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SUMMARY

Cell atlases serve as vital references for automating cell labeling in new samples, yet existing classification
algorithms struggle with accuracy. Here we introduce SIMS (scalable, interpretable machine learning for sin-
gle cell), a low-code data-efficient pipeline for single-cell RNA classification. We benchmark SIMS against
datasets from different tissues and species. We demonstrate SIMS’s efficacy in classifying cells in the brain,
achieving high accuracy evenwith small training sets (<3,500 cells) and across different samples. SIMS accu-
rately predicts neuronal subtypes in the developing brain, shedding light on genetic changes during neuronal
differentiation and postmitotic fate refinement. Finally, we apply SIMS to single-cell RNA datasets of cortical
organoids to predict cell identities and uncover genetic variations between cell lines. SIMS identifies cell-line
differences and misannotated cell lineages in human cortical organoids derived from different pluripotent
stem cell lines. Altogether, we show that SIMS is a versatile and robust tool for cell-type classification
from single-cell datasets.

INTRODUCTION

Next-generation sequencing systems have allowed for large-
scale collection of transcriptomic data at the resolution of indi-
vidual cells. Within these data lies variability allowing us to
uncover cell-specific features, such as cell type, cell state,
and regulatory networks, as well as to infer trajectories of cell
differentiation and specification.1,2 These properties are crucial
to understanding biological processes in healthy and diseased
tissue. In addition, these properties better inform the develop-
ment of in vitro models, which are often benchmarked against
cell atlases of primary tissue.1

The lowering costs of sequencing, coupled with several bar-
coding strategies, have allowed single-cell datasets and atlases
to scale with respect to cell and sample numbers as well as data
modalities.3 Yet, despite the increasing size and complexity of
datasets, the most popular pipelines for single-cell analysis are
based on dimensionality reduction and unsupervised clustering
followed by manual interpretation and annotation of each cell
cluster.4 This requires a high level of expertise in understanding
the most appropriate cell markers for a given tissue, a major bar-
rier to newcomers to a field. For highly heterogeneous tissues
such as the brain, where a consensus in cell-type nomenclature

remains challenging,5 manual cell annotation can introduce
additional errors.
Errors in cell annotation may be driven by the following com-

mon assumptions. (1) It is assumed that marker genes are uni-
formly highly expressed, which is not always the case.6,7 For
instance, while OPALIN and HAPLN2 are considered markers
of oligodendrocytes in the brain, their expression is low or un-
detectable in a large subset of oligodendrocytes at the single-
cell level.8 Indeed, high levels of HAPLN2 have been proposed
as a landmark of Parkinson’s disease.9 (2) It is assumed that
cell-type marker gene expression is constant throughout devel-
opment, such that a gene that specifically labels a population of
cells at one age would label the same population at a different
age. For example, while it is known that PVALB-positive
cortical interneurons are born during embryonic develop-
ment,10 the expression of this gene is not seen until well after
birth.11 Notably, recent studies have shown that a subset of
PVALB interneurons may never express the PVALB gene.12

(3) It is assumed that gene markers discovered in one species
apply to others. In several tissues, including the brain, there are
major species-specific differences. For example, HCN1 is a key
marker of cortical layer-5 subcerebral projection neurons in the
mouse, but it is highly expressed in projection neurons of all
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cortical layers in humans.13,14 In summary, manual annotation
of every new dataset based on standard marker genes can
lead to compounding error propagation and inconsistent sin-
gle-cell atlases, potentially reducing their utility.

The development of software to automate single-cell anal-
ysis has become an important and popular research
topic.4,15–17 However, the accuracy of these automated clas-
sifiers often degrades as the number of cell types increase,
and the number of samples per label becomes small.18 The
distribution of cell types is often asymmetric, with a majority
class dominating a high percentage of cells. Additionally,
technical variability between experiments can make robust
classification between multiple tissue samples difficult. There
have been efforts to apply statistical modeling to this prob-
lem,19,20 but the high-dimensional nature of transcriptomic
data makes analysis statistically and computationally intrac-
table.21 These conditions make applying classical models
such as support vector machines difficult and ineffective.22

In response, generative neural networks have become a
popular framework due to their robustness to technical
variability within data, scalability, and ability to capture biolog-
ical variation in the latent representation of the inputs.23–25

These include deep-learning models based on variational
inference,26,27 adversarial networks,28 and attention trans-
formers.25 Early deep-learning models exhibit a lack of inter-
pretability due to their ‘‘black box’’ architecture.18 However,
explainable artificial intelligence (XAI) research aims to under-
stand model decision making by assigning weight values to
the genes based on their influence on cell-type predictions.
Despite this, some deep-learning approaches display inherent
biases favoring multivariate gene selection that impedes
straightforward data interpretation.25,29 Additionally, the
computational demands of certain deep-learning systems
may preclude adoption by smaller research groups lacking
access to high-performance computing infrastructure.
Ongoing work seeks to enhance model interpretability and
efficiency to enable broader use across the biological
sciences.25,28

Here we present SIMS (scalable, interpretable machine
learning for single cell), a new framework based on the model
architecture found in TabNet.30 SIMS is implemented in Py-
Torch Lightning,31 which allows SIMS to be low-code and
easy to use. We take advantage of the fact that TabNet
uses a sequential self-attention mechanism, which allows for
interpretability of tabular data.30 Importantly, TabNet does
not require any feature preprocessing and has built-in inter-
pretability, which visualizes the contribution of each feature
to the model.30 Given these properties, SIMS is an ideal tool
to classify RNA sequencing data. We show that SIMS either
outperforms or is on par with state-of-the-art single-cell clas-
sifiers. This high performance is evident in complex imbal-
anced datasets, such as peripheral blood samples, full body
atlases, and heart, kidney, and lung datasets. We apply
SIMS to datasets of the adult mammalian brain and show a
high accuracy even with a small number of cells in the training
set (<3,500 cells). In the developing brain, SIMS identifies neu-
rons undergoing postmitotic fate refinement. We further apply
SIMS to data generated from in vitro models, such as plurip-

otent stem cell-derived cortical organoids. Using the SIMS
pipeline, we were able to reclassify mislabeled cells through
the use of label transfer from annotated primary tissue. More-
over, we discovered that in cortical organoids, cell stress im-
pairs the proper specification of early postmitotic excitatory
projection neurons, but not inhibitory interneurons, in a cell-
line-dependent manner. Altogether, we propose SIMS as a
new label transfer tool, capable of robust performance with
deep annotation and skewed label distributions, high accu-
racy with small and large datasets, and direct interpretability
from the input features.

DESIGN

We developed SIMS, a framework for label transfer across sin-
gle-cell RNA datasets that uses TabNet as the classifier
component (Figure S1).30 TabNet is a transformer-based neural
network with sparse feature masks that allow for direct predic-
tion interpretability from the input features.30 The TabNet model
offers several unique features that render it suitable for single-
cell data analysis: It employs a sparse attention mechanism
that selects only a subset of genes to predict each cell type.
This design choice enhances interpretability, particularly valu-
able for single-cell data given its inherent high dimensionality.
The sparse feature attention allows users to quantitatively un-
derstand which genes are most critical for prediction. Addition-
ally, TabNet was designed to require minimal preprocessing, as
the nonlinearity of the network allows it to capture complex
combinations of input features while the sparsity allows for
generalization.30

To better fit the model for the task of single-cell classifica-
tion, we added two innovations. First, we included tempera-
ture scaling, a postprocessing step of the trained network
that provides users with a calibrated probability measure for
the classification of each cell in the selected cell type.32 This
feature enables the discovery of cell types not present in the
reference sample. We then equipped our pipeline with an
automated gene intersection mechanism, allowing the predic-
tion of datasets with a different number of genes than the da-
taset used for training the model, a common occurrence when
different sequencing technologies or experimental protocols
are used. This automated intersection serves to ensure that
both datasets have the same set of genes, facilitating direct
comparison.
In our framework, for each forward pass, batch normaliza-

tion is applied. The encoder consists of several steps
(parameterized by the user) of self-attention layers and
learned sparse feature masks. The decoder then takes these
encoded features and passes them through a fully connected
layer with batch normalization and a generalized linear
unit activation.33 Interpretability by sample is then measured
as the sum of feature mask weights across all encoding
layers.
SIMS can be trained with either one or several preanno-

tated input datasets, allowing for the integration of atlases
generated by the same group or by different groups. For ac-
curate training, the user must input an annotated matrix of
gene expression in each cell. After training and production
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of training statistics, the user can input a new unlabeled da-
taset. Of note, if the training data were normalized ahead of
training, the user must normalize the unlabeled data in a
similar manner. For example, one of the most common
approaches is to normalize the transcript counts per cell
and then do a logarithmic transformation. If the reference
dataset underwent this transformation and was then used
to train SIMS, the query dataset should undergo the same
normalization. The model will then predict the cluster
assignment for each cell. SIMS will then output the probabil-
ity of each cell belonging to each cluster, where the proba-
bility is more than 0.

SIMS is accessible through a Python API. The development
version can be found on our GitHub repository at the following
link: https://github.com/braingeneers/SIMS. Additionally, a pip
package is also available for easy installation: https://pypi.org/
project/scsims/. SIMS is designed to require minimal input
from the users (Data S1). To train the model, the user has to
only input the data file of the training dataset and a file with the
labels, and define the class label; the user can also choose to
load the dataset into Scanpy as an AnnData object (Figure S2).
This process will save the learned parameters for each training
epoch in a new file.

To perform the label transfer on a new dataset, the user must
import the weights from the trained model. The user will then
input the new unlabeled dataset (Figure S3).

SIMS takes the cell-by-gene-expression matrix as an input.
For newly produced data, we recommend an end-to-end
pipeline we have developed within Terra. This pipeline takes
raw FASTQ files, runs them through the CellRanger or
StarSolo Dockstore workflows34–36 (Figure S4), and outputs
an expression matrix in the h5 format. This file type can
then be read as an annotated dataset with the scanpy.read()
function. The pipeline then classifies the cell types using a
SIMS model trained on the reference dataset of interest.
This pipeline can also be used to benchmark new methods
in an unbiased manner or to reproduce results obtained
from data stored in the Sequence Read Archive with an addi-
tional Dockstore workflow step.37,38

To extend the reach of SIMS to investigators without coding
experience, we developed aweb application based on Streamlit.
This application allows users to perform predictions based
on pretrained SIMS models. To access the web application,
the user has to enter the web page at https://sc-sims-app.
streamlit.app/. Once there, the user has to upload their dataset
of interest in h5ad format, select one of our pretrained models,
and perform the predictions. They will be able to download the
predictions in csv format and visualize their labeled data as a uni-
form manifold approximation and projection (UMAP). The user

will also be able to obtain the genes selected for the model for
cell-type classification. Theweb application deployed in Stream-
lit cloud can accept h5ad files up to 1 GB in size. This matches
the upload size allowed in Azimuth, a well-known reference-
based classifier built on top of Seurat v4.19 Some of the key dif-
ferences are the faster inference times as shown in Figure 1 and
the ability for the community to upload and rapidly share pre-
trained models.

RESULTS

Benchmarking SIMS against existing cell classifiers of
single-cell RNA data
We conducted benchmark tests in five distinct datasets to
evaluate SIMS’s performance against other methods built on
various theoretical approaches. The first dataset we used
was the PBMC68K, also known as Zheng68K, derived from
human peripheral blood mononuclear cells.39 This dataset is
particularly valuable due to its complex nature, featuring
imbalanced cell clusters and cells with similar molecular iden-
tities, making it a robust choice for benchmarking cell-type
annotation methods, as it has been extensively employed for
this purpose. As a second dataset we included the human
heart dataset, also known as Tucker’s dataset, comprising
11 cell types and exhibiting imbalanced cell clusters.40 This
dataset shares similarities with PBMC68K but contains a
significantly larger number of cells (287,000 cells compared
to 68,000 cells).
For the third dataset we used the human lung atlas dataset,

also known as Krasnow’s dataset.41 Benchmarking on this da-
taset showcases the ability of the tools to classify cells inde-
pendently of sequencing technology, as the dataset comprised
cells obtained from two different sequencing technologies:
103 and SmartSeq2. It was also interesting, as it contained
58 different cell types coming from three donors with a similar
size to PBMC68K but more cell variety. The fourth dataset we
included was a human kidney dataset, also known as Stewart’s
dataset. This dataset was interesting from the donor variability
and batch effect perspective, as it contains 34 different cell
types coming from 14 different donors, totaling 40,268 mature
kidney cells.
Additionally, we incorporated the human landscape dataset,

also known as Han’s dataset,18 into our analysis, primarily for
its substantial size (more than 584,000 cells) and the presence
of a wide array of different cell types coming from the entire
body, totaling 102. Another interesting characteristic of this da-
taset was the lower dimension from the feature perspective, as
it was only sampling around 5,000 genes, in contrast to the

Figure 1. Benchmarking SIMS against other cell classifiers
(A) Performance of cell-type annotation methods measured by accuracy in five selected datasets using 5-fold cross-validation. PBMC68K n = 68,450 cells;

human landscape n = 584,000 cells; human heart n = 287,369; human kidney n = 40,268 cells; human lung n = 75,400 cells. Box plots show the median (center

lines), interquartile range (hinges), and 1.5-times the interquartile range (whiskers).

(B) Performance of cell-type annotation methods measured by macro F1 in five selected datasets using 5-fold cross-validation.

(C) Performance of cell-type annotation methods measured by balanced accuracy in five selected datasets using 5-fold cross-validation.

(D) Performance of cell-type annotation methods measured by pipeline running time in minutes.

(E) Heatmap for PBMC68K comparing ground-truth annotations and predictions by SIMS, scANVI, and Seurat.
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other datasets comprising from around 20,000 to 45,000
features.

In our benchmarking study, we selected a range of tools
that represent diverse methodologies and functionalities
within the field of single-cell analysis. The scVI and scANVI
pipelines were included owing to their deep-learning founda-
tion, using a variational autoencoder to create cell embed-
dings.27 This latent representation serves as the basis for sub-
sequent model building and label transfer, making scVI and
scANVI essential benchmarks for evaluating deep-learning-
based approaches in single-cell analysis, illustrating the
scArches package.24 Another deep-learning-based tool,
Scnym, adopts another two-step process. Beginning with ad-
versarial pretraining, the network is refined through fine-tuning
for classification, offering a unique perspective on how deep-
learning models can be optimized for single-cell RNA data
analysis.28 In contrast, Scibet adopts a non-deep-learning
approach by fitting multinomial models to the mean expres-
sion of marker genes. Scibet was benchmarked primarily for
its inference speed, a crucial aspect considering its real-
time web-enabled inference capabilities.42 Seurat, a well-es-
tablished framework in the field, was included due to its
versatility in preprocessing, visualization, and analysis of sin-
gle-cell data. Additionally, Seurat provides label transfer func-
tionality through the identification of anchors, establishing
pairwise correspondences between cells in different data-
sets.19 Another reason behind the choice to benchmark
against this tool is that Seurat is the main engine behind Azi-
muth, a well-known web application for no-code single-cell
RNA label transfer. We also wanted to evaluate a model
with a simpler paradigm behind it, SingleR, which employs a
correlation-based method, focusing on variable genes in the
reference dataset for calculating differences between cell
types. Additionally, an attempt was made to benchmark
against scBERT, a large transformer-based model.25 Howev-
er, due to its computational complexity, we faced limitations.
Despite experimenting with an A10 GPU, scBERT’s demands
were such that we were unable to train or evaluate it on any
dataset, even with a minimal batch size of 1. These carefully
chosen tools enabled a comprehensive evaluation on consid-
ering various approaches and methodologies in the realm of
single-cell analysis.

To ensure the robustness of our findings and mitigate the
influence of randomness, we employed a 5-fold cross-valida-
tion strategy. Notably, SIMS consistently outperformed the
majority of label transfer methods in terms of accuracy and
Macro F1 score (Figures 1 and S5; Table S1) across these
diverse datasets. This compelling evidence underscores
SIMS as a highly accurate and robust classifier, demon-
strating its proficiency and its ability to generalize across

diverse tissue types. Additionally, SIMS exhibits scalability
to accommodate a large number of cells and showcases its
ability to effectively classify datasets with imbalanced cell
types. This ability is important, as imbalanced datasets have
been noted to heavily impact downstream analysis and are
known to be difficult to annotate.43

We also conducted a consistent evaluation of pipeline running
times by employing 5-fold cross-validation to assess the speed
of the benchmarked tools in minutes, using the same compari-
son methodology (Figure 1E). This analysis was carried out
within the National Research Platform clusters,44 leveraging
user-accessible GPUs. Whenever feasible, training and infer-
ence processes were executed on GPUs; otherwise, they were
performed on CPUs.

SIMS accurately performs label transfer in highly
complex single-cell data: Mouse adult cerebral cortex
and hippocampus
Given that SIMS outperformsmost state-of-the-art label transfer
methods in different datasets, we then asked whether it could
perform accurately in a highly complex tissue, such as the brain.
We focused on adult mouse cortical and hippocampal data
generated by the Allen Brain Institute.45–47

The cerebral cortex is among the most complex tissues due
to its cellular diversity, the variety and scope of its functions,
and its transcriptional regulation.48 The cerebral cortex is
organized in six layers and several cortical areas, each with
different composition and proportions of excitatory projection
neurons (PNs), inhibitory interneurons (INs), glial cells, and
other non-neuronal cell types.48 The hippocampus, on the other
hand, is part of the archicortex (also known as the allocortex).49

It is further subdivided into cornu ammonis, dentate gyrus, sub-
iculum, and entorhinal area.49 While the hippocampus also has
a layered structure made of three layers, the cell-type compo-
sition and numbers vary greatly from those in the cerebral cor-
tex.49 The great diversity of cell types, the close relationship
between some of those subtypes, and the anatomical separa-
tion between these regions make cerebral cortex and hippo-
campal datasets complex but attractive benchmarking models
to test SIMS.
The dataset contained 42 cell types, including PNs, INs, and

endothelial and glial cells. Training in 80% of the cells selected
at random and testing on the remaining 20%, we find that
SIMS performs at an accuracy of 97.6% and a Macro F1 score
of 0.983 (Figures 2 and S6).
We then performed ablation studies to investigate the perfor-

mance of SIMS.We find that training in as little as 7%of the data-
set (3,285 cells) is sufficient to obtain a label transfer accuracy of
over 95% and Median F1 score of over 0.95 (Figure S7). The
Macro F1 after training in 7% of the data is 0.90 (Figure S7).

Figure 2. Application of SIMS to single-cell RNA sequencing: Adult mouse cerebral cortex and hippocampus
(A) Ground-truth UMAP representation for the dataset (n = 73,347 cells).

(B) Ground-truth UMAP representation for the subset of cells used for testing the algorithm in the train-test split.

(C) Predictions made by SIMS in that subset of data.

(D) Confusion matrix for the test split. L, layer; IT, intratelencephalic; PN, projection neuron.

(E) Performance of cell-type annotation methods measured by accuracy and Macro F1 in the full Allen mouse dataset and its ablation, using 5-fold cross-

validation. Box plots show the median (center lines), interquartile range (hinges), and 1.5-times the interquartile range (whiskers).
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We then used the same dataset splits to benchmark the other
computational methods (scANVI, Seurat, Scnym, SingleR, and
SciBet). We find that while SIMS maintains high accuracy and
Macro F1 scores, most of the other methods perform poorly
with a reduced number of cells in the training data (Figure 2).
We conclude that SIMS is a data-efficient machine-learning
model.
SIMS provides interpretability by computing weights for

sparse feature masks in the encoding layer. These weights indi-
cate the most influential genes in the network’s decision making
for assigning cell types. To assess this interpretability, we gener-
ated three dataset partitions with varying levels of granularity.
Our aim was to observe whether the network could accurately
select pertinent genes to distinguish the groups formed at
each resolution level. To analyze the results, we focused in the
Pvalb+ INs, a group of inhibitory neurons born in the medial
ganglionic eminence (MGE). For the lowest level of granularity,
which limits the cell options to INs, PNs, and non-neuronal cells,
we find that for the INs group some important genes selected by
themodel were Kcnip and Igf1 (Figures 3A and 3B), both of which
have been previously shown to be important IN genes.50–52 For
the medium level of granularity (medial ganglionic eminence,

Figure 3. SIMS explainability
(A) UMAP representation of the Allen mouse dataset

colored by macro cell type.

(B) UMAP representation of the Allenmouse dataset

colored by expression of the selected gene by SIMS

for the GABAergic group.

(C) UMAP representation of the Allenmouse dataset

colored by cell type. Same naming convention as

used for Figure 2A.

(D) UMAP representation of the Allenmouse dataset

colored by expression of the selected gene by SIMS

for the Pvalb+ interneuron group.

(E) Mean explain value for the top 50 genes across

300 runs.

(F) Dispersion index value for the top 50 genes

across 300 runs.

nonmedial ganglionic eminence) and
consistent with previous literature, we
find that for the MGE-derived INs the
genes selected were Rpp25, Dlx1, Dlx5,
Gad1, Ffg13, and Cck53–55 (Figure S8).
For the highest level of granularity (Pvalb+

INs), some of the selected genes were
Satb1, Pvalb, Lypd6, Dlx6os-1, and
Bmp355 (Figures 3C and 3D).
To confirm that the selection of the most

important genes was consistent across
different runs, we performed the experi-
ment with the highest level of granularity
300 times. For each experiment, we
normalized each gene weight against the
highest weight gene measured in that run
and measured the mean weight and
dispersion index for each gene across all
runs (Figures 3E and 3F). Given the ex-

plainability matrix E˛Rn3m composed of m genes measured
across n cells, we select all rows representing cells with the
same predicted label and compute

ei =
1

nl

Xni

j = 1

Eij; i = 1;2;.; nl:

We then average e_i across all 300 runs. To calculate the
dispersion index, we first measure the average importance of
each gene across all 300 runs:

g =
1

m

Xm

i = 1

Ei;j i = 1;2;.; n

and then compute the dispersion index as

dispgene = egene

!
ggene:

In the top ten genes more important for classification, we can
find excitatory PN markers (Neurod6), inhibitory IN markers
(Cck, Rpp25, Dlx1, Gad1), neural progenitor-related genes
(Fbxw7), and genes related to different neuropsychiatric
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disorders (Arpp19, Fhod3, Nrgn). Top genes show mean explain
values of around 0.2 (Figure 3E); for comparison, the mean
explain value for the median gene is approximately 10!6 (Fig-
ure S9). This showcases the consistency of gene selection by
SIMS and how it could be used to find clinically relevant genes
overlooked by conventional methods.

SIMS accurately performs trans-sample label transfer in
highly complex single-nuclei data: Human adult cerebral
cortex
Single-nuclei RNA sequencing has become an important
emerging tool in the generation of atlases, particularly for tissues
from which obtaining single cells is difficult. Cell nuclei are
used in neuroscience because live adult neurons are difficult
to isolate, due to their high connectivity, sensitivity to dissocia-
tion enzymes, and high fragility, often resulting in datasets
with abundant cell death, low neuronal representation, and
low-quality RNA.56 Importantly, single-nuclei sequencing is
compatible with cryopreserved banked tissue.57 Yet the

Figure 4. Application of SIMS to trans-
sample predictions of single-nuclei RNA
sequencing: Adult human cerebral cortex
(A) Ground truth for the test-split data (n = 49,495

cells).

(B) Predictions for the test-split data.

(C) Ground truth for the H200.1023 sample

(n = 18,511 cells).

(D) Prediction for the H200.1023 sample after

training on the H200.1030 sample.

(E) Confusion matrix for the test split (data per-

centage).

(F) Confusion matrix for the test split (H200.1023).

(G) Accuracy box plot for the known and unknown

cell classification with a confidence threshold of 0.6.

(H) Accuracy box plot for the known and unknown

cell classification with a confidence threshold of 0.7.

L, cortical layer; PN, projection neuron. Additional

examples are shown in Figure S12.

data generated in single-nuclei RNA
sequencing is not necessarily similar to
the data generated in single-cell RNA
sequencing. For instance, a recent study
comparing the abundance of cell-activa-
tion-related genes in microglia sequenced
using single-cell and single-nuclei technol-
ogies showed significant differences be-
tween both datasets.58 Moreover, single-
nuclei datasets are more prone to ambient
RNA contamination from the lysed cells.59

In the case of the brain, it has been
observed that neuronal ambient RNA has
masked the transcriptomic signature of
glial cells, leading to incorrect classifica-
tion of glia subclasses in existing atlases.59

Given the high label transfer accuracy of
SIMS in single-cell data, we then tested its
performance in single-nuclei datasets. As

a proof of principle, we selected the human adult cerebral cortex
dataset generated by the Allen Brain Institute.45,46 We trained on
80% of the data and tested the model in the remaining 20%.
Overall, we obtained an accuracy of 98.0% and a Macro F1
score of 0.974 (Figures 4 and S10; Table S2).
We then performed a data-ablation study and observed that

we obtained over 95% accuracy using as little as 7% of data
for training (2,124 cells). Similarly, we obtained aMacro F1 score
of over 0.95 with 9% (2,731 cells) of the data and a median F1 of
over 0.95with 8%of thedata (2,428cells) for training (FigureS11).
We then asked how SIMS performs in trans-sample predic-

tions. This dataset is made up of three different postmortem
samples, namely: H200.1023, a 43-year-old Iranian-descent
woman; H200.1025, a 50-year-old Caucasian male; and
H200.1030, a 57-year-old Caucasian male. We trained the
model on one sample and tested it on the other two samples.
We performed this experiment in each possible combination,
obtaining accuracies ranging from 93.1% to 95.8% (Figures 4
and S12; Tables S2‒S8). As shown, SIMS predicts the label
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accurately for most cell types across samples. SIMS shows a
decrease in performance when trying to classify pericytes, as
sometimes it labels them as astrocytes (Tables S3‒S8). This
is consistent with recent work showing that previously anno-
tated single-nuclei atlases of the brain often mask non-neuronal
cell types.59 In addition, we observed that layer-4 intratelence-
phalic neurons often get classified as generic intratelencephalic
neurons (Tables S3‒S8). This is in agreement with the fact that
layer-4 intratelencephalic neurons are a subset of intratelence-
phalic neurons.60 We also employed this dataset to assess the
capacity of SIMS to differentiate between recognized cell types
and those not included in the training dataset. This capability
holds significance, as it can function as a surrogate metric for
identifying cells in new datasets that were absent from the
reference dataset used for training. In this particular scenario,
we implemented a leave-one-out methodology, whereby we
excluded one cell type from the training dataset and then
made predictions on the test set, encompassing all of its
cell types. Subsequent to temperature scaling, we used
the model’s probability outputs as a measure of confidence,
such that a probability of 0.5 approximately measures that
the model possesses a 50% level of confidence in the pre-
dicted cell type’s accuracy. Following this, we established a
user-adjustable threshold to determine whether the cell type
should be labeled as the predicted cell type or categorized
as an unknown cell type (Figures 4G and 4H). Altogether, we
conclude that SIMS is a powerful approach to perform intra-
sample and trans-sample label transfer in complex and highly
diverse tissues such as the adult brain.

SIMS can accurately classify cells during neuronal
specification
Having established that SIMS can accurately predict cell
labels in complex tissues, we then asked how our model per-
formed in predicting cells of different ages. Classifying cells
during development is challenging, as several spatiotemporal
dynamics can mask the biological cell identities.61 During
cortical development, gene networks of competing neuronal
identities first colocalize within the same cells and are further
segregated postmitotically,48,62,63 likely through activity-depen-
dent mechanisms.64,65

To test the accuracy of SIMS at classifying developing tissue,
we focused on mouse cortical development due to its short
timeline.66 In the mouse cortex, neurogenesis starts at embry-
onic day 11.5 (E11.5), and it is mostly completed by E15.5.66

Common C57BL/6 laboratory mice are born at E18.5.67

Neonatal mice are timed based on the postnatal day.67 We
took advantage of a cell atlas of mouse cortical development
that contains two samples of E18 mouse embryos and two
samples of postnatal day 1 (P1) mice.62 These timed samples,
which are around 1 day apart from each other, represent
time points at which all mouse neurogenesis is completed.66

At these time points, neurons may still be undergoing fate
refinement68 and consequently retain fate plasticity, albeit
limited.69–71

First, we trained a model on one E18 and one P1 sample and
tested the accuracy of label transfer in two samples, one of each
age (Figures S13A and S13B). Across 17 cell types, we find that

the model predicts the labels with an accuracy of 84.2% with a
Macro F1 score of 0.791 (Figure 5A and Table S9).
We then tested SIMS by training on two P1 samples and

testing the label transfer in two E18 samples (Figures S13C
and S13D). We find that in this experiment, the label transfer
accuracy drops to 73.6% and the Macro F1 score to 0.674
(Figure 5B and Table S10). Interestingly, however, this drop
in accuracy is not random, but either follows the develop-
mental trajectories of the misclassified cells or misclassifies
cells as transcriptomically similar cell types. For example, as-
trocytes are a subtype of glial cells that retain the ability to
divide throughout life.72 Indeed, the major source of astro-
cytes in the cerebral cortex is other dividing astrocytes.72

Consequently, the ‘‘cycling glia cells’’ cluster is often pre-
dicted as astrocytes (Figure S13). In the neuronal lineage,
we find that SIMS can accurately predict most cell
types. Going back to the combined-ages model, we focused
on layer-4 neurons, which is one of the neuronal subtypes
with the lowest accuracy in label transfer (24.31%). We find
that these neurons are often classified as upper-layer callosal
PNs and rarely as callosal PNs of the deep layers (Figures 6B–
6E). While morphologically distinct, layer-4 neurons share
transcriptional homology with callosal PNs.62,73 Indeed,
recent work has shown that layer-4 neurons transiently have
a callosal-projecting axon, which is postmitotically eliminated
during circuit maturation, well after P1.60 In agreement,
layer-4 neurons that are mislocalized to the upper cortical
layers retain an upper-layer callosal PN identity and fail to
refine their identity.74 By comparing the gene expression of
upper-layer callosal PNs, the correctly classified layer-4 neu-
rons, and the misclassified layer-4 neurons, we observe that
while upper-layer callosal PNs and correctly classified
layer-4 neurons have the gene-expression patterns appro-
priate to their identity, misclassified layer-4 neurons have an
intermediate expression of genes that define the identity of
the other two cell types, such as Rorb75 (Figure 5). Notably,
most (90.1%) of the misclassified layer-4 neurons belong to
E18, likely representing neurons undergoing fate refinement.
Altogether, this example highlights the difficulty that cell clas-
sifiers face when trying to discretely label cells during
development.
Together, we conclude that SIMS can accurately predict

cell labels of specified neurons. However, when applying
SIMS during periods of differentiation and fate refinement, it
uncovers similar identities in the developmental trajectories.
This is likely caused by transcriptomic similarities that can
often mask proper identification. Alternatively, SIMS may
identify subtle differences in fate transitions that cannot be
accurately pinpointed by traditional clustering methods in
the reference atlases.

SIMS identifies cell-line differences in gene expression
in human cortical organoids
Cortical organoids are a powerful tool to study brain develop-
ment, evolution, and disease.13,76,77 However, like many plurip-
otent stem cell-derived models, cortical organoids are affected
by cell-line variability and culture conditions that can affect the
reproducibility of the protocols.78 Moreover, transcriptomic
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analysis of cortical organoids has revealed strong signatures of
cell stress,79–81 which can impair proper cell-type specifica-
tion.82 In addition, in vitro conditions generate cell types of un-
characterized identity that do not have an in vivo counter-
part.80,83 While some have argued that these cells should be
removed from further analysis,83 the most common approach
is to annotate them as ‘‘unknown’’ cell clusters.76

To understand whether SIMS could be used to uncover cell-
line differences and identify different trajectories, we used a
dataset from 6-month-old human cortical organoids derived
from three different cell lines (three organoids per batch),
each with their own idiosyncrasy.76 Specifically, this dataset
contained: (1) one batch of cortical organoids derived from
the 11A cell line, in which all cells had been identified and
no cell was labeled as ‘‘unknown’’; (2) one batch of cortical or-
ganoids derived from the GM8330 cell line, which contained a
small number of ‘‘unknown’’ cells and a large proportion of
immature INs; and (3) two batches of cortical organoids

Figure 5. Application of SIMS to developing
tissue: Mouse cerebral cortex
(A) Confusion matrix for E18P1 split, where we

trained on sample 1 E18 and sample 1 P1 and pre-

dicted on sample 2 E18 and sample 2 P1 (n = 20,209

cells).

(B) Bar plot showing the number of layer-4 cells that

get predicted as the different cell types.

(C) Diagram of the mouse cerebral cortex after

neurogenesis.

(D) Force atlas representation of layer-4 neurons.

(E) Violin plot showing gene expression in the mis-

classified layer-4 group compared to the groups that

is classified as layer 4.

derived from the PGP1 cell line, which
contained major batch effects. One of
those batches had a large number of ‘‘un-
known’’ cells and cells of poor quality and
was therefore dropped from further anal-
ysis (Figures 6A, 6B, and S14).

We performed label transfers between
organoids generated from the three cell
lines. We first performed an intra-cell-
line label transfer using the 11A organo-
ids. We trained on two organoids and
predicted the cells on a third organoid.
We find an accuracy of 86.0% and a
Macro F1 score of 0.794 (Figure S15).
We then performed trans-cell-line predic-
tions training on 11A and predicting
the cell types of the other lines. We ob-
tained an accuracy of 71.3% and a
Macro F1 score of 0.564 when predicting
cells from PGP1 organoids and an accu-
racy of 67.4% and a Macro F1 score
of 0.570 when predicting cells from
GM8330 organoids. We observe a high
degree of accuracy for most cell types
tested, including cycling cells, intermedi-

ate progenitor cells, outer radial glia/astroglia, immature INs,
ventral precursors, and callosal PNs (Table S11). Interestingly,
radial glial cells (RGs) from both PGP1 and GM8330 cell lines
often were classified as immature PNs. Specifically, we find
that 82% of the PGP1 and 42% of the GM8330 RGs are pre-
dicted as immature PNs when the data are trained on the 11A
cell line (Figures 6C and 6D). Strikingly, only 1.9% of PGP1
RGs and 3.9% of GM8330 RGs are predicted as RGs. These
results suggest major differences in gene expression between
the RG annotated cells across cortical organoids derived from
different cell lines.
Previous work has shown that cell stress in organoids impairs

proper fate acquisition of PNs.82 We therefore took advantage of
Gruffi, a recently developed tool to annotate stressed cells in hu-
man neuronal tissue.83 Overall, we find that organoids derived
from the GM8330 cell line showed the biggest percentage of
stressed cells (16.67%), while organoids derived from the
PGP1 and 11A cell lines had 6.6% and 4.9% of stressed cells,
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respectively. (Figure 6E). To understand whether the stressed
cells were responsible for the misclassification, we removed
these cells from the 11A training set. We then performed a new
round of label transfers. Using this approach, we find that 56%
of PGP1-derived RGs and 27% of GM8330-derived RGs
continue to be classified as immature PNs. Importantly, only
7.2% of PGP1-derived and 14% of GM8330-derived RGs are
predicted as RGs.

We then removed the stressed cells from both the training and
the predicted datasets and found that 44%of PGP1-derived and
14% of GM8330-derived RGs are classified as immature PNs.
Notably, the number of RGs that are properly classified as
such remains similar, with only 6.9% of PGP1-derived and
19% of GM8330-derived RGs properly predicted. Altogether,
these results suggest that cell stress alone cannot explain the
differences in cell expression between RGs of cell lines.

Figure 6. Application of SIMS to in vitro generated models: Human cortical organoids
(A) UMAP representation of the ground-truth cell type for all cell lines. (n = 87,863 cells).

(B) UMAP representation of the batch and cell line for all cell lines.

(C) Confusion matrix for GM3880-derived organoids, model trained on 11A-derived organoids.

(D) Confusion matrix for PGP1-derived organoids, model trained on 11A-derived organoids.

(E) UMAP representation of stressed cells as annotated by Gruffi in all organoids.

(F) Violin plots for neuronal differentiation and cell-stress genes showing differences among cell lines.
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SIMS identifies improperly annotated cell lineages in
human cortical organoid atlases
Given that label transfer between human cortical organoids
derived from different cell lines poorly predicted the RG cell
type, we then focused on assessing the most common predic-
tions for this cell type after stressed cells were removed from
both the training and the prediction datasets. While in the
PGP1 line the majority of the misclassified RGs are immature
PNs, the second most common cell prediction is the closely
related outer radial glia/astroglia cell type. On the other hand,
for the GM8330 cell line the most commonly predicted cell
type is immature INs. Unlike RGs, outer radial glia/astroglia,
and immature PNs that belong to the dorsal telencephalic line-
age, INs are derived from the distinct and distant ventral telen-
cephalon.48 A deeper analysis of the GM8330 cell line reveals
that 65% of the immature PNs also get predicted as immature
INs (Figure 6C), indicating a consistentmisclassification between
neuronal lineages in the GM8330 cell line. We then performed a
Wilcoxon test rank for differential expression analysis between
the three cell lines. We found that, unlike the other cell lines,
immature PNs derived from GM8330 organoids expressed
genes from the DLX family, present in INs and not in the PN line-
age84 (Figure S16). Together, these results suggest an off-target
ventralization of organoids derived from the GM8330 cell line.

To confirm this discovery, we performed a label transfer
experiment training on fetal tissue derived from gestational
weeks 14–25 (GW14–25) human embryos.85 Most cell types,
such as cycling cells and ventral precursors, get classified as ex-
pected. Focusing on neuronal cell types, the majority of callosal
PNs get classified as excitatory PNs (80% PGP1, 60%GM8330,
74% 11A), and immature INs are properly classified as INs (93%

Figure 7. Application of SIMS to in vitro
generatedmodels: Human cortical organoids
(A) UMAP representation of the ground-truth cell

type for 11A organoids (n = 25,618 cells).

(B) UMAP representation of the label transfer from

fetal tissue for 11A organoids.

(C) UMAP representation of stressed cells as an-

notated by Gruffi in 11A organoids.

PGP1, 86%GM8330, 86% 11A). However,
immature PNs have clear differences be-
tween the cell lines. For the 11A line, 34%
of immature PNs get classified as excit-
atory PNs and 38% as RGs. Similarly, in
the PGP1 line, 57% of immature PNs are
classified as excitatory PNs and 20% as
RGs. On the other hand, only 7% of the
GM8330 immature PNs are classified as
excitatory PNs, and 21% are classified as
RGs. Importantly 44% of these cells are
predicted as INs (Figure S17), further sug-
gesting a ventralization of the organoids
derived from the GM8330 line.
We then performed a pseudotime anal-

ysis using Monocle 3.86 In the 11A and
PGP1 lines, we observe a clear differentia-

tion trajectory from RG to the excitatory PN lineage (immature
PNs and callosal PNs). In these lines, the IN lineage follows a
separate path (Figures 7A and S18). Focusing on the GM8330
cell line, we observe that a large subset of immature PNs unex-
pectedly appear together with the IN lineage (Figure S18). Alto-
gether, the data suggest that SIMS has correctly identified that
a large subset of cells labeled as immature PNs in the GM8330
are, in fact, INs.

Leveraging in vivo data refines cell-type prediction in
brain organoids
Visualizationmethods based on dimensionality reduction, such as
principal component analysis and t-distributed stochastic
neighbor embedding, often miss the global structure of the data
and can lead to misclassification of cells.87 Given that SIMS iden-
tified a ventralization of the GM8330 cell line (Figure 6), we then
asked whether it can identify other cells previously misclassified
in existing atlases.76 We analyzed 6-month-old organoids derived
from the 11A cell line.We first performedpseudotime analysis and
found that a subset of cells labeled as immature PNs cluster in be-
tween other immature PNs and glial cells (Figure 7A). Interestingly,
all these cells are identified by Gruffi as stressed cells (Figure 7B).
To test whether these cells were mistakenly classified in previous
atlases,weperformed a label transfer fromGW14–25primary fetal
tissue.85 We find that SIMS assigns the entirety of this cell cluster
as RGs and not PNs (Figure 7C). Gene-expression analysis of mo-
lecular markers of RGs, such as SOX2 and PAX6 (Figure S19),
confirm that the SIMS label is correct. In addition, these cells
lack expression of PN subtype markers such TBR1, SATB2,
CUX1, and CUX2, as well as Pan-PN markers EMX1, DCX,
NEUROD2, and NEUROD6 (Figure S19). Altogether, these results

12 Cell Genomics 4, 100581, June 12, 2024

Technology
ll

OPEN ACCESS



suggest that the stressed cells previously labeled as immature
PNs in the 11A cell line are indeed RGs.
We asked how correcting the cell-type annotation in 11A

affected the label transfer between organoids derived from
different cell lines. We trained SIMS in the newly annotated
11A dataset and made predictions in both the PGP1 and the
GM8330 cells. We found that for the new model trained on the
11A cell line there is an accuracy of 75.7% and aMacro F1 score
of 0.583 for PGP1 organoids and an accuracy of 76.3% and a
Macro F1 score of 0.603 for GM8330 organoids (Tables S12
and S13), representing a significant improvement from label
transfer experiments before the reclassification (Tables S11
and S14). Furthermore, we find that RGs now get predicted at
an accuracy of 43.0% for PGP1 and 32.0% GM8330, as
compared to the original predictions of 1.9% and 3.9% for the
respective cell lines. Together, we show that proper identifica-
tion of cell types through label transfer from primary tissue can
help systematize multisample cell atlases.

DISCUSSION

Currently, over 1.5 million cells per month are sequenced and
archived through the different cell atlas projects.88 With the
lowering trends in sequencing costs, the number of cells
sequenced is increasing exponentially,3,88 yet cell annotation re-
mains a highlymanual process,which is limiting the reproducibility
and introducing biases in the data. Several open access solutions
have emerged to streamline the process, albeit with different ac-
curacies.2 Deep-learning approaches that apply transformer-
based architectures to gene-expression data have been shown
to outperform other commonly used methods.25 However, these
approaches require a large number of cells for their unsupervised
pretraining step and advanced computational knowledge and re-
sources to further train their models.25 SIMS, on the other hand,
can be trained efficiently with a supervised training regime, there-
fore avoiding large data files and increasing its versatility. This al-
lows the users to run SIMS in their local computers.
We designed SIMS as a low-code tool for both training and

performing label transfer across single-cell datasets (Figure 1).
SIMS can be used on user-specified datasets rather than refer-
ence datasets that are usually a prerequisite in popular tools.
This is meant to remove barriers in adoption by new labs, med-
ical practitioners, students, and non-experts alike. Unlike other
deep-learning models,25 SIMS can use genes that are defined
by the user, allowing the label transfer in novel genomes, or
use annotated genomes without standard nomenclature. Other
deep-learning approaches, such as scBERT,25 have been
shown to work well with datasets of up to 16,000 genes. SIMS,
being based on TabNet, and therefore optimized for tabular
data,30 can work well with over 45,000 features (Figure 2). This
property would allow, in principle, SIMS to be trained simulta-
neously on references of multiple species and species with large
genomes such as the axolotl,89 as well as multimodal data
including combined single-cell gene expression and gene
accessibility sequencing datasets.90

When it comes to interpretability, SIMS is able to output a
sparse selection of the most important genes, which can then
be easily plotted in the Python ecosystem of Scanpy, while other

tools25 rely on external cross-platformpackages. This can hamper
the adoption of new users, including non-bioinformaticians.91

Indeed, non-experts could greatly benefit from intuitive and low-
effort tools that can streamline the analysis and integration of their
newly generated data with existing knowledge.91 To facilitate
its adoption, we created a web application and a Terra pipeline
that can be easily adopted with minimal coding knowledge
and low infrastructural resources, offering accessible cloud
computing. Furthermore, our approaches facilitate the sharing
of trained models that can streamline collaboration between mul-
tiple groups.
We have shown that SIMS is applicable to a variety of species

and tissues including blood, heart, kidney, lung, and the whole
body (Figures 1, 2, and 4). We then focused on applying this tool
to data generated from the brain. The brain is a complex tissue,
where the great diversity of neurons is generated over a relatively
short time period and identities are refined throughout life.48,68

Several efforts, such as the BRAIN Initiative, the SSPsyGene con-
sortium, and others, exist to sequence neurons across different
ages, species, experimental models, and diseases.92,93 While
the neuroscience community has started efforts to agree on
naming conventions across the increasing number of datasets,5,94

there are still significant ontological inconsistencies in existing
publications. We believe that SIMS could become an important
tool to streamline these community-driven efforts. It is important
to mention that while we focused our work in the brain, SIMS
can easily be applied to single-cell RNA sequencing data of any
other organ.
When performing label transfer in fully differentiated neuronal

cell types, SIMS performed remarkably well, with accuracies
above 97%, evenwith a low number of cells in the training set. Un-
like many other tools, which define cells by the strong expression
of marker genes,7,95 the SIMS model takes advantage of lack of
expression and fluctuations of expression levels of thewhole tran-
scriptome to learn and identify cell labels. Consistent with this, we
observed that in developing tissue, where gene expression is fluc-
tuating and identities are being refined, SIMS was able to classify
most cell types and identify maturation differences in cell types
undergoing fate refinement (Figure 5).75 Todate, the differentiation
of layer-4 neurons through postmitotic refinement of upper-layer
callosal PNs in late embryonic and early postnatal development
has been hypothesized in several experiments.60,74 Strikingly,
SIMS is able to pinpoint neurons with a mixed identity between
layer-4 neurons and upper-layer callosal PNs, which were missed
by traditional clustering approaches. This identification opens the
possibility of further understanding the molecular changes under-
pinning neuronal fate acquisition and plasticity.64,65

When applied to cortical organoids, SIMS identified previously
misannotatedcells in existing atlases.76 These errors in annotation
were caused by traditional clustering followed by differential
gene-expression analysis and marker identification.76 Notably,
stressed cells were often misannotated, which is a common issue
in the organoid development field.82,83 Revisiting and reannotat-
ing existing atlases will greatly increase the accuracy of label
transfer and improve the development of future protocols.
Furthermore, annotating stem cell-derived atlases using primary
fetal samples as reference can be used as a gold standard in
the field and to discover cell types underrepresented in the
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existing protocols.76,93 Special attention should be paid to fate
transitions under cell-stress conditions.82 It has been postulated
that cell stress can inhibit proper neuronal specification in brain or-
ganoids.82 By analyzing 6-month-old cortical organoids frommul-
tiple cell lines, we showed that this phenomenon is dependent on
the genetic background of the cell line. Importantly, we observed
that cell stress impairs fate specification of the excitatory PNs but
not inhibitory INs of the same organoids (Figures 6 and 7).

Applying SIMS to developing brain tissue including primary
samples and organoids allowed us to identify subtle differences
in developmental trajectories between cell types generated. We
therefore believe that SIMS can be of great value in studying
developmental disorders, such as autism, where existingmodels
have already shown cell-type-dependent asynchronous devel-
opmental trajectories in different neuronal lineages.96 Hybrid
pipelines that integrate pseudotime-focused tools, such as
Monocle or BOMA,7,86 could become complementary to SIMS
and have the potential to provide more comprehensive insights
into these questions.

Limitations of the study
While we have shown that SIMS can accurately predict trans-
sample labels and perform label transfer across different meth-
odologies (single-cell and single-nuclei RNA sequencing) and
models (primary tissue and cortical organoids), we have limited
our work to samples within the same species. This is because
neuronal subtypes diverge significantly between species46 and
at the individual level, gene orthologs can show different expres-
sion levels in different species.97 However, some neuronal
subtypes, such as MGE-derived INs, are transcriptomically
more conserved across evolution than other primary neurons,
including cortical PNs.13,46 In the future, these IN subtypes could
be used as a way to validate SIMS to perform trans-species pre-
dictions.98 Additional modifications, such as gene module
extraction, could provide increased accuracy for label transfer,
as meta-modules could prove to be more conserved between
evolutionarily distant species than gene orthologs.94,99,100

SIMS is a model trained in a supervised fashion, meaning that it
relies on existing annotations to learn the mapping from gene-
expression counts to cell type. Building these initial annotations
requires data normalization, data clustering, differential expres-
sion, and expert annotations.4,101 Technical factors such as
sequencing technology or incorrect normalization may affect the
downstream differential expression results, leading to misnamed
clusters.

Although SIMS has a consistent runtime, it is not the fastest of
the methods we benchmarked. For future work, we will imple-
ment model distillation via student-teacher methods, where a
smaller, faster, and more efficient ‘‘student’’ model learns to
mimic a larger ‘‘teacher’’ model.102 This will reduce both the
memory requirements and inference speed of the SIMS network.
In future iterations we will consider implementing neuron-wise
model pruning, in which individual weights are quantized to 0,
and layer-wise model pruning whereby entire layers can be
removed. Both methods can improve generalizability, while the
latter will also reduce computational complexity. Finally, we
would like to add metadata such as sequencing technology
and cell lines to the model. This can be done by embedding cat-

egorical features into one-dimensional vectors and treating
these as features that are integrated with the sequencing input,
potentially via addition or concatenation. This would allow us
to fingerprint which cells come from which sequencing technol-
ogy and may allow the model to use this information for more
robust prediction.
When applying SIMS to neuroscience, one of the main draw-

backs is the lack of use of naming conventions in the field. This
makes combining datasets coming from different labs to train
the algorithm a manually intensive work. There are efforts under
way to reach agreements in naming.5 In future applications, we
would like to explore ontology-based approaches for cell-
naming harmonization, allowing the user to input datasets with
different naming conventions while the pipeline reannotates the
cells to a common nomenclature.
In conclusion, we propose SIMS as a novel, accurate, and

easy-to-use tool to facilitate label transfer in single-cell data
with a direct application in the neuroscience community.
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Materials availability
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Data and code availability
Peripheral blood mononuclear cells: https://www.10xgenomics.com/resources/datasets/fresh-68-k-pbm-cs-donor-a-1-standard-
1-1-0.
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Tucker’s heart dataset: https://singlecell.broadinstitute.org/single_cell/study/SCP498/transcriptional-and-cellular-diversity-of-

the-human-heart.
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PBMC 68K dataset Zheng et al.,34 https://www.10xgenomics.com/resources/datasets/
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Human Landscape dataset Han et al.,103 https://cells.ucsc.edu/?ds=human-cellular-landscape

Human Heart dataset Tucker et al.,40 https://singlecell.broadinstitute.org/single_cell/study/

SCP498/transcriptional-and-cellular-diversity-of-

the-human-heart#study-summary

Human Kidney dataset Stewart et al.,104 https://cells.ucsc.edu/?bp=kidney&ds=kidney-atlas
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Developing mouse cortical dataset Di Bella et al.,62 https://singlecell.broadinstitute.org/single_cell/study/

SCP1290/molecular-logic-of-cellular-diversification-in-

the-mammalian-cerebral-cortex%20%20Human%
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Human cortical organoids dataset Velasco et al.,76 https://singlecell.broadinstitute.org/single_cell/study/

SCP282/reproducible-brain-organoids#study-summary

Human fetal brain development Bhaduri et al.,85 https://cells.ucsc.edu/?bp=brain&ds=dev-brain-regions

Software and algorithms

SIMS 1.0.0 This manuscript https://github.com/braingeneers/SIMS and

https://doi.org/10.5281/zenodo.11095105

SingleR 1.6.1 Aran et al.,20 SingleR (RRID:SCR_023120)

Scanvi 1.0.2 Xu et al.,27 https://github.com/scverse/scvi-tools

Seurat 4.0.3 Stuart et al.,19 Seurat (RRID:SCR_016341)
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Scibet 1.0 Li et al.,42 Scibet (RRID:SCR_024743)
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Gruffi 1.0 Vértesy et al.,83 https://github.com/jn-goe/gruffi
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Stewart’s kidney dataset: https://cells.ucsc.edu/?bp=kidney&ds=kidney-atlas.
Krasnow’s lung dataset: https://cells.ucsc.edu/?bp=lung&ds=stanford-czb-hlca.
Human adult cerebral cortex: https://portal.brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq.
Mouse adult cerebral cortex and hippocampus: https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-whole-cortex-and-

hippocampus-10x.
Developing mouse cerebral cortex (E12-P1): https://singlecell.broadinstitute.org/single_cell/study/SCP1290/molecular-logic-of-

cellular-diversification-in-the-mammalian-cerebral-cortex.
Human cortical organoids:https://singlecell.broadinstitute.org/single_cell/study/SCP282/reproducible-brain-organoids#study-

summary.
Human fetal brain development:https://cells.ucsc.edu/?bp=brain&ds=dev-brain-regions.
All code for SIMS has been deposited in https://github.com/braingeneers/SIMS and in the Zenodo archive https://doi.org/10.

5281/zenodo.11095105.

METHOD DETAILS

The SIMS pipeline
The classifier component of the SIMS framework is TabNet,30 a transformer-based neural network with sparse feature masks that
allow for direct prediction interpretability from the input features. For each forward pass, batch-normalization is applied. The encoder
is several steps (parameterized by the user) of self-attention layers and learned sparse feature masks, we offer some preset config-
urations that depend on the size and complexity of the reference dataset. The decoder then takes these encoded features and
passes them through a fully-connected layer with batch-normalization and a generalized linear unit activation.33 Interpretability by
sample is then measured as the sum of feature mask weights across all encoding layers. For our visualization, we average all feature
masks across all cells to understand the average contribution of each gene to the classification. You could also average the feature
masks by cell type.

Model architecture
The encoder architecture consists of three components: a feature transformer, an attentive transformer, and a feature mask. The raw
features are used as inputs, and while no global normalization is applied internally, batch normalization is used during training to
improve convergence and stability.105 This has been shown to be important for keeping the model training stable.30,105 This is sepa-
rate from single-cell batch normalization, a technique that can refer to removing technical variation from sequencing technologywhile
retaining biological signal. The same p dimensional inputs are passed to each decision step of the encoder which has Nsteps decision
steps. For feature selection at the ith step, an element-wise multiplicative learnable mask Mi is used. This mask is learned via the
attentive transformer, and sparsemax normalization106 is used to induce sparsity in the featuremask. These sequential featuremasks
are first normalized via batch normalization with a gated linear unit33 for the activation then passed to fully-connected layers for the
classification head. We use the raw output of the fully connected classification layer for the optimization process, as31 the implemen-
tation of the cross entropy loss in PyTorch uses unnormalized probabilities. During inference, we apply temperature scaling to return
calibrated probabilities for each cell type.

Interpretability
In SIMS the input features correspond to the genes used for cell type prediction by the classifier. Unlike other machine learning
models in which computational restrictions force reduced input data representation,42,107 SIMS can be trained on the entire tran-
scriptome for each cell.

TabNet, which serves as the foundation for SIMS, enables interpretability through the calculation of the weights of the sparse
feature masks in the encoding layer. This allows for an understanding of which input features were used in the prediction process
at the level of an individual cell. Furthermore, by averaging the sum of the attention weights across all samples for a given cell
type, it is possible to determine the features used per class, while averaging across all cells in a sample shows the total features
used when classifying the entire dataset. Similar to other deep learning models,25 in SIMS the weights do not represent differential
gene expression but a measure of the relevance (positive or negative signal) of said gene in the distinction between cell types. Addi-
tionally, the sparsity introduced in the sequential attention layers via the sparsemax prior acts as a form of model regularization,30

allowing us to categorize a cell type via only a small number of genes.

Code library details
The SIMS pipeline was designed with an easy-to-use application programming interface (API) to support a streamlined analysis with
minimal code. To achieve this goal, the pipeline was constructed primarily using PyTorch Lightning, a high-level library that aims to
improve reproducibility, modularity, and simplicity in PyTorch deep learning code. We used Weights and Biases to visualize training
metrics, including accuracy, F1 score, and loss, to facilitate the assessment of model performance. To accommodate the large data
formats used by SIMS, we implemented two methods for data loading: a distributed h5 backend for training on h5ad files and a
custom parser for csv and delimited files that allows for the incremental loading of individual samples during training. These same
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methods are also used for inference. In addition, cell-type inference can be performed directly on an h5ad file that has been loaded
into memory. This allows for efficient handling of datasets that may exceed the available memory capacity. We strongly support the
use of h5ad files as they are faster and more efficient than plain text files and allow for more straightforward data sharing in the Py-
thon-scanpy environment. All the code and instructions to use SIMS are available in the Braingeneers GitHub repository: https://
github.com/braingeneers/SIMS and in the Zenodo archive: https://doi.org/10.5281/zenodo.11095105.

Web application
In parallel to the API we also developed a web application in Streamlit. In this case the web application allows for quick and easy
inference based on pretrained models. The user only needs to input the single cell RNA dataset in the h5ad format, select the pre-
trained model they want to use and perform the predictions. The application is hosted in the streamlit developer cloud, allowing ac-
cess from anywhere without the need of institutional credentials.
Laboratories interested in sharing models created with their data with the public can request to include their pretrained models in

our repository for easy hosting with a pull request to our repository https://github.com/JesusGF1/sims_app.

Training details
For all models benchmarked, the Adam optimizer108 was used. The learning rate varied but was generally between 0.003 and 0.01,
while the weight decay (L2 regularization) was between 0 and 0.1. To numerically encode the vectors, we used a standard one-hot
encoding, where for K labels we have that the kth label is given by the standard basis vector ek of all zeros except a 1 in the kth po-
sition. We define the loss function as

LðX;YÞ = ! 1

M

XM

i = 1

wiyi logðfðxiÞÞ

where ix represents the transcriptome vector for the ith sample, yi is the encoded label, wi is the weight and M is the size of the
batch. For our model, we defined wi as the inverse frequency of the ith label, in order to incentivize the model to learn the transcrip-
tomic structure of rarer cell types. The final signal to update the model weights was calculated as the average across all entries in the
loss vector.
A learning rate optimizer was used such that l)0:75l when the validation loss did not improve for twenty epochs. In all cases,

models reached convergence by the early stopping criterion on validation accuracy before the maximum number of epochs (500)
was reached. Gradient clipping was used to avoid exploding gradient values, which was required to avoid bad batches exploding
the loss and stopping convergence. Although we used a train, validation and test split for reducing overfitting via hyperparameter
tuning bias, the only hyperparameters tuned were the learning rate to avoid divergence in the loss and weight decay to avoid over-
fitting in the smaller datasets. Convergence took around 20–100 epochs for all models. For all models, we found model training to
be consistent and had few cases of suboptimal convergence due to poor initialization. The train, validation and test sets were
stratified, meaning the distribution of labels is the same in all three (up to an error of one sample, when the number of samples
for a given class was not divisible by three), except for the ablation study, where there were not enough samples to stratify across
all three splits.
For all benchmarks, models were trained using themost granular annotation available. When F1 score is mentioned in benchmarks

it refers to the Macro F1-score.

Datasets details
Peripheral blood mononuclear cells (PBMC68K) dataset
Also known as Zheng68K is the PBMC dataset described in.39 The dataset was generated using 10X Genomics technologies and
sequenced using Illumina NextSeq500. It contains about 68,450 cells within eleven subtypes of cells. The distribution of cell types
is imbalanced and transcriptomic similarities between cell types make classification a difficult task. Due to these properties, the
PBMC68K dataset is widely used for cell type annotation performance assessment.
Human landscape: Han’s dataset
The Human cellular landscape dataset described in.103 The dataset was generated using Microwell-seq technology. It contains
584,000 cells with 102 different cell types across all major human organs and different developmental time points from more than
50 different donors.
Human heart: Tucker’s dataset
The Tucker dataset described in40 is a single nuclei RNA-sequencing dataset comprised of 287,269 cells representing 9 different cell
types (20 cell subtypes) from 7 different donors.
Human kidney: Stewart’s dataset
The kidney dataset described in104 is a single cell RNA-sequencing dataset comprised of 40,268 mature human kidney cells repre-
senting 34 different cell types from 14 different donors.
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Human lung: Krasnow’s dataset
Krasnow’s dataset described in41 is a single cell RNA-sequencing dataset comprised of 75,400 cells representing 58 different cell
types from 3 different donors and corresponding to two different sequencing technologies Smart-seq 2 and 10X chromium.
Adult mouse cortical and hippocampal dataset
This dataset was generated by the Allen Brain Institute and described in.45–47 The dataset was generated from male and female
8-week-old mice labeled using pan-neuronal transgenic lines. The dataset includes micro-dissected cortical and hippocampal re-
gions. It contains 42 cell types including excitatory projection neurons, interneurons and non-neuronal cells.
Adult human cortical dataset
This dataset was generated frompostmortem samples by the Allen Brain Institute.45,46 It includes single-nucleus transcriptomes from
49,495 nuclei across multiple human cortical areas. The large majority of nuclei are contributed from 3 donors: 1) H200.1023 was a
female Iranian-descent donor who was 43 years old at the time of death. The cause of death was mitral valve collapse. 2) H200.1025
was a male Caucasian donor who was 50 years old at the time of death. The cause of death was cardiovascular. 3) H200.1030 was a
male Caucasian donor who was 57 years old at the time of death. The cause of death was cardiovascular. For sampling, individual
cortical layers were dissected from the middle temporal gyrus, anterior cingulate cortex, primary visual cortex, primary motor cortex,
primary somatosensory cortex and primary auditory cortex. All samples were dissected from the left hemisphere. As part of the pu-
rification processes, nuclei were isolated and sorted using Fluorescently Activated Cell Sorting (FACS) using NeuN as a marker. For
statistics, we only used cell types that were common between all samples.
Developing mouse cortical dataset
This dataset was described in.62 It containsmicrodissected cortices frommice ranging from embryonic day 10 to postnatal day 4. For
this study we used data frommice at embryonic day 12 (1 batch, 9,348 cells), 13 (1 batch, 8,907 cells), 14 (1 batch, 5249 cells) and 18
(2 batches, 7,137 cells), as well as postnatal day 1 (2 batches, 13,072 cells). Of note, only postnatal day 1 samples had Ependymo-
cytes, and as such, they were removed for inter-age testing.
Human cortical organoids dataset
Weused 6-months old organoids described in.76 The dataset contained cells derived from 3 cell lines: GM8330 (3 organoids, 1 batch,
15,256 cells), 11A (3 organoids, 1 batch, 25,618 cells) and PGP1 (6 organoids 2 batches, 46,989 cells). PGP1 has a strong batch effect
which is almost entirely caused by one organoid in batch 3. The dataset was generated using Chromium Single Cell 30 Library andGel
Bead Kit v.2 (10x Genomics, PN-120237) and sequenced using the Illumina NextSeq 500 instrument. Of note, one of the cell lines had
a cell cluster named "Callosal Projection Neurons" while others had "Immature Callosal Projection Neurons. Given the naming incon-
sistency, we aggregated both clusters as "Callosal Projection Neurons".
Human fetal brain development
Weused fetal tissue representative of the second trimester of human development, specifically focusing our analysis on data sourced
exclusively from the neocortex. This study encompassed the sampling of six distinct neocortical regions. The dataset contained sam-
ples from gestational weeks 14, 17, 18, 19, 20, 22, and 25. The number of cells contained in this dataset was around 404,000.85

Benchmarking against cell type classification models
We compared our model to:

scBERT 1.0. scBERT is a transformer architecture based on the deep learning model BERT. It has been adapted to work with sin-
gle cell data and it offers interpretability as the attention weights for each gene.25

scNym 0.3.2. scNym is a neural network model for predicting cell types from single cell profiling data and deriving cell type rep-
resentations from these models. These models can map single cell profiles to arbitrary output classes.28

scANVI 1.0.2 scANVI (single-cell ANnotation using Variational Inference) represents a semi-supervised approach designed spe-
cifically for single cell transcriptomics data. It relies on the use of variational autoencoders as the foundational component of itsmodel
architecture.27

SciBet 1.0. SciBet is a supervised classification tool, consisting of 4 steps: preprocessing, feature selection, model training and
cell type assignment, that selects genes using E-test for multinomial model building.42

Seurat 4.0.3. We used Seurat’s reference-based mapping, with the Transfer anchor settings, where very transcriptomically similar
cells from the reference and query datasets are used to create a shared space for the two datasets.19

SingleR 1.6.1. SingleR is a reference-basedmethod that requires transcriptomic datasets of pure cell types to infer the cell of origin
of each of the single cells independently. It uses the Spearman coefficient on variable genes and aggregates the coefficients to score
the cell for each cell type.20

Pseudotime analysis
The human cortical organoid dataset was parsed into R (v. 4.2.1) using Seurat and its dependencies (v. 4.3.0) and converted into a
CellDataSet (CDS) for further analysis using Monocle 3 Beta (v. 3.1.2.9; https://cole-trapnell-lab.github.io/monocle3/).86 Cell clusters
and trajectories were visualized using the conventional Monocle workflow, as detailed in https://cole-trapnell-lab.github.io/
monocle3/docs/trajectories/.
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Cell stress analysis
We performed cell stress analysis using Gruffi. Gruffi is a computational algorithm that identifies and removes stressed cells from
brain organoid transcriptomic datasets in an unbiased manner.83 It uses granular functional filtering to isolate stressed cells based
on stress pathway activity scoring.83 Gruffi integrates into a typical single-cell analysis workflow using Seurat.83 In this paper we fol-
lowed the default implementation shown in theGitHub repository to obtain a dataframe containing what cells were stressed based on
Gruffi’s default analysis https://github.com/jn-goe/gruffi.
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