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Long-Range MD Electrostatics Force
Computation on FPGAs

Sahan Bandara®, Anthony Ducimo

Abstract—Strong scaling of long-range electrostatic force com-
putation, which is a central concern of long timescale molecular
dynamics simulations, is challenging for CPUs and GPUs due to
its complex communication structure and global communication
requirements. The scalability challenge is seen especially in small
simulations of tens to hundreds of thousands of atoms that are
of interest to many important applications such as physics-driven
drug discovery. FPGA clusters, with their direct, tightly coupled,
low-latency interconnects, are able to address these requirements.
For FPGA MD clusters to be effective, however, single device
performance must also be competitive. In this work, we leverage the
inherent benefits of FPGAs to implement a long-range electrostatic
force computation architecture. We present an overall framework
with numerous algorithmic, mapping, and architecture innova-
tions, including a unified interleaved memory, a spatial scheduling
algorithm, and a design for seamless integration with the larger MD
system. We examine a number of alternative configurations based
on different resource allocation strategies and user parameters. We
show that the best configuration of this architecture, implemented
on an Intel Agilex FPGA, can achieve 2124ns and 287ns of
simulated time per day of wall-clock time for the two molecular
dynamics benchmarks DHFR and ApoA1; simulating 23K and 92K
particles, respectively.

Index Terms—Electrostatics computation, FPGA acceleration,
grid mapping, molecular dynamics, particle mesh ewald.

I. INTRODUCTION

CCELERATION of Molecular Dynamics (MD) simula-

tions is critical: there is a many orders-of-magnitude gap
between the largest current simulations and physical systems
of interest [1], [2]. There are dozens of MD packages which
support GPUs (e.g., [3], [4], [5], [6], [7]). Scalability, however,
remains problematic for the small simulations (20K-50K parti-
cles) commonly used, e.g., in drug design [8], [9], where long
timescales are also extremely beneficial; several studies dis-
cuss challenges for CPU, GPU, and CPU+GPU heterogeneous
clusters [10], [11], [12]. Simulation of long timescales of small
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molecules is a motivation for the Anton family of ASIC-based
MD engines [13], [14], [15]. Anton addresses scalability, in part,
by combining dedicated MD computing with direct communi-
cation links—application layer to application layer—within and
among the integrated circuits. Since FPGAs also support these
capabilities, they represent a comparatively low-cost COTS
alternative [16].

The challenge in strong scaling of MD results, especially,
from the long-range (LR) electrostatic force computation. In this
work, we present an FPGA-based computation unit implement-
ing LR through the Particle Mesh Ewald (PME) method [17].
When using the PME for LR, the three dimensional (3D) Fast
Fourier Transforms (FFT), which requires global communica-
tion, poses perhaps the greatest hurdle. While clusters of GPUs
are efficient for large FFTs, clusters of FPGAs have shown to out-
perform GPUs in performing 3D FFTs in smaller grid sizes [18].
Overall, this work builds upon work presented in [19], [20], [21],
[22]; proposes novel solutions to challenges not fully addressed
in prior work, and provides a unified architecture and algorithmic
framework. The proposed design can be used either standalone
or as part of a fully integrated MD simulation accelerator [23].

Apart from the FFTs, additional complexity arises from the
charge and force mapping operations, which have both high
fan-in/fan-out and require complex communication structures.
FPGAs are particularly well-suited to both mapping and FFT,
as well as the data movement and conversion operations, and
the integration with the other MD computations. In particular,
FPGAs’ many thousands of independently addressable on-chip
memories (Block RAMs or BRAMs)—together with support
for creating application-specific interconnection networks that
connect the BRAMs to each other and to the computation units—
leads to extremely high efficiency. The main theme of this work
is leveraging these FPGA features through a unified architectural
and algorithmic framework based on memory organization and
memory access patterns. Contributions include:

e Combining many previous partial solutions, on different

components of the PME algorithm, to design a complete
LR force computation architecture;

® Many fine-grained design innovations for an FPGA-LR
force computation unit that can be either a stand-alone
accelerator or part of a fully integrated MD accelerator;

e Establishing the requirements for an ideal memory
structure for PME and proposing an application-specific
interleaved memory architecture that satisfies those
requirements;
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® Proposing new algorithmic improvements for increas-
ing the efficiency of charge mapping pipelines and data
movement between RL and LR units, i.e., an on-chip
spatial scheduling algorithm that results in 12x improved
performance;
e A design for efficiently integrating LR with the Range-
Limited (RL) force compute units;
e Establishing resource usage values and performance for a
baseline configuration of the LR accelerators;
® Analysis of different resource allocation strategies and
extrapolation of resource usage and performance for al-
ternative configurations that, e.g., trade-off accuracy and
performance;
¢ Experiments with a production MD package that compares
the performance of FPGA-LR to that of a high-end GPU.
High-level significance of this work therefore includes the
demonstration that chip-level FPGA processing of LR is a
benefit, rather than a drawback, in using FPGA clusters for
long timescale MD. The remainder of this paper is organized
as follows. In Section II we describe MD simulations and
long-range electrostatic force computation and discuss FPGAs
as acceleration platforms for these. In Section III we present
the overall LR force computation architecture and provide
detailed descriptions of the components. Resource usage and
performance baselines are established in Section IV. Section V
presents alternative design configurations and their impact on
performance and resource usage. We present prior work on
FPGA- and ASIC-based MD accelerators in Section VI; and
conclude the paper in Section VII.

II. MD PRELIMINARIES
A. Overview

Molecular Dynamics uses an iterative application of New-
tonian mechanics on ensembles of atoms and molecules. MD
simulations alternate between force computation and motion
integration. The types of forces computed depend on the system
being simulated and may include: bonded terms — pairwise,
angle, and dihedral; and non-bonded terms — Van der Waals,
and Coulomb. A collection of functions and corresponding
parameters computing these force components is often referred
to as a force field, e.g.,

Ftotal — Fbond + Fangle + Fdihedral + Fnonfbonded (1)

The non-bonded force is comprised of Lennard-Jones (LJ) and
Coulombic forces. For a particle ¢ in an ensemble of particles,
these forces can be calculated as:
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where €., (unit: kJ or keal) and o4, (unit: meters) are parameters
related to the types of particles.
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To reduce the complexity of the non-bonded force compu-
tation from O(N?), it is generally split into two components:
range-limited (RL), which is O(N) (since each particle interacts
with only a much smaller number of neighbors); and long-range
(LR), which is often O(Nlog N) as will be described. The
Coulombic force is itself split into two parts, fast decaying and
slow decaying. The slow decaying part is the Long-Range (LR)
force.

B. Long Range Electrostatics Computation

The Particle Mesh Ewald (PME) method is a grid-
based method widely used to calculate LR electrostatic
forces. It reduces the asymptotic complexity from O(Ng) to
O(Ng4log(Ny)), where N, is the number of particles and N, is
the number of grid points. While there are other methods, such
as k-space summation [24], p-series [25], and multi-grid [26],
[27], the widespread support for PME in production-grade MD
packages, such as OpenMM [6], GROMACS [5], and many
others, makes it an important target for acceleration.

PME involves three main phases: (i) mapping particle charges
to a discrete grid to create the charge distribution; (ii) deriv-
ing the potential field caused by the charge distribution; and
(iii) calculating the force exerted on each particle by the potential
field. In the first (mapping) and third (force computation) phases,
particle <+ grid interpolations are used to derive charge densities
at grid points from particle charges and to calculate electric
field vectors at particle positions using the potential grid. These
mappings are typically done using tricubic interpolation.

The method used here applies a third order basis function in
distributing particle charges to grid points, and the gradient of
the same basis function for electric field vector calculations.
Equation (4) is used to calculate charge densities p, at grid
points from particle charges. Equations (5), (6), and (7) are
used to calculate force vectors along each dimension at particle
positions using the potentials ¢, at grid points. ¢ represents the
basis function. Indices p and g denote particle and grid points
respectively.
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Equation (8) shows the third order basis function where £ is the
distance between the particle and any grid point. Following [20],
the basis function is modified to be a set of polynomials of 0;. By
substituting ¢ with 0,41, 0;, 1 —0;, and 2—o0;, four polynomials,
corresponding to the four neighboring grid points shown in (9),
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Fig. 1. Grid index and offset.

are derived. Fig. 1 depicts how the term o; relates to the particle
position and neighbor grid points.
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The second phase involves computing the electric field gener-
ated by the charge grid. The solution to the Poisson equation is
the electric potential generated by a given charge distribution. In
three-dimensional Cartesian coordinates, the Poisson equation
takes the form

2 2 2
(5 + 5 + 5oz )l s) = faz) 10
Usually, f is given and ¢ is sought. In electrostatics, ¢ and f rep-
resent the electric potential and the charge density distribution,
respectively. The Poisson equation can be solved by computing
the convolution between the charge distribution and a Green’s
function.

PME uses FFTs to replace convolution in real space with
multiplication in Fourier space. First, a 3D FFT is performed
to transform the charge grid into the Fourier domain. Next,
the resulting grid is multiplied by the Fourier transform of the
Green’s function. Finally, an inverse 3D FFT is performed to
transform the result back into real space. The final phase of
PME is calculating the force exerted on each particle by the
potential field. The derivatives of the basis functions used for
particle to grid charge mapping are used to compute the electric
field vectors at particle positions. Force vectors along X, Y,
and Z dimensions are calculated as the output of the LR force
computation.

C. Problem and Grid Sizes of Interest

Various molecular modeling techniques, e.g., quantum me-
chanics methods, hybrid quantum/molecular mechanics, MD,
and coarse-grained MD, are best suited for certain problem sizes.
MD is typically used to target systems ranging from thousands
to many millions of atoms [28]. Table I provides an overview
of system sizes, corresponding PME grid sizes, typical use
cases, and matching benchmarks. The grid sizes are computed
assuming an Ewald error tolerance of 0.0005 following the GPU
benchmark setup used in [29].

D. Mapping MD Computation to Hardware

An MD/LR hardware accelerator implementing the methods
in Section II-B must have the following components: particle
memory (positions, velocities, and forces) organized into cells
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TABLE I
OVERVIEW OF PARTICLE NUMBERS AND GRID SIZES FOR MD SIMULATIONS
Atoms Grid size Domain Benchmark
1,000s > 203
DHFR
10,000s > 423 Protein folding [30] (23,5A£380§c1)ms)
Enzyme-inhibitor 92 2211 atoms)
binding [31] z
100,000s | >g93 | Drugdiscovery[32] Cellulose
(408,609 atoms)
Viral capsids [33]
Ribosome [34] STMV
3
>1,000,000 | > 192 Photosynthetic (1,067,095 atoms)
membrane [35]

for easy reference during RL; charge grid memory; potential grid
memory; 1-64 charge grid creation pipeline(s); 64-1 force appli-
cation pipeline(s); 1D FFT pipeline(s); and the interconnections
among the memories and pipelines. For maximal efficiency, the
memories must enable parallel accesses: for the mapping steps,
writing/reading 64 grid charges/potentials to/from 4 x 4 x 4
subgrids; for the FFT steps, reading and writing as many 1D
vectors as possible.

To integrate MD/LR into a complete MD accelerator, addi-
tional data structures and computations are needed. To keep
this study focused on LR, we associate motion integration with
RL (at no change in hardware cost or performance). Since the
RL unit performs motion integration, it also stores the particle
positions and calculated force values in caches (position and
force). The RL unit subdivides the simulation space into a grid of
cells as the range-limited forces are evaluated only considering
particles within a cut-off radius. There are position and force
caches corresponding to each cell. The position caches store
particle positions that are fed to the RL force computation
pipelines. After motion integration, the updated particle posi-
tions are written back to the position caches. The force caches
store force values calculated by the different MD parts until used
by motion integration pipelines. The LR unit is responsible for
retrieving particle position information from the position caches,
computing LR, and transferring the force values to the force
caches. Force caches include accumulation logic to accumulate
force values computed by the RL and LR units. Details of the
RL unit are in [36], [37], [38], [39], [40].

E. LR Computation and Hardware Acceleration

The phases described in Section II-B are computed as shown
in Fig. 2 (in 2D). Fig. 2(a) shows particles in a simulation space
organized into cells, as needed for the RL computation. Fig. 2(b)
shows the first step in PME: distributing the charge of a particle
onto 64 nearby points of a charge grid (16 for 2D). Note that
the grid geometry is unrelated to that of the cells. The next step
is the 3D FFT (2D here), which is computed with 1D FFTs in
successive dimensions (Fig. 2(c) and (d)). The next steps are the
multiplication and inverse FFTs (Fig. 2(e) and (f)); at this point
apotential grid has been created. Fig. 2(g) shows the forces from
64 nearby grid points (16 for 2D) being applied to a particle.
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Fig. 2. Long-range force computation overview.

Designing a long-range force computation accelerator re-
quires solving several architectural challenges. While much op-
timization is possible within the compute pipelines, the biggest
challenges are in organizing, accessing, and interconnecting the
various memories. The challenge is, therefore a data movement
problem given FPGA BRAM architecture: to find the best
layouts and indexing schemes to optimize parallel accesses,
while minimizing conflicts to ensure efficient data movement,
which results in high pipeline utilization. Going beyond the LR
force computation, there are further data movement challenges
in performing efficient data exchanges between RL and LR units.
In this work, we present novel solutions that far outperform prior
work in data movement efficiency.

The different phases of the LR force computation involve two
distinct memory access patterns, neither suitable for traditional
memory architectures. In the first, the charge mapping and force
computation phases require accessing potentially overlapping
subgrids from a 3D grid that overlays the simulation space. In
the second, the FFT phase requires reading 1D vectors from the
same grid data structure along each of the three dimensions,
preferably without having to transpose data in memory. While
prior work has provided solutions for these access patterns
individually, a memory architecture that supports both access
patterns with high throughput, and without additional stages
of memory manipulation, has not previously been presented.
In the following sections we show how an efficient “virtual”
memory architecture can be built with spatially distributed,
individually addressable blocks of memory, such as block RAMs
on an FPGA. We also demonstrate address sequences that ensure
the memory bandwidth is fully utilized in every phase of the
computation.

Part of the challenge is that because the charge mapping stage
requires both reading and writing of grid memory, RAW hazards
result. As data forwarding is prohibitively expensive, prior work
dealt with these through pipeline stalls. Also, complete position
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Fig. 3. Long-range force computation architecture.

information was first cached in the LR unit before feeding the
data to the charge mapping pipelines. In a complete MD system,
however, this leads to inefficiencies in data movement between
RL and LR units.

Two optimizations are proposed to deal with these issues.
First, data movement from RL to LR is scheduled: hazards can
be avoided by first spatially sorting particles. For simulations
of more than 10K particles, nearly 100% pipeline utilization is
achieved resulting in a 12x performance improvement. More-
over, these schedules can be computed offline for a given sim-
ulation size without considering the actual particle positions.
Second, we overlap data transfers with computation so that
only a small fraction of particles needs to be buffered between
computations.

III. LR FORCE COMPUTATION ARCHITECTURE

An overview of the LR force computation architecture is
presented in Fig. 3. The LR architecture is comprised of three
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stages, which roughly correspond to the three phases of the
PME algorithm. The charge mapping pipeline accepts particle
information from an external interface, interpolates the charge
values to the 4x4x4 subgrid surrounding the particle, and up-
dates the charge values in grid memory. Particle information is
temporarily stored in particle information memory to be used in
the force computation.

The clustered grid memory connects all three phases of the
computation. After receiving charge values for all the particles
from the charge mapping pipeline, the grid memory is read and
the readouts are sent to the FFT units. The outputs of FFT and
inverse FFT computations are written back to the grid memory.
After the 3D FFT and inverse FFT (iFFT) computations, the
grid memory holds the potential grid representing the electric
field caused by the charge grid. In the final phase, the potential
values read from the grid memory and the particle information
read from particle information memory are sent to the force
computation pipeline. LR force values for each of the particles
are transmitted through the output interface. The entire LR
pipeline uses single precision floating point values.

We examine each of the components in detail. The first sub-
section covers grid memory. The next subsection describes basic
charge mapping, hazards, parallelization, and a performance
model. After that we detail hazard avoidance through particle
scheduling, which is followed by a subsection covering FFTs
and iFFTs. There follows a subsection on force mapping and
its parallelization. The final subsection describes features of LR
needed to interact with RL.

A. Clustered Grid Memory

The clustered grid memory is the central component of the
LR design as it is used in, and affects the performance of, every
phase of the computation. First, the number of ports provided by
the grid memory controls how fast the charge of a particle can
be spread over 64 grid points. Second, in the FFT/iFFT phase,
the grid memory’s bandwidth determines how many parallel
FFT units can be employed. And third, the number of read
ports controls how many grid points can be read per cycle and
used in force computation. Also, most previously explored FFT
architectures, both FPGA- [18], [21] and ASIC-based [41], lend
themselves well to performing 3D FFTs, but require a transpose
phase between each of the 1D FFT phases where the stored
values are rearranged to match the direction for the next 1D
FFT. Eliminating the transpose could result in a significant
improvement in FFT latency. With the above in mind, we can
enumerate the characteristics of an ideal memory structure:

1) Store 64 bits of data per grid point (two 32-bit single
precision floating values for real and imaginary parts of
grid data).

2) Support reading and writing the 64 nearest neighbor grid
points of a particle at a rate of one particle per clock cycle.

3) Provide the capability to perform consecutive 1D FFTs
without transposing the grid data in between each FFT
phase.

Meeting (1) is trivial. To meet (2), there must be at least 64

read and 64 write ports. (3) requires that the mechanism used
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to access consecutive grid points placed along any of the three
dimensions be agnostic to the particular direction.

1) Memory Interleaving: The grid memory is made of 64
independently accessible and addressable memory banks, each
of which is implemented with one or more FPGA block RAMs
(BRAMs), depending on the BRAM geometry and the size of
the grid memory. The grid points are assigned to the 64 memory
banks to ensure that any subgrid of size 4 x 4 x 4 can be read
from (or written to) the memory banks in parallel. The subgrid
size is selected to match the interpolation scheme used. The
memory interleaving scheme is trivially generalizable to support
different subgrid sizes and, therefore, different interpolation
schemes.

The address of a datum at a grid point is the ordered tuple
used to specify the location in 3D Cartesian coordinates. By
partitioning the grid memory into 4 x 4 x 4 subgrids, referred
to hereafter as neighborhoods, the location of a grid point can be
given with a neighborhood ID and a neighbor ID. The neighbor-
hood ID refers to a subgrid in the charge (or potential) grid. The
neighbor ID indicates an individual grid point inside a neighbor-
hood. When mapping grid locations to the 64 memory banks, the
neighbor ID is used to select the memory bank; the neighborhood
ID is used to index into the particular memory bank. The two
low-order bits of each of the X, Y, and Z coordinates are concate-
nated to form the neighbor ID. The remaining (high-order) bits
of the three coordinates uniquely identify the grid neighborhood.

The following is an example of how the ordered tuple of
a grid point in a 32 x 32 x 32 grid is decomposed into its
neighborhood and neighbor IDs.

(X,Y,Z) = (11,23,8)

= (

= (01011, 101115, 010005

— (0102, 101, 0105) - (115, 115, 005)
= (27 5, 2) ’ (33 3, 0)

In a 32 x 32 x 32 grid, grid point (11, 23, 8) is the neighbor
(3, 3, 0) inside the neighborhood (2, 5, 2). The concatenated
high-order bits (0102, 1012, 0105) are used to address memory
bank (3, 3, 0). These translate to index 170 (0101010105).

The core grid memory capability for the mapping phases is,
for all 4 x 4 x 4 subgrids in a grid, the simultaneous access of
those subgrid points. This access mechanism can be visualized
as a cluster of 64 read (or write) ports that moves through the
grid. Fig. 4 depicts how the access cluster moves about to access
neighbors from neighborhoods, thereby accessing grid points
from the grid. Neighbors accessed by the access cluster are
shown in white (or orange for the O point). From (A) to (B)
to (C), the access cluster moves along the Z dimension. From
(C) to (D) the access cluster moves along the Y dimension.

Note that each neighbor ID appears at most once inside an
access cluster. This is necessary to ensure that the 64 ports of
the access cluster access the 64 memory banks without overlaps,
enabling all points of a subgrid to be read (or written) in parallel.
Also, the access cluster is not required to be neighborhood-
aligned: any neighbor ID can appear on any of the ports in
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Fig. 4. Grid memory access patterns.
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Fig. 5. Grid memory and crossbar architecture.

the access cluster. This is evidenced by the varying location
of neighbor 0 (orange) relative to ports within the access cluster.

2) Grid Memory Implementation: Achieving the flexibility
described in Section III-A1 requires that all cluster ports be
connected to all memory banks. This all-to-all connectivity is
achieved by the input and output crossbars using three-stage
toroidal shift multiplexers. The neighbor indices requested at
access cluster ports are shifted and realigned to match the align-
ment of the memory banks. At each stage, the access cluster is
aligned along one dimension. The alignment control information
is sent to each memory bank. The readouts from the memory
banks go through the output crossbar, which routes the values
to the correct output ports. Section III-D details how the access
cluster uses different addressing sequences to support the access
patterns required for FFT computations.

Fig. 5 shows how the crossbars and BRAMs are organized and
provides a detailed view of a crossbar. When accessing the grid
memory, each port is presented with the X, Y, and Z coordinates
of one of the 64 grid points to be accessed. Routing requests from
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input ports to memory banks and readouts from memory banks to
output ports are performed by the two crossbars. Both the input
and output crossbars are implemented as multi-stage pipelines
to improve operating frequency and routability. At each stage,
a set of low-order bits from the requested coordinates is used
to control the multiplexers. The first stage aligns the request
along the X dimension using the low-order bits from the 64 X
coordinates. Similarly, the second and third stages align requests
along Y and Z dimensions, using the Y and Z coordinates
respectively. Recall that the low-order bits correspond to the
neighbor ID within the access cluster. Therefore, this essentially
realigns the access cluster according to the neighbor IDs. After
the low-order bits are used for controlling an alignment stage,
they are captured at the input ports, sent through a separate set
of pipeline registers, and used to control the output crossbar.

B. Charge Mapping Pipeline

This section describes an extension to previous work [20],
[22] through parallelization and combining with the clustered
grid memory. In charge mapping via tricubic interpolation, each
charge is spread over 64 neighboring grid points. The charge
mapping pipeline is 64-way vectorized to read grid memory,
compute grid charge values, perform charge accumulation, and
update grid memory for all 64 neighbor grid points in parallel.
Fig. 6 provides a detailed view of the charge mapping pipeline
and how it interacts with the grid memory. The charge coefficient
and address generator receives particle position and charge
information and generates the 64 coefficients corresponding to
the 64 neighbor grid points and 64 grid addresses to access the
grid memory. Next, the subgrid of 64 grid points is read from
the grid memory, accumulated with the output of the charge
coefficient generator, and written back to grid memory. The 64
addresses are sent through the pipeline to be used as the write
addresses for the grid memory.

1) Handling Hazards: A critical complication arises as fol-
lows. Accumulating charge involves performing read-modify-
write operations on the clustered grid memory, 64 grid points
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per particle. When two particles have overlapping neighbor sub-
grids, this can lead to read-after-write (RAW) pipeline hazards.
Referring to Fig. 6, P-~ represents particle data fed into the
pipeline; A~ , and C < represent a set of 64 grid addresses (or
coefficients) generated by the coefficient and address generator;
G <~ corresponds to the values of 64 grid points read from (or
written back to) the grid memory. The subscript indicates how far
down the pipeline each of these values are relative to a particle
entering the pipeline. For instance, the read addresses issued
in the current clock cycle corresponds to a particle 24 pipeline
stages removed from P;. The issuing of the read addresses and
the writing back of the updated grid point data are separated by
11 pipeline stages. Between these two steps, the grid memory
contains stale data for the 64 grid points in question. A RAW
hazard arises if a new particle has a grid neighborhood which
overlaps that of the first. Out of the 11 pipeline stages, 9 are
spent accessing the grid memory. It is possible to implement
forwarding logic among the 3 grid memory write pipeline stages
and 6 read stages and thereby limit pipeline stalls to the 2 stages
where the actual accumulator problem occurs. However, this
introduces unacceptable routing overhead as each pipeline stage
handles 64 64-bit values.

Two other approaches to addressing RAW hazards are to
(1) Implement hazard detection and pipeline stall logic or
(i) Schedule particle processing to avoid hazards. Since (i)
results in unacceptably poor performance as stalls dominate
performance, we have opted for (ii). Performance is discussed
in Section ITI-C.

2) Parallel Charge Mapping: Charge mapping for particles
that do not have overlapping neighbor subgrids can be done
in parallel. This requires using multiple pipelines as well as in-
creasing the read/write bandwidth of the grid memory. However,
adding read/write ports to the grid memory drastically increases
resource use and routing complexity. A practical approach is
to instantiate multiple smaller grid memory modules and im-
plement logic to have the smaller units mimic the behavior
of one larger memory unit. Each of the smaller grid mem-
ory units still provides 64 ports so that each charge mapping
pipeline can operate on one of the smaller grid memories.
Implementation fits directly into the design since the simulation
space is already partitioned into non-overlapping sub-regions
(RL cells).

Parallelization of charge mapping is also limited by two
other factors. One is that particle processing schedules have
constraints (see Section III-C), e.g., simulation size. Another
is that particles that are positioned close to region boundaries
map to grid points in more than one grid memory unit and must
be processed by more than one charge mapping pipeline; this
is to ensure that all the relevant grid points are updated, and
necessitates additional cycles.

3) Particles Near Region Boundaries: Particles near the
boundaries of simulation space sub-regions can map to grid
points that belong to different regions. This means the grid
neighborhoods of these particles could be spread over multiple
grid memory units. In the case of such particles, multiple charge
mapping (force) computation pipelines work collaboratively to
distribute charge values (compute the force vectors). Particles in
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boundary regions are therefore fed into more than one pipeline;
each pipeline has to process more particles than the ones in the
sub-region mapped to it.

4) Charge Mapping Latency Model: The latency of the
charge mapping phase is determined by the number of particles
N, and the number of charge mapping pipelines P.,,qp. The
calculation is complicated, however, as pipelines may need
to process particles from neighboring regions. The number of
additional particles to be processed by each pipeline depends
on how the simulation space is subdivided and assigned to dif-
ferent pipelines. The number of boundary particles per pipeline
(B cmap) 1s specific to each configuration. The number of parti-
cles in the shadow regions near the boundaries can be specified in
terms of [V, for a given configuration. For simplicity, we denote
itas Np cmap- After also taking into account the charge mapping
pipeline depth (Dc,qp), pipeline utilization (Ucyy,qp), and read
and write memory access latencies (Mp and Myy ), the charge
mapping latency is given by:

! ( Np +Nchap> +Dcmap+MR+MW (11)
Ucmap Pcmap
The D y,qp and My terms account for the number of cycles to
fill the pipeline. The My term is necessary because the FFT
phase cannot begin until the charge mapping pipeline outputs
are written back to the grid memory.

C. Scheduling Particle Processing

This section describes an extension to previous work [20],
[22] through scheduling particle computations. As described
in Section III-B1, RAW hazards are removed by guaranteeing
data independence by scheduling particles so that they do not
have overlapping grid neighborhoods with some number of the
preceding or following particles. This number is currently 11,
which we use in this section to give a concrete, but generalizable,
design. When this condition cannot be satisfied, one or more
bubbles is inserted.

1) Grids, Subgrids, Padded Subgrids, and Cells: For exam-
ple, consider a 4 x 4 x 4 subgrid embedded in a 32 x 32 x 32
grid. After a particle begins processing, not only is its subgrid
voided, but also all of the surrounding subgrids within the
8 x 8 X 8 padded subgrid. A schedule could therefore rotate
among 64 disjoint regions (number of disjoint padded sub-
grids within the full grid) and thus result in no stalls. With a
16 x 16 x 16 grid, however, some stalls would be necessary;
utilization as a function of simulation size is described further
below. Note that this calculation is not affected by the number
of charge processing units.

Given that charge mapping is likely to be part of a larger
MD computation that includes the range-limited (RL) force
computation, particle scheduling can be greatly simplified by
using the spatial sorting of particles already integral to RL. In
particular, the RL force computation unit assigns particles to
cells (typically cubic subdivisions of the simulation space of
dimension similar to the cutoff radius) according to their position
and stores the particle information in position caches. Position
caches are independent blocks of memory, each corresponding
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Fig. 7. Grids, cells, and particles visualized.

to a cell, that store particle information used by the RL force
computation pipelines.

Essential to the scheduling algorithm is the relationship be-
tween cell and grid spaces with respect to simulations of interest
for FPGA clusters. The latter are characterized by uniform
distributions of particles (e.g., biomolecules in water), and by
sizes in the 10s of thousands of particles, as are needed in drug
design and protein folding. MD simulation software typically
selects the grid size based on the size of the simulation space,
cutoff radius, and the Ewald error tolerance specified by the user,
unless the grid dimensions are explicitly specified by the user
(e.g., [42]).

Concretely, the number of grid points is often similar to the
number of particles. In the case of FPGA implementations,
cell size is typically set to the cutoff radius r. [36], [43]; cells
often contain 50-100 particles. The key point is that, while there
are many parameters, the ratio of cell size to grid size is such
that a cell generally contains an entire 4 X 4 x 4 subgrid. For
instance, for a 64 x 64 x 64 charge grid simulating water with
a cutoff radius of 0.9 nm; a ratio of 4 between the number of grid
points and RL cells corresponds to a simulation size of around
300K atoms and an Ewald tolerance of 5.5 x 10~3. For com-
parison, the OpenMM default settings choose 56 x 56 x 56,
and 97 x 97 x 97 charge grids for DHFR (23K atoms) and
ApoAl (92K atoms) benchmarks, respectively, for the same
cutoff radius, because it targets much lower tolerances [42].
While the 4:1 assumption is conservative, if necessary, r. can
be increased to guarantee this relationship with little loss in RL
performance.

2) Scheduling Algorithms: The spatial sorting of particles
into cells performed by the RL unit can be leveraged to simplify
the particle scheduling in the LR unit. However, it increases the
padding from the surrounding subgrids (8 x 8 x 8 grid points)
to the surrounding cells (3 x 3 x 3 cells or, with one subgrid per
cell, 12 x 12 x 12 grid points). Fig. 7 illustrates the relationship
between some particles distributed in a cell, their subgrids, and
how the subgrids correspond to cells.

Fig. 8 illustrates spatial scheduling. For simplicity, it is in
2D. In Fig. 8(a) we pick a particle from the cell labeled as
‘1’. This means that we have to avoid its neighbor cells when
picking the next k particles, where k is the minimum number
of clock cycles required between two particles with overlapping
grid neighborhoods such as the red and blue particles in Fig. 7.
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Fig. 8. Scheduling based on cells in RL unit.
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Fig. 9. Pipeline utilization for different scheduling algorithms.

Fig. 8(b) shows the neighbor cells of cell 1 shaded in blue.
These cells are blocked out for the next k clock cycles. This
also depicts how the periodic boundary conditions are applied.
Fig. 8(c) shows the selection of the next particle from cell labeled
*2’. This reduces the number of cells whence we can potentially
pick the next particle to four. The blue cells are voided for the
next k cycles, and the green cells for the next (k — 1) cycles.

Note that while particles from cells 1 and 2 can both update
grid points within the cell in between, they never update over-
lapping grid points. Therefore, picking particles from cells 1 and
2 in consecutive cycles does not result in a RAW hazard. The
green and orange particles in Fig. 7 represent such a scenario.
If all cells are blocked out, bubbles are inserted until a cell
becomes available. This procedure is repeated until all particles
are sent to the charge mapping pipeline. It is always possible to
pre-compute the selection sequence as it is independent of the
particle positions.

This scheduling procedure allows for various algorithms. Two
are as follows. Algorithm 1 converts the coordinates of the
current cell into a linear address and increments that address
to select the next target cell. If the target cell or its neighbor
cells have not been selected in the last k iterations, a particle can
be picked from that cell. Algorithm 2 selects the cell closest to
the current cell as the target for the next iteration. This is done by
iterating over the cell grid along X, Y, and Z dimensions (with
wrap-around) starting from the current cell until a cell with a
neighborhood not selected in the last & iterations is visited.

3) Effectiveness of Scheduling Algorithms: The effective-
ness of the algorithms is given by the pipeline utilization and
shown in Fig. 9. Pipeline utilization plotted against the number
of atoms is a step function because the cell grid grows in
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discrete steps. The first transition is the cell grid growing from
3 x 3 x 3to4 x 4 x 4. Both sorting algorithms show marginal
or no improvement going from 4 x 4 x 4 to 5 X 5 x 5. From
6 x 6 x 6 grid, there is nearly full utilization. Both algorithms
are similarly effective, although Algorithm 2 provides slightly
higher pipeline utilization. We have noticed, however, that Al-
gorithm 1 results in higher pipeline utilization for some other
cuboid-shaped simulation spaces, which are encountered when
subdividing the simulation space into sub-regions for parallel
charge mapping.

D. FFT and Inverse FFT

This section describes combining previous work [21] with
clustered grid memory. The PME method requires a 3D FFT
and a 3D inverse FFT to be performed over the charge grid.
Before the iFFT phase, the result of the FFT is multiplied by the
Green'’s function values stored in the Green’s ROM. The forward
and inverse Fourier transforms are built up from vendor-provided
FFT IP cores. To fully utilize the read/write capability of the grid
memory, 64 FFT cores are used by default. While this number
can be reduced for small simulations, the FFT cores do not use
many resources so the benefit is marginal.

Higher order FFTs can be decomposed into lower order ones
(e.g.,[41]).An N x N x N charge grid requires N2 N-point 1D
FFTs per dimension, and each of the FFT cores perform N2 /64
N-point FFTs per dimension. For each 1D FFT, grid values are
streamed out of the grid memory and outputs from the FFT
units are streamed back to the grid memory. When performing
the 1D FFT along the Z dimension, results are also sent through
a set of multipliers to be multiplied by the Green’s function
values. Green’s function values depend only on the location of
the corresponding grid point, the true volume of the grid, the
order of the basis function used to map the particle charges, and
a convergence parameter [42]. Thus, the values of the Green’s
function at each grid point can be computed offline and stored
in a ROM. The 3D iFFT is performed similarly.

The clustered grid memory provides 64 read ports and 64 write
ports. Therefore, at full utilization, it should be able to service
read and write requests from 64 FFT pipelines. However, the grid
memory is designed to support accessing 64 grid points arranged
in a 4 x 4 x 4 layout, where each port is required to access
a unique neighbor in the 4 x 4 x 4 neighborhood. This is not
conducive to the FFT calculation as the grid points are required
to be sent to the FFT cores in a specific order. We decompose the
3D FFT into three sets of 1D FFTs. When performing 1D FFTs
along a particular dimension, 1D arrays of grid points along that
dimension need to be sent to the FFT cores. This is achieved
by staggering 2D slices of the grid memory access cluster and
assigning these slices to neighborhoods from different districts,
where a district is an array of neighborhoods along a given
dimension.

Fig. 10 illustrates the access cluster mapping using a 4 x 4 x
4 grid memory anda 2 x 2 x 2 access cluster. The two 2D slices
of the access cluster are shown in green and purple. The same
strategy is valid for larger grid memories and access clusters. For
this simplified example, the 2 x 2 x 2 access cluster can support
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Fig. 10.  Grid memory access cluster staggering for the FFT phase.

Fig. 11.

Mapping of grid points to FFT pipelines.

8 FFT pipelines. Fig. 11 details how the grid points are mapped to
FFT pipelines. In Fig. 11(a) colors represent grid neighborhoods.
Different shades of the same color represent neighborhoods that
belong to the same district and are accessed using a 2D slice
of the access cluster. For this example configuration, the green
and blue districts are accessed using one 2D slice of the access
cluster, while the orange and purple districts are accessed using
the other slice. Different colors in Fig. 11(b) depict which grid
points are sent to each of the 8 FFT units when performing the
1D FFTs along X dimension. In this configuration, each of the
FFT pipelines performs two 1D FFTs per dimension.

Latency of 3D FFT calculations is deterministic. For simplic-
ity, we assume the simulated space to be a perfect cube. If we
consideran N x N x N charge grid, the 3D FFT is decomposed
into three sets of 1D FFTs. Each set comprises N2 N-point
FFTs. We denote the number of FFT pipelines by Py, the
pipeline depth by Dy, and access latencies for read and write
grid memory accesses by Mg and My, respectively. Latency
for one set of 1D FFTs is then:

3

N
—— + Dyp + Mg + My

(12)
Pr

For a cubic charge grid, N2 is the number of grid points which
we denote as Ny. The Mg term is for reading the first grid point
from the grid memory and the My term is writing back the last
term of the FFT output to the grid memory. It is necessary to
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ensure that the results of one FFT phase is completely written
back to the grid memory before starting the next FFT phase.
The total latency for the 3D FFT or inverse FFT is three times
the latency of a single phase. In this implementation, the third
phase of the forward FFT takes three additional cycles since
the outputs of the FFT pipelines are multiplied by the Green’s
function values before they are written back to the grid memory.

E. Force Computation Pipeline

Force computation can be broken into two stages: coefficient
generation and multiply-accumulate (MAC). Particle positions
are read from particle information memory and sent to three
force coefficient generator units. Force coefficient generators
apply the partial derivatives of the basis function along each
dimension to a particle location to generate 64 coefficients
corresponding to the 64 neighbor grid points.

In the MAC portion of the force computation pipeline, the
64-point neighbor subgrid is read from grid memory and po-
tential values at grid points are multiplied by the coefficients
calculated by the coefficient generator module. Up to this point,
the force pipeline is also a 64-way vectorized implementation.
Next, the multiplication results are summed over all 64 points.
Three independent adder trees are used to reduce the 64 val-
ues to a single force value along each of the X, Y, and Z
dimensions.

1) Parallel Force Computation: The force computation
phase could be fully parallelized since computing the force
exerted on one particle by the potential field does not depend
on other particles. The limitation is reading the grid points from
the clustered grid memory. The baseline implementation allows
64 grid points to be read from the grid memory per cycle, which
translates to a force computation throughput of one particle per
cycle. However, when we use the alternative implementation
of the grid memory to enable parallel charge mapping, we
also enable parallel force computation. Each of the subgrid
memories, which map to different regions of the simulation
space, provides 64 ports allowing multiple force computation
pipelines to operate on particles from different regions. Similar
to parallel charge mapping, boundary region particles are sent
to multiple pipelines during force computation.

2) Particle Information Memory: The baseline architecture
uses a single memory unit to cache the particle information until
used in force computation. However, parallel force computation
requires each of the force pipelines to have access to the particles
from different regions in parallel. This requirement is satisfied by
using multiple particle information memories, each assigned to a
different region in the simulation space. Since the particles from
different regions are handled by separate pipelines at the charge
mapping stage, caching the particle information in separate
memory units is trivial.

3) Force Computation Latency Model: We can derive an
analytical formula for the force computation latency similar to
charge mapping. The effect of boundary region particles is the
same. We denote the boundary region particles per pipeline as
NB fcale. The relationship between Np f.qic and N, is specific
to a given configuration. The force computation latency is given

1699

Long Range

Force
Compute
Module

Fig. 12.  Connectivity between LR and RL units.
by:
NP
P +Nchalc+chalc+MR (13)
fealce

where Pjeq. is the number of force pipelines and D s ;. is the
pipeline depth.

F. Connecting Long-Range and Range-Limited Units

This section extends previous work [23] with multiple op-
timizations. Since then the Range-Limited (RL) design has
gone through a major update [36]. Due to these changes,
and to support the particle scheduling algorithm described in
Section III-C, the logic connecting the LR and RL components
was also redesigned.

The RL unit stores particle information in position caches
and uses ring interconnects to transfer particle information.
The input ring transfers data from position caches to the RL
pipelines, while the output ring transfers the outputs of the RL
pipelines to the force caches, which store the computed force
values until used for motion integration. LR needs to capture
particle information from the input ring and inject the calculated
long-range force values to the output ring to be written to the
force caches. Fig. 12 shows how the LR unit is connected to the
RL ring interconnects via a pair of bridge modules. The bridge
module connected to the input ring also implements the particle
scheduling algorithm described in Section III-C.

1) Input Bridge: Fig. 13 illustrates the internal architecture
of the input bridge module. It uses double buffering to schedule
a set of particles while capturing the next set of particles from
the input ring. The bridge module and the RL unit’s control
logic orchestrate particle data movement between RL and LR
units. During each data movement phase, one particle from each
position cache in the RL unit is read and injected into the input
ring. The bridge module captures the data and stores it in one
of the buffers. It then starts scheduling the particles in the first
buffer (active) while storing the next set of particle data, received
over the input ring, in the second buffer (inactive). The roles of
the two buffers are reversed in each phase. To write data to the
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inactive buffer, the controller asserts the corresponding address
select bit. The same signal is used as the write enable for that
buffer. The controller also issues the write address sequence.

To schedule particles in the active buffer, the controller first
issues the read addresses for the sequence ROM. The address
sequence to read particles without violating the scheduling
constraints is pre-calculated and stored in the Sequence ROM; it
indicates the cell from which the next particle should be chosen.
Readout from the ROM is used as the read address for the active
buffer. Each entry in the ROM has an extra bit to indicate whether
itis a valid address or a pipeline bubble. This bit is routed to the
select input of the output multiplexer.

2) Output Bridge: The output bridge is responsible for send-
ing force values corresponding to each of the particles to the
correct force caches, which are connected to the RL output ring,
and so is itself connected (see Fig. 12). The LR unit outputs
the force values in the same order as it receives the particle
information. Therefore the output bridge uses the same sequence
ROM as the input bridge to determine the destination addresses
for the packets carrying force information to the force caches.
But since LR only outputs valid force values, the ROM entries
here are always valid.

IV. BASELINE RESULTS

In this section, we establish resource usage and performance
baselines for the FPGA-LR design without parallel charge map-
ping or parallel force computation. The baseline design consists
of a charge mapping pipeline, sixty-four FFT pipelines, and a
force computation pipeline.

The LR force computation unit was validated and perfor-
mance and resources were measured with implementations
on an Intel Stratix 10 1SX280HN2F43E2VG FPGA [44]
(Intel D5005 programmable acceleration card) and an Ag-
ilex AGFB027R31C3I3V device [45]. The FPGA-LR design
was implemented using SystemVerilog. The Intel Open Pro-
grammable Acceleration Engine flow was used for the D5005
implementation, while the standard Quartus synthesis and Place
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TABLE II
RESOURCE USAGE ON AN AGILEX AGFB027R31C313V DEVICE

Grid Size ALM DSP BRAM
16x16x16 102,178 (11%) 1,869 (22%) 148 (1%)
32x32x32 128,926 (14%) 2,253 (26%) 352 (3%)
64x64x64 152,661 (17%) 2,381 (28%) 1,728 (13%)

& Route flows were used for the Agilex implementation. In-
tel Quartus Prime Pro - Version 21.2.0 was used. The results
reported are for the Agilex. The LR unit was implemented as
a standalone accelerator. An application running on the host
processor was used to send particle information to the FPGA,
receive computed force values, and validate the results from the
FPGA against force values calculated on the host processor.

A. Resource Usage

Table II presents the absolute and percent usage of Adaptive
Logic Modules (ALM), Digital Signal Processing (DSP) blocks,
and block RAMs (BRAMSs) for the different design sizes. For the
first two grid sizes, the particle information memory was set to
4096 and 32768 respectively which is the same as the number of
grid points in the grid memory. For the 64 x 64 x 64 grid size,
which better represents the problem sizes of interest, particle
memory size was set to 65536.

ALM, DSP, and BRAM usage increases with the design size.
Since the baseline configuration of the LR architecture is used,
the numbers of charge mapping and force computation pipelines
do not change with the size of the charge grid. Therefore any
change in DSP usage is attributable to increased usage by the
FFT IP cores. For ALMs the larger grid memory also contributes
to the increased usage. However, the majority of the additional
ALMs are still used by the larger FFT cores.

The Green’s ROM might use ALMs or BRAMs depending
on the design size. The FPGA tools opt to implement the
163 Green’s ROM using ALMs, but implement the other two
sizes using BRAMs. The size of the clustered grid memory
increases by eight times going from one design size to the next.
However, the BRAM usage increases by less than that. This can
be explained by the fact that although the grid size increases,
the memory interleaving remains at 64 and only the size of
individual memory banks increases. Therefore, even if the total
BRAM bits used increases by 8 x, the number of BRAMs grows
at a lower rate.

Fig. 14 shows the breakdown of ALM usage by different
parts of the design. Usage is reported for the three phases of the
PME algorithm: charge mapping, FFT computations, and force
computation. Components that are used in more than one phase,
such as particle memory and clustered grid memory, as well as
any logic that cannot be assigned to a particular PME phase (e.g.,
the finite state machine (FSM) controlling the whole design),
are reported separately. Similarly, Figs. 15 and 16 similarly
present the DSP slice and RAM block usage. The clustered bars
represent the resources as absolute values while the pie charts
present the resource usage as a fraction of the total resources.
Note that Figs. 14 and 16 use log scales on the X -axis.
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The resource usage figures so far do not include the resources
for the input and output bridge modules because they are only
used in the fully integrated mode and not standalone. Table III
presents the resource usage for the bridge modules for different
design sizes: these are less than 1% of available resources on
a Stratix 10 or Agilex FPGA. The sequence ROMs and buffers
are the components most sensitive to the size of the simulation
space. A larger simulation space means a higher number of cells
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TABLE III
RESOURCE USAGE FOR BRIDGE MODULES

. Input Bridge Output Bridge
Grid Size AIM BRAM ALM
16 x16x 16 290 8 62
32x32x32 309 8 108
64 %64 x 64 776 26 559
TABLE IV

BASELINE ACCELERATOR PERFORMANCE AND FMAX

Grid Size  Particles Fmax Performance
163 4096 254MHz 1620 ns/day (213us per iteration)
323 32768 260MHz 1253 ns/day (276us per iteration)
643 65536 251IMHz 539 ns/day (642us per iteration)

in the RL unit and larger buffers to hold particle information
until they are scheduled and sent to the LR unit. Higher RL cell
count also means a longer address sequence, which increases
the size of the sequence ROM. Since the sequence ROM used in
the output bridge does not hold invalid entries, the ROM is very
small and the synthesis tool opts to implement it using LUTs
rather than BRAMs. Other elements of the bridge modules are
less sensitive to simulation size and their resource usage does
not vary significantly for different design sizes.

B. Accelerator Performance

The aim of offloading MD to FPGAs is enabling longer
simulations. A common metric is the time simulated in a day
of wall-clock time. For the three design sizes, we set the number
of particles to 4096, 32768, and 65536 respectively. We also
assume the LR unit is used in the fully integrated mode, where
particle information and force values for each iteration are
exchanged with the integrated RL unit and not the host processor.
The RL unit could be implemented on the same FPGA or on
a different FPGA connected directly to ensure that particles
are transferred between RL and LR units at a rate as close
as possible to one particle per cycle. We have considered a
standard iteration time of 4 femtoseconds. Finally, we assume
that the LR unit is what bottlenecks the full simulation. Table IV
presents the maximum operating frequency (Fmax) and overall
performance for LR units with different grid sizes. Each design
is implemented using all the optimization modes available in
Intel Quartus Prime and the highest Fmax value is reported.
Each optimization mode uses different Place & Route strategies,
which results in different critical paths and hence different Fmax
values.

The effect of the differences in pipeline utilization due to
the particle scheduling algorithm is clearly observable in these
results. The charge grid for the 32% design has eight times
more points than the 16% design and simulates eight times
more particles. Similarly, the charge grid for the 643 design
is eight times larger than the 323 design. However, it only
simulates twice as many particles. Therefore, one might expect
the performance to decrease at a faster rate between the 163 and
323 designs than between 322 and 643 designs; however, the
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reverse is true. This is attributable to the low pipeline utilization
(8.3%) of the 163 design and very high pipeline utilization (95%
and 99.4%) of the other two designs. Between the 16> and 323
designs, the performance loss due to simulating a larger charge
grid and a higher number of particles is partially offset by the
higher pipeline utilization of the 322 design. Pipeline utilizations
between the two larger designs are much closer to each other.
Therefore, the effect of larger grid size and particle count is more
noticeable.

Of note is that the three designs have similar Fmax values
despite the different grid sizes. The parts of the design that
directly correlate to the charge grid size are the clustered grid
memory and FFT pipelines. The crossbars used to route requests
to BRAMs within the grid memory contain the longest combi-
national paths that determine the Fmax. Although the larger grid
sizes use more BRAMS, the addressing logic and crossbars (see
Section III-A2) remain the same since the memory interleaving
is selected based on the interpolation scheme used and not the
grid size. While routing signals to the additional BRAMs does
incur additional overhead as the design size grows, it does not
significantly impact the critical path and therefore Fmax. The
smallest 16 design has a slightly lower Fmax than the larger 32°
because the FPGA tools opt to implement some of the smaller
memories (the particle information memory and the Green’s
ROM) using ALMs instead of BRAMs.

V. RESOURCE AND PERFORMANCE OPTIMIZATION

Once the LR components are individually optimized (Sec-
tion III), there remains the task of optimizing them jointly.
Each major component can be either replicated or folded as
needed to ensure throughput matching between phases. In this
section, we present an overall performance model, describe
possible resource tradeoffs, and then discuss the performance
of alternative configurations, first at a high level and then in
depth. Finally, we compare the performance for FPGA-LR to
that achievable on high-end GPUs running a production-grade
MD simulation package.

A. Modeling LR Accelerator Performance

To create an overall performance model, we combine the
formulae derived in Section III-B, III-D, and II-E. Including
grid memory initialization, the latency is given by

1 N, (Y
T = = N cma B
PAE Ucmap (Pcmap s P) - Pff
N, N,
+ = +Nchalc+7g+Dcmap

Pfcalc 64

+ 6Dy + Djeare + 8Mp + TMyy (14)

For the baseline configuration without parallel charge mapping
or force computation, the above equation reduces to
N, 6N, N,

N, 9
Uecmap * T 64

+ Dcmap + 6fot + chalc + 8MR + 7MW

TpvEe = Pr
t

s)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 10, OCTOBER 2024

Based on this formulation, we can predict the performance
for different configurations and determine optimal resource
allocation strategies. We can also evaluate the performance
of implementations against the predictions. When comparing
the compute cycles per iteration for the three design sizes of
the baseline configuration reported in Table IV, the difference
between the prediction and the actual implementation is less
than 0.4%, 0.1%, and 0.01% of the prediction for 163, 323, and
64 designs, respectively.

B. Module-Level Resource Utilization

This subsection has two purposes. First, we refine the com-
ponent resource usages from Section IV-A to account for the
additional resources needed to create a complete MD design
from the individual components. These resources include those
necessary for parallelization within a phase, for coupling these
now parallelized phases to create a complete LR design, and for
sharing resources among phases. And second, we find the single
resource type that limits the number of compute units that can
fit within a given resource budget thereby simplifying further
evaluation.

Table V presents resource usage for each type of pipeline and
memory unit at different problem sizes, both as absolute values
and as a percentage of resources available on an Intel Agilex
AGFBO027R31C313V device. DHFR and ApoAl benchmarks
are chosen to represent the problem sizes of interest for this
work. These use 64% and 128° charge grids, respectively, to
achieve Ewald tolerance values comparable with tolerances used
to generate GPU benchmark results in [29]. As discussed in
Section III-B2, parallel charge mapping and force computation
require a grid memory made of multiple smaller grid mem-
ory units. Therefore, the resource usage for the grid mem-
ory unit is presented at both the lowest and highest levels of
parallelization.

The central observation from Table V is that DSPs are the
limiting resource; ALM and BRAM usage by the pipelines is
negligible. Force computation pipelines are the most resource-
hungry at 9% of available DSPs per pipeline. When we consider
the highest level of parallelism for charge mapping and FFT
stages, as dictated by the particle scheduling efficiency and
maximum read bandwidth of the grid memory, each of the charge
mapping and FFT stages could also use between 16% and 20%
of the available DSP blocks. Because the three PME phases are
in series, the charge mapping and force computation units can
share the coefficient generation units and so reduce the overall
DSP usage.

The memory units show higher ALM and BRAM usage
compared to the pipelines. However, even at the larger problem
size and at the highest level of parallelism (supporting 8-way
parallelism in charge mapping and force computation), the ALM
and BRAM usage by the grid memory is at most 43% and 54% of
the available resources. The Green’s ROM also takes up ~17%
of the BRAMs. Still, the total BRAM usage is well within the
available resources. Therefore, for the rest of this section, we
explore alternative configurations with respect to DSP usage
only, as it alone limits the number of parallel pipelines.
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TABLE V
RESOURCE USAGE FOR EACH TYPE OF PIPELINE AND MEMORY UNIT ON AGILEX AGFB027R31C3I3V DEVICE
Component DHFR ApoAl
ALM DSP BRAM ALM DSP BRAM
Charge mapping (1 particle, 64 grid points per cycle) 1562 (0.17%) 205 (2.4%) 0 1585.3 (0.17%) 205 (2.4%) 0
FFT (single 1D FFT unit) 1297 (0.14%) 22 (0.26%) 2 (0.02%) 1652.4 (0.18%) 28(0.33%) 6 (0.05%)
Force computation (1 particle, 64 grid points per cycle) 12895 (1.41%) 768 (9.0%) 0 12626.5 (1.38%) 768 (9.0%) 0
Green’s ROM 5965 (0.65%) 0 368 (2.77%) 7516 (0.82%) 0 2208 (16.64%)
Grid memory (64 x 1 grid points per cycle) 42011 (4.6%) 0 896 (6.75%) 46553 (5.1%) 0 7168 (54.0%)

Grid mem.at full parallelization

(64 x 8 grid points per cycle) 328372 (35.9%)

0 1024 (7.72%) 396220 (43.41%) 0 7168 (54.0%)

Units omitted from Table V are the particle memory and the
control logic responsible for managing the entire design. For
simplicity, and because BRAMsS are not a limiting resource, we
have set the size of the particle memory to 100,000 particles
to be able to hold any problem size of interest. This uses less
than 5% and 0.3% of available BRAMs and ALMs, respectively.
The control logic uses <2% of available ALMs. An observation
is how the number of BRAMs used by the two grid memory
configurations differs for the smaller problem size, even when
the amount of data to be stored is the same. At full parallelization,
grid memory has 8 smaller grid memory units, while each grid
memory unit has 64 memory banks. The FPGA tools are able
to pack the BRAM bits into BRAMSs more efficiently when the
amount of memory per memory bank is higher. In the case of
the smaller problem size, this effect is visible in the differently
sized grid memory units.

C. LR Configuration Alternatives

In this subsection we find the best LR design alternatives as
a function of resource usage. This is a critical measure because
it allows extrapolation to variously sized FPGAs as well as
LR budgets within larger MD designs. Because of the large
design space it is impractical to synthesize all designs of possible
interest. We therefore augment the synthesized designs with the
model proposed in Section V-A (which was validated to within
0.4%).

The design space consists of integral copies of the three
major components up to 100% resource usage. Fig. 17 presents
the performance for the two benchmarks at different levels of
resource usage ranging from 10% to 100% of the DSPs available.
All configurations with 1, 2, 4, or 8 charge mapping and force
computation pipelines and 1-64 (powers of two) FFT pipelines
are considered. The design space explored is limited by:
i) problem sizes of interest, ii) the level of parallelism dictated
by the scheduling algorithm efficiency for a given problem size,
iii) maximum read bandwidth of the grid memory for the FFT
phase, and iv) FPGA resource availability. The best pipeline
configuration at each level is shown in the following format:
< Charge_mapping— F FT — Force_compute >.

DHFR shows the highest throughput because of the smaller
particle count and the resulting smaller charge grid. The other
three lines on Fig. 17 represent three different setups for the
ApoAl benchmark. The configuration corresponding to the red
line uses the Agilex F-series AGFB027R31C3I3V used in the

Performance VS Percentage of DSP used
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Fig. 17.  Performance VS DSP usage (E.T. = Ewald Tolerance, Dev = Target
device).

prior analysis. It uses a 1283 charge grid and achieves an Ewald
tolerance value of 0.0001, which is much lower than the 0.0005
used for GPU benchmark results.

Note that the largest configuration on the red line is <8 —64 —
4>. The number of DSPs on the Agilex AGFB027R31C3I3V
device is not sufficient to implement the <8—64—8> configura-
tion for the larger problem size. This is because of the 128-point
FFT units now needed.

The purple line shows the performance for the same bench-
mark at the same tolerance level, but for a larger Agilex I-series
FPGA that has 50% more DSPs. While this device is able
to accommodate the < 8—64—8> pipeline configuration, the
incremental benefit is marginal. This is because the simulation
time is dominated by the FFT phase due to the larger charge
grid. Therefore, the benefit of increasing force compute pipelines
is minimal. In contrast, DHFR shows noticeable performance
improvements from increasing force pipelines because the force
compute phase is more prominent compared to the FFT stage
due to the smaller charge grid.

The yellow line shows how accuracy can be traded off for
higher performance. This setup uses the same device as the
red line. However, it targets a higher tolerance of 0.0015 and
therefore uses a 64% charge grid. This shows trends similar to
DHEFR because the same charge grid size is used. Finally, note
that a lower operating frequency of 225 MHz was used with the
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Fig. 18.  Performance for alternative configurations.

two configurations using the 128° grid memory as opposed to the
Fmax value of 251 MHz used for the other two configurations.

Fig. 18 presents performance for the six best configurations
from Fig. 17 and the baseline configuration for a range of
simulation sizes. A 643 charge grid is used for all problem
sizes. The second Y-axis shows the Ewald tolerance values
corresponding to the problem size and the selected grid size. For
a given grid size, the latency for the FFT phase does not change
with the number of atoms. The intersection with the Y -axis
represents the FFT latency for the different configurations. The
<4—32—4> configuration has the highest offset from zero
along the Y-axis because it has the fewest FFT pipelines. The
latency for the baseline configuration grows linearly with the
number of atoms as it has no parallelization in charge mapping
and force computation stages. The others grow at a lower rate
due to parallel charge mapping and force computation.

The sudden drop in iteration time between ~8K and ~16K
atoms corresponds to the particle scheduling algorithm starting
to take effect (as shown in Fig. 9). Pipeline utilization increases
with simulation size up to around 80K atoms where it reaches
close to 100%. From there onward, the iteration time grows
linearly with the number of atoms.

D. Discussion

In this subsection, we present five observations about the rela-
tionship of performance (for a given problem size and resource
budget) with design features.

First, at smaller resource budgets, it is always most beneficial
to increase the number of charge mapping and FFT pipelines,
rather than force compute pipelines, as more of those will fit
within the same resource budget.

Second, between charge mapping and force computation
phases, it is easier to achieve higher performance in the force
compute phase as the latter do not encounter RAW hazards and
so can always operate at 100% efficiency.

Third, unlike the other two phases, for charge mapping the per-
formance benefit diminishes with the the number of pipelines.
This is because smaller regions result in less efficient scheduling
of particles.
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TABLE VI
GPU BENCHMARK RESULTS FROM OUR EXPERIMENTS FOR LR ONLY

GPU
RTX 8000

Architecture DHFR (ns/day)

1150

ApoA1 (ns/day)
332

Turing

Fourth, the optimal configuration for a given resource budget
depends heavily on the problem size. This is especially true
for smaller resource budgets. Consider, e.g., the blue and yel-
low lines from Fig. 17 at 30% resource usage. Although both
configurations use a 64% charge grid, the number of FFT units is
different. For ApoAl, itis more beneficial to reallocate resources
from the FFT phase to the other two phases. This is because the
higher particle count of ApoA1 results in longer charge mapping
and force compute phases compared to the DHFR benchmark.

And fifth, there is a range of problem sizes that fit a given grid
size. As a design guideline, one should allocate more resources
to the FFT pipelines at the lower end of the range of problem
sizes for a particular grid size, and gradually reallocate resources
to charge mapping and force computation when moving through
the range of problem sizes. The two lines in Fig. 18, correspond-
ing to two the configurations from above, intersect at around 35K
atoms. This demonstrates how the resource allocation strategy
changes with the problem size.

E. Performance Comparisons

A likely deployment scenario for FPGA-based LR accelera-
tors is within an FPGA-based MD accelerator, which may itself
have scalability advantages (e.g., [39]). Our performance goal
for FPGA-based LR accelerators is therefore to demonstrate
similarity with other leading accelerators. In this subsection,
we compare the performance of the proposed FPGA-based
LR accelerator with that of GPUs running OpenMM [42]. We
consider two popular MD benchmarks chosen to represent the
simulation sizes targeted by this work: Dihydrofolate Reductase
(DHFR) and Apolipoprotein A1 (ApoAl).

GPU performance results from our experiments using an
Nvidia Quadro RTX 8000 GPU are presented in Table VI.
We have modified the OpenMM code to compute only the LR
interactions. For the GPU runs, the default Ewald tolerance value
of 0.0005 was used. Recall that the best FPGA-LR performance
for DHFR is 2124 ns/day, with a lower Ewald tolerance value
of 0.0003. For ApoAl the best FPGA-LR performance is 287
and 1496.7 ns/day, with Ewald tolerance values of 0.0001 and
0.0015, respectively. Because the FPGA design only uses powers
of two charge grid sizes, it cannot exactly match the tolerance
value of 0.0005 targeted by the GPU implementations. The FFT
IP cores used in this work accept inputs and generate outputs with
powers of two points. In order to store the intermediate results
of the 3D FFTs, the grid memory also needs to have dimensions
which is a power of two. Because the FPGA-LR design reuses
the grid memory across all phases of the LR force computation,
we cannot save any resources by using smaller non-power of two
grid sizes that match the GPU implementations for the charge
mapping phase.
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TABLE VII
GPU OPENMM BENCHMARK RESULTS (DOWNLOADED 2/28/2024 [29])

GPU Architecture ~ DHFR (ns/day) ApoAl (ns/day)
RTX 3090 Ampere 1530 425
RTX 4080 Ada Lovelace 2034 607
RTX 4090 Ada Lovelace 2250 785

A100 Ampere 1276 445

H100 Hopper 1502 609

To provide additional context for the performance compar-
isons, in Table VII we also report benchmark results from a third
party [29] for OpenMM on more recent GPU architectures which
use more advanced process nodes compared to both the GPU and
the FPGA used in our testing. Unlike in our own experiments
where LR was isolated, these are for complete MD. Even if we
assume a significant performance improvement of ~25% for
LR-only execution on more recent GPU architectures, which
far exceeds the performance improvement we observed in our
testing with an older GPU, FPGA-LR is still competitive with
most of the recent GPUs except for few of the highest performing
ones.

VI. PRIOR WORK

Previous studies present both FPGA-, and ASIC-based ac-
celerators for parts of, or full MD simulations. FPGA-based
FFT accelerators include single FPGA [21], [46], [47], and
multi-FPGA [18], [48], [49] implementations. While most of
these implementations use custom pipelines for FFT calcula-
tions, there are also implementations which make use of soft
processors instantiated on FPGAs [50]. Recent work has also
focused on improving the usability of FFT accelerators by
using OpenCL implementations [51]. [52] provides an OpenCL
library for FPGA-based FFT acceleration. OpenCL host code
in the form of FFTW-like APIs, which can be used to offload
existing FFT routines to FPGAs, and OpenCL kernels that can
be synthesized to bitstreams are provided. [53] extends this
to provide an OpenCL library for FFT-based 3D convolutions
on FPGAs. [54] surveys the design space for offloading 3D
FFT calculations to FPGAs. Some studies use coarse-grained
reconfigurable array (CGRA) architectures to accelerate FFT
computations [55], [56]. These are intended to be used as FPGA
or ASIC implementations. There are also non-CGRA FFT ar-
chitectures intended for ASIC implementations [57].

FPGA-based charge mapping acceleration has been studied
in [22]. While not targeting MD applications, there are other
works such as [58], [59] focused on FPGA acceleration of cubic
interpolation which is a crucial part of the particle-grid mapping.

Going beyond accelerating components of MD calculations,
there are accelerators targeting full MD simulations. These ac-
celerators use different hardware configurations and application
mapping strategies. Anton [13], [14], [15] is a full ASIC system.
FFTs were only used in Anton I as Anton II and IIT systems
used the j-series method for LR force computation. Anton uses
special-purpose datapaths for particle-grid mapping while FFT
calculation in Anton I and grid-based convolutions in later Anton
systems are mapped to general-purpose processors. Still, due to
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the custom routing fabric, Anton I was able to provide impressive
FFT performance [41].

MDGRAPE-4A [60] uses an ASIC+FPGA approach and im-
plements a novel algorithm named tensor-structured multilevel
Ewald summation method (TME). This involves performing
3D FFTs and grid convolutions. The FFTs are performed on
FPGAs while the convolutions and grid-particle mapping are
performed on custom datapaths implemented on the ASIC
portion of the system. The previous iterations of MDGRAPE
were ASIC systems [61]. There are also FPGA-based full MD
simulation accelerators. [23] is a single FPGA design using
custom datapaths for all computations. [16] is a multi-FPGA
accelerator for LR force computation designed using OpenCL.

VII. CONCLUSION

In this work, we present an FPGA-based long-range elec-
trostatic force computation architecture for use in Molecular
Dynamics simulations, in particular, for the long timescales for
which FPGA clusters appear to have advantages. This archi-
tecture can either be a standalone accelerator used to offload
LR computations of an MD simulation package, or used as
part of a fully integrated FPGA-based simulator. We provide
detailed architectural descriptions of different components of
the accelerator. While doing so, we establish ideal behavior
for certain components that optimize the performance and then
describe an architecture that satisfies those requirements. We
analyze the performance, different resource allocation strategies,
and optimal configurations under different resource constraints.
Our performance results show that the best configuration of the
FPGA-LR design can achieve throughput values of 2124ns/day
and 287ns/day for the DHFR and ApoA1 benchmarks and with
low Ewald tolerance values.

For simulation sizes of 20K—50K particles, the FPGA-LR
design can provide performance comparable to even the latest
generation of GPUs. For larger problem sizes, which correspond
to larger charge grids and larger 3D FFTs, the FPGA is somewhat
slower. However, the FPGA-LR performance is again compara-
ble for larger problem sizes if higher, but still likely acceptable,
tolerance values can be used.
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