Perron vectors of R
and C, respectively (see details in Section II-B in [58]). A detailed discussion
on R̃ (C̃) is available in Lemma 5 of [18], as well as Lemma 5.6.10 of [59].
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Lemma 8. Under Assumptions 1-4 with µ ≥ 0, the
following relation holds for Algorithm 1:

E[∥st−ωs̄t∥2C ] < cs1t
−2 + cs2t

−2v + cs3t
−2ςζ , (9)

where the constants cs1, cs2, and cs3 are given in (41).

Proof. See Appendix B.

Lemma 9. Under Assumptions 1-4 with µ ≥ 0, the
following relation holds for Algorithm 1:

E[∥θt−1θ̄t∥2R] < cθ1t
−2+cθ2t

−2v+cθ3t
−2ςϑ+cθ4t

−2ςζ , (10)

where the constants cθ1, cθ2, cθ3, and cθ4 are given in (48).

Proof. See Appendix C.

Based on Lemma 8 and Lemma 9, we present the learning
accuracy of Algorithm 1 against the original optimal solution
to problem (2) under strongly convex objective functions:

Theorem 1. Denote θ∗ as the optimal solution to the origi-
nal stochastic optimization problem (2). Under Assumptions 1-
4 with µ > 0, the parameters θit in Algorithm 1 will converge
in mean square to θ∗, i.e.,

E[∥θit − θ∗∥22] < 8κ2µ−2t−1 + 2C1t
−β = O(t−β), (11)

for all t > 0, where the rate β satisfies β = min{v + 1
2 −

α, 2−v−α, 2ςϑ−α, 2ςζ −α} with α ∈ (v, 1+v2 ), the positive
constant κ is from Assumption 3(ii), and the constant C1 is
given by C1 = max1≤i≤4,1≤j≤17{cθi, cθ̄j} with cθ1 to cθ4
given in (48), and cθ̄1 to cθ̄17 given in Eqs. (69)-(71).

Proof. See Appendix D.

Theorem 1 establishes the convergence of Algorithm 1
to the optimal solution to problem (2) under DP noises.
This differs from most existing DP solutions for distributed
learning and optimization [37], [40]–[46], which are always
subject to optimization errors under rigorous DP constraints.
In fact, besides ensuring convergence accuracy, our algorithm
guarantees rigorous LDP even in the infinite time horizon,
which will be substantiated in Sec. V.

Unlike most existing results on distributed online optimiza-
tion [40]–[45] which focus on dynamic or static regrets with
respect to the optimal solution to problem (3) (which only
approximates the optimal solution to (2)), Theorem 1 provides
a direct quantitative measure of the learning error with respect
to the optimal solution θ∗ to the problem (2) at each iteration.
Moreover, Theorem 1 shows that the convergence speed of
Algorithm 1 is O(t−β) with β =min{v + 1

2 − α, 2 − v −
α, 2ςϑ−α, 2ςζ−α}. This speed outpaces that of the distributed
online learning algorithm in our prior work [48] by a factor
of O(t

v+1−2α
2 ) (the convergence speed in [48] is O(t−β

′
)

with β′=min{1−v, 2ςϑ−1}). In addition, the algorithm in [48]
only characterizes the deviation between the learned parameter
θit and the optimal solution θ∗t to an approximated formulation
of (2). Hence, Theorem 1 provides stronger and more precise
convergence than the result in [48].

Remark 8. By characterizing the constant C1 in Theorem 1,
we can obtain E[∥θit − θ∗∥22] ≤ O

((
L3

ρ4Rρ
3
C
+ 1

µ3

)
t−β

)
. It is

clear that a larger strongly convex coefficient µ, a smaller

Lipschitz constant L, and larger ρR and ρC (i.e., better-
connected networks) lead to faster convergence.

Next, we establish the convergence result for general convex
objective functions.

Theorem 2. Under Assumptions 1-4 with µ ≥ 0, the
objective function values F (θit) will converge in mean to the
minimal objective function value F (θ∗), i.e.,

E[F (θit)− F (θ∗)] ≤ (1−v)
∑4

i=1 c̄θit
v−1

2λ0(1− 1

21−v )
=O(t−β̄), (12)

for all t > 0, where the rate β̄ satisfies β̄ = 1 − v and the
constants c̄θ1 to c̄θ4 are given in Eqs. (84)-(86), respectively.

Proof. See Appendix E.

Theorem 2 characterizes the convergence of F (θit) to the
minimal objective function value F (θ∗). Moreover, the con-
vergence speed specified in Theorem 2 (i.e., O(t−(1−v))) is
twice as fast as that in our prior work [48], which converges at
a speed of O(t−

1−v
2 ) for general convex objective functions.

Remark 9. According to the definitions of c̄θ1 to c̄θ4
given in Eqs. (84)-(86), we have E[F (θit) − F (θ∗)] ≤
O
(

L2

ρ4Rρ
3
C
t−(1−v)), which implies that a smaller Lipschitz con-

stant L and larger ρR and ρC (i.e., better-connected networks)
lead to faster convergence.

V. LOCAL DIFFERENTIAL-PRIVACY ANALYSIS

In this section, we prove that besides accurate convergence,
Algorithm 1 can also simultaneously ensure rigorous ϵi-LDP
for each learner, even in the infinite time horizon. To this
end, we first introduce the concept of sensitivity for learner
i’s implementation Ai:

Definition 3. (Sensitivity) Let Di
t and D′i

t be any two
adjacent datasets for learner i at each time instant t. The
sensitivity of learner i’s implementation Ai at time t is

∆i
t+1 = max

Adj(Di
t,D′i

t )
∥Ai(Di

t, θ
−i
t )−Ai(D′i

t , θ
−i
t )∥1, (13)

where θ−it represents all messages received by learner i at
time instant t.

According to Definition 3, under Algorithm 1, learner
i’s implementation involves two sensitivities: ∆i

t,s and ∆i
t,θ,

which correspond to the two shared variables sit and θit,
respectively.

With this understanding, we have the following lemma:
Lemma 10. For any given T ∈ N+ or T = ∞, if learner

i injects to each of its shared variables sit and θit at each
time t ∈ {1, · · · , T} noise vectors ζit and ϑit consisting of
n independent Laplace noises with parameters νit,ζ and νit,ϑ,
respectively, then learner i’s implementation Ai is ϵi-locally
differentially private with the cumulative privacy budget from
time t = 1 to t = T upper bounded by

∑T
t=1(

∆i
t,s

νi
t,ζ

+
∆i

t,θ

νi
t,ϑ

).

Proof. The lemma can be obtained following the same line of
reasoning of Lemma 2 in [35].

For privacy analysis, we also need the following lemma:

Lemma 11. Denote {ψt} as a nonnegative sequence. If
there exists a sequence βt = β0

(t+1)q with some β0 > 0 and
q > 0 such that ψt+1 ≤ (1−c)ψt+βt holds for all c ∈ (0, 1),
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then we always have ψt ≤ C2βt for all t ∈ N, where the
constant C2 is given by C2 = ( 4q

e ln( 2
2−c )

)q( v0(1−c)β0
+ 2

c ).

Proof. See Appendix F.

Assumption 5. There exists some positive constant cl such
that ∥∇l(θ, ξi)∥1 ≤ cl holds for any θ ∈ Rn and i ∈ [m].

Assumption 5 is commonly used in DP design for dis-
tributed optimization and learning [42]–[44].

Without loss of generality, we consider adjacent datasets Di
t

and D′i
t that differ in the k-th element, i.e., ξik in Di

t and ξ′ik in
D′i
t are different. For the sake of clarity, the parameters learned

from Di
t and D′i

t are denoted as θit+1 and θ′it+1, respectively.

Theorem 3. Under Assumptions 1-5, if each element
of ϑit and ζit follows the Laplace distributions Lap(νit,ϑ)
and Lap(νit,ζ), respectively, with (σit,ϑ)

2 = 2(νit,ϑ)
2 and

(σit,ζ)
2 = 2(νit,ζ)

2 satisfying Assumption 4, then θit (resp.
F (θit) in the general convex case) in Algorithm 1 converges
in mean square to the optimal solution θ∗ to the optimization
problem (2) (resp. in mean to F (θ∗)). Furthermore,

1) For any finite number of iterations T , each learner
i’s implementation of Algorithm 1 is ϵi-locally differen-
tially private with a cumulative privacy budget bounded by∑T
t=1(

√
2ϱt,s(t+1)

ςiζ

σi
ζ

+
√
2ϱt,θ(t+1)ς

i
ϑ

σi
ϑ

) with ϱt,s=2cl
∑t
p=1(1−

mini∈[m]{|Cii|})t−pλp−1, ϱ0,s = 0, and ϱt,θ =
∑t
p=1(1 −

mini∈[m]{|Rii|})t−p(czγp−1
z + 1

|ui| )(ϱp,s + ϱp−1,s).
2) The cumulative privacy budget is finite even when

the number of iterations T tends to infinity, i.e., when
T → ∞, the cumulative privacy budget is bounded by∑∞
t=1

(
2
√
2C4clλ0(czγ

t
z+C0)

σi
ϑ(t+1)1+v−ςi

ϑ
+

2
√
2C4clλ0(czγ

t
z+C0)

(C0− 1
|ui|

)σi
ζ(t+1)

1+v−ςi
ζ

)
< ∞,

where C0 and C4 are given in (21) and (24), respectively.

Proof. The convergence result follows naturally from Theo-
rem 1 (resp. Theorem 2).

1) To prove the statements on privacy, we first analyze the
sensitivity of learner i’s implementation under Algorithm 1.

According to the definition of sensitivity in (13), we have
sjt + ζjt = s′

j
t + ζ ′

j
t and θjt + ϑjt = θ′

j
t + ϑ′

j
t for each

time t ≥ 0 and j ∈ Ni. Since we assume that the k-th
data point is different between Di

t = {ξi1, · · · , ξik, · · · , ξit} and
D′i
t = {ξi1, · · · , ξ′

i
k , · · · , ξit}, we have ξip = ξ′

i
p for all p ̸= k.

However, since the difference in loss functions kicks in at
time k, i.e., l(θ, ξik) ̸= l(θ, ξ′

i
k ), we have sit ̸= s′

i
t and θit ̸= θ′

i
t .

Hence, for learner i’s implementation of Algorithm 1, we have

∥sit+1 − s′
i
t+1∥1 =

∥∥(1 + Cii)(s
i
t − s′

i
t )

+ λt

t+1

∑t
p=0,p ̸=k(∇l(θit, ξip)−∇l(θ′it , ξip))

+ λt

t+1 (∇l(θ
i
t, ξ

i
k)−∇l(θ′it , ξ′

i
k ))

∥∥
1
,

(14)

Letting cC=mini∈[m]{|Cii|}, the sensitivity ∆i
t+1,s satisfies

∆i
t+1,s ≤ (1−cC)∆i

t,s+
λt

t+1

∑t
p=0 ∥∇l(θit, ξip)−∇l(θ′it , ξ′

i
p )∥1,
(15)

where we have used ξip = ξ′
i
p for all p ∈ [0, t] and p ̸= k.

By using Assumption 5 and the relation ∆i
0,s = 0, we

iterate (15) from 0 to t− 1 to obtain

∆i
t,s ≤ 2cl

∑t
p=1(1− cC)

t−pλp−1. (16)

Similarly, we use Line 7 in Algorithm 1 to obtain

∥θit+1 − θ′
i
t+1∥1 =

∥∥(1 +Rii)(θ
i
t − θ′

i
t )

− 1
m[zit]i

(sit+1 − s′
i
t+1) +

1
m[zit]i

(sit − s′
i
t )

∥∥
1
.

Letting cR=mini∈[m]{|Rii|} and using Lemma 3, the sensi-
tivity ∆i

t+1,θ satisfies

∆i
t+1,θ ≤ (1− cR)∆

i
t,θ + czγ

t
z∆

i
t+1,s + czγ

t
z∆

i
t,s

+ 1
|ui|∆

i
t+1,s +

1
|ui|∆

i
t,s.

(17)

By using the relation ∆i
0,θ = 0 and iterating (17) from 0 to

t− 1, we obtain

∆i
t,θ≤

∑t
p=1(1−cR)t−p(czγp−1

z + 1
|ui| )(∆

i
p,s+∆i

p−1,s). (18)

The inequalities (16) and (18) imply that for learner i,
the T -iteration cumulative privacy budget are bounded by∑T
t=1(

√
2ϱt,s(t+1)

ςiζ

σi
ζ

+
√
2ϱt,θ(t+1)ς

i
ϑ

σi
ϑ

), with ϱt,s and ϱt,θ given
in the theorem statement.

2) The Lipschitz property in Assumption 3(iii) implies that
for the same data ξip, we can rewrite (14) as

∆i
t+1,s ≤ (1− cC)∆

i
t,s +

√
nLtλt

t+1 ∆i
t,θ +

2clλt

t+1 , (19)

where in the derivation we have used Assumption 5.
By substituting (19) into (17), we have

∆i
t+1,θ ≤

(
1− cR +

√
nLcz(tγ

t
zλt)

t+1

)
∆i
t,θ +

1
|ui|∆

i
t+1,s

+ (2− cC)czγ
t
z∆

i
t,s +

2clczγ
t
zλt

t+1 + 1
|ui|∆

i
t,s. (20)

By selecting positive constants:

C3<min
{
cR
2 ,

cC
2

}
and C0>max

{
4

|ui|(cC−2C3)
, 1
|ui|

}
, (21)

we multiply both sides of (19) by C0 and combine (19)
and (20) to obtain

∆i
t+1,θ +

(
C0 − 1

|ui|

)
∆i
t+1,s

≤
(
1− cR +

√
nLcz(tγ

t
zλt)

t+1 + C0
√
nLtλt

t+1

)
∆i
t,θ

+
(
(2− cC)czγ

t
z + C0(1− cC) +

1
|ui|

)
∆i
t,s

+
2clczγ

t
zλt+2C0clλt

t+1 .

(22)

Since λt and γtz are decaying sequences, there must exist some
T0 ≥ 0 such that cR

2 ≥
√
nLcz(tγ

t
zλt)+C0

√
nLtλt

t+1 and (2 −
cC)czγ

t
z ≤ C0cC

2 hold for all t ≥ T0. Hence, we arrive at

∆i
t+1,θ +

(
C0 − 1

|ui|
)
∆i
t+1,s ≤ (1− C3)

(
∆i
t,θ

+
(
C0 − 1

|ui|
)
∆i
t,s

)
+

2clczγ
t
zλt+2C0clλt

t+1 , (23)

for all t ≥ T0, where we used (1−C3)(C0 − 1
|ui| ) > C0(1−

cC
2 ) + 1

|ui| according to the definitions of C0 and C3.
We further define a constant C4 > 0 as follows:

C4 = max

{(
4(1+v)

e ln( 2
2−C3

)

)1+v
2

1−C3
,

max
0≤t≤T0,i∈[m]

{(
∆i

t,θ+
(
C0− 1

|ui|

)
∆i

t,s

)
(t+1)

2clczγt
zλt+2C0clλt

}}
.

(24)
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Combining Lemma 11 and (23), we obtain

∆i
t+1,θ + (C0 − 1

|ui| )∆
i
t+1,s ≤ C4

2clczγ
t
zλ0+2C0clλ0

(t+1)1+v , (25)

for all t > 0. By using Lemma 10, we arrive at∑∞
t=1

(
∆i

t,θ

νi
t,ϑ

+
∆i

t,s

νi
t,ζ

)
≤
∑∞
t=1

(
2
√
2C4clλ0(czγ

t
z+C0)

σi
ϑ(t+1)1+v−ςi

ϑ

+
2
√
2C4clλ0(czγ

t
z+C0)

(C0− 1
|ui|

)σi
ζ(t+1)

1+v−ςi
ζ

)
, (26)

implying that the cumulative privacy budget is finite since 1+
v −max{ςiϑ, ςiζ} > 1 always holds.

Theorem 3 proves that the privacy budget is finite even when
the number of iterations T tends to infinity, thereby establish-
ing rigorous privacy protection in the infinite time horizon.
We have thus shown that Algorithm 1 can simultaneously
ensure accurate learning and rigorous ϵi-LDP for each learner.
This is fundamentally different from existing DP solutions for
distributed learning and optimization [40]–[45], which allow
the cumulative privacy budget to grow to infinity, implying
diminishing privacy protection as the number of iterations
tends to infinity.

Remark 10. A key reason for Algorithm 1 to ensure a finite
cumulative privacy budget in the infinite time horizon under
diminishing noise variances is that our algorithm design leads
to diminishing sensitivity. Specifically, Lemma 10 implies that
when the cumulative privacy budget

∑∞
t=1

(
∆i

t,θ

νi
t,ϑ

+
∆i

t,s

νi
t,ζ

)
is

bounded (where ∆i
t,θ and ∆i

t,s are the sensitivities and νit,ϑ and
νit,ζ are the parameters of DP-noise variances for θit and sit, re-
spectively), learner i’s implementation of an iterative algorithm
is ϵi-locally differentially private in the infinite time horizon.
According to Eq. (25), our algorithm design ensures that the
sensitivities ∆i

t,θ and ∆i
t,s (both of which are on the order

of O(t−(1+v))) decay faster than the DP-noise variances νit,ϑ
and νit,ζ (on the order of O(t−ς

i
ϑ) and O(t−ς

i
ζ ), respectively).

More specifically, our design ensures
∑∞
t=1

(
∆i

t,θ

νi
t,ϑ

+
∆i

t,s

νi
t,ζ

)
≤∑∞

t=1 O(t−(1+v−ςiϑ))+O(t−(1+v−ςiζ)) <∞ by requiring the
parameters to satisfy 1+v −max{ςiϑ, ςiζ}> 1. Therefore, we
can ensure that the cumulative privacy budget is always finite.

Remark 11. Theorem 3 proves that our algorithm can
circumvent the tradeoff between privacy and learning accuracy.
A key enabler for our algorithm to resolve this tradeoff is to
use diminishing stepsizes and DP-noise variances. Specifically,
if we use a constant stepsize (i.e., making v = 0), the
cumulative privacy budget in Eq. (26) will grow to infinity
since 1 − max{ςiϑ, ςiζ} < 1 holds. Furthermore, if we use
constant noise variances (i.e., E[∥ζit∥22] = E[∥ϑit∥22] = σ2),
although a finite cumulative privacy budget can be achieved
in the infinite time horizon, a steady-state optimization error
(on the order of mσ2) will appear in both E[∥θt+1 − θt∥22]
and E[∥st+1 − st∥22] (see Eq. (7b) and Eq. (8)), making it
impossible for our algorithm to converge in mean square to
an exact optimal solution.

Remark 12. Compared with the privacy analysis in our
prior work [48] for undirected graphs, which only involves a
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Fig. 2. Comparison of online logistic regression results by using the
“mushrooms” dataset. The error bar represents standard derivation.

single optimization variable, the privacy analysis here is much
more complicated due to the involvement of two optimization
variables sit and θit, whose dynamics are strongly coupled.

Remark 13. From Theorem 1 and Theorem 3, one can see
that under a given sequence λt, if noise parameter sequences
νit,ϑ and νit,ζ ensure a differential-privacy level of ϵi, then
scaling the sequences νit,ϑ and νit,ζ by a constant 1

c > 0 can
achieve any desired level of cϵi-LDP without losing provable
convergence.

VI. NUMERICAL EXPERIMENTS

We evaluated the performance of Algorithm 1 through
three machine-learning applications: linear regression using
the “mushrooms” dataset and image classification using the
“MNIST” and “CIFAR-10” datasets, respectively. In each
experiment, we compared Algorithm 1 with existing DP
solutions for distributed learning and optimization, including
the DiaDSP algorithm [37], the DP-oriented gradient-tracking-
based algorithm [47], the distributed online stochastic subgra-
dient algorithm [42], the distributed online optimization algo-
rithm [44], and the distributed online learning algorithm [48].
For a fair comparison, we set the privacy budget for these
algorithms as the maximum ϵi across all learners used in our
Algorithm 1, which corresponds to the weakest level of privacy
protection among all learners. Additionally, we evaluated the
conventional Push-Pull gradient-tracking algorithm [16] (i.e.,
algorithm (5)) under the same DP noises as those used in
Algorithm 1. The interaction pattern associated with the weight
matrix R was consistent across all experiments and is depicted
in Fig. 1. The weight matrix C was set as the transpose of R.

A. Logistic regression using the “mushrooms” dataset

We first evaluated the performance of Algorithm 1 using
l2-logistic regression based classification of the “mushrooms”
dataset [60]. The loss function for learner i is given by
l(θ, ξit) =

1
Ni

t

∑Ni
t

s=1(1− bis(ais)T θ− log(s((ais)
T θ))+

rit
2 ∥θ∥

2,

where N i
t is the number of samples at time t, s(q) = (1 +

e−q)−1 is the sigmoid function defined, (ais, b
i
s) is learner i’s

data point, and rit>0 is a regularization parameter proportional
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Fig. 3. Comparison of neural network training results by using the “MNIST” dataset.
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Fig. 4. Comparison of neural network training results by using the “CIFAR-10” dataset.

to N i
t . In each iteration, we randomly selected 10 samples and

distributed them among the 10 learners.
In this experiment, we set the stepsize as λt=(t+ 1)−0.61

and the DP-noise variances as νit,ϑ = (t + 1)−ς
i
ϑ and νit,ζ =

(t+1)−ς
i
ζ with ςiϑ = ςiζ = 0.5+0.01i for i = 1, 2, · · · , 10. The

optimal solution θ∗ was obtained using a noise-free centralized
gradient descent algorithm. In our comparison, we employed
the same stepsize and DP noises for the conventional Push-
Pull gradient-tracking algorithm [16]. For other algorithms,
we selected near-optimal stepsizes, ensuring that doubling
the stepsizes would lead to non-convergent behaviors for
these algorithms. In particular, the weakening factor for the
algorithm in [48] was set to γt = (t + 1)−0.7, in accordance
with the guidelines provided in [48]. The weakening factors
for the algorithm in [47] were set to γ1,t = (t + 1)−0.95 and
γ2,t = (t+1)−0.75, in line with the guidelines provided in [47].

Fig. 2 shows the evolution of the average tracking errors
1
10

∑10
i=1 ∥θit− θ∗∥ [see Theorem 1]. Clearly, our Algorithm 1

outperforms existing results in terms of optimization accuracy.
Moreover, it can be seen that the DP noise indeed accumulates
in the conventional Push-Pull algorithm in [16], leading to
non-convergent learning results [see Sec. III-A].

B. Neural-network training using the “MNIST” dataset

In the second experiment, we evaluated Algorithm 1 by
training a convolutional neural-network (CNN) ResNet-18
on the “MNIST” dataset [61]. During each iteration, each
learner was trained on 40 randomly selected images. In this
experiment, we chose the stepsize as λt = 0.6(t + 1)−0.61

and the DP-noise variances as νit,ϑ = 0.01(t + 1)−ς
i
ϑ and

νit,ζ = 0.01(t + 1)−ς
i
ζ with ςiϑ = ςiζ = 0.5 + 0.01i for

i = 1, 2, · · · , 10. We used the best stepsizes that we could

find for the existing algorithms used in the comparison. The
weakening factors for the algorithms in [48] and [47] remained
consistent with those employed in the previous logistic regres-
sion experiment.

Fig. 3 shows that the conventional Push-Pull algorithm [16],
the algorithm in [37], and the algorithm in [42] are inca-
pable of effectively training the CNN model under DP-noise
injections. Moreover, our Algorithm 1 has better training
and test accuracies than the differentially private distributed
online optimization algorithm [44], the DP-oriented gradient-
tracking-based algorithm [47], and the algorithm in [48].

To compare the strength of enabled privacy protection, we
ran the DLG attack model proposed in [28], which is a
powerful inference algorithm capable of reconstructing raw
data from shared gradient/model updates. The training/test
accuracies and the DLG attacker’s inference errors for all
compared algorithms are summarized in Table I. It can be seen
that our algorithm can provide stronger privacy protection (i.e.,
a higher final DLG inference error) and better training/test
accuracies than existing counterparts.

TABLE I
COMPARISON OF TRAINING AND TEST ACCURACIES AND DLG

ATTACKER’S INFERENCE ERRORS

Algorithms Training Test Final DLG
accuracy (%) accuracy(%) error

Push-Pull in [16] 9.74 9.80 8.14
Algorithm in [37] 9.18 9.80 2.42
Algorithm in [42] 9.44 9.80 5.11
Algorithm in [44] 82.15 83.80 7.43
Algorithm in [47] 90.48 92.22 14.42
Algorithm in [48] 85.11 86.07 15.15

Proposed algorithm 91.98 92.62 14.85
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C. Neural-network training using the “CIFAR-10” dataset
The third experiment evaluated Algorithm 1 using a CNN

model and the “CIFAR-10” dataset [62], which provides a
greater diversity and complexity than the “MNIST” dataset.
The CNN architecture and parameters were the same as those
used in the previous experiment on the “MNIST” dataset.

The results are summarized in Fig. 4, which once again con-
firms the advantage of our proposed algorithm over existing
counterparts in terms of both training and test accuracies.

VII. CONCLUSIONS

In this study, we proposed a distributed learning algorithm
under the constraints of differential privacy and sequentially
arriving data. We proved that the proposed algorithm con-
verges in mean square to the exact optimal solution, even
in the presence of DP noises and general directed graphs.
Simultaneously, we also proved that the proposed algorithm
can ensure rigorous ϵi-LDP with a finite cumulative privacy
budget, even when the number of iterations grows to infinity.
To the best of our knowledge, this is the first algorithm that
is able to simultaneously achieve provable convergence and
rigorous ϵi-LDP (with a finite cumulative privacy budget) in
distributed online learning over directed graphs. Experimen-
tal comparisons using multiple benchmark machine-learning
applications confirm the advantage of our proposed algorithm
over existing counterparts.

APPENDIX

For the convenience of derivation, we define ζ̄C,t=
1T ζC,t

m ,
ϑ̄R,t =

uTϑR,t

m , ∇f̄t(θt) = 1T∇ft(θt)
m , ∇f̄(θt) = 1T∇f(θt)

m ,
U=diag(u1, · · · , um), C̄=C− ω1T

m , R̄=R− 1uT

m , Πω=I−
ω1T

m , Πu=I− 1uT

m , ΠU =U−1− 11T

m , ΠeU =(I− 1uT

m )(Z−1
t −

U−1), and σ+
ζ = maxi∈[m]{σiζ}, σ+

ϑ = maxi∈[m]{σiϑ}. We
denote ⟨·, ·⟩C and ⟨·, ·⟩R by the inner products induced by the
norm ∥ · ∥C and ∥ · ∥R, respectively.

A. Proof of Lemma 2
Using the relationship Ft(θ∗t ) ≤ Ft(θ

∗) and the mean value
theorem, we obtain

F (θ∗t )− F (θ∗) ≤ ∥∇F (χ)−∇Ft(χ)∥2∥θ∗t − θ∗∥2, (27)

with χ = αθ∗t + (1− α)θ∗ for some constant α ∈ (0, 1).
The definitions of ∇Ft(·) and ∇F (·) imply

E[∥∇Ft(χ)−∇F (χ)∥2]
≤ 1
m

∑m
i=1

1
t+1

∑t
k=0 E[∥∇l(χ, ξik)− E[∇l(χ, ξik)]∥2].

(28)

Given that the data points ξik are i.i.d. across iterations, we
use Assumption 3(ii) to obtain∑t

k=0 E
[
∥∇l(χ, ξik)− E[∇l(χ, ξik)]∥2

]
≤ κ

√
t+ 1. (29)

Substituting (29) into (28) yields E[∥∇Ft(χ)−∇F (χ)∥2] ≤
κ√
t+1

. By using (27), we have

E [F (θ∗t )− F (θ∗)] ≤ κ√
t+1

E [∥θ∗t − θ∗∥2] . (30)

Assumption 2(iii) with µ > 0 implies µ
2 ∥θ

∗
t −θ∗∥22 ≤ F (θ∗t )−

F (θ∗). Combing this relation and (30), we arrive at µ2E[∥θ
∗
t −

θ∗∥22] ≤ κ√
t+1

E[∥θ∗t − θ∗∥2], which implies (4).

B. Proof of Lemma 8

Left multiplying both sides of (7a) by 1
m1T and using the re-

lation 1TC = 0, we obtain s̄t+1 = 1T

m (st+ζC,t+λt∇f t(θt)).
Combing this relation with (7a) and C̄ω = 0 leads to

st+1−ωs̄t+1 = C̄(st−ωs̄t)+ΠωζC,t+λtΠω∇f t(θt), (31)

where we have used the definition of Πω . Using the definition
∥C̄∥C = 1 − ρC < 1 and the inequality (a + b)2 ≤ (1 +
ϵ)a2 + (1 + ϵ−1)b2 for any scalars a, b, and ϵ > 0 (setting
ϵ = 1

1−ρC − 1, implying 1 + ϵ−1 = 1
ρC

), we obtain

E[∥st+1−ωs̄t+1∥2C ] ≤ (1−ρC)E[∥st−ωs̄t∥2C ]+Φt,s, (32)

where the term Φt,s is given by

Φt,s=
λ2
t

ρC
∥Πω∥2CE[∥∇f t(θt)∥2C ]+∥Πω∥2CE[∥ζC,t∥2C ]. (33)

We proceed to characterize the Φt,s in (33). By using the
definition of ∇fi(θit), Assumptions 2(ii), and 3(ii), we have

E[∥∇f t(θt)∥2C ] ≤ 2mδ2C,F (κ
2 +D2). (34)

Substituting the relation E[∥ζC,t∥2C ] ≤ mδ2C,F
∑
i,j(Cijσ

j
t,ζ)

2

and (34) into (33) yields

Φt,s =
τs1

(t+1)2v + τs2
(t+1)2ςζ

, (35)

where τs1 and τs2 are given by τs1=
2mδ2C,F ∥Πω∥2

C∥(κ2+D2)λ2
0

ρC

and τs2 = mδ2C,F ∥Πω∥2C
∑
i,j(Cij)

2(σ+
ζ )

2, respectively.
Now, we iterate (32) from 0 to t to obtain

E[∥st+1 − ωs̄t+1∥2C ] ≤ (1− ρC)
t+1E[∥s0 − ωs̄0∥2C ]

+
∑t−1
p=0(1− ρC)

t−pΦp,s +Φt,s.
(36)

When t = 0, we have E[∥s1 − ωs̄1∥2C ] ≤ (1− ρC)E[∥s0 −
ωs̄0∥2C ] + τs1 + τs2. When t > 0, we estimate each item on
the right hand side of (36).

1) Lemma 7 and (t+ 1)−2 < t−2 for all t > 0 imply

(1− ρC)
t+1E[∥s0 − ωs̄0∥2C ] < cs0t

−2E[∥s0 − ωs̄0∥2C ], (37)

with the constant cs0 = 4
(e ln(1−ρC))2 .

2) For scalars a, b, c, d>0 satisfying c
a>

d
b , the relationship

d
b <

c+d
a+b <

c
a always holds. This inequality implies 1

(t−p)2 <

(p+1
t )2 for all p ∈ [0, t). Using this inequality, Lemma 7, and

the relation (p+1
t )2<(p+1

t )2v (where p+1
t ∈(0, 1]), we obtain

(1− ρC
2 )t−p

(p+1)2v ≤ 4
(e ln(1− ρC

2 ))2(t−p)2
1

(p+1)2v =
4t−2v

(e ln(1− ρC
2 ))2

.

(38)
By using inequality (38), 1−ρC ≤ (1− ρC

2 )2, and
∑t−1
p=0(1−

ρC
2 )t−p <

1−(1− ρC
2 )t

1−(1− ρC
2 )

≤ 2
ρC

, we obtain∑t−1
p=0

(1−ρC)t−p

(p+1)2v <
∑t−1
p=0

(
1− ρC

2

)t−p 4t−2v

(e ln(1− ρC
2 ))2

. (39)

Using an argument similar to the derivation of (39) yields∑t−1
p=0(1− ρC)

t−pΦp,s < c̄s0(t
−2v + t−2ςζ ), (40)

with the constant c̄s0 = 8
ρC(e ln(1− ρC

2 ))2
.

By substituting (37) and (40), and the relationship Φt,s ≤
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τs1t
−2v + τs2t

−2ςζ into (36), we arrive at

E[∥st−ωs̄t∥2C ] < cs1t
−2 + cs2t

−2v + cs3t
−2ςζ , (41)

where the constants cs1, cs2, and cs3 are given by cs1 =
max{1−ρC , cs0}E[∥s0−ωs̄0∥2C ], cs2 = c̄s0+ τs1, and cs3 =
c̄s0+ τs2 with τs1 and τs2 given in (35) and cs0 and c̄s0 given
in (37) and (39), respectively.

C. Proof of Lemma 9

Left multiplying both sides of (7b) by uT

m and using the
relations uTU−1 = 1T and uTR = uT , we obtain

θ̄t+1 = uT θt

m +
uTϑR,t

m −
(

1T

m +
uT (Z−1

t −U−1)
m

)
(st+1 − st).

(42)
Based on dynamics (7a) and the relation Cv = 0, we have

st+1 − st = C(st − ωs̄t) + ζC,t + λt∇f t(θt). (43)

Substituting (43) into (42) and using the relationships 1TC =

0T and R̄1 = (I +R− 1uT

m )1 = 0 lead to

∥θt+1 − 1θ̄t+1∥2R ≤
∥∥ΠuϑR,t − (ΠU +ΠeU )ζC,t

∥∥2
R

+
[
∥R̄∥R∥θt−1θ̄t∥R+(∥ΠUC∥R+∥ΠeUC∥R)∥st−ωs̄t∥R

+λt(∥ΠU∥R + ∥ΠeU∥R)∥∇f t(θt)∥R]
2

+ 2
〈
R̄(θt − 1θ̄t)− (ΠU +ΠeU )C(st − ωs̄t)

−λt(ΠU +ΠeU )∇f t(θt),ΠuϑR,t − (ΠU +ΠeU )ζC,t
〉
R
.

Using an argument similar to the derivation of (36), we have

E[∥θt+1 − 1θ̄t+1∥2R] ≤ (1− ρR)
t+1E[∥θ0 − 1θ̄0∥2R]

+
∑t−1
p=0(1− ρR)

t−pΦp,θ +Φt,θ,
(44)

where Φt,θ is given by

Φt,θ=τθ1E[∥st−ωs̄t∥2C ]+
τθ2

(t+1)2v +
τθ3

(t+1)2ςϑ
+ τθ4

(t+1)2ςζ
, (45)

with the positive constants τθ1 =
4δ2R,C∥C∥2

R(∥ΠU∥2
R+∥Πe

U∥2
R)

ρR
,

τθ2=
2mλ2

0δ
2
R,F (κ2+D2)

δ2R,C∥C∥2
R

, τθ3=2∥Πu∥2Rδ2R,F
∑
i,j(Rij)

2(σ+
ϑ )

2,

and τθ4=2∥ΠU +ΠeU∥2Rδ2R,F
∑
i,j(Cij)

2(σ+
ζ )

2.

When t = 0, we have E[∥θ1 − 1θ̄1∥2R] ≤ (1− ρR)E[∥θ0 −
1θ̄0∥2R] + τθ1E[∥s0 − ωs̄0∥2C ] + τθ2 + τθ3 + τθ4. When t > 0,
we analyze each item on the right hand side of (44).

Using an argument similar to the derivation of (37), the first
term on the right hand side of (44) satisfies

(1− ρR)
t+1E[∥θ0 − 1θ̄0∥2R] < cθ0t

−2E[∥θ0 − 1θ̄0∥2R], (46)

with the constant cθ0 = 4
(e ln(1−ρR))2 .

By using (9) and (45) and following an argument similar to
the derivation of (40), we obtain∑t−1

p=0(1− ρR)
t−pΦp,θ < cθ0E[∥θ0 − ωθ̄0∥2C ]t−2

+ c̄θ0τθ1(cs1t
−2 + cs2t

−2v + cs3t
−2ςζ )

+ c̄θ0(τθ2t
−2v + τθ3t

−2ςϑ + τθ4t
−2ςζ ),

(47)

where the constants c̄θ0 is given by c̄θ0= 8
ρR(e ln(1− ρR

2 ))2
, τθ1

to τθ4 are given in (45), and c̄θ0 is given in (46).
Substituting (46), (47), and (45) into (44) yields

E
[
∥θt−1θ̄t∥2R

]
<cθ1t

−2+cθ2t
−2v+cθ3t

−2ςϑ+cθ4t
−2ςζ , (48)

where the constant cθ1, cθ2, cθ3, and cθ4 are given by cθ1 =
max{1− ρR, cθ0}E[∥θ0 − 1θ̄0∥2R] + max{1, cθ0}τθ1E[∥s0 −
ωs̄0∥2C ]+τθ1cs1(c̄θ0+1), cθ2 = (τθ1cs2+τθ2)(c̄θ0+1), cθ3 =
τθ3(c̄θ0 + 1), and cθ4 = (τθ1cs3 + τθ4)(c̄θ0 + 1), respectively.

D. Proof of Theorem 1
Substituting (8) into (42) and using Assumption 4 yield

E[∥θ̄t+1 − θ∗t ∥22] ≤
(
1 + λtµ

2

)
E[∥θ̄t − λt∇f̄(1θ̄t)− θ∗t ∥22]

+
(
1 + 2

λtµ

)
E
[∥∥λt∇f̄(1θ̄t)− λt∇f̄t(θt)

− uT (Z−1
t −U−1)
m (st+1 − st)

∥∥2
2

]
+E[∥ϑ̄R,t − ζ̄C,t∥22]. (49)

The definition ∇f̄(1θ̄t) = 1T∇f(1θ̄t)
m implies ∇f̄(1θ̄t) =

∇F (θ̄t). Then, we have

∥θ̄t − λt∇f̄(1θ̄t)− θ∗t ∥22 = ∥θ̄t − θ∗t ∥22
− 2λt⟨∇F (θ̄t), θ̄t − θ∗t ⟩+ λ2t∥∇F (θ̄t)∥22.

(50)

By using Assumption 2(iii) with µ ≥ 0, we have F (θ∗t ) −
F (θ̄t) ≥ −∇F (θ∗t )T (θ̄t− θ∗t )+

µ
2 ∥θ̄t− θ∗t ∥22. Combining this

relationship and Assumption 2(ii) with (50), we arrive at

∥θ̄t − λt∇f̄(1θ̄t)− θ∗t ∥22 ≤ (1− λtµ)∥θ̄t − θ∗t ∥22
− 2λt(F (θ̄t)− F (θ∗t )) + λ2tD

2.
(51)

Using the mean value theorem and (4) in Lemma 2, one has

E[F (θ̄t)− F (θ∗t )] ≥ E[F (θ∗)− F (θ∗t )] ≥ − 2Dκ
µ
√
t+1

. (52)

Using Assumption 3(ii)-(iii) and the definitions of ∇f̄t(θt),
∇f̄(θt), and ∇fi(θit), we have

E[∥∇f̄(1θ̄t)−∇f̄t(θt)∥22] ≤ 2κ2

t+1+2δ2F,RL
2E

[
∥θt − 1θ̄t∥2R

]
.

(53)
By taking the norm ∥·∥F on both sides of (43) and then using
an argument similar to the derivation of (34), we have

∥st+1 − st∥2F ≤ 3δ2F,C∥C∥2C∥st − ωs̄t∥2C
+ 3∥ζC,t∥2F + 6m(κ2 +D2)λ2t .

(54)

Incorporating (51)-(54) into (49) and then combining (49) and
the inequality ∥θ̄t+1−θ∗t+1∥22 ≤ (1+ λtµ

4 )∥θ̄t+1−θ∗t ∥22+(1+
4
λtµ

)∥θ∗t+1 − θ∗t ∥22, one obtains

E[∥θ̄t+1 − θ∗t+1∥22] ≤
(
1− λtµ

4

)
E[∥θ̄t − θ∗t ∥22] + Φt,θ̄, (55)

where Φt,θ̄ is given by

Φt,θ̄ = ĉθ̄0
(
2λtκ

2

t+1 + 2λtδ
2
F,RL

2E[∥θt − 1θ̄t∥2R]

+
3δ2F,C∥C∥2

C∥u∥2
2c

2
z

m2

γ2t
z

λt
E[∥st − ωs̄t∥2C ]

+
3∥u∥2

2c
2
z

m2

γ2t
z

λt
E[∥ζC,t∥2F ] +

6(κ2+D2)∥u∥2
2c

2
z

m γ2tz λt
)

+ 2
(
1+ λ0µ

4

)
E[∥ϑ̄R,t∥22+∥ζ̄C,t∥22] +

ĉθ̄0µ
4

(
4Dκ
µ

λt√
t+1

+D2λ2t
)
+
(
1 + 4

λtµ

)
E[∥θ∗t+1 − θ∗t ∥22], (56)

with ĉθ̄0 ≜ λ2
0µ

2+6λ0µ+8
2µ .

By iterating (55) from 0 to t and using the relation∏t
p=0(1−

λpµ
4 ) ≤ e−

µ
4

∑t
p=0 λp , we arrive at

E[∥θ̄t+1 − θ∗t+1∥22] ≤ e−
µ
4

∑t
p=0 λpE

[
∥θ̄0 − θ∗0∥22

]
+

∑t
p=1 Φp−1,θ̄e

−µ
4

∑t
q=p λq +Φt,θ̄.

(57)
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We estimate the first term on the right hand side of (57).
Since λ0

(p+1)v ≥ λ0

(t+1)v holds for all t ≥ p and (t + 1)v ≤
2vtv holds for all t > 0, we have

∑t
p=0 λp ≥

λ0

(t+1)v (t+1) ≥
λ0

2vtv−1 , which implies e
µ
4

∑t
p=0 λp ≥ e

µ
4

λ0
2vtv−1 . Using Taylor

expansion ex =
∑∞
n=0

xn

n! , we have that there must exist some
n0 ∈ N+ such that ex ≥ xn0

n0!
holds when x is nonnegative.

Setting n0 ≜ ⌈ 1
1−v ⌉, we have (1− v)n0 ≥ 1, which implies

e
µ
4

∑t
p=0 λp ≥ 1

n0!

(
µλ0

4×2v

)n0

t(1−v)n0 ≥

(
µλ0
4×2v

) 1
1−v

t

( 1
1−v+1)!

. (58)

Substituting (58) into the first term on the right hand side
of (57), we arrive at

e−
µ
4

∑t
p=0 λpE[∥θ̄0 − θ∗0∥22] ≤ cθ̄1t

−1, (59)

where cθ̄1 is given by cθ̄1 = ( 2−v1−v )!
(
µλ0

4×2v

) 1
v−1E[∥θ̄0 − θ∗0∥22].

We proceed to analyze the second and third terms on the
right hand side of (57). We select a constant α ∈ (v, 1+v2 ).
Since e−

µ
4

∑t
q=⌈t−tα⌉+1 λq < 1 is valid and e−

µ
4

∑t
q=p λq ≤

e−
µ
4

∑t
q=⌈t−tα⌉ λq holds for all p ∈ [1, ⌈t− tα⌉], we obtain∑t

p=1 Φp−1,θ̄e
−µ

4

∑t
q=p λq+Φt,θ̄

≤
∑⌊t−tα⌋
p=0 Φp,θ̄e

−µ
4

∑t
q=⌈t−tα⌉ λq +

∑t
p=⌈t−tα⌉ Φp,θ̄.

(60)

We now analyze the first term on the right hand side of (60).
To this end, we first characterize the term e−

µ
4

∑t
q=⌈t−tα⌉ λq .

Given 1
(q+1)v ≥ 1

(t+1)v for all q ∈ [⌈t− tα⌉, t], we have∑t
q=⌈t−tα⌉ λq ≥

λ0

(t+1)v (t− ⌈t− tα⌉+ 1) ≥ λ0t
α−v

2v , (61)

where we have used ⌈t−tα⌉ ≤ t−tα+1 and (t+1)v ≤ 2vtv .
Using an argument similar to the derivation of (58), we set

n0 ≜ ⌈ 1
α−v ⌉ (i.e., (α − v)n0 ≥ 1) for the Taylor expansion

to obtain e
µ
4

∑t
q=⌈t−tα⌉ λq ≥ 1

( 1
α−v+1)!

( µλ0

4×2v )
1

α−v t. Then, the
first term on the right hand side of (60) satisfies∑⌊t−tα⌋

p=0 Φp,θ̄e
−µ

4

∑t
q=⌈t−tα⌉ λq <

(
Φ0,θ̄ +

∑∞
p=1 Φp,θ̄

)
ct−1,

(62)

where the constant c is given by c = (α−v+1
α−v )!

(
µλ0

4×2v

) 1
v−α

.
To proceed, we need to estimate an upper bound on Φt,θ̄

in (56). To this end, we first prove the following relations:
1) By using (10) and t−2v ≤ 4v(t+ 1)−2v , we have

λtE
[
∥θt − 1θ̄t∥2R

]
< λ0

(
4cθ1

(t+1)v+2 + 4vcθ2

(t+1)3v

+ 4ςϑcθ3

(t+1)v+2ςϑ
+ 4ςζ cθ4

(t+1)v+2ςζ

)
.

(63)

2) Lemma 7 implies γ2tz ≤ 16
(e ln(γz))4t4

≤ 16×24

(e ln(γz))4(t+1)4 .
Combing this relationship with (9) in Lemma 8, we obtain

γ2t
z

λt
E
[
∥st − ωs̄t∥2C

]
< 16×24(cs1t

−2+cs2t
−2v+cs3t

−2ςζ )
λ0(e ln(γz))4(t+1)4−v .

3) Lemma 7 implies γ2tz λt ≤ 16×24λ0

(e ln(γz))4(t+1)4+v .

4) Using the relation E[∥θ∗t+1−θ∗t ∥22] ≤
16(κ2+D2)

(t+1)2 (2µ−2+

L−2) from Lemma 1 in [48] yields

E[∥θ∗t+1−θ
∗
t ∥

2
2]

λt
≤ 16(κ2+D2)

λ0(t+1)2−v

(
2
µ2 + 1

L2

)
. (64)

Substituting (63)-(64) into (56), we obtain
Φt,θ̄ <

τθ̄1
(t+1)v+2 + τθ̄2

(t+1)v+2 + τθ̄3
(t+1)3v + τθ̄4

(t+1)v+2ςϑ

+ τθ̄5
(t+1)v+2ςζ

+ τθ̄6
(t+1)6−v + τθ̄7

(t+1)4+v + τθ̄8
(t+1)4−v+2ςζ

+ τθ̄9
(t+1)4−v+2ςζ

+ τθ̄10
(t+1)4+v + τθ̄11

(t+1)2ςϑ
+ τθ̄12

(t+1)2ςζ

+ τθ̄13

(t+1)v+1
2
+ τθ̄14

(t+1)2v + τθ̄15
(t+1)2 + τθ̄16

(t+1)2−v , (65)

where τθ̄1 = 2ĉθ̄0κ
2λ0, τθ̄2 = 4κ−2cθ1δ

2
F,RL

2τθ̄1, τθ̄3 =

4v−1c−1
θ1 cθ2τθ̄2, τθ̄4=4ςϑ−1c−1

θ1 cθ3τθ̄2, τθ̄5=4ςζ−1c−1
θ1 cθ4τθ̄2, τθ̄6=

3×210cs1ĉθ̄0δ
2
F,C∥C∥2

C∥u∥2
2c

2
z

m2λ0(e ln(γz))4
, τθ̄7=

4vcs2τθ̄6
4cs1

, τθ̄8=
4ςζ cs3τθ̄6

4cs1
, τθ̄9=

3×28ĉθ̄0∥u∥
2
2c

2
z

∑
i,j(Cij)

2(σ+
ζ )2

m2λ0(e ln(γz))4
, τθ̄10 =

3×29ĉθ̄0(κ
2+D2)∥u∥2

2c
2
zλ0

m(e ln(γz))4
,

τθ̄11=
(4+λ0µ)

∑
i,j(Rij)

2(σ+
ϑ )2

2 , τθ̄12=
(4+λ0µ)

∑
i,j(Cij)

2(σ+
ζ )2

2 ,
τθ̄13 = ĉθ̄0Dκλ0, τθ̄14 =

ĉθ̄0µλ
2
0D

2

4 , τθ̄15 =
16(κ2+D2)(2L2+µ2)

µ2L2 ,
and τθ̄16=

4τθ̄15
λ0µ

.

By plugging (65) into
∑∞
p=1 Φp,θ̄, we can estimate the

second term on the right hand side of (62). To illustrate this
idea, we use

∑∞
p=1 τθ̄1(p+ 1)−1−v as an example:∑∞

p=1
τθ̄1

(t+1)1+v ≤
∫∞
1

τθ̄1
x1+v dx≤ τθ̄1

(1+v−1)21−(1+v) . (66)

Applying an argument similar to the derivation of (66) to
the other items on the right hand of

∑∞
p=1 Φp,θ̄ yields∑∞

p=1 Φp,θ̄ < τθ̄12
v

v + τθ̄22
v+1

v+1 + τθ̄32
3v−1

3v−1 + τθ̄42
2ςϑ+v−1

v+2ςϑ−1 +
τθ̄52

2ςζ+v−1

v+2ςζ−1 + τθ̄62
5−v

5−v + τθ̄72
v+3

v+3 + τθ̄82
2ςζ−v+3

2ςζ−v+3 + τθ̄92
2ςζ−v+3

2ςζ−v+3 +

τθ̄102
v+3

v+3 + τθ̄112
2ςϑ−1

2ςϑ−1 + τθ̄122
2ςζ−1

2ςζ−1 + τθ̄132
v− 1

2

v− 1
2

+ τθ̄142
2v−1

2v−1 +

2τθ̄15 +
τθ̄162

1−v

1−v ≜ c′. Combining Φ0,θ̄ =
∑16
i=1 τθ̄i with (62)

yields that the first term on the right hand side of (60) satisfies∑⌊t−tα⌋
p=0 Φp,θ̄e

−µ
4

∑t
q=⌈t−tα⌉ λq < cθ̄2t

−1, (67)

with cθ̄2=(α−v+1
α−v )!( µλ0

4×2v )
1

v−α (
∑16
i=1 τθ̄i+c

′).

By plugging (65) into
∑t
p=⌈t−tα⌉ Φp,θ̄, we can estimate the

second term on the right hand side of (60). To illustrate this
idea, we use

∑t
p=⌈t−tα⌉ τθ̄2(p+1)−v−2 as an example: Since

the relation 1
(p+1)v+2 ≤ 1

(⌈t−tα⌉+1)v+2 holds for all p ∈ [⌈t −
tα⌉, t] and any α∈ (v, 1+v2 ), we have

∑t
p=⌈t−tα⌉

1
(p+1)v+2 ≤

1
(⌈t−tα⌉+1)v+2 (t−⌈t−tα⌉ + 1). Since ⌈t − tα⌉+1≥ t(1 − α)

is valid for all α ∈ (0, 1), we obtain∑t
p=⌈t−tα⌉

τθ̄2
(p+1)v+2 ≤ τθ̄2(t

α+1)
tv+2(1−α)v+2 ≤ 2τθ̄2t

α−(v+2)

(1−α)v+2 . (68)

Using an argument similar to the derivation of (68) to the
other items on the right hand side of

∑t
p=⌈t−tα⌉ Φp,θ̄ yields∑t

p=⌈t−tα⌉ Φp,θ̄ < cθ̄3t
α−(v+1) + cθ̄4t

α−(v+2) + cθ̄5t
α−3v

+ cθ̄6t
α−(v+2ςϑ) + cθ̄7t

α−(v+2ςζ) + cθ̄8t
α−(6−v)

+ cθ̄9t
α−(v+4)+cθ̄10t

α−(4−v+2ςζ)+cθ̄11t
α−2ςϑ+cθ̄12t

α−2ςζ

+cθ̄13t
α−(v+ 1

2 )+cθ̄14t
α−2v+cθ̄15t

α−2+cθ̄16t
α−(2−v), (69)

where cθ̄3 =
2τθ̄1

(1−α)v+1 , cθ̄4 =
2τθ̄2

(1−α)v+2 , cθ̄5 =
2τθ̄3

(1−α)3v , cθ̄6 =
2τθ̄4

(1−α)v+2ςϑ
, cθ̄7=

2τθ̄5
(1−α)v+2ςζ

, cθ̄8=
2τθ̄6

(1−α)6−v , cθ̄9=
2(τθ̄7+τθ̄10)
(1−α)v+4 ,

cθ̄10=
2(τθ̄8+τθ̄9)

(1−α)4−v+2ςζ
, cθ̄11 =

2τθ̄11
(1−α)2ςϑ , cθ̄12 =

2τθ̄12
(1−α)2ςζ

, cθ̄13 =
2τθ̄13

(1−α)v+1
2

, cθ̄14=
2τθ̄14

(1−α)2v , cθ̄15=
2τθ̄15

(1−α)2 , and cθ̄16=
2τθ̄16

(1−α)2−v .
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Substituting (67) and (69) into (60) and then plugging (59)
and (60) into (57), we arrive at

E[∥θ̄t+1 − θ∗t+1∥22] < (cθ̄1 + cθ̄2)t
−1 + cθ̄3t

α−(v+1)

+ cθ̄4t
α−(v+2) + cθ̄5t

α−3v + cθ̄6t
α−(v+2ςϑ) + cθ̄7t

α−(v+2ςζ)

+ cθ̄8t
α−(6−v) + cθ̄9t

α−(v+4) + cθ̄10t
α−(4−v+2ςζ)

+ cθ̄11t
α−2ςϑ + cθ̄12t

α−2ςζ + cθ̄13t
α−(v+ 1

2 )

+ cθ̄14t
α−2v + cθ̄15t

α−2 + cθ̄16t
α−(2−v), (70)

for all t > 0, where the constants cθ̄1 is given in (59), cθ̄2 is
given in (67), cθ̄3 to cθ̄16 are given in (69).

By plugging Φ0,θ̄ =
∑16
i=1 τθ̄i into (55), we obtain

E[∥θ̄1 − θ∗1∥22] ≤ cθ̄17, (71)

with cθ̄17 = (1− λ0µ
4 )E

[
∥θ̄0 − θ∗0∥22

]
+
∑16
i=1 τθ̄i.

By using Lemma 5 and Lemma 6, we obtain

∥θt − 1θ∗t ∥2F ≤ 2δ2F,R∥θt − 1θ̄t∥2R + 2m∥θ̄t − θ∗t ∥22. (72)

Taking the expectation on both sides of (72) and combining
the result with (10), (70), and (71), we arrive at

E[∥θit−θ∗t ∥22]<2δ2F,R
(
cθ1t

−2+cθ2t
−2v+cθ3t

−2ςϑ+cθ4t
−2ςζ

)
+ 2m

(
max{cθ̄1, cθ̄2, cθ̄17}t−1 + cθ̄3t

α−v−1 + cθ̄4t
α−v−2

+ cθ̄5t
α−3v + cθ̄6t

α−v−2ςϑ + cθ̄7t
α−v−2ςζ + cθ̄8t

α−6+v

+ cθ̄9t
α−v−4 + cθ̄10t

α−4+v−2ςζ + cθ̄11t
α−2ςϑ + cθ̄12t

α−2ςζ

+ cθ̄13t
α−v− 1

2 + cθ̄14t
α−2v + cθ̄15t

α−2 + cθ̄16t
α−2+v

)
,
(73)

for all t>0. Here, the constant α satisfies α∈(v, 1+v2 ).
Substituting (4) and (73) into the triangle inequality ∥θit −

θ∗∥22 ≤ 2∥θit − θ∗t ∥22 + 2∥θ∗t − θ∗∥22, we arrive at (11).

E. Proof of Theorem 2
For the convenience of derivation, we introduce an auxiliary

variable s ∈ [0, t]. By plugging (8) into (42), we obtain

E[∥θ̄t+1−s − θ∗∥22] ≤ E[∥θ̄t−s−θ∗∥22] +
∑6
i=1 Γi, (74)

where Γ1 to Γ6 are given by

Γ1 = E
[∥∥λt−s∇f̄t−s(1θ̄t−s)− λt−s∇f̄t−s(θt−s)

− uT (Z−1
t−s−U−1)

m
(st+1−s−st−s)

∥∥2

2

]
,

Γ2 = E[∥ϑ̄R,t−s − ζ̄C,t−s∥22], Γ3 = E[∥λt−s∇f̄t−s(1θ̄t−s)∥22],
Γ4 = 2λt−sE

[〈
∇f̄t−s(1θ̄t−s)−∇f̄t−s(θt−s)+ϑ̄R,t−s−ζ̄C,t−s

− uT (Z−1
t−s−U

−1)

m
(st+1−s−st−s), λt−s∇f̄t−s(1θ̄t−s)

〉]
,

Γ5 = 2E
[〈
θ̄t−s − θ∗, λt−s∇f̄t−s(1θ̄t−s)− λt−s∇f̄t−s(θt−s)

+ ϑ̄R,t−s−ζ̄C,t−s−
uT (Z−1

t−s−U−1)

m
(st+1−s−st−s)

〉]
,

Γ6 = 2E[⟨θ̄t−s − θ∗, λt−s∇f̄t−s(1θ̄t−s)⟩2].
(75)

We further characterize each item in (75):
1) By using Assumption 3(iii) and Lemma 3, we have

Γ1 ≤ 6L2δ2F,Rλ
2
t−sE[∥θt−s − 1θ̄t−s∥2R] +

12κ2λ2
t−s

t−s+1

+
2∥u∥2

2c
2
z

m2 γ
2(t−s)
z E[∥st+1−s − st−s∥2F ]. (76)

2) Based on the definitions of ϑ̄R,t−s and ϑ̄C,t−s, we have

Γ2 ≤ 2∥u∥2
2(σ

+
ϑ )2

∑
i,j(Rij)

2

m2(t−s+1)2ςϑ
+

2(σ+
ζ )2

∑
i,j(Cij)

2

m2(t−s+1)2ςζ
.

3) Using an argument similar to the derivation of (34) yields

Γ3 ≤ 2(κ2 +D2)λ2t−s. (77)

4) By utilizing Assumption 4, (76), (77), and the relation
2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2 for any vectors a and b, we have

Γ4 ≤ 2(κ2 +D2)λ2t−s + 6L2δ2F,Rλ
2
t−sE[∥θt−s − 1θ̄t−s∥2R]

+
2∥u∥2

2c
2
z

m2 γ
2(t−s)
z E[∥st+1−s − st−s∥2F ] +

12κ2λ2
t−s

t−s+1 .

5) By using Assumption 4 and (76) and defining at−s ≜
1

(t−s+1)r with r ∈ ( 12 , v), we obtain

Γ5 ≤ at−sλt−sE[∥θ̄t−s − θ∗∥22]

+
6L2δ2F,Rλ

2
t−s

at−s
E[∥θt−s − 1θ̄t−s∥2R] +

12κ2λ2
t−s

(t−s+1)at−s

+
2∥u∥2

2c
2
z

m2

γ2(t−s)
z

at−sλt−s
E[∥st+1−s − st−s∥2F ].

6) By defining at−s ≜ 1
(t−s+1)r with r ∈ ( 12 , v), we have

Γ6 ≤ −2λt−sE[F (θit+1)− F (θ∗)]

+ λt−sat−sE[∥θ̄t−s − θ∗∥22] +
λt−sκ

2

at−s(t−s+1) .
(78)

Substituting (76)-(78) into (74), we arrive at

E[∥θ̄t+1−s − θ∗∥22] ≤ −2λt−sE[F (θit+1)− F (θ∗)]

+ (1 + 2λt−sat−s)E[∥θ̄t−s − θ∗∥22] + Φt−s,
(79)

where the term Φt−s is given by

Φt−s = 6L2δ2F,R

(
2λ2t−s +

λt−s

at−s

)
E[∥θt−s − 1θ̄t−s∥2R]

+
2∥u∥22c2z
m2

(
2γ2(t−s)z +

γ2(t−s)
z

at−sλt−s

)
E[∥st+1−s−st−s∥2F ]

+
2∥u∥2

2(σ
+
ϑ )2

∑
i,j(Rij)

2

m2(t−s+1)2ςϑ
+

2(σ+
ζ )2

∑
i,j(Cij)

2

m2(t−s+1)2ςζ

+ 4(κ2 +D2)λ2t−s +
κ2(24λ2

t−s +
13λt−s

at−s
)

(t−s+1) . (80)

We define t̄ = t− s+1 for all t̄ > 0 and drop the negative
term −2λt−sE[F (θit+1)− F (θ∗)] to rewrite (79) as follows:

E
[
∥θ̄t̄ − θ∗∥22

]
≤ (1 + 2λt̄−1at̄−1)E

[
∥θ̄t̄−1 − θ∗∥22

]
+Φt̄−1.

(81)
By iterating (81) from 0 to t̄− 1, one yields

E[∥θ̄t̄−θ∗∥22] ≤
(∏t̄−1

p=0(1+2λpap)
)(
E[∥θ̄0−θ∗∥22]+

∑t̄−1
p=0 Φp

)
.

(82)
Since ln(

∏t̄−1
p=0(1 + 2λpap)) ≤ 2λ0(r+v)

r+v−1 is valid, we have∏t̄−1
p=0(1 + 2λpap) ≤ e

2λ0(r+v)
r+v−1 . We use this inequality and

replace t̄ with t− s+ 1 to rewrite (82) as follows

E[∥θ̄t−s+1−θ∗∥22] ≤ e
2λ0(r+v)
r+v−1

(
E[∥θ̄0−θ∗∥22]+

∑t
s=0 Φt−s

)
,

(83)
where in the derivation we used

∑t−s
p=0 Φp =

∑t
s=0 Φt−s.

We proceed to estimate an upper bound on
∑t
s=0 Φt−s:

1) Considering that at−sλt−s≤ λ0 implies λ2t−s≤
λt−s

at−s
λ0,

we combine (10) and (t− s+ 1)p≤2p(t− s)p to obtain

6L2δ2F,R
∑t
s=0(2λ

2
t−s+

λt−s

at−s
)E[∥θt−s−1θ̄t−s∥2R]<c̄θ1, (84)

with c̄θ1 = 6L2δ2F,Rλ0(2λ0 +1)( 4cθ1(v−r+2)
v−r+1 + 4vcθ2(3v−r)

3v−r−1 +
4ςϑcθ3(v−r+2ςϑ)
v−r+2ςϑ−1 +

4ςζ cθ4(v−r+2ςζ)
v−r+2ςζ−1 ).
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2) The relation at−sλt−s≤λ0 implies γ2(t−s)z ≤ γ2(t−s)
z

at−sλt−s
λ0.

Using this relation, (54), Lemma 7, and Lemma 8 yields

2∥u∥2
2c

2
z

m2

∑t
s=0(2γ

2(t−s)
z +

γ2(t−s)
z

at−sλt−s
)E[∥st+1−s−st−s∥2F ]<c̄θ2,

with c̄θ2 =
29∥u∥2

2c
2
z(2λ0+1)

(ln(γz)e)4m2λ0
(
12δ2F,C∥C∥2

Ccs1(6−v−r)
5−v−r +

(3×4vδ2F,C∥C∥2
Ccs2)(4+v−r)

3+v−r +
(6m(κ2+D2)λ2

0)(4+v−r)
3+v−r +

(3×4ςζ δ2F,C∥C∥2
Ccs3+3

∑
i,j(Cij)

2(σ+
ζ )2)(4+2ςζ−v−r)

3+2ςζ−v−r ).

3) Applying the relation
∑t
s=0

1
(t−s+1)p ≤ p

p−1 to the rest
of terms on the right hand side of

∑t
s=0 Φt−s yields∑t

s=0

2∥u∥2
2(σ

+
ϑ )2

∑
i,j(Rij)

2

m2(t−s+1)2ςϑ
+
∑t
s=0

2(σ+
ζ )2

∑
i,j(Cij)

2

m2(t−s+1)2ςζ

+
∑t
s=0 4(κ

2+D2)λ2t−s+
κ2(24λ2

t−s+
∑t

s=0

13λt−s
at−s

)

(t−s+1) ≤ c̄θ3,
(85)

with c̄θ3 =
4∥u∥2

2(σ
+
ϑ )2

∑
i,j(Rij)

2ςϑ
m2(2ςϑ−1) +

4(σ+
ζ )2

∑
i,j(Cij)

2ςζ

m2(2ςζ−1) +
8vλ2

0(κ
2+D2)

2v−1 +
12κ2(2v+1)λ2

0

v + 13κ2λ0(v+1−r)
v−r .

Summing up both sides of (84)-(85) yields
∑t
s=0 Φt−s =∑3

i=1 c̄θi. Further substituting this relationship into (83), we
have E[∥θ̄t−s+1 − θ∗∥22] ≤ c̄′ for all s ∈ [0, t], where c̄′ ≜
e

2λ0(r+v)
r+v−1 (E

[
∥θ̄0 − θ∗∥22

]
+
∑3
i=1 c̄θi).

We sum up both sides of (79) from 0 to t to obtain

2
∑t
s=0 λt−sE

[
F (θit+1)− F (θ∗)

]
≤ (1 + 2λ0)E

[
∥θ̄0 − θ∗∥22

]
+
∑t−1
s=0 2λt−sat−sE

[
∥θ̄t−s − θ∗∥22

]
≤ c̄θ4, (86)

where c̄θ4 is given by c̄θ4 = 2(v+r)e
2λ0(r+v)
r+v−1

v+r−1 (E
[
∥θ̄0−θ∗∥22

]
+∑3

i=1 c̄θi)+(1+2λ0)E[∥θ̄0−θ∗∥22]. Using the relation 2λ0((t+
2)1−v−1)≥2λ0(1− 1

21−v )(t+1)1−v , we arrive at (12).

F. Proof of Lemma 11

We first prove the following inequality for all p ∈ [0, t]:
βt

βt−p
≥ c0

(
1− c

2

)p
, (87)

where the constant c0 is given by c0 =
( e ln( 2

2−c )

2q

)q
.

When constants a, b, c, d > 0 satisfy c
a ≥ d

b , the relationship
d
b ≤ c+d

a+b ≤ c
a always holds. This inequality further implies

t+2−p
t+1 = t+1−p+1

t+1−p+p ≥ 1
p and t−p+1

t−p+2 ≥ 1
2 . Therefore, we have

βt

βt−p
=

(
t−p+1
t+1

)q ≥ 1
(2p)q . (88)

Consider a convex function f(x) = −q ln(x) − x ln(1− c
2 ) :

R+ → R (where R+ represents the set of positive real
numbers), whose derivative satisfies f ′(x) = − q

x − ln(1− c
2 ),

implying the minimum point at x∗ = − q
ln(1− c

2 )
with the min-

imal value f(x∗) = −q ln
(
− q

ln(1− c
2 )

)
+ q

ln(1− c
2 )

ln
(
1− c

2

)
=

ln(c02
q). Hence, for any p ∈ N+, we have f(p) ≥ ln(c02

q),
which is equivalent to ln

(
(1− c

2 )
p
)
≤ ln( 1

c02qpq
). Combining

this relation with (88) yields (87).
By iterating ψt+1 ≤ (1− c)ψt + βt from 0 to t, we obtain

ψt+1 ≤ (1− c)(1− c)tψ0 +
∑t
p=0 βt−p(1− c)p. (89)

By using (1−c)p ≤ (1− c
2 )

2p, we have
∑t
p=0 βt−p(1−c)p ≤

βt
∑t
p=0

βt−p

βt
(1− c

2 )
2p. Based on (87), one yields∑t

p=0 βt−p(1− c)p ≤ βt

c0

∑t
p=0

(
1− c

2

)p ≤ 2βt

cc0
. (90)

Using again inequality (87), we obtain

(1− c)tψ0 ≤
(
1− c

2

)t
ψ0 ≤ ψ0

c0β0
βt. (91)

Substituting (90) and (91) into (89), we arrive at ψt ≤
1
c0

(ψ0(1−c)
β0

+ 2
c

)
βt−1. Further using the relationship βt−1 ≤

2qβt and the definition of c0 yields Lemma 11.

REFERENCES

[1] J. B. Predd, S. B. Kulkarni, and H. V. Poor, “Distributed learning in
wireless sensor networks,” IEEE Signal Process. Mag., vol. 23, no. 4,
pp. 56–69, 2006.

[2] C. Yu, X. Wang, X. Xu, M. Zhang, H. Ge, J. Ren, L. Sun, B. Chen, and
G. Tan, “Distributed multiagent coordinated learning for autonomous
driving in highways based on dynamic coordination graphs,” IEEE
Trans. Intell. Transp. Syst., vol. 21, no. 2, pp. 735–748, 2019.

[3] P. Wang, E. Fan, and P. Wang, “Comparative analysis of image clas-
sification algorithms based on traditional machine learning and deep
learning,” Pattern Recognit. Lett., vol. 141, pp. 61–67, 2021.

[4] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” Adv. Neural Inf.
Process. Syst., vol. 30, pp. 5330–5340, 2017.

[5] Y. Bo and Y. Wang, “Quantization avoids saddle points in distributed
optimization,” Proc. Natl. Acad. Sci., vol. 121, no. 17, p. e2319625121,
2024.
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