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ABSTRACT

Color varies in pattern and degree across the tree of life. In animals, genetic variation in color is hypothesized to have pleiotropic
effects on a variety of behaviors due to shared dependence on underlying biochemical pathways. Such pleiotropy can constrain
the independent evolution of color and behavior. Although associations between color and behavior have been reported, this
relationship has not yet been addressed across a broad taxonomic scale with a formal meta-analysis. We used a phylogenetic
meta-analytic approach to examine the relationship between individual variation in aggressive behavior and variation in multi-
ple colors. Seventy-four studies met our inclusion criteria (vertebrates = 70; invertebrates =4). After accounting for phylogeny and
correcting for publication bias, there was a positive association between measures of aggression and degree or area of coloration
(mean=0.248, 95% CI=(0.044, 0.477)). Because this positive association was not restricted to melanin-based coloration, we
conclude that this pattern does not strongly support the melanin pleiotropy hypothesis. Because the association was also not af-
fected by moderators accounting for individual condition, social rank, or age, the results do not strongly support hypotheses that
condition dependence accounts for relationships between color and aggressive behavior. The badge of status hypothesis predicts
that arbitrary traits can evolve to signal aggression or social dominance. We propose that this is the most parsimonious explana-
tion for the patterns we observe. Because of the lack of evidence for condition dependence in the association between color and
aggression, we further propose that the genetic covariation between traits contributes to the evolution of the badges of status.

1 | Introduction In animals, the biochemical pathways that regulate body color-

ation and behavior can overlap, potentially causing genetic cova-

A key goal of modern evolutionary biology is predicting if and
how populations will evolve adaptively in response to environ-
mental change. Predicting adaptive evolution requires knowing
if there are constraints on how populations can respond to se-
lection. The definition of adaptive constraint has been debated,
but the unifying theme of these definitions is that populations
are not always able to respond to selection in predictable ways
(Blows and Walsh 2009; Walsh and Blows 2009).

A possible example of this kind of constraint has been widely
discussed in both evolutionary and animal behavior literature.

riance and imposing constraints on the joint evolution of color
and behavior. In vertebrates, melanic coloration arises from the
binding of melanocortin agonists to the G-protein—-coupled re-
ceptor MCR-1. Melanocortins (peptide hormones derived from
the prohormone proopiomelanocortin) also bind to other recep-
tors that regulate diverse functions, including aggressive be-
havior (Ducrest, Keller, and Roulin 2008). Indeed, the literature
summarized in Ducrest, Keller, and Roulin (2008; tables 1 and
S2) and San-Jose and Roulin (2018; table 1) indicates that the
most widespread pattern is a positive correlation between inten-
sity or extent of melanic coloration and high levels of aggression.
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Therefore, one prediction of this hypothesis is that heritable
variation in abundance or activity of melanocortins generates
genetic covariance between body color and aggression; animals
with higher levels of eumelanic (dark brown and black) color
are expected to exhibit higher levels of aggression (Ducrest,
Keller, and Roulin 2008; Roulin and Ducrest 2011; San-Jose
and Roulin 2018). We note that other kinds of changes in the
melanocortin system, such as mutation in melanocortin recep-
tors that are expressed both in the skin and the brain, could also
produce these correlations (e.g., Reissmann and Ludwig 2013).
In support of this hypothesis, studies have reported correlations
between melanin-based coloration and behavior, including ag-
gressive behavior, in vertebrates (e.g., Moore and Martin 2016;
Dijkstra et al. 2017; Seddon and Hews 2017; Beck, Davies, and
Sewall 2018). The hypothesis has recently been extended to in-
clude insects and other invertebrates (San-Jose and Roulin 2018),
where melanin is synthesized from dopamine. This invertebrate
biosynthetic pathway provides a plausible link between body
coloration and behavior (Wittkopp and Beldade 2009; Massey
and Wittkopp 2016) and predicts correlations between traits that
are similar to those seen in vertebrates. Indeed, similar correla-
tions between traits have been reported in invertebrates (San-
Jose and Roulin 2018).

Other functional links between color and aggression have been
hypothesized to arise from carotenoid condition dependence,
whereby animals in good condition can devote more energy to
high levels of aggression, and to carotenoid pigment synthesis,
which is dependent on obtaining carotenoids in the diet (Blount
and McGraw 2008; Backstrom et al. 2015). Under this scenario,
genetic variants affecting foraging ability would simultaneously
affect carotenoid color and aggressiveness, leading to genetic
correlations between these traits. However, carotenoid condi-
tion dependence could also arise from purely environmental
covariance between aggression and color if, for example, indi-
vidual variation in foraging success arises from nongenetic vari-
ation (e.g., variation in habitat quality). Purely environmental
covariance between color and aggression would not impose the
same kind of adaptive constraint as would genetic covariance.

A third hypothesis is that a broad range of colors can be indi-
cators or “badges” of social status. Badges of status are traits
(e.g., color patches) that influence the outcome of aggressive
encounters (Rohwer 1975; Dawkins and Krebs 1978; Diep and
Westneat 2013). Badges of status are not limited to specific
colors; badges can even lack color, as seen in the white fore-
head patch of collared flycatchers Ficedula albicollis (Pirt and
Qvarnstrom 1997). A meta-analysis of associations between
dominance and plumage characteristics (color, UV presence, and
color patch size) in birds reported a positive correlation between
dominance and measures of coloration, irrespective of specific
color, and the authors interpreted this result as supporting the
badge of status hypothesis (Santos, Scheck, and Nakagawa 2011,
but see Sanchez-Téjar et al. 2018). A comparative analysis of com-
peting bird species found that dominant species have on average
more black than subordinate species; carotenoid and other col-
ors were sometimes, but not always associated with dominance
(Kenyon and Martin 2023). The authors interpreted this result
as also supporting the badge of status hypothesis. Such badges
can be honest signals (reliable predictors of aggressiveness),
although the mechanism of maintaining honesty in the signal

has been debated and could be different for each color or type
of badge (Johnstone and Norris 1993; Tibbetts and Dale 2004).
In ruffs, Philomachus pugnax, a supergene relates color and ag-
gression, where the genes associated with color and behavior are
located near each other and in linkage disequilibrium (Kiipper
et al. 2016; Lamichhaney et al. 2016). In contrast, some badges of
status might not vary genetically, but might instead vary due to
nongenetic sources. For example, some badges are plastic in ex-
pression and can vary as a result of dominance interactions (e.g.,
Dey, Dale, and Quinn 2014). As above, implications for adaptive
constraint depend upon the underlying cause of trait covariance.

Other hypotheses can be consistent with a positive association
between aggression and color, irrespective of the type of color.
For example, melanin is endogenously produced; production
and/or maintenance of melanic body color might be condition
dependent, although the empirical evidence for this is mixed
(Roulin 2016). Similar arguments can be made for structural
colors. For example, if structural color depends on the condition
of feathers or scales, then maintenance costs could be incurred
in growing these structures and cleaning or removing ectopar-
asites from them. Structural color variation has been associated
with conditions (e.g., McGraw et al. 2002) and mate quality (e.g.,
Siefferman and Hill 2003) in birds. If aggressive behavior is
also condition dependent, then a general condition dependence
might be responsible for positive associations between color and
aggressive behavior, irrespective of type of color.

Understanding if and how color and behavior covary is critical
to predicting evolutionary response to selection. This under-
standing is also essential for explaining why these ecologically
important traits are often so highly variable among individuals,
even within local populations (Roulin et al. 2008; Wellenreuther,
Svensson, and Hansson 2014; Kraft et al. 2018; Santostefano
etal. 2019). Constraint due to genetic covariance has mainly been
discussed in relation to the melanocortin hypothesis, perhaps
because melanin is less likely to be condition dependent than
other pigment-based colors (Ducrest, Keller, and Roulin 2008;
Roulin and Ducrest 2011; San-Jose and Roulin 2018). However,
counterexamples of the expected association between darker
color and higher aggression have been reported. Boerner and
Kriiger (2009) found that, in the common buzzard (Buteo buteo),
light-colored males are more aggressive than darker-colored
birds. In pied flycatchers (Ficedula hypoleuca), no significant
relationship between male color and aggressive behavior was
found (Huhta and Alatalo 1993). Examples such as these sug-
gest that species (or populations within species) vary in the re-
lationship between color and aggression. Counterexamples also
raise the possibility that the preponderance of studies report-
ing significant correlations (Ducrest, Keller, and Roulin 2008;
Roulin and Ducrest 2011; San-Jose and Roulin 2018) reflects
taxonomic or publication bias, or that correlations arise from
specific features of studies like the age, sex, or condition of the
focal animals. For example, a meta-analysis reported a positive
correlation between dominance and plumage traits in birds;
this correlation was unaffected by the type of plumage trait but
was influenced by the assessment method (whether aggression
was assessed by quantifying specific aggressive acts, or by an
indirect method such as distance between individuals; Santos,
Scheck, and Nakagawa 2011). We know of no meta-analyses of
associations between coloration and behavior that extend across
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broader taxa, or that assess other factors such as whether color is
fixed or plastic during adulthood.

Here, we describe a meta-analysis of the (within-species) rela-
tionship between body color variation and aggressive behavior
across a broad taxonomic scale. The meta-analysis included ver-
tebrate and invertebrate taxa and controlled for effects of phy-
logeny on statistical inference. We investigated the possibility
that publication bias has influenced the patterns reflected in the
published literature. In addition, we evaluated whether the rela-
tionship between color and aggression is moderated by the type
of color class (e.g., eumelanic, carotenoid, or structural), whether
coloration is fixed or varies plastically during adulthood, life
stage and sex of the focal animals, type of population studied
(wild, domestic, lab-reared, or wild caught and then lab tested),
type of aggressive act measured (direct or indirectly measured),
geographic origin of the species or source population of the focal
animals, and whether or not social rank, age, and the condition
of the animal were controlled or measured. We were especially
interested in whether associations were moderated by color type
because the melanocortin pleiotropy hypothesis predicts specif-
ically that variation in eumelanin-based colors should be asso-
ciated with aggression. By contrast, condition dependence has
most often been discussed in relation to carotenoid pigmenta-
tion (and predicts a positive association between carotenoid pig-
mentation and aggression). Consequently, positive associations
between color and aggression that are restricted to melanic or
carotenoid colors would provide direct support for those hypoth-
eses. Both the badge of status hypothesis and general condition
dependence predict that associations should be found between
aggression and color, but that these associations should not be
limited to melanin- or carotenoid-based colors. The general
condition-dependence mechanism depends upon both color and
aggression being condition dependent, leading us to predict that
controlling for condition should moderate the relationship be-
tween color and behavior. By contrast, the badge of status hy-
pothesis does not, a priori, make that same prediction. The badge
of status hypothesis predicts that irrespective of color class and
condition dependence, color should be positively associated with
behavior (Rohwer 1975; Diep and Westneat 2013).

2 | Methods
2.1 | Data Collection

We followed the reporting guidelines set out by O'Dea
et al. (2021). We searched Web of Science using a basic search
on all fields using the following terms (with lemmatization):
aggression AND color OR color NOT cancer NOT oncology
AND conspecific; each term was added with the Add Row but-
ton and the Boolean operator (Figure 1). We limited the search
to Article (Document Type) under the refine results section.
Finally, under the refine results section we chose the Web of
Science categories: zoology, behavioral sciences, ecology, evo-
lutionary biology, biology, ornithology, marine freshwater biol-
ogy, entomology, fisheries, veterinary sciences, or agriculture
dairy animal science. This yielded 1162 papers as of August
28, 2024. Results of this search are saved at: https://www.
webofscience.com/wos/woscc/summary/2e26f841-1b1f-4cf2-
97¢7-a56132477b0c-01195e86ad/relevance/1. In addition, we

Web of Science Scopus
(1900 - August 2024) | (1900 - October 2024)
N=1162 N=731

Identification

Removed Duplicates
N =103
Removed Any Papers
Studying Human Behavior
bl N=9
Removed Any Papers Not

Studying Color and
Aggression

N =1503

Screening

Articles assessed for inclusion criteria
N =278

Papers were Removed if
they did not include:

- Natural pigment
variation within the
same species

- Individual measure of
both color and
aggression against a

— = conspecific (same age,

pigment, and sex)

Assessment

- Report relevant
statistics

- Analyze data in
comparison between
color morphs

N =203

Removed Pteridine Paper
N=1

A
Included in our meta-analysis

N=74

Included

FIGURE 1 | PRISMA diagram for papers examined. Solid arrows
indicate papers that moved on to the nextstep and dashed arrows indicate
papers that were removed from the analysis. We identified papers using
Web of Science and Scopus (1162 and 731 papers, respectively). First,
we removed any duplicate results from our search (n=103). Next, we
screened these papers for human studies and those that clearly did not
examine color and aggression. This removed 1512 papers. Finally, we
assessed the 278 papers based on our inclusion criteria and removed
any studies that did not meet all the inclusion criteria. We removed
one paper that fit our inclusion criteria because it was the sole paper on
pteridine-based coloration (Robertson and Rosenblum 2010). Seventy-
four papers met our inclusion criteria and were analyzed in our meta-
analysis.

searched Scopus using the advanced search: (ALL(aggression)
AND ALL(color OR color) AND ALL (evolution OR ecology OR
behavior OR behavior) AND ALL(conspecific) AND NOT ALL
(cancer) AND NOT ALL(oncology) AND NOT ALL (Medical)
AND NOT ALL (medicine) AND NOT ALL (plant) AND NOT
ALL (human) AND NOT ALL (psychology)). We also limited
the Scopus search to the subject area of agricultural and bi-
ological sciences. This yielded 731 papers as of October 14,
2024. We then removed duplicates between the two searches
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(n=103). Next, we removed studies focused on human subjects
because the variation in human pigmentation is not due to the
same mechanisms that have been proposed to lead to pleio-
tropic effects on behavior (Deng and Xu 2017; San-Jose and
Roulin 2018). This removed nine papers. We also removed any
studies that did not measure both individual color and aggres-
sion (n =1503), which is necessary to determine an association.
This yielded 278 papers. We removed studies if they did not
include any of the following: natural color variation within the
same species, individual measures of both color and aggression
against a conspecific (same age, sex, and color), and relevant
statistics comparing color and aggression for effect size calcu-
lations. We removed one final paper that met our inclusion cri-
teria because it was the sole paper focused on pteridine-based
pigmentation (Robertson and Rosenblum 2010). This yielded
74 papers (169 effect size estimates) that were included in the
phylogenetic meta-analysis.

We defined aggression as any variable that measured antago-
nistic behaviors (e.g., biting or chasing) toward a conspecific
(of same sex, color class, and age class) or mirror image. We
used only measures of aggression between individuals of the
same sex because sexes can differ in both behavior and col-
oration as well as in how they respond to signals in other in-
dividuals (e.g., Horth 2003). Colors included those regulated
by melanin- and carotenoid-based pigments. We also included
colors produced by structural variation in skin, scales, feath-
ers, and cuticles (e.g., blue, purple, and white colors produced
by iridophores in some fish; Schartl et al. 2016). Each color
classification per species is listed and justified with citations
in Table S1. Many color variable species exhibit discrete color
morphs (e.g., “orange” and “blue”). These discrete morphs
often associate with discrete behavioral/social categories
(e.g., territorial vs. nonterritorial individuals), and the nature
of aggressive interactions within a morph (e.g., territorial
males) can differ substantially from those between morphs
(e.g., Lank et al. 1995; Sinervo and Lively 1996). We therefore
limited our data set to measures of aggression within color
morphs. If both adults and nonadults were included in a study,
we only used measures that compared individuals of the same
life stage or age class.

From each paper, we collected the species name, color (how
color was categorized or quantified in the original study (e.g.,
white vs. tan and area of eumelanic pigmentation)), location of
the color (e.g., total body color or eye color), type of color class
(e.g., eumelanin or pheomelanin, carotenoid, structural, pteri-
dine, or unknown), and the measure of aggression used (e.g.,
direct aggression such as bites, or indirect such as proximity).
We also collected the life stage (adult vs. juvenile) and sex of
the focal individuals, location of the study (wild, lab-reared,
domesticated, and wild individuals measured in the lab), ver-
tebrate or invertebrate taxa, plasticity of pigment expression
(plastic or fixed), seasonality of pigment trait (year-round,
breeding, or non-breeding), geographic location of focal or
source population, if the condition of the animal was con-
trolled and how (e.g., weight, length, or weight and length),
if social rank was considered in the study design and how
(e.g., uncontrolled, dummy used, isolated, or recording used),
if the age of the animal was controlled and how (e.g., same
age or covariate in analysis), and whether the study was an

observational or experimental study. Finally, we recorded the
measure of association between color and aggression (means/
standard deviations of discrete groups, t-, F-, or y?-test statis-
tics with the associated p-values and degrees of freedom, or a
correlation coefficient), and the sample sizes for each measure
of association.

2.2 | Effect Size Calculations

For a standardized effect size, when possible, we used re-
ported Pearson's correlation coefficients between color and
aggression, which we then converted to Fisher Z statistics.
The Fisher Z transformation is recommended to normalize
the sampling distribution of correlation coefficient estimates
when sample sizes are small and produce less biased results
(Silver and Dunlap 1987; Berry and Mielke 2000). The Fisher
Z transformation also widens the distribution around 0, which
is useful because Markov Chain Monte Carlo (MCMC) has
difficulty producing accurate estimates when the true value
of the mean is very close to zero (Lipsey and Wilson 2001;
Hadfield 2010).

When studies did not report correlation coefficients, we used
reported F or y? statistics and converted these into correlation
coefficient estimates using methods described in Nakagawa
et al. (2007) and Lipsey and Wilson (2001). When studies ana-
lyzed categorical data using a ¢t test or reported only means and
standard deviations for discrete groups, we could not calculate
the product-moment correlation coefficient (Pearson's r) and in-
stead calculated the biserial correlation coefficient (Jacobs and
Viechtbauer 2017). The biserial correlation coefficient is compa-
rable to the product-moment correlation and can therefore be
used in the same meta-analysis (Jacobs and Viechtbauer 2017).
We then converted both Pearson's and biserial correlation esti-
mates to Fisher Z using the R package DescTools and the com-
mand FisherZ (Signorell 2021). Biserial correlation coefficients
are sometimes calculated to be greater than 1 or less than —1
(Pustejovsky 2014); values outside this range are undefined
under the Fisher Z transformation (Fisher 1915; Silver and
Dunlap 1987). This was the case with five positive values in our
data set; these five positive values were reasonably close to 1,
total range =—0.77 to 1.33. We therefore converted the positive
values greater than 1 to 0.99, as appropriate, as recommended by
Pustejovsky (2014).

2.3 | Phylogenetic Meta-Analytic Model

To account for the nonindependence of the data due to evo-
lutionary history and the relationship between species,
we constructed a phylogenetic tree of all the species (56 in
total, 52 vertebrates, and 4 invertebrates across nine classes;
Figure S1). We used an ultrametric tree that was fully resolved
to the species level, which we obtained from TimeTree.org
(Hedges, Dudley, and Kumar 2006; Kumar et al. 2017). We
then rooted the tree with the anemone Phymactis clematis as
the outgroup because it falls outside of Bilateria, to which all
species in our data set belong. We used the R packages ape,
phytools, and TreeTools to obtain the relatedness matrix, root
the tree, change the edge lengths from 0 to 0.00001, and plot
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the tree (Paradis, Claude, and Strimmer 2004; Revell 2012;
Smith and Wickham 2019).

We used the R package MCMCglmm to perform the meta-
analysis (Hadfield 2010). We chose an expanded prior with a
Cauchy distribution that mirrored the Fisher Z distribution
(Adams 2008). We ran each model for 2,000,000 interactions
and removed 1,000,000 steps as the burnin, and with a thin
(the ith value kept in a run to reduce autocorrelation) of 1,000.
Once we determined the models with the lowest DIC values,
we reran the analysis using 5,000,000 iterations with burnin
of 2,500,000 and a thin value of 1000; these parameters al-
ways produced convergence and final values that were in the
Fisher Z distribution bounded by [—2.64, 2.64]. All credible
intervals reported are based on the last 2,500,000 iterations of
the MCMCglmm.

2.4 | Random and Mixed Models

We first evaluated a model containing only random effects of
species, study, the weights associated with each study (cal-
culated as the inverse of the standard error for the Fisher
Z for each study), and the phylogenetic tree. Weights were
added as a variance-covariance matrix using the “us” option.
Phylogenetic information was incorporated as a relatedness
matrix with the “pedigree” option, which assumes a Brownian
motion model of evolution (Hadfield 2010; Nakagawa and
Santos 2012). We removed the random effects using backward
elimination to confirm the importance of each random effect.
We found that the model with the lowest DIC value was that
which included all random effects (see Results). Retaining all
random effects, we then assessed whether any moderators im-
proved model fit compared to the random-effects—only model
(hereafter, “random effects model”). We tested each of the fol-
lowing moderators one at a time, and in all two-way combi-
nations: type of color classification, plasticity, sex, life stage,
vertebrate or invertebrate, location of the study, seasonality of
the color, geographic location of the study population, obser-
vational versus experimental studies, if condition of the ani-
mal was controlled and how, if social rank was controlled and
how, if age of focal animals was controlled and how, and type
of aggressive acts (direct or indirect). We also tested for two-
way interactions between pairs of moderators that we deemed
biologically likely: color class by plasticity, color class by sex,
and sex by plasticity. We compared these models using DIC
values. For the best-fitting models, we computed medians and
95% confidence intervals of the effect size for each moderator
using the R package emmeans (Lenth et al. 2021).

Some of the moderators listed above were not available in all the
studies in our data set: condition, social rank, and age of focal
animals. We accounted for this in two ways. First, as described
above, we used a moderator that indicated whether the feature
was controlled for or used as a covariate in the study. For exam-
ple, social rank could be uncontrolled, controlled by using unfa-
miliar animals, or controlled by using a mirror test or video. For
each of these three moderators, we also asked if including only
those studies that controlled for the moderator produced sub-
stantially different results. If the association between color and
aggression were to vary with color type when including these

moderators, that would suggest that condition dependence un-
derlies associations for some colors, but not others. That is, these
analyses were conducted to assess the possibility that associa-
tions of aggression with different color classes have different un-
derlying mechanisms. Because we were particularly interested
in any difference in effect size between different color classes,
we always included color class as an additional moderator in
these “subset” models.

Finally, we investigated whether effect sizes that were reported
for “unknown” color classes were potentially modulated by the
melanocortin pathway. Recent studies suggest that, at least in
fish, the melanocortin system can regulate nonmelanin-based
colors (reviewed in Cal et al. 2017). To determine if expanding
the color classes regulated by the melanocortin system affected
the results, we recoded all unknown color classes as eumela-
nin and reran the mixed-effects model with color class as a
moderator.

2.5 | Heterogeneity

Ecology and evolutionary biology meta-analyses are likely
to exhibit high levels of heterogeneity due to differences in
taxa and experimental methods across studies (Gurevitch and
Hedges 1999; Senior et al. 2016). We used a method developed
by Nakagawa and Santos (2012) to quantify the proportion of the
total variance due to phylogeny (termed “phylogenetic signal” or
H?) in their equation 26, and the heterogeneity due to study (I?)
and species (Ii) using equations 24 and 25 of that paper, respec-
tively. To make the values more easily interpretable, we reported
the heterogeneity values as percentages, rather than propor-
tions. Percentages close to 0 indicate low heterogeneity while
percentages close to 100 are considered high heterogeneity. The
phylogenetic signal was left as a proportion.

2.6 | Publication Bias

Publication bias due to selective reporting of results can in-
fluence both the estimated magnitude and reliability of the
overall effect size estimate (Rosenthal 1979; Gurevitch and
Hedges 1999). We investigated the possibility of publication bias
by visualizing study asymmetry using contour-enhanced funnel
plots and by testing for asymmetry using a modified Egger’s test
as described in Nakagawa and Santos (2012). This test regresses
the meta-analytic residuals on the precision of each effect size
estimate (inverse of standard error). These residuals, unlike the
weighted effect sizes themselves, are independent and thus sat-
isfy the assumptions of the test. We corrected the effect of publi-
cation bias using the trim-and-fill method implemented in the R
package meta (Duval and Tweedie 2000; Schwarzer 2007). This
method restores funnel plot symmetry by iteratively removing
studies with large positive residuals and imputing missing ef-
fect size estimates. Because we used meta-analytic residuals for
this analysis, the resulting estimates of the mean effect size es-
timates are the adjustments required to restore the funnel plot
symmetry (Duval and Tweedie 2000). All analyses were con-
ducted in R version 4.3.1 (R Core Team 2023). Data and scripts
for all analyses are available in a GitHub repository (https://
github.com/sruckman/meta-analysis).
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3 | Results
3.1 | Full Data Set Analysis

We calculated 169 effect sizes from 74 studies that met our in-
clusion criteria. The random-effects model with the lowest DIC
value (—283.425) included all random effects (phylogenetic tree,
species, study, and weights; Table S2). This model had a mean
posterior effect size of 0.248 (95% credible interval =(0.044,
0.477); mean Pearson's correlation =0.243 and 95% credible in-
terval =(0.044, 0.444)), indicating support for a positive associ-
ation between the intensity of color and aggression (Figure 2).

In the model that included all the random effects, phyloge-
netic signal accounted for 21.1% of the variation in the data set
(Table S2, Figure 2). However, when we removed the phylog-
eny, species, and study effects sequentially, the only term that
caused substantially poorer fit when removed was the study
effects (Spiegelhalter et al. 2002; Table S2). Removing only the
phylogenetic signal or removing the tree alone did not result in
a poorer fit when compared to the full random-effects model.
This suggests that the “phylogenetic” signal arises because some
taxonomic groups are represented by one or a very few studies
(e.g., Amphibia, see Figure 2). We therefore interpret this signal
as mainly reflecting variation among studies, not a true phylo-
genetic pattern.

None of the fixed-effect moderators we investigated improved
the fit of the full random-effects model; that is, adding any mod-
erator increased the DIC value. Some of the mixed-effects models
exhibited DIC values that were close to that of the full random-
effects model (Tables S2 and S3). For example, a mixed model
that included type of aggressive act as a moderator had a DIC
value that was only slightly larger than that of the full random-
effects model (—282.652, Table S3). No other model had a lower
DIC value than these 2. Critically, no models that included color
class (eumelanin, pheomelanin, carotenoid, structural, or un-
known colors) as a moderator, either alone or in combination
with any other moderator, ever achieved a DIC value less than
—280 (i.e., larger than the random-effects—only model by at least
3). Spiegelhalter et al. (2002) suggest that alternative models with
DIC values “within 1-2 of the ‘best’ deserve consideration, and
3-7 have considerably less support.” Consequently, there is little
support in this data set for color-type differences in the associa-
tion between intensity of color and aggression.

We did not find evidence of a publication bias for the full
random-effects model. In this model, the intercept for the modi-
fied Egger's regression was not significantly different from zero
(intercept + SE: 0.703+0.372, t-value=1.89, p-value =0.0609).
The trim-and-fill method added zero imputed values to the orig-
inal 169 effect size estimates (Figure 3).

To determine if the melanocortin pleiotropy hypothesis would
be better supported if we reclassified “unknown” color types as
“eumelanic” (8 studies, 21 effect sizes), we ran the mixed-effects
model that included color class as a moderator on this recoded
data set. This “recoded” mixed model had a similar posterior
effect distribution (mean =0.260, 95% credible interval: —0.012,
0.545). As in the original data set, adding the color moderator
did not improve the fit (DIC value for recoded color model:

—279.590, Table S3). Notably, the mixed model did not provide a
better fit than the random-effects model for either data set, sug-
gesting that the relationship between color intensity and aggres-
sion does not vary based on the type of color, as predicted by the
melanocortin pleiotropy hypothesis.

3.2 | Analysis of Data Subsets

Results did not differ substantially in analyses of data subsets
that included only those studies that controlled for animal con-
dition (59 studies, 112 effect sizes), social rank (58 studies, 133
effect sizes), or age (16 studies, 25 effect sizes). As in analyses of
the full data set, the random-effects model was a better fit than
a model that included color type as a moderator for every data
subset (Table S4). The mean posterior effect sizes for the rela-
tionship between color and aggression were also similar in mag-
nitude to the mean estimate for the full data set, ranging from
0.115 to 0.289 (Table S4). Fewer studies controlled for animal
age (beyond juvenile/adult) compared to those that controlled
for social rank or condition. Analysis of the subset that did con-
trol for age (16 studies) or for age, condition, and social rank (9
studies) produced similar mean posterior effect size estimates,
but in these cases, the credible interval for the mean-effect size
overlapped zero (Table S4).

4 | Discussion

The meta-analysis of 74 published studies indicated a positive as-
sociation between measures of aggression and measures indicat-
ing more colorful individuals. For simplicity, we used the term
“colorful” to refer to variation in hue, intensity, or area as used in
the original studies. No moderator that we evaluated improved
the fit of the meta-analytic model to the data, indicating a robust
relationship between color and aggression. Critically, we found
no evidence that this relationship depended on the type of color
(eumelanic, phaeomelanic, carotenoid, or structural), counter to
predictions of the melanin pleiotropy and carotenoid condition-
dependence hypotheses. This result was unchanged when we
recoded colors of unknown cause, but for which a melanocortin-
based mechanism is plausible. Both the badge of status and
general condition-dependence hypotheses are consistent with
this pattern. However, under general condition dependence, we
expect the effect size to be sensitive to moderators indicating if
and how condition was accounted for in the study design, or to
moderators that are plausibly associated with condition, such as
social rank and age. None of these moderators explained varia-
tion in effect sizes in our analyses, and none affected the (lack of)
dependence of effect size on type of color.

It is possible that different mechanisms underlie similar correla-
tions between aggression and different kinds of coloration. For
example, it is possible that covariation between melanin-based
colors and aggression in the studies is indeed regulated by varia-
tion in the melanocortin pathway, and that covariation between
aggression and carotenoid color is regulated by condition depen-
dence that was not accounted for by any of the proxies for condi-
tion that we analyzed. However, the badge of status hypothesis
is a more parsimonious explanation for these patterns (Tibbetts
and Dale 2004; Santos, Scheck, and Nakagawa 2011).
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effects model. The black triangle and line through it indicate the model mean with 95% credible intervals.

A recent analysis of the badge of status hypothesis in house spar-
rows concluded that evidence for a positive association between
black throat patches and aggression was equivocal (Sdnchez-T6jar
et al. 2018). However, the mean effect size in their primary meta-
analysis (0.23, with 95% credible interval [-0.01, 0.45]) is very close

to the value we found across all taxa (0.25, 95% credible interval
[0.04, 0.4]). Our analysis included more studies and more effect
sizes, which could account for our somewhat narrower credible in-
terval. Nevertheless, the two estimates are remarkably consistent
given the difference in taxonomic scale and sample size.
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FIGURE 3 | Funnel plot of random-effects-only model. We found
no evidence of a publication bias. Therefore, no points were needed to
restore plot symmetry.

For the studies included in our data set, a wide variety of metrics
of color were used, typically reflecting the natural variation ob-
served in the focal species. It is conceivable that patterns of co-
variance might depend on the specific type of variation in color
that is contrasted. For example, variation in intensity of melanic
coloration within a given area might be more (or less) likely to
be influenced by the “melanocortin pleiotropy” mechanism.
Quantification and reporting of multiple aspects of color would
enable testing of this idea, but very few studies we surveyed in-
cluded such metrics (four studies).

It is conceivable that failure of moderators to improve the fit of
the model is a result of including studies with low sample size
and high variation, or of including few studies assessing the mod-
erators of interest (Ginzburg and Jensen 2004; Lajeunesse 2009).
However, for key moderators, our analysis had robust sample
sizes. For example, in the condition category, 112 measures were
derived from studies that accounted for animal conditions in
some way, while 57 measures did not. In the subset of data that
included only studies accounting for condition in some way, 47
measures accounted for both length and weight, 13 for weight
only, and 52 for length only. In addition, the low heterogeneity
observed in the pure random-effects model suggests that power
was not severely compromised by low sample size or high uncer-
tainty in effect size estimates. Nevertheless, some combinations
of moderators (e.g., color class, social rank, and age) were repre-
sented by few effect sizes in our data set (Table S4). Consequently,
if condition is affected by adult age, as seems likely, current lit-
erature might be inadequate to evaluate the general condition
dependence hypothesis. In addition, only a handful of studies of
invertebrates met our inclusion criteria. We therefore urge cau-
tion in interpreting the lack of taxonomic effect at this level.

We did observe variation in effect sizes among studies, and among-
study variation was the main contributor to heterogeneity in
our analysis. In contrast, species and phylogenetic relatedness
did not explain additional heterogeneity. For example, the most

extreme effect sizes (both positive and negative) are found within
Actinopterygii (Figure 2). The strongest negative association was
derived from a single study of orange color intensity in female con-
vict cichlids (Beeching et al. 1998). In that study, females with the
most orange color displayed the lowest level of aggression toward a
stimulus female. The most positive associations between color and
aggression occurred in a study of plastic eye color in juvenile gup-
pies (Poecilia reticulata; Martin and Hengstebeck 1981). Fish with
darker eye color engaged in and won more aggressive encounters
than the light-eyed fish. Losers in these encounters also lightened
their eye color, consistent with some studies of traits deemed to be
badges of status (Dey, Dale, and Quinn 2014).

In our data set, effect sizes within studies tended to be tightly
clustered. This pattern could be driven by differences in meth-
odology across studies, as was found in a meta-analysis of birds
(Santos, Scheck, and Nakagawa 2011). However, we categorized
studies based on whether measures of aggression were direct or
indirect (as in Santos, Scheck, and Nakagawa 2011) and based
on whether the general methodology was observational or ex-
perimental. Neither of these categorizations was associated with
variation in effect size.

Of the four hypotheses explaining consistent associations be-
tween animal coloration and aggression, our results are most
parsimoniously explained by the badge of status hypothesis.
This hypothesis proposes that aggressiveness, fighting ability, or
dominance status is honestly reflected by variation in a trait that
is perceptible to conspecifics (Rohwer 1975; McGraw, Dale, and
Mackillop 2003; Tibbetts and Dale 2004). While many studies
suggest that melanocortin-based genetic pleiotropy can constrain
the joint evolution of color and behavior, whether the badge of
status mechanism should impose such constraints has received
less attention. Under the badge of status hypothesis, the correla-
tion between color and aggression could be caused by pleiotropy
or tight linkage (Santos, Scheck, and Nakagawa 2011; Kiipper
et al. 2016; Lamichhaney et al. 2016; Sinchez-T¢jar et al. 2018).
The supergene regulating feather coloration and social status
in ruffs is a good example (Kiipper et al. 2016; Lamichhaney
et al. 2016). The relationship between head stripe color and ag-
gression in white-throated sparrows is another likely example of
genetically based covariation that arises from the badge of status
mechanism (Lowther 1961; Knapton and Falls 1983; Tuttle 2003;
Tuttle et al. 2016; Hedrick, Tuttle, and Gonser 2018). By contrast,
variation in a badge of status could also be regulated by nonge-
netic variation in resource availability or acquisition, variation in
exposure to disease or parasites, or nongenetic maternal effects
(Rohwer 1975; Dawkins and Krebs 1978). In that case, however,
we would expect controlling for condition to moderate the asso-
ciation between color and aggression, but we do not see that. We,
therefore, propose that the moderate correlation between color
and aggression is underlain by genetic covariation between be-
havior and color traits that serve as badges of status.

To predict response to environmental change and to understand
why ecologically important traits like color and behavior are
so variable within populations, we need to know if these traits
consistently covary in animal populations and if that covaria-
tion could constrain evolutionary response to changing envi-
ronments. Given (1) the seemingly robust association we detect
and (2) the relatively modest size of that effect, what conclusions
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can we draw about the level of evolutionary constraint imposed
by color-behavior associations in animals? We know that even
moderate genetic correlations can constrain response to selec-
tion (Charlesworth 1990; Houle 1991; Walsh and Blows 2009).
However, for any given estimate of correlation, it is difficult
to predict if it will substantially constrain adaptive evolution.
The hypothesis that color-behavior associations in animals do
constrain adaptive evolution could be tested directly in some
organisms (mainly short-lived invertebrates) using artificial
selection or experimental evolution. In addition, several long-
term studies of free-living organisms (mainly vertebrates) now
have pedigree and phenotypic data that could allow testing
this hypothesis (Clutton-Brock and Pemberton 2004; Blondel
et al. 2006; Charmantier et al. 2006; Foerster et al. 2007;
McAdam et al. 2007). These kinds of data will become increas-
ingly available as more long-term studies incorporate genomic
data. Consequently, both experimental and nonexperimental
studies can expand our understanding of constraints imposed
by color-behavior associations.
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