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FPGA-Accelerated Range-Limited
Molecular Dynamics
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Abstract—Long timescale Molecular Dynamics (MD) simulation of small molecules is crucial in drug design and basic science. To
accelerate a small data set that is executed for a large number of iterations, high-efficiency is required. Recent work in this domain has
demonstrated that among COTS devices only FPGA-centric clusters can scale beyond a few processors. The problem addressed here
is that, as the number of on-chip processors has increased from fewer than 10 into the hundreds, previous intra-chip routing solutions
are no longer viable. We find, however, that through various design innovations, high efficiency can be maintained. These include
replacing the previous broadcast networks with ring-routing and then augmenting the rings with out-of-order and caching mechanisms.
Others are adding a level of hierarchical filtering and memory recycling. Two novel optimized architectures emerge, together with a
number of variations. These are validated, analyzed, and evaluated. We find that in the domain of interest speed-ups over GPUs are
achieved. The potential impact is that this system promises to be the basis for scalable long timescale MD with commodity clusters.
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1 INTRODUCTION

MOLECULAR Dynamics (MD) is a simulation technique
for analyzing ensembles of atoms and molecules that

is executed iteratively over discrete, infinitesimal time in-
tervals. During an MD iteration, forces on particles in a
simulation box are computed and, then, particle states are
updated given their previous state and the results of the
particle interactions. Forces are due to particles interacting
mutually as indicated by Newtonian physics.

Due to the brevity of the time interval, typically on
the order of femtoseconds (10−15 seconds), carrying out
simulations of just a few nanoseconds (10−9 seconds) of
reality necessitates millions of iterations, making even a
100 nanosecond-scale simulation “long.” However, long
timescale simulations enable the observation of collective
behaviors resulting from microscopic interactions, such as
protein folding, allowing for predictions of reactions and
verification of real-life observations, and are therefore a vital
tool in a wide variety of physical simulations. One critical
benefit is the ability to confirm whether a drug candidate
can be applied to a target, which is essential in drug
development. MD has been used, for instance, to identify
COVID-19 protein-ligand interaction sites as potential drug
targets and to locate inhibitors of the main protease [1], [2],
[3], [4]. A vast array of research investigating protein-ligand
binding using MD is currently underway [5], [6], [7].

In drug design simulations involving small sets of par-
ticles are especially valuable since drugs typically consist
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of small molecules with fewer than 50 atoms (as per Lip-
inski’s rule of five), and the target site molecules are also
relatively compact (such as the main protease of COVID-
19, which contains approximately 2000 atoms). Simulation
duration can range from hundreds of nanoseconds to many
microseconds, as it can take tens of nanoseconds for the
protein and drug candidate to attain structural stability [8],
longer to achieve overall convergence, and far longer still for
certain vital conformations to emerge. This combination of
small space and long duration leads to extreme challenges
in strong scaling.

A variety of high-performance software packages have
been developed [9], [10], [11], [12], [13], with many sup-
porting GPU acceleration. But while GPU-based systems
excel at handling throughput-oriented and large-scale sim-
ulations, for the small datasets critical in a number of do-
mains, there is often sub-optimal scalability [14], [15], [16].
An alternative approach uses application-specific integrated
circuits (ASICs) optimized for MD. For example, Anton 3
can achieve over 200 µs-per-day for 10K particles with 512
nodes. But while ASIC-based solutions can have an order-
of-magnitude better performance than commodity clusters,
they may also have issues with general availability, plus
problems in cost and development time inherent with small-
run ASIC-based systems.

An alternate MD architecture is a cluster accelerated with
commercial off-the-shelf (COTS) integrated circuits (ICs),
namely, field-programmable gate arrays (FPGAs). FPGAs
are unique among COTS ICs in their support for com-
munication, through both the large number of high-speed
transceivers and the ability to couple application-level processing
with those transceivers in a small number of cycles. These
capabilities enable FPGA-accelerated clusters to approach
ASIC cluster performance for the long range force computa-
tion (LR) [17], [18], [19], the part of MD that is most difficult
to scale. The critical question is whether a single node FPGA-
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based MD engine can be sufficiently competitive.
In classical MD, the computation is dominated by non-

bonded forces, which can be divided into two components:
range-limited (RL) and long-range (LR). RL consists of 90%
of the computation, while LR is more memory and commu-
nication oriented. RL and LR are substantially independent
in data flow and can be considered as separate tasks. This
work specifically focuses on RL. While there have been
two decades of research on FPGA-MD, increases in on-chip
resources have necessitated a complete design overhaul. In
particular, compute logic now supports hundreds of force
processors (PEs), up from around ten previously. Routing
capability, however, has not increased proportionally mak-
ing previously used interconnects impracticable. Moreover,
load balancing issues have increased exponentially.

FPGA-MD is at its heart a communication problem. Each
of the hundreds of PEs sources and sinks dozens of particle
pairs every cycle; each particle pair is unique, as is each
particle’s partner set, although there is substantial overlap
when particles are proximate (which must be exploited). To
address the particle-to-PE mapping problem, the simulation
space is partitioned into cells using the cell-list method [20],
[21]: data are grouped into boxes for both parallel processing
and to reduce the computational complexity from all-to-
all pairwise O(N2) to O(mN), where m is the average
number of the particles within a small range (so m << N ).
Applying the Newton’s third law optimization (N3L) (§ 2.3),
e.g., through the half-shell method [22], further halves the
number of computations. Particle pairs can therefore be enu-
merated as follows: ∀ particles pi in a cell, ∀ of its neighbor
particles nj , ∀ cells ck. Since each particle pair computation
is independent, there are three high-level mapping schemes
to be considered: all PEs working on the same particle
(§ 3.2), all PEs working on different particles in the same
cell (§ 3.3), and each PE working on a different cell (§ 3.4).

This brings us to the essence of the single-FPGA
(or ASIC) problem: for any possible high-level mapping
scheme, can a scalable interconnect between memory and
PEs be constructed? Note that, with a small number of PEs,
only particle- and neighbor-centric need be considered (one
cell at a time is processed); and that liberal use can be made
of broadcast [23]. With hundreds of PEs, however, directly
interconnecting memory with PEs in a 3-D application that
is mapped to a 2-D chip fabric leads to huge complexity and
a drastic decrease in frequency [24]. Entirely new methods
are needed: a transposed memory block method and ring
routing are proposed and proved adequate for RL compu-
tation with high efficiency (§ 5).

The transposed memory block method (§ 5.1) allows a
memory block to store a portion of particles from all cells
to efficiently simplify the design scaling with respect to
the simulation space size. The ring-based routing method
connects cells in rings [25], enabling flexible data movement
between cells. Routing in these new methods, however,
requires more cycles and results in bubbles in the network
limiting throughput. To compensate, several innovations
are proposed. First, a data caching method is developed to
minimize data transfers by boosting data locality (§ 5.2.2).
Second, to coordinate the PEs, instead of applying bulk syn-
chronization, we propose a novel dynamic data dispatching
method to allow PEs to work continuously without frequent

synchronizations (§ 5.2.3). Third, to improve computing ca-
pability, the design can be configured to support a group of
PEs working on a single cell (§ 5.2.5). Fourth, for scalability,
a ring can be decomposed into smaller pieces to reduce
latency (§ 5.2.6). Finally, an out-of-order data broadcast
mechanism is developed to dynamically fill the empty slots
(bubbles) in the ring (§ 5.2.7).

A crucial aspect of these designs is to maintain com-
patibility with a third standard optimization: prefiltering
particle pairs (within a cell neighborhood) to eliminate com-
putations where the mutual force is negligible [23] (replac-
ing the neighbor lists often used in CPU implementations).
Theoretically, for evenly distributed particles, the average
pass rates for spherical and planar [26] filters are 15.5% and
17%, respectively. In this work, we upgrade these standard
filters to hierarchical filters (§ 5.2.7). This method not only
increases the pass rate to 25%, but also alleviates pressure
in data transfer.

To summarize this introduction: a new generation
FPGA-based MD RL accelerator is proposed with the fol-
lowing major contributions.

• An optimized FPGA-based MD RL accelerator with
several design variations that can process 50K parti-
cles without off-chip memory;

• Three particle/cell to PE mapping schemes are pro-
posed and evaluated in depth;

• The ring routing method is studied as an alternative
for the 3-D to 2-D mapping and found to scale with
the increasing number of PEs on a single FPGA
chip. Latency and concurrency problems introduced
by the ring are solved with an out-of-order data
broadcast and a data caching mechanism;

• Other optimizations, e.g., hierarchical filtering and
memory partitioning are proposed and found to re-
duce hardware consumption and improve efficiency.

2 BACKGROUND

2.1 Physical Models of Range-Limited Forces
RL consists of two components: the short range term of
the electrostatic force, typically obtained using the Particle
Mesh Ewald (PME) [27] (or related method), and the force
deduced from the Lennard-Jones (LJ) potential, an empirical
model combining the attractive van der Waals and repulsive
molecular interactions. The LJ potential between particle i
and j with distance rij is given in the following equation:

V LJ
ij = 4ϵij [(

σij

rij
)12 − (

σij

rij
)6] (1)

The potential is characterized by ϵ, the dispersion energy
describing the potential amplitude, and σ, the characteristic
particle distance at zero LJ potential. Taking the gradient of
the potential, we obtain the RL force between particles i,j:

FLJ
ij =

ϵij
σ2
ij

[48(
σij

rij
)14 − 24(

σij

rij
)8]rij (2)

Equation 2 indicates that the complexity of RL is O(N2).
However, the force decays rapidly with rij , meaning that
distant particles contribute negligibly to the force. Therefore,
a cutoff radius (Rc) is introduced: for a particle pair with
rij > RC the force is set to zero with the consequence
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Fig. 1. Fundamentals of Rc and the cell list and N3L optimizations. (a)
Cutoff regions of four particles. Only A and B interact. (b) Simulation
space divided into 3x4x4 cells with side length the same as Rc. (c) Home
cell of particle A and 26 adjacent cells unfolded from (b). Green cells are
the neighbor cells remaining after applying the N3L optimization.

that the pairwise force can be ignored. To visualize, Rc is
represented with halos in Figure 1(a). Particle A interacts
only with particle B because A is in B’s halo and vice
versa. Particles C and D contribute little to the resultant
force of A, and are therefore ignored in A’s computation.
Furthermore, the total computation can be reduced by half,
as pairwise forces affect both particles symmetrically (the
N3L optimization).

Periodic boundary conditions are frequently used in
computational physics: a large homogeneous system can be
modeled into replicas of a small system. That is, a particle
exiting the small system is matched by the same particle
with the same velocity entering from the opposite end.

2.2 RL Procedure

The general procedure has two phases, force evaluation and
motion update, which are executed iteratively. During force
evaluation, pair-wise forces are computed using Equation 2
and then accumulated to obtain the resultant force for each
particle. After all forces are computed, the resultant forces
are processed in motion update units to calculate velocity
and position differences from current particle states. Motion
update is much less compute intensive than force evaluation
as it is applied only once per particle. There is a concern,
however, with particle migration resulting from particles
entering and exiting partitioned regions. The handling of
particle migration is explained in detail in § 4 and § 5.

2.3 Data Structures: Neighbor Lists and Cell Lists

For any reference particle, its neighbor list identifies the
particles within its cutoff radius: traversing neighbor lists
is therefore efficient in that only non-zero forces are com-
puted. The cost, however, is in data redundancy or complex
memory traversal, and also that high memory bandwidth
is needed to compensate for the limited data locality. While
these are acceptable in CPU codes, in hardware implemen-
tations this method is generally replaced by filtering [26].

Cell lists group particles spatially. They allow memory
locality to follow physical locality and are easy to generate.
In Figure 1(b), the simulation space is partitioned into cubic
cells (3x4x4) with side length Rc (see [28] on choosing side
length). The particles in each cell are stored in a separate
memory domain, i.e., each cell has a list of particles. Assum-
ing particle A is located anywhere in cell (1, 2, 2), only the
particles in the green surrounding neighbor cells (including
the home cell itself) are checked with particle A for non-
zero force. With N3L, only 14 out of all 27 surrounding
cells need to be considered as neighbor cells (in the half-
shell method), as Figure 1(c) illustrates. Other layouts for
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Fig. 2. High level memory-to-PE mapping schemes. (a) particle-centric:
all PEs work on a single reference particle at a time. (b) cell-centric: all
PEs work on a same cell at a time. (c) uniformly-spread: each PE works
on a separate cell. HPC/NPC: Home/Neighbor Position Cache.

importing neighbor data are discussed in § 2.4. However,
for uniform particle distributions, only 15.5% neighbor par-
ticles form valid pairs. As a result, preliminary particle pair
filtering is desired; a force compute unit receives particle
pairs from multiple filters to avoid being idle.

For hardware implementations, locality out-weighs re-
sources. That is, locality can be exploited to avoid hundreds
of data transactions per particle, while filtering only con-
sumes a small amount of on-chip resources [26], especially
with planar filtering, which uses only comparison opera-
tions and low-precision integers. Therefore, throughout this
work, cell lists and planar filtering are used.

2.4 Neighbor Data Import Layout
The half-shell method is only one of the feasible methods
that handle import of neighbor data. The Neutral Territory
(NT) method is used in Anton 1 and 2 [29], [30], and
the Hybrid Manhattan method in Anton 3 [31]. However,
unlike ASICs, FPGAs rely on block RAMs (BRAMs) for data
storage. Each BRAM nowadays typically has hundreds of
entries in depth and tens of bits in width, and is therefore
suitable of storing data chunks; this is in contrast to more
fragmented data storage that requires fine-grained memory
access and allocation. In contrast to the NT and Manhattan
methods, with the half-shell method data are only accessed
by cell and thus easily organized. In summary, although the
half-shell method requires a larger import volume, it is more
hardware-friendly for FPGAs. Moreover, the excess import
volume can be removed by inexpensive filters.

3 HIGH LEVEL MAPPING SCHEMES

In this section, we systematically explore the FPGA-MD
design space for RL and determine the most likely candidate
architectures.

3.1 Design Space Exploration
The RL design space consists of the following elements:
PEs, data organization, and data transfers among the PEs
and data structures. A PE is defined as a force computing
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unit together with its associated logic, including filters and
accumulators. As PE design is well-established, and as PEs
comprise most of the compute logic in RL, the first priority is
simply that the number of PEs should be maximized until all
resources are consumed or routing becomes so cumbersome
as to substantially reduce operating frequency or utilization.
For data organization, particle data in cells are stored in
logical memories referred to as HPCs (home cell position
caches), NPCs (neighbor cell position caches), and Force
Caches (forces of particles in individual cells). The name
cache is used to denote that these memories are created from
BRAMs (on-chip with fast access). Unlike CPU caches they
are managed explicitly. A design consideration is how these
caches are mapped to BRAMs. Also, for now we disregard
the motion update units as they add little complexity.

The remainder of the design space involves data trans-
fers. Four questions need to be answered: In what order
should the data be fetched? To which PEs should data be
sent and how (parallel, broadcast)? What physical intercon-
nect should be implemented? And, what routing strategy
best implements the data transfers?

We begin with an analogy between RL and matrix-
matrix multiplication (MMM). In both, computational in-
dependence leads to enormous degrees of freedom and
an exponential number of alternatives. But then locality-
based constraints are applied to prune the space (in MMM,
to variations of loop ordering and blocking). A similar
strategy is applied here for RL giving us a strategy for
the first two questions. For the third, while there are again
exponentially many alternatives, the principle of parsimony
can be applied. That is, once a simple solution has been
found (i.e., where the PEs process particle-pairs with high
utilization), then the more complex solutions can be ignored.
In particular, fan-in/out must be minimized, both to reduce
routing complexity and to avoid contention. For the final
question (routing strategies), it is again sufficient to find a
particular solution.

Algorithm 1 High Level Mapping
1: for each cell hcell in all cells as the home cell do
2: for each particle p in hcell do
3: for each cell ncell in neighbor cells do parallel
4: for each particle q in ncell do parallel
5: fpq = ComputeForce(rp, rq)

We now explore data fetch order and PE mapping by
considering locality, i.e., while each particle’s neighbor sets
are disjoint, there is substantial overlap for nearby particles.
Simply, some particles should be taken as reference particles
with other neighbor particles pairing with them in parallel.
An example is given in Algorithm 1, where computations
involving multiple particles pi in a home cell have good
locality by being paired with the same set of neighbor
particles for an entire loop nest.

The second question is now addressed. A PE with Nf

filters is capable of processing Nf particle pairs in parallel.
To take advantage of locality, a reference particle should be
evaluated with Nf of its neighbor particles in a single PE.
This constraint is extended as follows:

1 ≤ Nref ≤ NPE (3)

where NPE is the number of PEs and Nref is the number
of reference particles being processed. When Nref = 1, all
PEs work on the same reference particle (the 1st mapping
scheme). When Nref = NPE, each PE can still work on
the same cell, but on different reference particles (the 2nd
scheme). Preferably, the reference particles are from different
memory blocks to avoid memory access conflicts; and given
particle mapping to cells, it is natural to let the PEs work on
different cells (the 3rd scheme).

The mapping schemes can also be viewed as loop re-
orderings of Algorithm 1. That pseudocode indicates that all
PEs work on the same reference particle p in hcell. The first
parallel (line3) indicates PEs working in parallel to process
different neighbor cells while the second (line 4) refers to
filters in a PE working in parallel on different neighbor
particles within a neighbor cell.

In the following subsections, three mapping schemes
corresponding to the three scenarios extracted from Equa-
tion 3 (and corresponding loop orderings) are analyzed,
each with reference particle locality satisfied.

3.2 All PEs Work on the Same Reference Particle
In Figure 2(a) (Algorithm 1 and 1 = Nref), a single reference
particle at a time is broadcast to all filters in all PEs. In
parallel, the particles from neighbor cells are sent to filters
to pair with the reference particle. This mapping allows the
partial forces of the reference particle to be accumulated
with an adder tree before being stored in the force cache,
reducing the traffic in force return. The partial forces of
the neighbor particles are individually accumulated into the
force caches by the adders associated with the cells. This
method achieves workload balance on particle pair level.

There are, however, obvious disadvantages. First, the
cost for maintaining locality is high. While all particles in
a home cell have the same set of neighbor particles, the
number of neighbor particles is likely to be too high for
temporal locality to be exploited. Second, all the neigh-
bor partial forces are returned to only 14 neighbor cells,
which requires tremendous bandwidth per cell to perform
the accumulation without conflict. In general, successful
FPGA applications continually use a large fraction of BRAM
bandwidth. A possible solution is to interleave cells across
BRAMs and is described in Section 5.1.

3.3 All PEs Work on the Same Home Cell
Figure 2(b) shows that the home cell broadcasts multiple
particles to the filters. Algorithm 1 is modified so that now
lines 2 & 3 are parallel, rather than 3 & 4, and Nref = NPE.
Each neighbor cell only needs to broadcast one particle.

As spatial locality is achieved for neighbor cells, the
demand for bandwidth is drastically decreased: instead
of traversing neighbor particles for a fixed set of home
particles, we traverse the home particles for a fixed set of
neighbor particles. The neighbor particles are then cached in
registers and no new neighbor particle is required until the
current set of neighbor particles is processed. As for force
return, this localization also introduces the opportunity for
accumulating the neighbor forces before sending them back;
thus the force return bandwidth is also reduced. That is,
loops of Algorithm 1 are reordered to yield Algorithm 2.
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Algorithm 2 High Level Mapping 2 Reordered
1: for each cell ncell in neighbor cells do parallel
2: for each particle q in ncell do
3: for each cell hcell in all cells as the home cell do
4: for Home particle p in hcell do parallel
5: fpq = ComputeForce(rp, rq)

Still, only 14 cells are evaluated at a time and the rest of
the cell storage bandwidth remains idle. But again, an in-
terleaving solution as proposed for Algorithm 1 is possible.
Also, there are heavy bandwidth and fanout requirements
in the broadcast of the home cell position.

3.4 Each PE Works on a Different Cell

Algorithm 3 High Level Mapping 3 reordered
1: for each home cell hcell in all cells do parallel
2: for each cell ncell in neighbor cells do parallel
3: for each particle q in ncell do
4: for each particle p in hcell do
5: fpq = ComputeForce(rp, rq)

Figure 2(c) shows two individual PEs, unlike the former
cases where the PEs are blended. In this case, a PE only
works on one single home cell, which broadcasts only one
particle to all the filters in one PE at a time, while each of
the 14 neighbor cells sends one particle to a filter in the PE.
In fact, a neighbor cell broadcasts the single particle to 13
other home cells as well. For example, NPC1 and NPC2’ in
Figure 2(c) may be the same cell. Here, parallel is applied to
lines 1 & 3 of Algorithm 1 (rather than 2 & 3 or 3 & 4) and
Nref is between 1 and NPE (from Equation 3).

This mapping method addresses both the bandwidth
and the idle memory bandwidth problems. First, at most
one particle is broadcast from any cell, allowing concurrent
reading of positions without requiring a large number of
BRAMs per cell. Second, now that multiple home cells can
be evaluated, the PEs can be applied simultaneously across
the simulation space to fully utilize the memory blocks.
Third, similar to the second mapping scheme, the data
transfer rate can be further reduced by traversing home
particles for the neighbor particles (see Algorithm 3 with
the new loop ordering).

4 BASELINE ARCHITECTURES

In this Section, we describe detailed baseline designs corre-
sponding to the memory-to-PE mapping schemes above.

4.1 Design 1: Particle Centric
Based on Algorithm 1, the design layout is shown in Figure
3(a). Assume that there are m cells in the simulation space,
and each cell has a set of BRAM based caches (position,
force cache, and velocity). These caches contain particle
information at consecutive addresses, namely, particle ID.

The force evaluation phase starts from position caches,
where neighbor particle positions are distributed to separate
filters to pair with a reference particle. The distribution is
carried out by a position distributor (Figure 3(d)), which
selects particle position data from 14 specific neighbor

position caches, for only particles from 14 neighbor cells
can be paired with the reference particle. Meanwhile, the
filters are partitioned into 14 groups, where each group only
receives neighbor particles from a single neighbor cell. Once
a neighbor particle is received, it is pushed into a chain of
registers as the blue arrows on the registers show. After
all neighbor particles are pre-loaded into the registers, the
filtering process is initiated by traversing and broadcasting
the particles in a cell as reference particles to all the filters.
Next, the streaming reference particles are paired with the
registered neighbor particles. If a reference-neighbor particle
pair is within the cutoff radius, the pair passes the filter and
is buffered for force computation.

As introduced in § 3.2, ∼1000 filters are available, which
makes it possible for a reference particle to be evaluated
in one cycle (normally, a cell only contains <80 particles, 14
neighbor cells contain ∼1000 particles, matching the number
of filters). Besides, based on equation (??), a force computing
unit accepts particle pairs from seven filters to keep it busy.

The force outputs from the force computing units are fed
into two sets of adders. First, the partial forces of a reference
particle (reference forces) are accumulated with an adder
tree and then accumulated into a force cache. The adder
tree only processes one reference particle at a time, resulting
in bubbles between the evaluations of two reference par-
ticles. Second, the forces applied on the neighbor particles
(neighbor forces) are registered and accumulated in separate
adder groups (see Figure 3(e)) during the evaluation of all
the reference particles in a cell, and then accumulated into
their force caches. However, there are still ∼1000 neighbor
force chunks in total to be accumulated into 14 force caches.
To alleviate the mismatch between the force throughput and
the force cache bandwidth, more force caches may be put
into use if there are available block RAM resources , but
the key problem is: there are m force caches but only 14 are
being used at a time.

4.2 Design 2: Cell Centric
Based on Algorithm 2, the design is given in Figure 3(b).
While appearing similar to Figure 3(a) the mechanism is
quite distinct. From a position cache, reference particles are
broadcast to the filter groups sequentially and cached in
registers. Each filter group consists of 14 filters designed to
receive particle position data from 14 neighbor cells, respec-
tively. The neighbor particle positions stream through the
filters and are paired with the registered reference particles.
A force computing unit is connected to seven filters.

Now that many reference particles are being processed
at the same time, the adder tree in design 1 is no longer
required. The reference forces are first accumulated before
being sent to the force caches. As for neighbor forces, a
neighbor particle is shared by many filters at the same
time, allowing the neighbor forces to be accumulated before
writing to their force caches. Consequently, local adder trees
are used to coordinate the high throughput of the neighbor
forces and the limited number of force caches.

As the input forces to an adder tree must be from the
same neighbor particle, stalls are required to make sure the
neighbor forces from other particles are not dispatched to
the adder trees before the previous ones are completed. That
is, neighbor particles are grouped in batches with batch
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size = 14, since they are from 14 neighbor cells. The force
computing units only start to process the next 14 neighbor
particles after the previous batch is completed.

4.3 Design 3: Uniform Spread

Based on Algorithm 3, this design no longer focuses on a
single reference particle or a reference cell at a time; rather,
all cells are processed simultaneously.

In Figure 3(c), each of the m position caches broadcasts
a reference particle to its designated filter group, where
each group contains 14 filters. A new reference particle is
not broadcast until all filter buffers of all PEs are empty.
This is because, first, the position broadcast mechanism
requires that all PEs receive particles with the same ID: it is
convenient for all PEs to start with the same particle ID, thus
the global synchronization. Second, the reference position is
not stored in a filter buffer, but in a register (shared by the
force computation unit and all the filters) to minimize the
buffer sizes. As a result, the reference position cannot be
discarded until all filter buffers are empty.

As with the other designs, each force computing unit
is served by seven filters. After the reference particles are
registered, the position caches start distributing neighbor
particles to the filters in streams. The neighbor particles
are distributed by a position distributor different from the

Other Cells

Cache 1

(a) (b)

Cache 1 Cache 1 Cache 1 FIFO

Other Cells (c)

Cache 1 Cache 2

Other Cells

Fig. 4. Particle migration handling methods. (a): directly searching for
empty slots. (b): the one-pointer method. (c): double buffering.

previous two designs (see Figure 3(f)) as the mechanism
of this design is substantially different. Once all current
reference particles have been evaluated, the position caches
dispatch the next reference particles to the PEs.

The reference particles have good temporal locality.
Therefore, the reference forces can be accumulated directly
into their force caches through adders. On the other hand,
the neighbor forces are highly fragmented and flood into
force caches for accumulation. Adder trees are not used
because the resources are limited as all cells are being pro-
cessed simultaneously. The force distribution mechanism
(Figure 3(g)) is also changed from the previous two designs
to adapt to the new force write-back pattern.

4.4 Motion Update and Particle Migration

All three baseline designs use a cell-based cache data
structure and the same motion update method. After force
evaluation, the motion update units (in parallel) request
position, velocity, and force data from individual caches.
Upon receiving the requests, the force data are sent to
motion update units; their original entries in force caches
are erased to prepare for the next force evaluation phase.

With particle migration, we cannot simply send the
updated position and velocity data back to overwrite the
cache contents. The reason is shown in Figure 4(a): the
particle being exiting Cache 1 leaves an empty slot in the
cache. Without further optimization, a new particle must
find an empty slot, a costly procedure.

A second method is to use a pointer to track the next
available entry (vacancy) in a cache (Figure 4(b)). The lo-
cal particles are updated first, while entering particles are
stored in a FIFO. As the 3rd particle exits, the pointer points
at the vacancy so the 4th particle is updated to the 3rd slot,
with the pointer moving to the 4th slot. As a result, the
non-migrating particles are stored compactly. The entering
particles are then read from the FIFO and sent to the cache.

A drawback of the second method is that the hardware
cost of a FIFO on an FPGA is similar to that of the cache
itself. Therefore, we can instead simplify the logic and
use two caches (Figure 4(c)). When a particle migrates in,
the local update is paused, and the new particle written
to Cache 2. Eventually, all updated particles are stored in
Cache 2. In the next MD iteration, the roles are reversed. In
practice, the double buffering method can be implemented
with a single cache as long as it has two ports (read and
write) and sufficient depth.

5 OPTIMIZED DESIGNS

Problems with the three baseline designs are evident. First,
all suffer from complex routing logic as indicated by the
position and force distributors in Figure 3. The high fan-
in/fan-out are detrimental to frequency, and the wiring
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resources are easily exhausted. Second, data locality is not
fully exploited. To solve these two fundamental problems
of the baseline designs, we propose two optimized designs
evolved from design 1 and design 3, plus extensions.

5.1 Design-T: Transposed Memory Blocks
Design-T originates from Design 1, where a single refer-
ence particle is paired with all its neighbor particles (see
Figure 5(a)). Storing particles by cell, as used in Baseline
1, is simple, but not suitable. Since only 14 cells at a time
are used, performance is limited by the throughput of the
particle data caches. The optimization goal, therefore, is to
increase the number of caches, and therefore bandwidth,
without introducing too much overhead. The key to the
solution is shown in Figure 5(b): The BRAM arrays are
transposed so that they now store particles by particle ID
with the entries representing different cell IDs (m cells).

5.1.1 Data Path Optimization
Position data can now be more rapidly distributed to filters.
Since the number of particles per cell is usually < 80
a limited number of block RAMs is required. With each
cache in charge of particles with the same particle ID from
different cells, all neighbor particles with respect to a single
reference particle can be loaded to the filter registers in 14
cycles and reused for other reference particles from the same
cell. This compares with ∼100 cycles for Baseline 1.

As Figure 5(a) shows, the position caches and filters
are highly localized. Each filter group is served only by
neighbor particles from the same position cache, eliminating
the highly overlapped position data paths and the huge
fan-in/fan-out in Baseline 1, where the position caches and
filters are connected almost all-to-all. The data paths of
the neighbor forces are also simplified. As a filter group
only evaluates neighbor particles with the same particle
ID, a neighbor force produced is only accumulated into its
designated force cache. Note that the ratio of seven filters to
one force computation unit mapping is preserved.

At the same time, the locality of the reference particle is
exploited. As mentioned earlier, the adder tree in Baseline
1 results in bubbles that diminish performance. Given this
fact, a buffer array is inserted between the adder tree and
the force computation units. Unlike the force caches, all
n buffers contain reference forces from the same cell, ad-
dressed by particle ID. Once a reference particle is evaluated
and its reference force fragments are fully accumulated into
the buffers, the accumulated reference partial forces enter
the adder tree to be summed. The reference force chunk is
then accumulated into a force cache. With the help of the
buffers, the force computation of each reference cell can be
pipelined without stalls.

Another benefit is that the buffers attached to the filters
now only contain neighbor cell IDs, which require less
storage than particle positions. Once a pair is selected by
an arbiter, the neighbor cell ID is sent to the position cache
for position data. The position data is then sent to the force
compute unit for processing.

5.1.2 Handling Particle Migration
With transposed caches, particle migration can also be op-
timized. The example in Figure 5(c) uses four transposed
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Fig. 5. The optimized architecture for the first mapping scheme. (a): the
data flow in force evaluation. (b): the new memory layout compared
to baseline. (c): particle migration handling in motion update. P is the
particle being migrated from cell 2 to cell 3.

caches. The last two caches are initially empty to ensure no
particle is lost during migration. In practice, we use ∼25%
more caches in case many particles are migrated into the
same cell. Let particle P move from Cell 2 to Cell 3. If a
slot is available in the empty-slot-ID FIFO of Cell 3, then it
is used. Meanwhile, the migrated particle leaves a vacated
entry in the original cache, and the index of the entry is
pushed to its empty-slot-ID FIFO.

After migrating to a new memory block, particle P may
get updated again by the motion update unit updating
column P3, since double buffering is not used in this design.
The data integrity is not harmed, however, because the
empty slot particle P moves into is associated with zero
force. Note that the empty-slot-ID FIFOs are very small and
can be constructed using a few registers.

After multiple MD iterations, the empty slots (vacancies)
become scattered among the caches. These vacancies, how-
ever, are actually advantageous. At the beginning of MD,
the reserved empty caches have no work to distribute to
their filters, resulting in idle compute units. As the vacancies
spread, however, the empty caches are gradually filled with
migrating particles: the workload becomes more balanced
as the simulation proceeds.

5.1.3 Scalability
The demand for hardware resources increases little when
adding cells, even scaled to ∼500 cells. Compared to Base-
line 1 and Baseline 2, where the number of cells dominates
the wiring complexity and resource consumption, the mem-
ory block transpose method allows easy addition of cells.
Whenever a new cell is added to the simulation space, the
particles within are uniformly distributed to caches. As each
cache has depth of 512, up to 512 cells can be handled with
such a data structure. For the number of cells greater than
512, the design layout still holds with more BRAMs and
slightly modified cell selection logic.

5.2 Design-R: Ring-Based Network
This architecture is an upgrade to the 2nd and the 3rd
mapping schemes: each PE works on a different cell, while
allows multiple PEs to work on the same cell. In Baselines
2 and 3, the wiring complexity increases drastically when
the number of PEs is increased. Also, the neighbor particle
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data have poor locality: neighbor positions are not reused
and neighbor forces are not aggregated before being accu-
mulated to the force caches.

Targeting the routing problem, we replace the original
direct connections with a ring. However, using a ring results
in longer latency and longer data life in the network, leading
to congestion. In this Section, we demonstrate a solution that
supports multiple PEs working on the same cell, minimizes
the data transfer latency in the network, and significantly
reduces the number of invalid particle pairs.

5.2.1 Memory-PE Interconnect
To avoid frequency degradation, we replace the direct in-
terconnects (Figure 2) with daisy-chain-based unidirectional
ring (Figure 6). The 1-D topology is chosen because it is most
resource-efficient while still allowing for the long latency
to be hidden. The rings are used for three types of data
transfer: position caches to PEs, PEs to force caches, and
motion update units to position and velocity caches.

Ring Behavior. The three rings have different behaviors.
A position packet is broadcast to multiple destinations and
therefore kept in the ring until reaching its final destination.
Force and motion update packets have only a single des-
tination. Finally, the motion update ring is less congested
because particle migration is relatively rare; details are
therefore omitted. Figure 7 depicts the interconnect of the
ring nodes. For each ring node, two data sources and two
destinations are available. New data can only be injected
when the node is free. Packets are either advanced to the
following node or, if at the final destination, discarded.

Ring Configuration. The mapping of 3-D cells to 1-D
ring is as follows:

Ir = Ny
cellN

z
cell(x− 1) +Nz

cell(y − 1) + z (4)

where Ir is the index from 1 to N shown in Figure 7,
Nx

cell is the number of cells along the x axis, and x is the
coordinate of cells in the x direction, ranging from 1 to Nx

cell.
While this mapping is not necessarily optimal, it succeeds
in dramatically reducing the average packet lifetime.

5.2.2 Data Caching
By removing the direct connections, the various cell-PE
datapaths are merged into rings. The desired throughput

(a) (b)

Fig. 8. 2D illustrations of (a) high filter pass rate, (b) low filter pass rate.

can still be achieved, however, by using a two-fold data
caching method to reuse the input position data and to
effectively aggregate the force fragments.

Neighbor Particle Caching. Instead of feeding neighbor
particle data directly from neighbor caches, the neighbor
data are cached in registers located with the filters. In-
stead of traversing the neighbor particles for a single home
cell particle (only caching a single particle), the home cell
particles are traversed for multiple neighbor cell particles
(caching many particles). This significantly alleviates the
pressure on data transfer from position caches to force
pipelines, e.g., if two neighbor particles are evaluated to-
gether with the home cell, 50% fewer transfers are required.

Another benefit of the neighbor particle caching is bal-
ancing the workload among force computation units. Fig-
ures 8(a) and (b) show scenarios for the filtering rate, with
too much and too little work, respectively. If neighbor parti-
cles are traversed with respect to a single reference particle,
(a) and (b) may happen and lead to highly imbalanced
filtering. In this scheme, multiple neighbor particles behave
as reference particles and the chance of filtering imbalance
is greatly reduced.

Completing the design: the neighbor force data are
cached in registers (at the bottom of Figure 9(a)). The locality
of neighbor particles is exploited, and the neighbor forces
are accumulated before being sent to the force output ring.
As a result, the payload on the force output ring is reduced
similarly to the position input ring.

Home Particle Caching. Instead of storing all of the
position data in the buffers below the filters, only the
particle IDs are used (Figure 9(a)) saving BRAM resources.
To compensate, the home cell particles are localized in the
temporary home position cache so that the home particles
can be accessed with particle IDs. A home particle is col-
lected in the temporary home position cache upon arrival,
and can be overwritten after the evaluation of the current
home cell is finished. As a result, both home and neighbor
particles are localized for arbitration and are ready to be fed
into force computation units.

Merits in System Design. With data caching methods
the designs in Figure 2 can be reduced in concurrency
demand except in (a) for its overly fine-grained data access
mode. The home cells now do not need to broadcast multi-
ple particles simultaneously as the cached data is sufficient
to keep the force pipelines busy.

5.2.3 Neighbor Particle Dispatch
With the data caching methods being used, other compo-
nents must be adapted. To properly cache the neighbor
particles, a dispatch mechanism is developed. Position data
from the position input ring are injected directly into the
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position input buffer and ready to be dispatched. An arbiter
associated with the dispatcher actively checks the status of
the registers below and fills new data into the registers if any
is completely evaluated. To determine whether a neighbor
particle is done filtering, the home particle ID is recorded
upon the neighbor particle’s arrival; the filtering is done
when the ID is observed again.

5.2.4 Partial Force Caches

Because in this design the home particle forces are hard to
cache, they are accumulated in force caches directly without
going through a force output ring (see Figure 9(a) bottom
and Figure 9(c)). To match the throughput of the force
pipelines, more than one force cache is required per cell
when multiple force pipelines work on a single cell (system
design (b) and (d) in Figure 2).

The forces from the rings are accumulated in a dedicated
force cache (Figure 9(c)). If more than one force output ring
is deployed (for higher concurrency), the forces are buffered
and arbitrated round-robin and accumulated in the same
force cache; this works because the arrival rate of forces
through rings is much less than that of the forces from PEs.

The force caches that hold partial forces are aligned in
memory. The forces do not need to be aggregated until
motion update starts. This implies that only a small number
of adders are required to aggregate the partial forces, since
motion update is not compute intensive and the number of
motion update units is small compared with force pipelines.

5.2.5 PE Groups

In the vanilla Design-R, a cell is assigned only one single
PE, limiting the performance even with sufficient on-chip
resources, especially for small simulation spaces. To address
this, Figure 9(b) illustrates that the vanilla Design-R can be
configured to support multiple PEs serving the same cell.

Instead of dispatching particles to a single PE, the dis-
patcher now serves M PEs as a PE group round-robin,
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Fig. 10. (a): The 1st level filtering in a position input ring node. Dashed
line: planar filter criterion. (b): The flowchart of a position input ring node.

where each PE independently pairs the home particle po-
sition (broadcast from HPC) and the registered neighbor
position (from the dispatcher).

To meet the throughput of the output home particle
forces (almost one force produced per cycle), each PE is as-
signed a home force cache to store the frequently produced
home particle forces, while sharing the same neighbor force
output datapath via arbitration.

5.2.6 Decomposed Force Rings

With more PEs, the latency of the force output ring becomes
the bottleneck. Compared to the position input ring, where
each position can be reused in 14 places, the force output
ring lacks the broadcast mechanism (each force only has one
destination). The high fragmentation of partial force in the
ring leads to more severe routing congestion.

Figure 9(c) shows an example solution with 64 cells
and 128 PEs. It turns out that the long force ring can be
decomposed into several ring pieces, reducing the latency
with little cost induced. The original force output ring with
64-unit length is broken into four stacked rings with 16-unit
length without extending the total length.

As a force travels along a Decomposed Force Ring (DFR),
four exit options are available at any time. The force caches
for neighboring forces are also organized into groups to
accept forces from all four rings. To break the occasional
tie when two or more forces are to be accumulated into the
same FC, small buffers are added to the arbiter.

5.2.7 Position Input

The upstream position input units are also upgraded to
support the force processors downstream and improve
hardware utilization.

Hierarchical Filters. Some particles can be discarded
before entering PEs. For example, Figure 10(a) shows a
neighbor particle that cannot be paired with any particle
in the home cell. As these particles waste tens of filtering
cycles it is beneficial to implement a higher level filter to
eliminate the “bad” particles during data transfer.

Since a particle can have multiple destinations in a
position input ring, it makes sense to deploy second level
filters in position input ring nodes. A second level filter is
the same as a first level filter, except that it compares the
particle position with the coordinates of the corner. With
hierarchical filtering, Monte Carlo experiments show that
the filtering rate of the first level filter increases from 17%
(planar filter) to 25% for uniformly distributed homoge-
neous particles. Figure 10(b) shows how the second level
filters are integrated into position ring nodes. Each node can
receive data from the previous node or the position cache;
data from the previous node have higher priority.
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Out-of-Order Position Broadcast. Higher priority is
given to the previous node because the data directly from
position caches can be sent again later, since the position
caches are iterated for particle filtering with cached neighbor
particles. The problem is that the position caches not only
provide home particle position, but also provide that of the
neighbor particles. The problem is how to efficiently do both
at the same time.

Figure 11 depicts the efficient out-of-order broadcast
method in four representative cycles. The method allows
seamless neighbor position injection during home position
traversal, such that the data can be sent down-stream
whenever the ring nodes are available. During broadcast,
two paths are available for each position cache: directly
connected to a PE as home particles, and connected to a
position input ring as neighbor particles. In the first cycle
(a), since the ring nodes are not occupied, the first entries
are sent to both PEs and the ring. In the fifth cycle (b), the
data sent to the ring previously are marked as dirty so that
they will not be sent to the ring again. Position caches 1
and 2 cannot send data to the position input ring because
the slots are occupied, but position cache N can still pass
data because the slot is empty. In the eighth cycle (c), the
home particles (red arrows) are no longer synchronized.
The gray empty boxes are skipped to avoid bubbles. In the
ninth cycle (d), the neighbor particles sent to the ring also
become asynchronous. Eventually, the neighbor particles are
evaluated out-of-order.

5.2.8 Supporting Larger Simulations

The above designs are based on an assumption about the
proposed utilization of FPGAs in the MD ecosystem, i.e.,
the number of PEs is ≥ the number of cells. But what if the
simulation space is large and contains, say, a thousand cells?
A natural extension is for PEs to work on multiple cells.
There are, however, several challenges. First, with more
cells, how should extra data be stored on-chip given limited
BRAM resources? Second, the ring latency increases as ring
nodes are added to support additional cells. And third, for
each step, the number of cells accessed is still greater than
the number of PEs due to the lack of periodic boundary
condition (see Figure 12(a): the orange cells are processed in
the next step but are still accessed).

Memory Partitioning. As a BRAM has 512 entries in
depth and a cell typically has <80 particles per cell, most
BRAM entries are wasted if a BRAM only contains the
particle data from a single cell. A BRAM can therefore be
partitioned into several interleaved cell regions, where the
two red cells are the cells to be processed in separate steps,

(a) (b) (c)
FILTER

NP2NP1A B
B

BB

FILTER

Fig. 12. The solution to the problems emerge in large scale simulations.
We intuitively use 4x4 2-D cells with eight PEs for example. (a): blue:
the cells currently being processed; orange: the extra cells required to
process the blue cells. Particles from cell A are broadcast to all B cells.
(b): memory partitioning. The red cells share the same memory block.
(c): memory partitioning with double buffers. Two neighbor particles
(NP1 and NP2) require data from different cells.

as Figure 12(b) shows. This method also reduces the ring
length as the interleaved cells can share the same ring node.

Although the storage and the ring latency problems are
solved, the concurrency problem persists. In Figure 12(c),
two neighbor particles are being processed by the same
PE, but with data from different cells. One method is to
traverse all the particles in a memory block, but time is
wasted in waiting for unnecessary data to pass. Therefore,
an economical way is to take advantage of the previously
used double buffers. Originally, one of the buffers is used
during the force evaluation phase, while the other is used
during motion update. Now with the extra concurrency de-
mand, the cache in use can be duplicated into the previously
unused cache for 2x concurrency, such that NP1 and NP2
can be evaluated simultaneously with only the data from
the desired cells.

5.3 General Summary of the Optimized Designs
The two designs have distinct strengths and weaknesses.
Design-T, inherited from high-level mapping scheme 1,
makes MD processing straightforward, but has two prob-
lems. First, the design is difficult to extend to multiple FP-
GAs. There, each FPGA is charged with evaluating a certain
region in a simulation space and the only data exchanges
are for the boundary cells. With the particles in a single cell
scattered among all caches, all the caches on a single chip are
uniformly involved in inter-FPGA communications, increas-
ing the complexity of communication. Second, the neighbor
particles need to be reloaded after the evaluation of each
reference cell, with about ∼20% overhead introduced.

Design-R is good for multi-chip extension [32]. First, the
rings allow simple data injection from external FPGA chips
such that little modification is required: the external data
can be treated as local data when being processed. Second,
a multi-chip extension allows multiple PEs to work on the
same cell, such that a single chip only works on a small
number of cells, reducing the length of rings. As a result,
more PEs can be accommodated without data congestion.

Design-R also provides a higher degree of parallelism
given increasing on-chip resources. The performance of
Design-T is limited by the number of particles per cell.
For example, if each cell contains 64 particles, a reference
particle is paired with 64×14 neighbor particles, where 14 is
the number of neighbor cells. If each PE has 7 filters, only
128 PEs can be fully utilized. In contrast, with sufficient PEs
and enough routing resources, the neighbor position data
are immediately processed upon arriving at the PEs, and
evaluated with the traversed home cell particle positions.
Additionally, the resulting forces are accumulated into force
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caches immediately given sufficient routing resources to
hide the latency. Therefore, in the limit, each iteration is
finished with the number of cycles required for 2× position
cache data traversal plus the routing latency and pipeline
depth, totaling a few hundred cycles for 64 particles per
cell. However, in actual experiments with current resources,
the number of cycles is an order of magnitude higher.

6 EVALUATION

6.1 Experiment Setup
The designs are implemented on a Xilinx Alveo U280 ac-
celeration card, which has 1304K CLB LUTs, 2607K CLB
registers, 2016 block RAMs, 960 ultra RAMs, and 9024 DSPs.

We assume each cell initially has 64 particles, which is
typical in this domain. For motion update, all scenarios for
all designs have eight units; this is sufficient for the time
spent in motion update to be negligible compared with force
evaluation. Baselines 1 and 2 (B1, B2) and Design-T have
a fixed number of PEs. The former two designs have 128
PEs while the latter has 160 PEs (with 20% PEs reserved
to handle particle migration). Baseline 3 (B3) and Design-
R have a number of PEs equal to the number of cells in
the simulation space. Design-R can also be configured to
accommodate more PEs per cell, resulting in up to 4× PEs
as many as the number of cells.

We use ns/day as the unit of performance, referring
to the simulated time that can be processed within a wall
clock day. The baselines and the optimized designs run at
70 MHz (the highest frequency achievable for 3× 3× 3 cells
to simplify the comparison) and 200 MHz, respectively.

6.2 Performance Comparison Among the Designs
6.2.1 Simulation Speed Comparison
The simulation results of all baselines, Design-T, and a
variety of Design-R configurations are given in Figure 13,
where RH-xPE-yDFR refers to x PEs working on the same
cell and y decomposed force rings with hierarchical filtering.
To clearly demonstrate the difference of Design-R configu-
rations, a linear y-axis is used.

Baselines 1 and 2 are heavily affected by the overheads
discussed in Section § 4. Also, all three baselines are influ-
enced by their poor routing scalability, leading to an over-
all lower operating frequency. For the optimized designs,
Design-T benefits from the large number of PEs to achieve
sustained performance across the simulation space sizes,
while Design-R and its configuration variations achieve
higher performance for the simulation space smaller than
6× 6× 6 cells.

The blue bars indicate that in the case of only 1 PE per
cell, the force ring latency can be completely hidden when
the number of cells is small, suggesting that it is unnecessary
to increase the number of DFRs. With more PEs per cell,
to push the performance to a higher level, more DFRs are
needed to hide the latency (see the red bars).

6.2.2 PE Efficiency Comparison
We define PE utilization as the average number of valid
forces evaluated per PE divided by the overall working
cycles in an MD iteration. PE utilization reflects hardware

0
5

10
15

B1
3×3×3 Cells 4×4×4 Cells 5×5×5 Cells 6×6×6 Cells

Si
m

ul
a�

on
 S

pe
ed

(µ
s/

da
y)

PE
 U

�l
iza

�o
n

(%
)

B2
B3
T
R

Designs:

Configura�ons:

B1~B3: Baseline
T: Design-T
R: Design-R

DFR: Decomposed Force Rings PE: PEs working on a cellRH: Design-R, with Hierarchical filtering

RH-1PE-1DFR RH-1PE-2DFR RH-1PE-3DFR RH-1PE-4DFR
RH-2PE-1DFR RH-2PE-2DFR RH-2PE-3DFR RH-2PE-4DFR
RH-3PE-1DFR RH-3PE-2DFR RH-3PE-3DFR RH-3PE-4DFR
RH-4PE-1DFR RH-4PE-2DFR RH-4PE-3DFR RH-4PE-4DFR

0
2
4
6

0
1
2
3

0
0.5
1.0
1.5
2.0

0
20
40
60
80

100

Fig. 13. The ns/day performance and PE utilization of three baseline
and two optimized designs with different configurations. 5 filters are
equipped for Design-R and its variations.

efficiency because most hardware resources are used for the
force computation.

Results are shown in Figure 13. We observe that B1 and
B2 have a substantially lower PE utilization (15%-20%). The
greatest disadvantage of the two baselines lies in the global
synchronization, which is used to prevent forces of different
reference particles from entering the adder trees. Another
important factor for B1 is the neighbor particle pre-loading
process, which introduces considerable overhead.

Compared with the two baselines, Design-T improves
utilization by more than 30%. With the buffers above the
adder tree, only forces of the same reference particle can
enter the adder tree making global synchronization unnec-
essary. However, the reserved PEs and overhead of pre-
loading neighbor particles limit the PE utilization.

B3 and most of the Design-R variations have signifi-
cantly higher PE utilization. The two designs fully stream
the particles without pre-loading. Compared with Design-
R, B3 suffers from the overhead of global synchronization.
Design-R, however, has its utilization drop for larger simu-
lation spaces due to the over-extended rings, especially the
force output ring where there is heavy congestion. That drop
in utilization, however, can be offset with the hierarchical
filters and DFRs, boosting the Design-R PE utilization from
∼ 30% to > 75% for 6× 6× 6 cells.

6.3 Evaluating Configurations of Design-R
6.3.1 Hierarchical Filtering
The hierarchical filtering mechanism not only enhances the
pass rate of the filters in a PE, but also frees the PEs previ-
ously computing zero forces. Without hierarchical filtering,
every force register in Figure 9(a) embedded in Reg ACC
requires zero checking before injecting the forces into a force
output ring. Although only eight exponent bits are checked
per dimension per register (24 bits in 3-D), the total cost
in hardware is not always worth it as the number of force
registers can be massive. In our evaluation, we compare
the original Design-R without zero force checking with the
modified O2 with hierarchical filters.

Figure 14 shows the performance of the Design-R con-
figurations. In the 3x3x3 cell space case, the RH-1PE-1DFR
version reaches equilibrium at four filters, and the vanilla
Design-R at six filters. For larger cell spaces, they reach
equilibrium with almost the same number of filters, but
with varied performance. This is because the performance
bottleneck lies mostly in the force output. The rings reach
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their maximum capacity, such that their performances do
not improve with an increasing number of filters. As dis-
cussed above, the hierarchical version reduces force output
traffic without the cost of zero checking, leading to better
performance with a heavily congested force output ring.

6.3.2 Number of PEs and Decomposed Force Rings

As the number of PEs per cell increases while the number
of DFRs is fixed to 1, the equilibrium is also reached at 4
filters for 3 × 3 × 3 cells. The exceptions are the 3 and 4
PE cases, as adding more PEs is equivalent to adding more
filters with the same force throughput. In fact, with more
PEs, the latency problem of the force output ring becomes
much more severe. This situation is similar for 4×4×4 cells.

With the force ring decomposition method adopted,
even with a large number of PEs per cell, equilibrium is
reached at ∼ 4 - 5 filters, which is consistent with the
theoretical filtering rate (25%) for hierarchical filters. This
suggests that the decomposed force rings effectively reduce
force ring latency and overcome the performance bottleneck.

6.4 Benchmarking

We use a state-of-the-art OpenMM liquid argon benchmark.
The reference systems are an Intel Xeon Gold 6226R CPU
with 64 threads and a Quadro RTX 8000 GPU. The results
for both small and large simulation spaces are demonstrated
with the best configuration of Design-R as the reference.

Table 1 shows the performance results. For small simula-
tion spaces from 3×3×3 to 5×5×5 cells, Design-R achieves
4.28× and 2.81× speedup with respect to GPU, with slightly
higher performance compared to Design-T. The best con-
figuration of Design-R refers to 4PE-4DFR for 3×3×3 cells,
2PE-4DFR for 4×4×4 cells, and 1PE-4DFR for 5×5×5 cells.

For simulation spaces ≥ 6x6x6, the performance of
Design-R and Design-T are comparable, while the perfor-
mance of GPU is superior, as the workload is large enough
for the GPU to parallelize. The best configuration corre-
sponds to 1PE-4DFR for all three cases, with 108, 128, and
128 PEs available, respectively.

6.5 Hardware Utilization

To study the availability of Design-T and Design-R with
configurations, Table 2 highlights the hardware resources
consumption for the designs in the representative cell spaces
evaluated above. The number of PEs per cell and the num-
ber of decomposed force rings are optimal to ensure the
performance corresponding to the hardware. Due to the
limited number of BRAMs, some of the small buffers are
implemented with logic as LUTRAMs.

Note that the resource utilizations for the 8x8x8 and
8x8x12 cell spaces are nearly identical. This is because the
Ultra RAMs with which the cache is implemented are not
fully utilized and therefore can contain data from additional
cells with no marginal memory cost. Most significantly, the
number of PEs remains unchanged.

6.6 Energy Validation

Energy convergence validation is performed on a 20K liquid
argon dataset. Figure 15 compares the reference double-
precision floating point OpenMM result with the implemen-
tation described in this paper (23-bit offset precision scheme
in Figure 15(c) and the linear interpolation described in
III-B). Over 100K iterations (2 fs per iteration) the relative
difference is typically on the order of 10−4 ∼ 10−3.

7 CONCLUSION

Accelerating MD with FPGAs has been studied for many
years [33], [34], [35], [36], [37], [38], [39], [40], [41]. As re-
sources per chip have multiplied, so has the number of com-
pute units to the point where thousands of elements need to
be sourced and sinked every cycle. MD is fundamentally a
data movement problem: even with standard optimizations
(cell lists and Newton’s third law), data are necessarily used
and updated simultaneously by many compute units. With
the previous routing solutions no longer viable, maintaining
high efficiency has required several design innovations.

In this study of FPGA-based range-limited MD work,
we present multiple 3D-to-2D workload mapping schemes:
three baseline designs based on distinct, and, at a high
level, exhaustive mappings, and two optimized designs. The
two optimized designs have scalability in two dimensions.
The first scales with the size of a simulation space with
a constant number of PEs, while the second allows the
number of PEs to increase directly with the increased size of
a simulation space, provided there are sufficient hardware
resources on the chip. In addition, the Design-R configura-
tions are proven useful in achieving higher performance by
boosting computing power and hiding the routing latency.

The overall motivation for using FPGAs for MD compu-
tation is that FPGA-based clusters fill a vital niche: scalable
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TABLE 1
FPGA-O2 performance compared to FPGA-O1, GPU, and CPU with up to 32 threads.

Cell # Particle # Performance Design-R (best config) Design-T GPU CPU-1x CPU-2x CPU-4x CPU-8x CPU-16x CPU-32x

3x3x3 1728 ns/day 12495 12222 2921 80.06 135.5 204.6 236.3 183.4 152.9
speedup 1.00 1.02 4.28 156 92.2 61.1 52.9 68.1 81.7

4x4x4 4096 ns/day 5978 5303 2126 35.25 60.56 92.8 110.8 95.32 101.5
speedup 1.00 1.13 2.81 170 98.7 64.4 54.0 62.7 58.9

5x5x5 8000 ns/day 2905 2750 1841 19.35 32.79 60.05 88.7 78.03 77.5
speedup 1.00 1.06 1.58 150 88.6 48.4 32.8 37.2 37.5

6x6x6 13824 ns/day 1456 1602 1542 11.05 18.72 31.42 49.19 53.12 52.7
speedup 1.00 0.91 0.94 132 77.8 46.3 29.6 27.4 27.6

8x8x8 32768 ns/day 644.5 680.4 801.8 5.258 8.818 15.95 20.92 28.54 33.19
speedup 1.00 0.95 0.80 123 73.1 40.4 30.8 22.6 19.4

12x8x8 49152 ns/day 429.7 454.5 618.7 3.490 5.784 10.55 17.63 21.54 27.06
speedup 1.00 0.95 0.69 123 74.3 40.7 24.4 19.9 15.9

TABLE 2
Hardware Utilization of FPGA-O2 with spatial configurations.

Design Number of Cells Number of Particles† Number of PEs LUT FF BRAM URAM DSP

T <512 <32768 160 1065237 (82%) 859815 (33%) 1544 (77%) 800 (83%) 8494 (94%)
[512, 1024) [32768, 65536) 160 1086542 (83%) 877011 (34%) 1784 (88%) 800 (83%) 8494 (94%)

R (4DFR)

3x3x3 1728 108 789863 (61%) 661095 (25%) 942 (47%) 648 (68%) 5136 (57%)
4x4x4 4096 128 947757 (73%) 803750 (31%) 1112 (55%) 768 (80%) 6056 (67%)
5x5x5 8000 125 957627 (73%) 832411 (32%) 1087 (54%) 750 (78%) 5918 (66%)
6x6x6 13824 108 885157 (68%) 803261 (31%) 942 (47%) 648 (68%) 5136 (57%)
8x8x8 32768 128 980026 (75%) 851891 (33%) 1112 (55%) 768 (80%) 6056 (67%)
8x8x12 49152 128 996160 (76%) 875962 (34%) 1112 (55%) 768 (80%) 6056 (67%)

† 64 particles per cell as a reference value.

COTS-based systems that provide long timescales on prob-
lem sizes crucial to both drug discovery and basic science.
The necessary condition is for the per-device performance
to be comparable to that of the accelerator alternatives. That
has been demonstrated here in multiple applicable scenar-
ios. For example, Design-R achieves a 4.28x speed-up for
1728 particles compared to GPU, whereas Design-T achieves
4.18x. While these simulations are a small fraction of tens of
thousands typical in production runs, they are exactly the
workload per device when these runs are partitioned over 8
or 32 devices, respectively.
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