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Long-Range MD Electrostatics Force

Computation on FPGAs
Sahan Bandara , Anthony Ducimo , Chunshu Wu , and Martin Herbordt

Abstract—Strong scaling of long-range electrostatic force com-
putation, which is a central concern of long timescale molecular
dynamics simulations, is challenging for CPUs and GPUs due to
its complex communication structure and global communication
requirements. The scalability challenge is seen especially in small
simulations of tens to hundreds of thousands of atoms that are
of interest to many important applications such as physics-driven
drug discovery. FPGA clusters, with their direct, tightly coupled,
low-latency interconnects, are able to address these requirements.
For FPGA MD clusters to be effective, however, single device
performance must also be competitive. In this work, we leverage the
inherent benefits of FPGAs to implement a long-range electrostatic
force computation architecture. We present an overall framework
with numerous algorithmic, mapping, and architecture innova-
tions, including a unified interleaved memory, a spatial scheduling
algorithm, and a design for seamless integration with the larger MD
system. We examine a number of alternative configurations based
on different resource allocation strategies and user parameters. We
show that the best configuration of this architecture, implemented
on an Intel Agilex FPGA, can achieve 2124ns and 287ns of
simulated time per day of wall-clock time for the two molecular
dynamics benchmarks DHFR and ApoA1; simulating 23K and 92K
particles, respectively.

Index Terms—Electrostatics computation, FPGA acceleration,
grid mapping, molecular dynamics, particle mesh ewald.

I. INTRODUCTION

A
CCELERATION of Molecular Dynamics (MD) simula-

tions is critical: there is a many orders-of-magnitude gap

between the largest current simulations and physical systems

of interest [1], [2]. There are dozens of MD packages which

support GPUs (e.g., [3], [4], [5], [6], [7]). Scalability, however,

remains problematic for the small simulations (20K–50K parti-

cles) commonly used, e.g., in drug design [8], [9], where long

timescales are also extremely beneficial; several studies dis-

cuss challenges for CPU, GPU, and CPU+GPU heterogeneous

clusters [10], [11], [12]. Simulation of long timescales of small
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molecules is a motivation for the Anton family of ASIC-based

MD engines [13], [14], [15]. Anton addresses scalability, in part,

by combining dedicated MD computing with direct communi-

cation links–application layer to application layer–within and

among the integrated circuits. Since FPGAs also support these

capabilities, they represent a comparatively low-cost COTS

alternative [16].

The challenge in strong scaling of MD results, especially,

from the long-range (LR) electrostatic force computation. In this

work, we present an FPGA-based computation unit implement-

ing LR through the Particle Mesh Ewald (PME) method [17].

When using the PME for LR, the three dimensional (3D) Fast

Fourier Transforms (FFT), which requires global communica-

tion, poses perhaps the greatest hurdle. While clusters of GPUs

are efficient for large FFTs, clusters of FPGAs have shown to out-

perform GPUs in performing 3D FFTs in smaller grid sizes [18].

Overall, this work builds upon work presented in [19], [20], [21],

[22]; proposes novel solutions to challenges not fully addressed

in prior work, and provides a unified architecture and algorithmic

framework. The proposed design can be used either standalone

or as part of a fully integrated MD simulation accelerator [23].

Apart from the FFTs, additional complexity arises from the

charge and force mapping operations, which have both high

fan-in/fan-out and require complex communication structures.

FPGAs are particularly well-suited to both mapping and FFT,

as well as the data movement and conversion operations, and

the integration with the other MD computations. In particular,

FPGAs’ many thousands of independently addressable on-chip

memories (Block RAMs or BRAMs)—together with support

for creating application-specific interconnection networks that

connect the BRAMs to each other and to the computation units—

leads to extremely high efficiency. The main theme of this work

is leveraging these FPGA features through a unified architectural

and algorithmic framework based on memory organization and

memory access patterns. Contributions include:
� Combining many previous partial solutions, on different

components of the PME algorithm, to design a complete

LR force computation architecture;
� Many fine-grained design innovations for an FPGA-LR

force computation unit that can be either a stand-alone

accelerator or part of a fully integrated MD accelerator;
� Establishing the requirements for an ideal memory

structure for PME and proposing an application-specific

interleaved memory architecture that satisfies those

requirements;
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� Proposing new algorithmic improvements for increas-

ing the efficiency of charge mapping pipelines and data

movement between RL and LR units, i.e., an on-chip

spatial scheduling algorithm that results in 12× improved

performance;
� A design for efficiently integrating LR with the Range-

Limited (RL) force compute units;
� Establishing resource usage values and performance for a

baseline configuration of the LR accelerators;
� Analysis of different resource allocation strategies and

extrapolation of resource usage and performance for al-

ternative configurations that, e.g., trade-off accuracy and

performance;
� Experiments with a production MD package that compares

the performance of FPGA-LR to that of a high-end GPU.

High-level significance of this work therefore includes the

demonstration that chip-level FPGA processing of LR is a

benefit, rather than a drawback, in using FPGA clusters for

long timescale MD. The remainder of this paper is organized

as follows. In Section II we describe MD simulations and

long-range electrostatic force computation and discuss FPGAs

as acceleration platforms for these. In Section III we present

the overall LR force computation architecture and provide

detailed descriptions of the components. Resource usage and

performance baselines are established in Section IV. Section V

presents alternative design configurations and their impact on

performance and resource usage. We present prior work on

FPGA- and ASIC-based MD accelerators in Section VI; and

conclude the paper in Section VII.

II. MD PRELIMINARIES

A. Overview

Molecular Dynamics uses an iterative application of New-

tonian mechanics on ensembles of atoms and molecules. MD

simulations alternate between force computation and motion

integration. The types of forces computed depend on the system

being simulated and may include: bonded terms – pairwise,

angle, and dihedral; and non-bonded terms – Van der Waals,

and Coulomb. A collection of functions and corresponding

parameters computing these force components is often referred

to as a force field, e.g.,

F total = F bond + F angle + F dihedral + Fnon−bonded (1)

The non-bonded force is comprised of Lennard-Jones (LJ) and

Coulombic forces. For a particle i in an ensemble of particles,

these forces can be calculated as:

FLJ
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where εab (unit: kJ or kcal) and σab (unit: meters) are parameters

related to the types of particles.

To reduce the complexity of the non-bonded force compu-

tation from O(N2), it is generally split into two components:

range-limited (RL), which isO(N) (since each particle interacts

with only a much smaller number of neighbors); and long-range

(LR), which is often O(N logN) as will be described. The

Coulombic force is itself split into two parts, fast decaying and

slow decaying. The slow decaying part is the Long-Range (LR)

force.

B. Long Range Electrostatics Computation

The Particle Mesh Ewald (PME) method is a grid-

based method widely used to calculate LR electrostatic

forces. It reduces the asymptotic complexity from O(N2

p ) to

O(Nglog(Ng)), where Np is the number of particles and Ng is

the number of grid points. While there are other methods, such

as k-space summation [24], µ-series [25], and multi-grid [26],

[27], the widespread support for PME in production-grade MD

packages, such as OpenMM [6], GROMACS [5], and many

others, makes it an important target for acceleration.

PME involves three main phases: (i) mapping particle charges

to a discrete grid to create the charge distribution; (ii) deriv-

ing the potential field caused by the charge distribution; and

(iii) calculating the force exerted on each particle by the potential

field. In the first (mapping) and third (force computation) phases,

particle ↔grid interpolations are used to derive charge densities

at grid points from particle charges and to calculate electric

field vectors at particle positions using the potential grid. These

mappings are typically done using tricubic interpolation.

The method used here applies a third order basis function in

distributing particle charges to grid points, and the gradient of

the same basis function for electric field vector calculations.

Equation (4) is used to calculate charge densities ρg at grid

points from particle charges. Equations (5), (6), and (7) are

used to calculate force vectors along each dimension at particle

positions using the potentials ϕg at grid points. φ represents the

basis function. Indices p and g denote particle and grid points

respectively.

ρg =
∑

p

Qpφ (|xg − xp|)φ (|yg − yp|)φ (|zg − zp|) (4)

�Fp,x =
∑

g

ϕg∂φ (|xg − xp|)φ (|yg − yp|)φ (|zg − zp|) (5)

�Fp,y =
∑

g

ϕgφ (|xg − xp|) ∂φ (|yg − yp|)φ (|zg − zp|) (6)

�Fp,z =
∑

g

ϕgφ (|xg − xp|)φ (|yg − yp|) ∂φ (|zg − zp|) (7)

φ(ξ) =

⎧

⎨

⎩

(1− |ξ|)(1 + |ξ| − 3

2
ξ2) |ξ| ≤ 1

− 1

2
(|ξ| − 1)(2− |ξ|)2 1 ≤ |ξ| ≤ 2

0 2 ≤ |ξ|
(8)

Equation (8) shows the third order basis function where ξ is the

distance between the particle and any grid point. Following [20],

the basis function is modified to be a set of polynomials of oi. By

substituting ξ with oi+1, oi, 1−oi, and 2−oi, four polynomials,

corresponding to the four neighboring grid points shown in (9),
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Fig. 1. Grid index and offset.

are derived. Fig. 1 depicts how the term oi relates to the particle

position and neighbor grid points.
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The second phase involves computing the electric field gener-

ated by the charge grid. The solution to the Poisson equation is

the electric potential generated by a given charge distribution. In

three-dimensional Cartesian coordinates, the Poisson equation

takes the form
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

ϕ(x, y, z) = f(x, y, z) (10)

Usually, f is given andϕ is sought. In electrostatics,ϕ and f rep-

resent the electric potential and the charge density distribution,

respectively. The Poisson equation can be solved by computing

the convolution between the charge distribution and a Green’s

function.

PME uses FFTs to replace convolution in real space with

multiplication in Fourier space. First, a 3D FFT is performed

to transform the charge grid into the Fourier domain. Next,

the resulting grid is multiplied by the Fourier transform of the

Green’s function. Finally, an inverse 3D FFT is performed to

transform the result back into real space. The final phase of

PME is calculating the force exerted on each particle by the

potential field. The derivatives of the basis functions used for

particle to grid charge mapping are used to compute the electric

field vectors at particle positions. Force vectors along X , Y ,

and Z dimensions are calculated as the output of the LR force

computation.

C. Problem and Grid Sizes of Interest

Various molecular modeling techniques, e.g., quantum me-

chanics methods, hybrid quantum/molecular mechanics, MD,

and coarse-grained MD, are best suited for certain problem sizes.

MD is typically used to target systems ranging from thousands

to many millions of atoms [28]. Table I provides an overview

of system sizes, corresponding PME grid sizes, typical use

cases, and matching benchmarks. The grid sizes are computed

assuming an Ewald error tolerance of 0.0005 following the GPU

benchmark setup used in [29].

D. Mapping MD Computation to Hardware

An MD/LR hardware accelerator implementing the methods

in Section II-B must have the following components: particle

memory (positions, velocities, and forces) organized into cells

TABLE I
OVERVIEW OF PARTICLE NUMBERS AND GRID SIZES FOR MD SIMULATIONS

for easy reference during RL; charge grid memory; potential grid

memory; 1-64 charge grid creation pipeline(s); 64-1 force appli-

cation pipeline(s); 1D FFT pipeline(s); and the interconnections

among the memories and pipelines. For maximal efficiency, the

memories must enable parallel accesses: for the mapping steps,

writing/reading 64 grid charges/potentials to/from 4× 4× 4
subgrids; for the FFT steps, reading and writing as many 1D

vectors as possible.

To integrate MD/LR into a complete MD accelerator, addi-

tional data structures and computations are needed. To keep

this study focused on LR, we associate motion integration with

RL (at no change in hardware cost or performance). Since the

RL unit performs motion integration, it also stores the particle

positions and calculated force values in caches (position and

force). The RL unit subdivides the simulation space into a grid of

cells as the range-limited forces are evaluated only considering

particles within a cut-off radius. There are position and force

caches corresponding to each cell. The position caches store

particle positions that are fed to the RL force computation

pipelines. After motion integration, the updated particle posi-

tions are written back to the position caches. The force caches

store force values calculated by the different MD parts until used

by motion integration pipelines. The LR unit is responsible for

retrieving particle position information from the position caches,

computing LR, and transferring the force values to the force

caches. Force caches include accumulation logic to accumulate

force values computed by the RL and LR units. Details of the

RL unit are in [36], [37], [38], [39], [40].

E. LR Computation and Hardware Acceleration

The phases described in Section II-B are computed as shown

in Fig. 2 (in 2D). Fig. 2(a) shows particles in a simulation space

organized into cells, as needed for the RL computation. Fig. 2(b)

shows the first step in PME: distributing the charge of a particle

onto 64 nearby points of a charge grid (16 for 2D). Note that

the grid geometry is unrelated to that of the cells. The next step

is the 3D FFT (2D here), which is computed with 1D FFTs in

successive dimensions (Fig. 2(c) and (d)). The next steps are the

multiplication and inverse FFTs (Fig. 2(e) and (f)); at this point

a potential grid has been created. Fig. 2(g) shows the forces from

64 nearby grid points (16 for 2D) being applied to a particle.
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Fig. 2. Long-range force computation overview.

Designing a long-range force computation accelerator re-

quires solving several architectural challenges. While much op-

timization is possible within the compute pipelines, the biggest

challenges are in organizing, accessing, and interconnecting the

various memories. The challenge is, therefore a data movement

problem given FPGA BRAM architecture: to find the best

layouts and indexing schemes to optimize parallel accesses,

while minimizing conflicts to ensure efficient data movement,

which results in high pipeline utilization. Going beyond the LR

force computation, there are further data movement challenges

in performing efficient data exchanges between RL and LR units.

In this work, we present novel solutions that far outperform prior

work in data movement efficiency.

The different phases of the LR force computation involve two

distinct memory access patterns, neither suitable for traditional

memory architectures. In the first, the charge mapping and force

computation phases require accessing potentially overlapping

subgrids from a 3D grid that overlays the simulation space. In

the second, the FFT phase requires reading 1D vectors from the

same grid data structure along each of the three dimensions,

preferably without having to transpose data in memory. While

prior work has provided solutions for these access patterns

individually, a memory architecture that supports both access

patterns with high throughput, and without additional stages

of memory manipulation, has not previously been presented.

In the following sections we show how an efficient “virtual”

memory architecture can be built with spatially distributed,

individually addressable blocks of memory, such as block RAMs

on an FPGA. We also demonstrate address sequences that ensure

the memory bandwidth is fully utilized in every phase of the

computation.

Part of the challenge is that because the charge mapping stage

requires both reading and writing of grid memory, RAW hazards

result. As data forwarding is prohibitively expensive, prior work

dealt with these through pipeline stalls. Also, complete position

Fig. 3. Long-range force computation architecture.

information was first cached in the LR unit before feeding the

data to the charge mapping pipelines. In a complete MD system,

however, this leads to inefficiencies in data movement between

RL and LR units.

Two optimizations are proposed to deal with these issues.

First, data movement from RL to LR is scheduled: hazards can

be avoided by first spatially sorting particles. For simulations

of more than 10K particles, nearly 100% pipeline utilization is

achieved resulting in a 12× performance improvement. More-

over, these schedules can be computed offline for a given sim-

ulation size without considering the actual particle positions.

Second, we overlap data transfers with computation so that

only a small fraction of particles needs to be buffered between

computations.

III. LR FORCE COMPUTATION ARCHITECTURE

An overview of the LR force computation architecture is

presented in Fig. 3. The LR architecture is comprised of three
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stages, which roughly correspond to the three phases of the

PME algorithm. The charge mapping pipeline accepts particle

information from an external interface, interpolates the charge

values to the 4x4x4 subgrid surrounding the particle, and up-

dates the charge values in grid memory. Particle information is

temporarily stored in particle information memory to be used in

the force computation.

The clustered grid memory connects all three phases of the

computation. After receiving charge values for all the particles

from the charge mapping pipeline, the grid memory is read and

the readouts are sent to the FFT units. The outputs of FFT and

inverse FFT computations are written back to the grid memory.

After the 3D FFT and inverse FFT (iFFT) computations, the

grid memory holds the potential grid representing the electric

field caused by the charge grid. In the final phase, the potential

values read from the grid memory and the particle information

read from particle information memory are sent to the force

computation pipeline. LR force values for each of the particles

are transmitted through the output interface. The entire LR

pipeline uses single precision floating point values.

We examine each of the components in detail. The first sub-

section covers grid memory. The next subsection describes basic

charge mapping, hazards, parallelization, and a performance

model. After that we detail hazard avoidance through particle

scheduling, which is followed by a subsection covering FFTs

and iFFTs. There follows a subsection on force mapping and

its parallelization. The final subsection describes features of LR

needed to interact with RL.

A. Clustered Grid Memory

The clustered grid memory is the central component of the

LR design as it is used in, and affects the performance of, every

phase of the computation. First, the number of ports provided by

the grid memory controls how fast the charge of a particle can

be spread over 64 grid points. Second, in the FFT/iFFT phase,

the grid memory’s bandwidth determines how many parallel

FFT units can be employed. And third, the number of read

ports controls how many grid points can be read per cycle and

used in force computation. Also, most previously explored FFT

architectures, both FPGA- [18], [21] and ASIC-based [41], lend

themselves well to performing 3D FFTs, but require a transpose

phase between each of the 1D FFT phases where the stored

values are rearranged to match the direction for the next 1D

FFT. Eliminating the transpose could result in a significant

improvement in FFT latency. With the above in mind, we can

enumerate the characteristics of an ideal memory structure:

1) Store 64 bits of data per grid point (two 32-bit single

precision floating values for real and imaginary parts of

grid data).

2) Support reading and writing the 64 nearest neighbor grid

points of a particle at a rate of one particle per clock cycle.

3) Provide the capability to perform consecutive 1D FFTs

without transposing the grid data in between each FFT

phase.

Meeting (1) is trivial. To meet (2), there must be at least 64

read and 64 write ports. (3) requires that the mechanism used

to access consecutive grid points placed along any of the three

dimensions be agnostic to the particular direction.

1) Memory Interleaving: The grid memory is made of 64

independently accessible and addressable memory banks, each

of which is implemented with one or more FPGA block RAMs

(BRAMs), depending on the BRAM geometry and the size of

the grid memory. The grid points are assigned to the 64 memory

banks to ensure that any subgrid of size 4× 4× 4 can be read

from (or written to) the memory banks in parallel. The subgrid

size is selected to match the interpolation scheme used. The

memory interleaving scheme is trivially generalizable to support

different subgrid sizes and, therefore, different interpolation

schemes.

The address of a datum at a grid point is the ordered tuple

used to specify the location in 3D Cartesian coordinates. By

partitioning the grid memory into 4× 4× 4 subgrids, referred

to hereafter as neighborhoods, the location of a grid point can be

given with a neighborhood ID and a neighbor ID. The neighbor-

hood ID refers to a subgrid in the charge (or potential) grid. The

neighbor ID indicates an individual grid point inside a neighbor-

hood. When mapping grid locations to the 64 memory banks, the

neighbor ID is used to select the memory bank; the neighborhood

ID is used to index into the particular memory bank. The two

low-order bits of each of the X, Y, and Z coordinates are concate-

nated to form the neighbor ID. The remaining (high-order) bits

of the three coordinates uniquely identify the grid neighborhood.

The following is an example of how the ordered tuple of

a grid point in a 32× 32× 32 grid is decomposed into its

neighborhood and neighbor IDs.

(X,Y, Z) = (11, 23, 8)

= (010112, 101112, 010002)

= (0102, 1012, 0102) · (112, 112, 002)

= (2, 5, 2) · (3, 3, 0)

In a 32× 32× 32 grid, grid point (11, 23, 8) is the neighbor

(3, 3, 0) inside the neighborhood (2, 5, 2). The concatenated

high-order bits (0102, 1012, 0102) are used to address memory

bank (3, 3, 0). These translate to index 170 (0101010102).

The core grid memory capability for the mapping phases is,

for all 4× 4× 4 subgrids in a grid, the simultaneous access of

those subgrid points. This access mechanism can be visualized

as a cluster of 64 read (or write) ports that moves through the

grid. Fig. 4 depicts how the access cluster moves about to access

neighbors from neighborhoods, thereby accessing grid points

from the grid. Neighbors accessed by the access cluster are

shown in white (or orange for the 0 point). From (A) to (B)

to (C), the access cluster moves along the Z dimension. From

(C) to (D) the access cluster moves along the Y dimension.

Note that each neighbor ID appears at most once inside an

access cluster. This is necessary to ensure that the 64 ports of

the access cluster access the 64 memory banks without overlaps,

enabling all points of a subgrid to be read (or written) in parallel.

Also, the access cluster is not required to be neighborhood-

aligned: any neighbor ID can appear on any of the ports in
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Fig. 4. Grid memory access patterns.

Fig. 5. Grid memory and crossbar architecture.

the access cluster. This is evidenced by the varying location

of neighbor 0 (orange) relative to ports within the access cluster.

2) Grid Memory Implementation: Achieving the flexibility

described in Section III-A1 requires that all cluster ports be

connected to all memory banks. This all-to-all connectivity is

achieved by the input and output crossbars using three-stage

toroidal shift multiplexers. The neighbor indices requested at

access cluster ports are shifted and realigned to match the align-

ment of the memory banks. At each stage, the access cluster is

aligned along one dimension. The alignment control information

is sent to each memory bank. The readouts from the memory

banks go through the output crossbar, which routes the values

to the correct output ports. Section III-D details how the access

cluster uses different addressing sequences to support the access

patterns required for FFT computations.

Fig. 5 shows how the crossbars and BRAMs are organized and

provides a detailed view of a crossbar. When accessing the grid

memory, each port is presented with the X, Y, and Z coordinates

of one of the 64 grid points to be accessed. Routing requests from

Fig. 6. Charge mapping pipeline.

input ports to memory banks and readouts from memory banks to

output ports are performed by the two crossbars. Both the input

and output crossbars are implemented as multi-stage pipelines

to improve operating frequency and routability. At each stage,

a set of low-order bits from the requested coordinates is used

to control the multiplexers. The first stage aligns the request

along the X dimension using the low-order bits from the 64 X

coordinates. Similarly, the second and third stages align requests

along Y and Z dimensions, using the Y and Z coordinates

respectively. Recall that the low-order bits correspond to the

neighbor ID within the access cluster. Therefore, this essentially

realigns the access cluster according to the neighbor IDs. After

the low-order bits are used for controlling an alignment stage,

they are captured at the input ports, sent through a separate set

of pipeline registers, and used to control the output crossbar.

B. Charge Mapping Pipeline

This section describes an extension to previous work [20],

[22] through parallelization and combining with the clustered

grid memory. In charge mapping via tricubic interpolation, each

charge is spread over 64 neighboring grid points. The charge

mapping pipeline is 64-way vectorized to read grid memory,

compute grid charge values, perform charge accumulation, and

update grid memory for all 64 neighbor grid points in parallel.

Fig. 6 provides a detailed view of the charge mapping pipeline

and how it interacts with the grid memory. The charge coefficient

and address generator receives particle position and charge

information and generates the 64 coefficients corresponding to

the 64 neighbor grid points and 64 grid addresses to access the

grid memory. Next, the subgrid of 64 grid points is read from

the grid memory, accumulated with the output of the charge

coefficient generator, and written back to grid memory. The 64

addresses are sent through the pipeline to be used as the write

addresses for the grid memory.

1) Handling Hazards: A critical complication arises as fol-

lows. Accumulating charge involves performing read-modify-

write operations on the clustered grid memory, 64 grid points
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per particle. When two particles have overlapping neighbor sub-

grids, this can lead to read-after-write (RAW) pipeline hazards.

Referring to Fig. 6, P<> represents particle data fed into the

pipeline; A<>, and C<> represent a set of 64 grid addresses (or

coefficients) generated by the coefficient and address generator;

G<> corresponds to the values of 64 grid points read from (or

written back to) the grid memory. The subscript indicates how far

down the pipeline each of these values are relative to a particle

entering the pipeline. For instance, the read addresses issued

in the current clock cycle corresponds to a particle 24 pipeline

stages removed from Pi. The issuing of the read addresses and

the writing back of the updated grid point data are separated by

11 pipeline stages. Between these two steps, the grid memory

contains stale data for the 64 grid points in question. A RAW

hazard arises if a new particle has a grid neighborhood which

overlaps that of the first. Out of the 11 pipeline stages, 9 are

spent accessing the grid memory. It is possible to implement

forwarding logic among the 3 grid memory write pipeline stages

and 6 read stages and thereby limit pipeline stalls to the 2 stages

where the actual accumulator problem occurs. However, this

introduces unacceptable routing overhead as each pipeline stage

handles 64 64-bit values.

Two other approaches to addressing RAW hazards are to

(i) Implement hazard detection and pipeline stall logic or

(ii) Schedule particle processing to avoid hazards. Since (i)

results in unacceptably poor performance as stalls dominate

performance, we have opted for (ii). Performance is discussed

in Section III-C.

2) Parallel Charge Mapping: Charge mapping for particles

that do not have overlapping neighbor subgrids can be done

in parallel. This requires using multiple pipelines as well as in-

creasing the read/write bandwidth of the grid memory. However,

adding read/write ports to the grid memory drastically increases

resource use and routing complexity. A practical approach is

to instantiate multiple smaller grid memory modules and im-

plement logic to have the smaller units mimic the behavior

of one larger memory unit. Each of the smaller grid mem-

ory units still provides 64 ports so that each charge mapping

pipeline can operate on one of the smaller grid memories.

Implementation fits directly into the design since the simulation

space is already partitioned into non-overlapping sub-regions

(RL cells).

Parallelization of charge mapping is also limited by two

other factors. One is that particle processing schedules have

constraints (see Section III-C), e.g., simulation size. Another

is that particles that are positioned close to region boundaries

map to grid points in more than one grid memory unit and must

be processed by more than one charge mapping pipeline; this

is to ensure that all the relevant grid points are updated, and

necessitates additional cycles.

3) Particles Near Region Boundaries: Particles near the

boundaries of simulation space sub-regions can map to grid

points that belong to different regions. This means the grid

neighborhoods of these particles could be spread over multiple

grid memory units. In the case of such particles, multiple charge

mapping (force) computation pipelines work collaboratively to

distribute charge values (compute the force vectors). Particles in

boundary regions are therefore fed into more than one pipeline;

each pipeline has to process more particles than the ones in the

sub-region mapped to it.

4) Charge Mapping Latency Model: The latency of the

charge mapping phase is determined by the number of particles

Np and the number of charge mapping pipelines Pcmap. The

calculation is complicated, however, as pipelines may need

to process particles from neighboring regions. The number of

additional particles to be processed by each pipeline depends

on how the simulation space is subdivided and assigned to dif-

ferent pipelines. The number of boundary particles per pipeline

(NB cmap) is specific to each configuration. The number of parti-

cles in the shadow regions near the boundaries can be specified in

terms of Np for a given configuration. For simplicity, we denote

it asNB cmap. After also taking into account the charge mapping

pipeline depth (Dcmap), pipeline utilization (Ucmap), and read

and write memory access latencies (MR and MW ), the charge

mapping latency is given by:

1

Ucmap

(

Np

Pcmap

+NB cmap

)

+Dcmap +MR +MW (11)

The Dcmap and MR terms account for the number of cycles to

fill the pipeline. The MW term is necessary because the FFT

phase cannot begin until the charge mapping pipeline outputs

are written back to the grid memory.

C. Scheduling Particle Processing

This section describes an extension to previous work [20],

[22] through scheduling particle computations. As described

in Section III-B1, RAW hazards are removed by guaranteeing

data independence by scheduling particles so that they do not

have overlapping grid neighborhoods with some number of the

preceding or following particles. This number is currently 11,

which we use in this section to give a concrete, but generalizable,

design. When this condition cannot be satisfied, one or more

bubbles is inserted.

1) Grids, Subgrids, Padded Subgrids, and Cells: For exam-

ple, consider a 4× 4× 4 subgrid embedded in a 32× 32× 32
grid. After a particle begins processing, not only is its subgrid

voided, but also all of the surrounding subgrids within the

8× 8× 8 padded subgrid. A schedule could therefore rotate

among 64 disjoint regions (number of disjoint padded sub-

grids within the full grid) and thus result in no stalls. With a

16× 16× 16 grid, however, some stalls would be necessary;

utilization as a function of simulation size is described further

below. Note that this calculation is not affected by the number

of charge processing units.

Given that charge mapping is likely to be part of a larger

MD computation that includes the range-limited (RL) force

computation, particle scheduling can be greatly simplified by

using the spatial sorting of particles already integral to RL. In

particular, the RL force computation unit assigns particles to

cells (typically cubic subdivisions of the simulation space of

dimension similar to the cutoff radius) according to their position

and stores the particle information in position caches. Position

caches are independent blocks of memory, each corresponding
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Fig. 7. Grids, cells, and particles visualized.

to a cell, that store particle information used by the RL force

computation pipelines.

Essential to the scheduling algorithm is the relationship be-

tween cell and grid spaces with respect to simulations of interest

for FPGA clusters. The latter are characterized by uniform

distributions of particles (e.g., biomolecules in water), and by

sizes in the 10s of thousands of particles, as are needed in drug

design and protein folding. MD simulation software typically

selects the grid size based on the size of the simulation space,

cutoff radius, and the Ewald error tolerance specified by the user,

unless the grid dimensions are explicitly specified by the user

(e.g., [42]).

Concretely, the number of grid points is often similar to the

number of particles. In the case of FPGA implementations,

cell size is typically set to the cutoff radius rc [36], [43]; cells

often contain 50-100 particles. The key point is that, while there

are many parameters, the ratio of cell size to grid size is such

that a cell generally contains an entire 4× 4× 4 subgrid. For

instance, for a 64× 64× 64 charge grid simulating water with

a cutoff radius of 0.9 nm; a ratio of 4 between the number of grid

points and RL cells corresponds to a simulation size of around

300K atoms and an Ewald tolerance of 5.5× 10−3. For com-

parison, the OpenMM default settings choose 56× 56× 56,

and 97× 97× 97 charge grids for DHFR (23K atoms) and

ApoA1 (92K atoms) benchmarks, respectively, for the same

cutoff radius, because it targets much lower tolerances [42].

While the 4:1 assumption is conservative, if necessary, rc can

be increased to guarantee this relationship with little loss in RL

performance.

2) Scheduling Algorithms: The spatial sorting of particles

into cells performed by the RL unit can be leveraged to simplify

the particle scheduling in the LR unit. However, it increases the

padding from the surrounding subgrids (8× 8× 8 grid points)

to the surrounding cells (3× 3× 3 cells or, with one subgrid per

cell, 12× 12× 12 grid points). Fig. 7 illustrates the relationship

between some particles distributed in a cell, their subgrids, and

how the subgrids correspond to cells.

Fig. 8 illustrates spatial scheduling. For simplicity, it is in

2D. In Fig. 8(a) we pick a particle from the cell labeled as

‘1’. This means that we have to avoid its neighbor cells when

picking the next k particles, where k is the minimum number

of clock cycles required between two particles with overlapping

grid neighborhoods such as the red and blue particles in Fig. 7.

Fig. 8. Scheduling based on cells in RL unit.

Fig. 9. Pipeline utilization for different scheduling algorithms.

Fig. 8(b) shows the neighbor cells of cell 1 shaded in blue.

These cells are blocked out for the next k clock cycles. This

also depicts how the periodic boundary conditions are applied.

Fig. 8(c) shows the selection of the next particle from cell labeled

‘2’. This reduces the number of cells whence we can potentially

pick the next particle to four. The blue cells are voided for the

next k cycles, and the green cells for the next (k − 1) cycles.

Note that while particles from cells 1 and 2 can both update

grid points within the cell in between, they never update over-

lapping grid points. Therefore, picking particles from cells 1 and

2 in consecutive cycles does not result in a RAW hazard. The

green and orange particles in Fig. 7 represent such a scenario.

If all cells are blocked out, bubbles are inserted until a cell

becomes available. This procedure is repeated until all particles

are sent to the charge mapping pipeline. It is always possible to

pre-compute the selection sequence as it is independent of the

particle positions.

This scheduling procedure allows for various algorithms. Two

are as follows. Algorithm 1 converts the coordinates of the

current cell into a linear address and increments that address

to select the next target cell. If the target cell or its neighbor

cells have not been selected in the last k iterations, a particle can

be picked from that cell. Algorithm 2 selects the cell closest to

the current cell as the target for the next iteration. This is done by

iterating over the cell grid along X, Y, and Z dimensions (with

wrap-around) starting from the current cell until a cell with a

neighborhood not selected in the last k iterations is visited.

3) Effectiveness of Scheduling Algorithms: The effective-

ness of the algorithms is given by the pipeline utilization and

shown in Fig. 9. Pipeline utilization plotted against the number

of atoms is a step function because the cell grid grows in
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discrete steps. The first transition is the cell grid growing from

3× 3× 3 to 4× 4× 4. Both sorting algorithms show marginal

or no improvement going from 4× 4× 4 to 5× 5× 5. From

6× 6× 6 grid, there is nearly full utilization. Both algorithms

are similarly effective, although Algorithm 2 provides slightly

higher pipeline utilization. We have noticed, however, that Al-

gorithm 1 results in higher pipeline utilization for some other

cuboid-shaped simulation spaces, which are encountered when

subdividing the simulation space into sub-regions for parallel

charge mapping.

D. FFT and Inverse FFT

This section describes combining previous work [21] with

clustered grid memory. The PME method requires a 3D FFT

and a 3D inverse FFT to be performed over the charge grid.

Before the iFFT phase, the result of the FFT is multiplied by the

Green’s function values stored in the Green’s ROM. The forward

and inverse Fourier transforms are built up from vendor-provided

FFT IP cores. To fully utilize the read/write capability of the grid

memory, 64 FFT cores are used by default. While this number

can be reduced for small simulations, the FFT cores do not use

many resources so the benefit is marginal.

Higher order FFTs can be decomposed into lower order ones

(e.g., [41]). AnN ×N ×N charge grid requiresN2 N-point 1D

FFTs per dimension, and each of the FFT cores perform N2/64
N-point FFTs per dimension. For each 1D FFT, grid values are

streamed out of the grid memory and outputs from the FFT

units are streamed back to the grid memory. When performing

the 1D FFT along the Z dimension, results are also sent through

a set of multipliers to be multiplied by the Green’s function

values. Green’s function values depend only on the location of

the corresponding grid point, the true volume of the grid, the

order of the basis function used to map the particle charges, and

a convergence parameter [42]. Thus, the values of the Green’s

function at each grid point can be computed offline and stored

in a ROM. The 3D iFFT is performed similarly.

The clustered grid memory provides 64 read ports and 64 write

ports. Therefore, at full utilization, it should be able to service

read and write requests from 64 FFT pipelines. However, the grid

memory is designed to support accessing 64 grid points arranged

in a 4× 4× 4 layout, where each port is required to access

a unique neighbor in the 4× 4× 4 neighborhood. This is not

conducive to the FFT calculation as the grid points are required

to be sent to the FFT cores in a specific order. We decompose the

3D FFT into three sets of 1D FFTs. When performing 1D FFTs

along a particular dimension, 1D arrays of grid points along that

dimension need to be sent to the FFT cores. This is achieved

by staggering 2D slices of the grid memory access cluster and

assigning these slices to neighborhoods from different districts,

where a district is an array of neighborhoods along a given

dimension.

Fig. 10 illustrates the access cluster mapping using a 4× 4×
4 grid memory and a 2× 2× 2 access cluster. The two 2D slices

of the access cluster are shown in green and purple. The same

strategy is valid for larger grid memories and access clusters. For

this simplified example, the 2× 2× 2 access cluster can support

Fig. 10. Grid memory access cluster staggering for the FFT phase.

Fig. 11. Mapping of grid points to FFT pipelines.

8 FFT pipelines. Fig. 11 details how the grid points are mapped to

FFT pipelines. In Fig. 11(a) colors represent grid neighborhoods.

Different shades of the same color represent neighborhoods that

belong to the same district and are accessed using a 2D slice

of the access cluster. For this example configuration, the green

and blue districts are accessed using one 2D slice of the access

cluster, while the orange and purple districts are accessed using

the other slice. Different colors in Fig. 11(b) depict which grid

points are sent to each of the 8 FFT units when performing the

1D FFTs along X dimension. In this configuration, each of the

FFT pipelines performs two 1D FFTs per dimension.

Latency of 3D FFT calculations is deterministic. For simplic-

ity, we assume the simulated space to be a perfect cube. If we

consider anN ×N ×N charge grid, the 3D FFT is decomposed

into three sets of 1D FFTs. Each set comprises N2 N -point

FFTs. We denote the number of FFT pipelines by Pfft, the

pipeline depth by Dfft, and access latencies for read and write

grid memory accesses by MR and MW , respectively. Latency

for one set of 1D FFTs is then:

N3

Pfft

+Dfft +MR +MW (12)

For a cubic charge grid, N3 is the number of grid points which

we denote as Ng . The MR term is for reading the first grid point

from the grid memory and the MW term is writing back the last

term of the FFT output to the grid memory. It is necessary to
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ensure that the results of one FFT phase is completely written

back to the grid memory before starting the next FFT phase.

The total latency for the 3D FFT or inverse FFT is three times

the latency of a single phase. In this implementation, the third

phase of the forward FFT takes three additional cycles since

the outputs of the FFT pipelines are multiplied by the Green’s

function values before they are written back to the grid memory.

E. Force Computation Pipeline

Force computation can be broken into two stages: coefficient

generation and multiply-accumulate (MAC). Particle positions

are read from particle information memory and sent to three

force coefficient generator units. Force coefficient generators

apply the partial derivatives of the basis function along each

dimension to a particle location to generate 64 coefficients

corresponding to the 64 neighbor grid points.

In the MAC portion of the force computation pipeline, the

64-point neighbor subgrid is read from grid memory and po-

tential values at grid points are multiplied by the coefficients

calculated by the coefficient generator module. Up to this point,

the force pipeline is also a 64-way vectorized implementation.

Next, the multiplication results are summed over all 64 points.

Three independent adder trees are used to reduce the 64 val-

ues to a single force value along each of the X, Y, and Z

dimensions.

1) Parallel Force Computation: The force computation

phase could be fully parallelized since computing the force

exerted on one particle by the potential field does not depend

on other particles. The limitation is reading the grid points from

the clustered grid memory. The baseline implementation allows

64 grid points to be read from the grid memory per cycle, which

translates to a force computation throughput of one particle per

cycle. However, when we use the alternative implementation

of the grid memory to enable parallel charge mapping, we

also enable parallel force computation. Each of the subgrid

memories, which map to different regions of the simulation

space, provides 64 ports allowing multiple force computation

pipelines to operate on particles from different regions. Similar

to parallel charge mapping, boundary region particles are sent

to multiple pipelines during force computation.

2) Particle Information Memory: The baseline architecture

uses a single memory unit to cache the particle information until

used in force computation. However, parallel force computation

requires each of the force pipelines to have access to the particles

from different regions in parallel. This requirement is satisfied by

using multiple particle information memories, each assigned to a

different region in the simulation space. Since the particles from

different regions are handled by separate pipelines at the charge

mapping stage, caching the particle information in separate

memory units is trivial.

3) Force Computation Latency Model: We can derive an

analytical formula for the force computation latency similar to

charge mapping. The effect of boundary region particles is the

same. We denote the boundary region particles per pipeline as

NB fcalc. The relationship between NB fcalc and Np is specific

to a given configuration. The force computation latency is given

Fig. 12. Connectivity between LR and RL units.

by:

Np

Pfcalc

+NB fcalc +Dfcalc +MR (13)

where Pfcalc is the number of force pipelines and Dfcalc is the

pipeline depth.

F. Connecting Long-Range and Range-Limited Units

This section extends previous work [23] with multiple op-

timizations. Since then the Range-Limited (RL) design has

gone through a major update [36]. Due to these changes,

and to support the particle scheduling algorithm described in

Section III-C, the logic connecting the LR and RL components

was also redesigned.

The RL unit stores particle information in position caches

and uses ring interconnects to transfer particle information.

The input ring transfers data from position caches to the RL

pipelines, while the output ring transfers the outputs of the RL

pipelines to the force caches, which store the computed force

values until used for motion integration. LR needs to capture

particle information from the input ring and inject the calculated

long-range force values to the output ring to be written to the

force caches. Fig. 12 shows how the LR unit is connected to the

RL ring interconnects via a pair of bridge modules. The bridge

module connected to the input ring also implements the particle

scheduling algorithm described in Section III-C.

1) Input Bridge: Fig. 13 illustrates the internal architecture

of the input bridge module. It uses double buffering to schedule

a set of particles while capturing the next set of particles from

the input ring. The bridge module and the RL unit’s control

logic orchestrate particle data movement between RL and LR

units. During each data movement phase, one particle from each

position cache in the RL unit is read and injected into the input

ring. The bridge module captures the data and stores it in one

of the buffers. It then starts scheduling the particles in the first

buffer (active) while storing the next set of particle data, received

over the input ring, in the second buffer (inactive). The roles of

the two buffers are reversed in each phase. To write data to the
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Fig. 13. RL to LR bridge.

inactive buffer, the controller asserts the corresponding address

select bit. The same signal is used as the write enable for that

buffer. The controller also issues the write address sequence.

To schedule particles in the active buffer, the controller first

issues the read addresses for the sequence ROM. The address

sequence to read particles without violating the scheduling

constraints is pre-calculated and stored in the Sequence ROM; it

indicates the cell from which the next particle should be chosen.

Readout from the ROM is used as the read address for the active

buffer. Each entry in the ROM has an extra bit to indicate whether

it is a valid address or a pipeline bubble. This bit is routed to the

select input of the output multiplexer.

2) Output Bridge: The output bridge is responsible for send-

ing force values corresponding to each of the particles to the

correct force caches, which are connected to the RL output ring,

and so is itself connected (see Fig. 12). The LR unit outputs

the force values in the same order as it receives the particle

information. Therefore the output bridge uses the same sequence

ROM as the input bridge to determine the destination addresses

for the packets carrying force information to the force caches.

But since LR only outputs valid force values, the ROM entries

here are always valid.

IV. BASELINE RESULTS

In this section, we establish resource usage and performance

baselines for the FPGA-LR design without parallel charge map-

ping or parallel force computation. The baseline design consists

of a charge mapping pipeline, sixty-four FFT pipelines, and a

force computation pipeline.

The LR force computation unit was validated and perfor-

mance and resources were measured with implementations

on an Intel Stratix 10 1SX280HN2F43E2VG FPGA [44]

(Intel D5005 programmable acceleration card) and an Ag-

ilex AGFB027R31C3I3V device [45]. The FPGA-LR design

was implemented using SystemVerilog. The Intel Open Pro-

grammable Acceleration Engine flow was used for the D5005

implementation, while the standard Quartus synthesis and Place

TABLE II
RESOURCE USAGE ON AN AGILEX AGFB027R31C3I3V DEVICE

& Route flows were used for the Agilex implementation. In-

tel Quartus Prime Pro - Version 21.2.0 was used. The results

reported are for the Agilex. The LR unit was implemented as

a standalone accelerator. An application running on the host

processor was used to send particle information to the FPGA,

receive computed force values, and validate the results from the

FPGA against force values calculated on the host processor.

A. Resource Usage

Table II presents the absolute and percent usage of Adaptive

Logic Modules (ALM), Digital Signal Processing (DSP) blocks,

and block RAMs (BRAMs) for the different design sizes. For the

first two grid sizes, the particle information memory was set to

4096 and 32768 respectively which is the same as the number of

grid points in the grid memory. For the 64× 64× 64 grid size,

which better represents the problem sizes of interest, particle

memory size was set to 65536.

ALM, DSP, and BRAM usage increases with the design size.

Since the baseline configuration of the LR architecture is used,

the numbers of charge mapping and force computation pipelines

do not change with the size of the charge grid. Therefore any

change in DSP usage is attributable to increased usage by the

FFT IP cores. For ALMs the larger grid memory also contributes

to the increased usage. However, the majority of the additional

ALMs are still used by the larger FFT cores.

The Green’s ROM might use ALMs or BRAMs depending

on the design size. The FPGA tools opt to implement the

163 Green’s ROM using ALMs, but implement the other two

sizes using BRAMs. The size of the clustered grid memory

increases by eight times going from one design size to the next.

However, the BRAM usage increases by less than that. This can

be explained by the fact that although the grid size increases,

the memory interleaving remains at 64 and only the size of

individual memory banks increases. Therefore, even if the total

BRAM bits used increases by 8×, the number of BRAMs grows

at a lower rate.

Fig. 14 shows the breakdown of ALM usage by different

parts of the design. Usage is reported for the three phases of the

PME algorithm: charge mapping, FFT computations, and force

computation. Components that are used in more than one phase,

such as particle memory and clustered grid memory, as well as

any logic that cannot be assigned to a particular PME phase (e.g.,

the finite state machine (FSM) controlling the whole design),

are reported separately. Similarly, Figs. 15 and 16 similarly

present the DSP slice and RAM block usage. The clustered bars

represent the resources as absolute values while the pie charts

present the resource usage as a fraction of the total resources.

Note that Figs. 14 and 16 use log scales on the X-axis.
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Fig. 14. ALM usage.

Fig. 15. DSP usage.

Fig. 16. BRAM usage.

The resource usage figures so far do not include the resources

for the input and output bridge modules because they are only

used in the fully integrated mode and not standalone. Table III

presents the resource usage for the bridge modules for different

design sizes: these are less than 1% of available resources on

a Stratix 10 or Agilex FPGA. The sequence ROMs and buffers

are the components most sensitive to the size of the simulation

space. A larger simulation space means a higher number of cells

TABLE III
RESOURCE USAGE FOR BRIDGE MODULES

TABLE IV
BASELINE ACCELERATOR PERFORMANCE AND FMAX

in the RL unit and larger buffers to hold particle information

until they are scheduled and sent to the LR unit. Higher RL cell

count also means a longer address sequence, which increases

the size of the sequence ROM. Since the sequence ROM used in

the output bridge does not hold invalid entries, the ROM is very

small and the synthesis tool opts to implement it using LUTs

rather than BRAMs. Other elements of the bridge modules are

less sensitive to simulation size and their resource usage does

not vary significantly for different design sizes.

B. Accelerator Performance

The aim of offloading MD to FPGAs is enabling longer

simulations. A common metric is the time simulated in a day

of wall-clock time. For the three design sizes, we set the number

of particles to 4096, 32768, and 65536 respectively. We also

assume the LR unit is used in the fully integrated mode, where

particle information and force values for each iteration are

exchanged with the integrated RL unit and not the host processor.

The RL unit could be implemented on the same FPGA or on

a different FPGA connected directly to ensure that particles

are transferred between RL and LR units at a rate as close

as possible to one particle per cycle. We have considered a

standard iteration time of 4 femtoseconds. Finally, we assume

that the LR unit is what bottlenecks the full simulation. Table IV

presents the maximum operating frequency (Fmax) and overall

performance for LR units with different grid sizes. Each design

is implemented using all the optimization modes available in

Intel Quartus Prime and the highest Fmax value is reported.

Each optimization mode uses different Place & Route strategies,

which results in different critical paths and hence different Fmax

values.

The effect of the differences in pipeline utilization due to

the particle scheduling algorithm is clearly observable in these

results. The charge grid for the 323 design has eight times

more points than the 163 design and simulates eight times

more particles. Similarly, the charge grid for the 643 design

is eight times larger than the 323 design. However, it only

simulates twice as many particles. Therefore, one might expect

the performance to decrease at a faster rate between the 163 and

323 designs than between 323 and 643 designs; however, the
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reverse is true. This is attributable to the low pipeline utilization

(8.3%) of the 163 design and very high pipeline utilization (95%

and 99.4%) of the other two designs. Between the 163 and 323

designs, the performance loss due to simulating a larger charge

grid and a higher number of particles is partially offset by the

higher pipeline utilization of the 323 design. Pipeline utilizations

between the two larger designs are much closer to each other.

Therefore, the effect of larger grid size and particle count is more

noticeable.

Of note is that the three designs have similar Fmax values

despite the different grid sizes. The parts of the design that

directly correlate to the charge grid size are the clustered grid

memory and FFT pipelines. The crossbars used to route requests

to BRAMs within the grid memory contain the longest combi-

national paths that determine the Fmax. Although the larger grid

sizes use more BRAMs, the addressing logic and crossbars (see

Section III-A2) remain the same since the memory interleaving

is selected based on the interpolation scheme used and not the

grid size. While routing signals to the additional BRAMs does

incur additional overhead as the design size grows, it does not

significantly impact the critical path and therefore Fmax. The

smallest 163 design has a slightly lower Fmax than the larger 323

because the FPGA tools opt to implement some of the smaller

memories (the particle information memory and the Green’s

ROM) using ALMs instead of BRAMs.

V. RESOURCE AND PERFORMANCE OPTIMIZATION

Once the LR components are individually optimized (Sec-

tion III), there remains the task of optimizing them jointly.

Each major component can be either replicated or folded as

needed to ensure throughput matching between phases. In this

section, we present an overall performance model, describe

possible resource tradeoffs, and then discuss the performance

of alternative configurations, first at a high level and then in

depth. Finally, we compare the performance for FPGA-LR to

that achievable on high-end GPUs running a production-grade

MD simulation package.

A. Modeling LR Accelerator Performance

To create an overall performance model, we combine the

formulae derived in Section III-B, III-D, and III-E. Including

grid memory initialization, the latency is given by

TPME =
1

Ucmap

(

Np

Pcmap

+NB cmap

)

+
6Ng

Pfft

+
Np

Pfcalc

+NB fcalc +
Ng

64
+Dcmap

+ 6Dfft +Dfcalc + 8MR + 7MW (14)

For the baseline configuration without parallel charge mapping

or force computation, the above equation reduces to

TPME =
Np

Ucmap

+
6Ng

Pfft

+Np +
Ng

64

+Dcmap + 6Dfft +Dfcalc + 8MR + 7MW (15)

Based on this formulation, we can predict the performance

for different configurations and determine optimal resource

allocation strategies. We can also evaluate the performance

of implementations against the predictions. When comparing

the compute cycles per iteration for the three design sizes of

the baseline configuration reported in Table IV, the difference

between the prediction and the actual implementation is less

than 0.4%, 0.1%, and 0.01% of the prediction for 163, 323, and

643 designs, respectively.

B. Module-Level Resource Utilization

This subsection has two purposes. First, we refine the com-

ponent resource usages from Section IV-A to account for the

additional resources needed to create a complete MD design

from the individual components. These resources include those

necessary for parallelization within a phase, for coupling these

now parallelized phases to create a complete LR design, and for

sharing resources among phases. And second, we find the single

resource type that limits the number of compute units that can

fit within a given resource budget thereby simplifying further

evaluation.

Table V presents resource usage for each type of pipeline and

memory unit at different problem sizes, both as absolute values

and as a percentage of resources available on an Intel Agilex

AGFB027R31C3I3V device. DHFR and ApoA1 benchmarks

are chosen to represent the problem sizes of interest for this

work. These use 643 and 1283 charge grids, respectively, to

achieve Ewald tolerance values comparable with tolerances used

to generate GPU benchmark results in [29]. As discussed in

Section III-B2, parallel charge mapping and force computation

require a grid memory made of multiple smaller grid mem-

ory units. Therefore, the resource usage for the grid mem-

ory unit is presented at both the lowest and highest levels of

parallelization.

The central observation from Table V is that DSPs are the

limiting resource; ALM and BRAM usage by the pipelines is

negligible. Force computation pipelines are the most resource-

hungry at 9% of available DSPs per pipeline. When we consider

the highest level of parallelism for charge mapping and FFT

stages, as dictated by the particle scheduling efficiency and

maximum read bandwidth of the grid memory, each of the charge

mapping and FFT stages could also use between 16% and 20%

of the available DSP blocks. Because the three PME phases are

in series, the charge mapping and force computation units can

share the coefficient generation units and so reduce the overall

DSP usage.

The memory units show higher ALM and BRAM usage

compared to the pipelines. However, even at the larger problem

size and at the highest level of parallelism (supporting 8-way

parallelism in charge mapping and force computation), the ALM

and BRAM usage by the grid memory is at most 43% and 54% of

the available resources. The Green’s ROM also takes up ∼17%

of the BRAMs. Still, the total BRAM usage is well within the

available resources. Therefore, for the rest of this section, we

explore alternative configurations with respect to DSP usage

only, as it alone limits the number of parallel pipelines.
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TABLE V
RESOURCE USAGE FOR EACH TYPE OF PIPELINE AND MEMORY UNIT ON AGILEX AGFB027R31C3I3V DEVICE

Units omitted from Table V are the particle memory and the

control logic responsible for managing the entire design. For

simplicity, and because BRAMs are not a limiting resource, we

have set the size of the particle memory to 100,000 particles

to be able to hold any problem size of interest. This uses less

than 5% and 0.3% of available BRAMs and ALMs, respectively.

The control logic uses <2% of available ALMs. An observation

is how the number of BRAMs used by the two grid memory

configurations differs for the smaller problem size, even when

the amount of data to be stored is the same. At full parallelization,

grid memory has 8 smaller grid memory units, while each grid

memory unit has 64 memory banks. The FPGA tools are able

to pack the BRAM bits into BRAMs more efficiently when the

amount of memory per memory bank is higher. In the case of

the smaller problem size, this effect is visible in the differently

sized grid memory units.

C. LR Configuration Alternatives

In this subsection we find the best LR design alternatives as

a function of resource usage. This is a critical measure because

it allows extrapolation to variously sized FPGAs as well as

LR budgets within larger MD designs. Because of the large

design space it is impractical to synthesize all designs of possible

interest. We therefore augment the synthesized designs with the

model proposed in Section V-A (which was validated to within

0.4%).

The design space consists of integral copies of the three

major components up to 100% resource usage. Fig. 17 presents

the performance for the two benchmarks at different levels of

resource usage ranging from 10% to 100% of the DSPs available.

All configurations with 1, 2, 4, or 8 charge mapping and force

computation pipelines and 1-64 (powers of two) FFT pipelines

are considered. The design space explored is limited by:

i) problem sizes of interest, ii) the level of parallelism dictated

by the scheduling algorithm efficiency for a given problem size,

iii) maximum read bandwidth of the grid memory for the FFT

phase, and iv) FPGA resource availability. The best pipeline

configuration at each level is shown in the following format:

<Charge_mapping−FFT−Force_compute>.

DHFR shows the highest throughput because of the smaller

particle count and the resulting smaller charge grid. The other

three lines on Fig. 17 represent three different setups for the

ApoA1 benchmark. The configuration corresponding to the red

line uses the Agilex F-series AGFB027R31C3I3V used in the

Fig. 17. Performance VS DSP usage (E.T. = Ewald Tolerance, Dev = Target
device).

prior analysis. It uses a 1283 charge grid and achieves an Ewald

tolerance value of 0.0001, which is much lower than the 0.0005

used for GPU benchmark results.

Note that the largest configuration on the red line is <8−64−
4>. The number of DSPs on the Agilex AGFB027R31C3I3V

device is not sufficient to implement the <8−64−8> configura-

tion for the larger problem size. This is because of the 128-point

FFT units now needed.

The purple line shows the performance for the same bench-

mark at the same tolerance level, but for a larger Agilex I-series

FPGA that has 50% more DSPs. While this device is able

to accommodate the <8−64−8> pipeline configuration, the

incremental benefit is marginal. This is because the simulation

time is dominated by the FFT phase due to the larger charge

grid. Therefore, the benefit of increasing force compute pipelines

is minimal. In contrast, DHFR shows noticeable performance

improvements from increasing force pipelines because the force

compute phase is more prominent compared to the FFT stage

due to the smaller charge grid.

The yellow line shows how accuracy can be traded off for

higher performance. This setup uses the same device as the

red line. However, it targets a higher tolerance of 0.0015 and

therefore uses a 643 charge grid. This shows trends similar to

DHFR because the same charge grid size is used. Finally, note

that a lower operating frequency of 225 MHz was used with the
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Fig. 18. Performance for alternative configurations.

two configurations using the 1283 grid memory as opposed to the

Fmax value of 251 MHz used for the other two configurations.

Fig. 18 presents performance for the six best configurations

from Fig. 17 and the baseline configuration for a range of

simulation sizes. A 643 charge grid is used for all problem

sizes. The second Y -axis shows the Ewald tolerance values

corresponding to the problem size and the selected grid size. For

a given grid size, the latency for the FFT phase does not change

with the number of atoms. The intersection with the Y -axis

represents the FFT latency for the different configurations. The

<4−32−4> configuration has the highest offset from zero

along the Y -axis because it has the fewest FFT pipelines. The

latency for the baseline configuration grows linearly with the

number of atoms as it has no parallelization in charge mapping

and force computation stages. The others grow at a lower rate

due to parallel charge mapping and force computation.

The sudden drop in iteration time between ∼8K and ∼16K

atoms corresponds to the particle scheduling algorithm starting

to take effect (as shown in Fig. 9). Pipeline utilization increases

with simulation size up to around 80K atoms where it reaches

close to 100%. From there onward, the iteration time grows

linearly with the number of atoms.

D. Discussion

In this subsection, we present five observations about the rela-

tionship of performance (for a given problem size and resource

budget) with design features.

First, at smaller resource budgets, it is always most beneficial

to increase the number of charge mapping and FFT pipelines,

rather than force compute pipelines, as more of those will fit

within the same resource budget.

Second, between charge mapping and force computation

phases, it is easier to achieve higher performance in the force

compute phase as the latter do not encounter RAW hazards and

so can always operate at 100% efficiency.

Third, unlike the other two phases, for charge mapping the per-

formance benefit diminishes with the the number of pipelines.

This is because smaller regions result in less efficient scheduling

of particles.

TABLE VI
GPU BENCHMARK RESULTS FROM OUR EXPERIMENTS FOR LR ONLY

Fourth, the optimal configuration for a given resource budget

depends heavily on the problem size. This is especially true

for smaller resource budgets. Consider, e.g., the blue and yel-

low lines from Fig. 17 at 30% resource usage. Although both

configurations use a 643 charge grid, the number of FFT units is

different. For ApoA1, it is more beneficial to reallocate resources

from the FFT phase to the other two phases. This is because the

higher particle count of ApoA1 results in longer charge mapping

and force compute phases compared to the DHFR benchmark.

And fifth, there is a range of problem sizes that fit a given grid

size. As a design guideline, one should allocate more resources

to the FFT pipelines at the lower end of the range of problem

sizes for a particular grid size, and gradually reallocate resources

to charge mapping and force computation when moving through

the range of problem sizes. The two lines in Fig. 18, correspond-

ing to two the configurations from above, intersect at around 35K

atoms. This demonstrates how the resource allocation strategy

changes with the problem size.

E. Performance Comparisons

A likely deployment scenario for FPGA-based LR accelera-

tors is within an FPGA-based MD accelerator, which may itself

have scalability advantages (e.g., [39]). Our performance goal

for FPGA-based LR accelerators is therefore to demonstrate

similarity with other leading accelerators. In this subsection,

we compare the performance of the proposed FPGA-based

LR accelerator with that of GPUs running OpenMM [42]. We

consider two popular MD benchmarks chosen to represent the

simulation sizes targeted by this work: Dihydrofolate Reductase

(DHFR) and Apolipoprotein A1 (ApoA1).

GPU performance results from our experiments using an

Nvidia Quadro RTX 8000 GPU are presented in Table VI.

We have modified the OpenMM code to compute only the LR

interactions. For the GPU runs, the default Ewald tolerance value

of 0.0005 was used. Recall that the best FPGA-LR performance

for DHFR is 2124 ns/day, with a lower Ewald tolerance value

of 0.0003. For ApoA1 the best FPGA-LR performance is 287

and 1496.7 ns/day, with Ewald tolerance values of 0.0001 and

0.0015, respectively. Because the FPGA design only uses powers

of two charge grid sizes, it cannot exactly match the tolerance

value of 0.0005 targeted by the GPU implementations. The FFT

IP cores used in this work accept inputs and generate outputs with

powers of two points. In order to store the intermediate results

of the 3D FFTs, the grid memory also needs to have dimensions

which is a power of two. Because the FPGA-LR design reuses

the grid memory across all phases of the LR force computation,

we cannot save any resources by using smaller non-power of two

grid sizes that match the GPU implementations for the charge

mapping phase.
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TABLE VII
GPU OPENMM BENCHMARK RESULTS (DOWNLOADED 2/28/2024 [29])

To provide additional context for the performance compar-

isons, in Table VII we also report benchmark results from a third

party [29] for OpenMM on more recent GPU architectures which

use more advanced process nodes compared to both the GPU and

the FPGA used in our testing. Unlike in our own experiments

where LR was isolated, these are for complete MD. Even if we

assume a significant performance improvement of ∼25% for

LR-only execution on more recent GPU architectures, which

far exceeds the performance improvement we observed in our

testing with an older GPU, FPGA-LR is still competitive with

most of the recent GPUs except for few of the highest performing

ones.

VI. PRIOR WORK

Previous studies present both FPGA-, and ASIC-based ac-

celerators for parts of, or full MD simulations. FPGA-based

FFT accelerators include single FPGA [21], [46], [47], and

multi-FPGA [18], [48], [49] implementations. While most of

these implementations use custom pipelines for FFT calcula-

tions, there are also implementations which make use of soft

processors instantiated on FPGAs [50]. Recent work has also

focused on improving the usability of FFT accelerators by

using OpenCL implementations [51]. [52] provides an OpenCL

library for FPGA-based FFT acceleration. OpenCL host code

in the form of FFTW-like APIs, which can be used to offload

existing FFT routines to FPGAs, and OpenCL kernels that can

be synthesized to bitstreams are provided. [53] extends this

to provide an OpenCL library for FFT-based 3D convolutions

on FPGAs. [54] surveys the design space for offloading 3D

FFT calculations to FPGAs. Some studies use coarse-grained

reconfigurable array (CGRA) architectures to accelerate FFT

computations [55], [56]. These are intended to be used as FPGA

or ASIC implementations. There are also non-CGRA FFT ar-

chitectures intended for ASIC implementations [57].

FPGA-based charge mapping acceleration has been studied

in [22]. While not targeting MD applications, there are other

works such as [58], [59] focused on FPGA acceleration of cubic

interpolation which is a crucial part of the particle-grid mapping.

Going beyond accelerating components of MD calculations,

there are accelerators targeting full MD simulations. These ac-

celerators use different hardware configurations and application

mapping strategies. Anton [13], [14], [15] is a full ASIC system.

FFTs were only used in Anton I as Anton II and III systems

used the µ-series method for LR force computation. Anton uses

special-purpose datapaths for particle-grid mapping while FFT

calculation in Anton I and grid-based convolutions in later Anton

systems are mapped to general-purpose processors. Still, due to

the custom routing fabric, Anton I was able to provide impressive

FFT performance [41].

MDGRAPE-4A [60] uses an ASIC+FPGA approach and im-

plements a novel algorithm named tensor-structured multilevel

Ewald summation method (TME). This involves performing

3D FFTs and grid convolutions. The FFTs are performed on

FPGAs while the convolutions and grid-particle mapping are

performed on custom datapaths implemented on the ASIC

portion of the system. The previous iterations of MDGRAPE

were ASIC systems [61]. There are also FPGA-based full MD

simulation accelerators. [23] is a single FPGA design using

custom datapaths for all computations. [16] is a multi-FPGA

accelerator for LR force computation designed using OpenCL.

VII. CONCLUSION

In this work, we present an FPGA-based long-range elec-

trostatic force computation architecture for use in Molecular

Dynamics simulations, in particular, for the long timescales for

which FPGA clusters appear to have advantages. This archi-

tecture can either be a standalone accelerator used to offload

LR computations of an MD simulation package, or used as

part of a fully integrated FPGA-based simulator. We provide

detailed architectural descriptions of different components of

the accelerator. While doing so, we establish ideal behavior

for certain components that optimize the performance and then

describe an architecture that satisfies those requirements. We

analyze the performance, different resource allocation strategies,

and optimal configurations under different resource constraints.

Our performance results show that the best configuration of the

FPGA-LR design can achieve throughput values of 2124ns/day
and 287ns/day for the DHFR and ApoA1 benchmarks and with

low Ewald tolerance values.

For simulation sizes of 20K–50K particles, the FPGA-LR

design can provide performance comparable to even the latest

generation of GPUs. For larger problem sizes, which correspond

to larger charge grids and larger 3D FFTs, the FPGA is somewhat

slower. However, the FPGA-LR performance is again compara-

ble for larger problem sizes if higher, but still likely acceptable,

tolerance values can be used.
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