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Abstract—Unleashing the full potential of FPGAs as offload
devices requires Host-FPGA connectivity that is reliable, robust,
and uniform; and that implements (at least) a required set of
features and protocols. PCle is the most widely used host-FPGA
interface for high-performance applications. However, existing
frameworks for host-FPGA PCle communication have several
limitations, including lack of portability and poor upstream
support. Native VirtlO drivers in the host operating system can
address many of these limitations on the host side. A complete
VirtlO-based solution, however, also requires new support on
the device side. In previous work, a general framework was
proposed that requires little additional programming effort per
new device. Although VirtIO drivers could provide an attractive
alternative to vendor-provided device drivers, their performance
when interacting directly with physical devices has not been
explored.

Given that VirtlO drivers are designed targeting virtual
devices, it is critical to investigate whether they perform at an
acceptable level when handling physical devices. In this work,
we compare the performance of VirtlO device drivers to vendor-
provided device drivers in terms of communication latency and
latency distribution and show VirtlIO drivers provide similar
or slightly improved performance with reduced variance. To
facilitate our analysis, we also extend prior work in implementing
support for VirtlO network devices on FPGAs. The overall
significance of this work is that it demonstrates the feasibility
of replacing the vast space of legacy device drivers with the
VirtlO drivers already native to the host OS.

I. INTRODUCTION

FPGAs are used as complexity offload devices for CPUs.
Their inherent flexibility, combined with tight coupling of
communication and computation, allow FPGAs to be used
in a vast number of use cases where they are preferred to
other accelerators such as GPUs. For instance, FPGAs are
used to accelerate user and system applications, implement
networking functions to process data at line rates, perform
system administration in clouds, and provide secure enclaves
with hardware isolation, and a myriad of other tasks [1]-
[8]. To unleash the full potential of FPGAs as complexity
offload devices, however, the host-FPGA connectivity must
provide a reliable, robust, and uniform interface and implement
a required set of features and protocols.

Typically, high-end FPGA devices targeting high-
performance applications use PCle [9] for host-FPGA
connectivity. There are several limitations in existing
frameworks: They are almost always vendor- and device-
specific and lack portability. On the device side, the lack of
portability stems from the use of vendor-provided IP cores
and the underlying hardened ASIC blocks that implement
the PCle physical and link layer functions. FPGA devices

from different vendors, or even different device families from
the same vendor, may use different ASIC components; as a
consequence, there are often inconsistencies in the features
supported and the APIs exposed to user logic. What this
means for the FPGA developer is that a design targeting
a particular device cannot be ported to a different device
without incurring significant engineering overhead.

On the host side, lack of portability and (invariably) poor
maintenance are major limitations. These difficulties in main-
taining device drivers for FPGAs stem from the lack of generic
device drivers and the large space of drivers created by product
developers and end users. The variations in capabilities and
functionality across devices force the device drivers also to be
device-specific. While this is an issue for all device drivers,
FPGAs differ from other accelerators due to their flexibility:
this adds another dimension to the already large space of
FPGA device drivers. Since the same device can be used to
implement applications with drastically different semantics,
and deployed in different contexts, different device drivers
are designed to accommodate these variations. For instance,
a GPU is always used as a GPU and the interlocutor does
not need to interact with the device as something other than
a GPU. This allows a GPU vendor to provide generic device
drivers to support all of their products.

In contrast, the same FPGA could be used to implement a
Cryptographic accelerator, a storage accelerator, a SmartNIC,
or a myriad of other applications, each with its own semantics.
This flexibility makes it impossible for FPGA vendors to
provide device drivers that can accommodate all potential use
cases. Thus, FPGA vendors typically provide reference drivers
for use as is, or as the starting point for a custom driver
that satisfies the specific user requirements. The alternative
to writing a new driver is to lift the device semantics to the
application level, which is more likely to be sub-optimal.

With this vast space of device drivers, and most of the
work on device drivers being done downstream, maintaining
them becomes the responsibility of the FPGA designers or
end users. Device drivers need to be updated whenever the
kernel APIs used are updated. New mainline Linux kernels
are released every 9-10 weeks [10]. Red Hat Enterprise Linux
OS follows a 6-month release cycle [11]. Other popular Linux
operating systems such as Ubuntu and Fedora follow similar
release cycles. While not every kernel update or OS release
may require driver updates, there is still that possibility.

As a concrete example, the XDMA device driver [12], used
in the experimental setup of this work, has had 71 lines of
code changed during the last year to support kernel updates.



These changes were made as a single commit to the repository.
However, we have updated the XDMA driver three times in
our testing during the last 1.5 years. This highlights how the
updates to vendor-provided drivers are lagging behind kernel
updates. In the case of large OEMs and cloud service providers
with their own drivers, a dedicated team is typically deployed;
for smaller ones, maintenance and updates invariably lag.
Both cases are extremely costly for some combination of
maintainers, developers, and end users.

The use of generic device drivers can significantly reduce
the space of custom FPGA device drivers for most use cases
and so reduce the maintenance overhead. VirtIO [13] is an
industry standard for I/O virtualization and is one possible
solution to the challenges posed by the use of vendor-provided
or user-developed device drivers. VirtlO is an abstraction
layer over a host’s devices for virtual machines running in
a paravirtualized hypervisor. VirtlO drivers access the host’s
devices via minimal virtual devices called VirtlO devices.
VirtlO devices only implement the bare necessities to enable
sending and receiving data. They represent generic device
types such as block devices, network adaptors, and consoles,
which differ from fully emulated devices where the details of
the physical device are replicated in software. In this work we
investigate repurposing VirtlO for actual physical devices.

Since there is native support for VirtlO in common host
operating systems—such as the Linux kernel—no additional
drivers need to be written/maintained, and APIs are mostly
consistent. VirtlO also supports feature negotiation, i.e., the
device and driver can use feature bits to determine the subset
of supported features to ensure compatibility. Moreover, there
are additional benefits of exposing the FPGA to the host as
a VirtlO device. For instance, it can reduce data copies and
latency in a virtualized environment through direct communi-
cation between the VirtlO driver running in guest kernel space
and the physical device, bypassing the host OS. Another major
benefit of using VirtIO device drivers with FPGAs is the ability
to use different device drivers, each with semantics matching
the type of accelerator implemented on the FPGA. This also
allows leveraging the operating system’s software stack for
certain common tasks instead of using the device driver or the
user-level application to do so. This is crucial since FPGAs
can be used to implement a large variety of functions, each
with its own semantics.

A previous study [14] demonstrated that it is possible to
use unmodified VirtlO drivers to communicate with FPGAs,
and provided a description of how to implement a VirtIO-
compliant interface on FPGAs. What is missing, however, is a
performance comparison of VirtlO drivers versus legacy FPGA
device drivers. This work remedies this lack with results at two
levels: first, standalone measurements, such as latency for data
transfers, and second, through real application performance.
The specific contributions of this work are as follows:

o Added support for more VirtlO device types.
o Compare the performance of VirtlO and vendor-provided
device drivers using round-trip average and tail latencies.

« Highlight the differences in device driver design, de-
vice/application semantics, and work allocation between
software and hardware that impact the driver performance
and our analysis.

« Demonstrate that replacing legacy drivers with VirtIO in
no case results in reduced performance, but rather can
even be beneficial, and often reduces variance.

The overall contribution is to demonstrate the viability of
VirtIO for Host-FPGA PCle communication.

II. BACKGROUND
A. VirtlO Device Drivers

VirtlO devices are virtual devices found in virtual en-
vironments. However, they appear as physical devices to
a guest within a virtual machine. According to the Vir-
tlIO specification, the purpose of VirtlO is to “provide a
straightforward, efficient, standard, extensible mechanism for
virtual devices, rather than boutique per-environment or per-
OS mechanisms” [13]. VirtIO devices therefore: (i) use normal
bus mechanisms for interrupts, DMA, etc., which are familiar
to device driver authors; (ii) use rings of descriptors for input
and output, which are carefully laid out to avoid effects from
both the device and the driver writing to the same cache
lines; (iii) make no assumptions regarding the environment
they operate in, beyond the type of bus to which a device is
connected; and (iv) include feature bits that allow the device
and the operating system to negotiate features supported and
used, enabling forward and backward compatibility.

The most basic VirtlO use-model is where an application
executing in the guest user space uses the VirtlO front-end
driver in the guest kernel space to interact with a virtual device
emulated by a host user-space application. The front-end driver
and the back-end device use queues named virtqueues to
communicate with each other. In paravirtualization, where
there is a physical device attached to the host machine, the
guest application can use VirtlO drivers. Here, a device-
specific legacy device driver runs in the host kernel space
to allow communication with the physical device. Additional
software is used to convert requests from the virtual back-end
device to the semantics of the legacy device driver. Figure 1
depicts the typical paravirtualization setup and how a VirtIO-
compliant interface on the FPGA can eliminate the need for
emulated backend VirtlO devices and vendor-provided (or
user-developed) device drivers specific to the given device.

B. Legacy Device Drivers

Due to significant differences among different FPGAs,
device drivers for FPGAs are specific to vendors and de-
vice families. FPGA vendors provide reference device drivers
compatible with different device families using similar PCle
IPs. For example, Xilinx provides two DMA IP reference
drivers [12] where the XDMA driver supports Xilinx Ultra-
Scale+, UltraScale, Virtex-7 XT, and 7 Series Gen2 devices,
while the QDMA driver supports UltraScale+ devices. End
users can modify these reference drivers to match the specific
requirements of their designs.
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Fig. 1. VirtIO interface on the FPGA eliminates the need for back-end VirtIO
devices and legacy device drivers.

FPGA vendors also provide runtime libraries, such as
Xilinx runtime library (XRT) [15] and Open Programmable
Acceleration Engine (OPAE) [16]. These provide simple APIs
for programming, data movement, and controlling the FPGA.
These runtime libraries are accompanied by FPGA shells and
kernel-space device drivers written to match the PCle IPs used
in the FPGA shells. These typically support a very limited set
of high-end FPGA devices and lack portability even across
devices from the same vendor.

C. Using VirtlO Drivers to Interact with Physical Devices

VirtlO device drivers are designed with virtual devices in
mind. But they use regular bus mechanisms to interact with
VirtlO devices. As a consequence, VirtlO device drivers cannot
differentiate between a virtual device and a physical device
as long as the physical device presents a VirtlO-compliant
interface. To do so, there are three main requirements: (i)
Announce the correct device and vendor IDs at the time of
device discovery and PCle bus enumeration; (ii) Implement
VirtlO configuration structures used for device initialization
and operation; and (iii) Add the VirtlO capabilities to the
device capability list.

The VirtlO configuration structures are implemented as
part of the control logic on the FPGA and are mapped to
one of the base address registers (BAR) of the device. The
VirtlO capabilities added to the device capability list help the
device driver locate the corresponding configuration structures.
Achieving items (i) and (iii) may require modifications to
the vendor-provided PCle IPs. Descriptions of the controller
implementation, modifications to the PCle IP, and alternative
implementation choices are provided in [14].

D. Related Work

The authors of [17] use VirtlO as the front-end driver
to decrease communication latency between software and
hardware when deploying multi-tenant FPGAs in Linux-based
cloud infrastructure. An FPGA virtualization framework where
VirtlO drivers are used as the front-end drivers is presented
in [18]. In both studies, the VirtlO drivers are not communicat-
ing directly with the FPGAs; rather, a legacy device driver in
the host kernel space is used to communicate with the FPGA
over PCle.

The only vendor-provided PCle IP core with VirtIO support
of which we are aware is the P-Tile Avalon Streaming Intel
FPGA 1P for PCle [19]. This IP allows each of the PCIe phys-
ical functions (PF) and virtual functions (VF) implemented on
the FPGA to have its own VirtlO configuration structures. A
soft IP implementing the VirtlO capability for PFs and VFs is
instantiated as a sub-IP when VirtIO is enabled; it also adds
the required VirtlO capabilities to the device capability list.

The Silicom C5010X Data Center FPGA IPU NIC [20] is
based on an Intel Stratix 10 DX FPGA. It can be deployed as a
VirtlO network or storage accelerator. Details are not available
regarding the IP cores used. However, the Intel P-Tile Avalon
Streaming PCle IP core discussed previously only supports
Stratix 10 DX and Intel Agilex FPGAs. Therefore, the same
PCle IP may be used in this product.

A custom PCle IP is used in [21] to implement VirtlO
support on an FPGA PCle endpoint. In contrast, the vendor-
provided PCle IP is modified in [14] to implement a VirtlO-
compliant interface on the FPGA and allow unmodified VirtIO
drivers to directly communicate with an FPGA. However, only
a VirtlO console device is implemented, and the performance
of VirtlO drivers is not explored.

There is a collection of prior work [22]-[29] focused
on enhancing the usability of FPGAs through FPGA shells,
implementing operating system-like abstractions on FPGAs,
automated composition of systems from custom processing
elements, FPGA virtualization and integrating into the host
operating systems thread/process abstraction, etc. However,
these works do not focus on the portability aspects of host-
FPGA communication and depend on vendor-provided or
custom device drivers PCle communication.

III. METHODS
A. Test case used: VirtlO Network device

In this work, we extend the implementation described
in [14] to implement a VirtlO network device. This design
uses the XDMA IP for PCle connectivity. A VirtlO controller
is placed between the XDMA IP and the user logic (as shown
in Figure 2). The VirtlO controller implements the virtqueue
functionality and controls the DMA engine of the XDMA IP.
The DMA engine moves data between the host memory and
the FPGA memory (BRAM or external DRAM). The VirtlO
controller uses an interface that follows the same semantics
as a virtqueue [13] to communicate with user logic. The user
logic can interact with RX and TX queues provided by the
VirtIO controller to send/receive data to/from the host.
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Fig. 2. VirtlO device architecture

Apart from data structures common to all VirtlO devices
such as common configuration and notification, a device spe-
cific data structure is required to function as a particular device
type. The device and the driver share information specific to
the given device type using this data structure. For instance,
the device specific data structure for a network device includes
details such as the MAC address, Maximum Transmission Unit
(MTU), and the types of hashes the device can calculate if
the hash calculations for the incoming packets is offloaded
to the device. The main modification to the design presented
in [14] (to implement a VirtIO network device) is to implement
the device-specific data structure. Depending on the features
negotiated with the device driver, the device may also require
a control queue apart from the RX and TX queues. However,
no modifications are necessary to the VirtlO controller as the
design already supports a variable number of queues.

When used as a network device, the FPGA receives Ethernet
frames from the host. Depending on the features negotiated
with the host during device initialization, the FPGA could
either send out a received Ethernet frame as is or perform
additional tasks on behalf of the host, e.g., a checksum cal-
culation. Apart from offloading network functions, the FPGA
can act as a SmartNIC onto which application-level tasks such
as [30] can be offloaded. To enable application offloading to
be done independently of the VirtlO drivers, we have (here)
implemented an additional interface on the VirtlO controller
that allows the user logic to request data transfers to/from host
memory bypassing the VirtlO driver.

B. Experimental Setup

A Xilinx Artix-7 based Alinx AX7A200 PClIe development
board (FPGA device number XC7A200TFBG484-2) is used
as the target device. This board supports two PCle Gen 2
lanes. The PCle IP used on the FPGA is Xilinx DMA/Bridge
Subsystem for PCI Express (XDMA) [31]. The host machine
is running the Fedora 37 operating system.

1) Testing VirtlO Drivers: We use the VirtlO network de-
vice implementation described in Section III-A to evaluate the
performance of VirtlO device drivers when directly interacting
with physical devices. This means that the host operating

system recognizes and treats the FPGA as a NIC. The user
space test application uses the C socket programming API to
send packets to the FPGA. Entries are added to the operating
system’s routing table and ARP cache to facilitate routing
packets from the test application to the FPGA.

2) Testing Vendor-Provided Device Drivers: An example
design provided by Xilinx to demonstrate the XDMA IP core
is used to test the reference device driver [12]. This design
does not include any user logic; a BRAM is connected directly
to an AXI memory-mapped interface of the PCle IP, which
enables the DMA engine to write/read to/from the BRAM.
Minor modifications were made to change the width of the
memory to match that used in the VirtlO design. This ensures
the DMA engine can move data to and from FPGA memory
at the same rate.

3) Metrics and Applications: The primary metric used to
compare the different device drivers is the round-trip latency
to move data to and from the FPGA. Since each FPGA design
uses the same PCle IP, and hence the same DMA engine, we
expect the time taken by the DMA engine to move the same
amount of data between the host and FPGA to be similar
regardless of the device driver used. However, the time taken
by the device driver to program the DMA engine and start
the data movement can vary depending on design decisions
made by the author of the device driver. We therefore infer
that the device drivers themselves are largely responsible for
any differences in data movement latency between the host
and the FPGA. However, noise introduced by background
processes executing on the host machine can also impact both
the actual latency and any measurements made on the host
side. Therefore, we have ensured that no other applications,
except the test application, are running during the experiments.
Each test consists of 50,000 packets for each payload size.

For time measurements, the test applications use the
clock_gettime() function with the CLOCK_MONOTONIC
option. For the system on which the tests were run, the timer
resolution is 1ns. The PCle IP and the VirtlO controller both
include hardware performance counters to measure latency be-
tween different events on the FPGA. The FPGA designs used
for testing are running at 125MHz. Therefore, the hardware
performance counters provide a resolution of 8ns.

IV. CHALLENGES, WORKAROUNDS, AND ASSUMPTIONS

Standalone latency measurements do not provide a complete
picture of the performance of a real application implemented
on the FPGA. There are several challenges in comparing the
latencies of the two device drivers. Most of these arise from:

1) differences in design philosophies,
2) semantic differences in how the drivers are used, and
3) differences between the FPGA designs used for testing.

In the next three subsections, we first discuss these challenges
and then describe the workarounds used, and assumptions
made, to ensure fair and accurate comparisons.



A. Differences in device driver design

The XDMA driver is designed for a specific device and
therefore includes many device-specific details such as the
register space of the DMA engine and the descriptor format
accepted by the particular DMA engine. It operates as a
character device. At the most basic level, a user application can
use the I/O system calls read(), and write() to move data
between a buffer in the host memory and FPGA memory. The
device driver then configures the DMA engine and initiates
the DMA transfer.

The VirtlO drivers, however, are intended to target vir-
tual devices, so their design does not take into account the
existence of, or the necessity to program, a DMA engine.
With VirtlO drivers, the back-end device, usually emulated by
the host, is responsible for moving data between the buffers
allocated by the front-end driver and itself. When VirtlO
drivers are used to interact with physical devices, those devices
become responsible for data movement to/from host memory.
The finite state machine to control the DMA engine of the
PCle IP is part of the VirtlO controller (as shown in Figure 2).

The information required to program the DMA engine needs
to be exchanged between the device driver and the device
before initiating a DMA transfer. A major difference between
the VirtlO and typical FPGA device drivers is when this
information exchange takes place. When initiating a DMA
transfer, the device driver creates one or more descriptors
to provide the DMA engine with the source and destination
addresses, buffer sizes, and any other control bits necessary.
Depending on the capabilities of the DMA engine on the
device, the driver can either provide a single descriptor at
a time or an address for a descriptor table in host memory
whence the DMA engine can fetch descriptors. Alternatively
using the same descriptor table for all transactions and sharing
the table address only at device initialization reduces overhead.

VirtlO drivers follow a different design philosophy in shar-
ing information with the back-end devices. The driver shares
the addresses of all the data structures necessary for virtqueue
operation during device initialization. Therefore, to start a
host-to-card (H2C) data transfer, only a notification using a
single I/O write is needed at runtime. The device then accesses
the data structures in host memory to determine how many new
buffers were exposed by the driver and fetch buffer descriptors
which it uses to perform data movement.

The differences are more pronounced with card-to-host
(C2H) transfers. With the XDMA driver, the device interrupts
the driver when it has data to be moved to the host memory.
The user application uses a system call such as poll() to
monitor the device file for interrupts and issues a read() call
to initiate data movement. However, since a VirtIO device is
aware of the location of all the necessary data structures in
host memory, it can identify an available buffer and perform
data movement before interrupting the driver.

These differences are inherent to the design of the two types
of device drivers and we do not need to make adjustments to
the latency measurements to account for them.

B. Differences in Device/application semantics

The second major difference between the VirtlO
and vendor-provided device drivers is the semantics
involved.VirtIO drivers come in different flavors to match
different devices such as network devices, block devices, and
many others [13].

The fundamentals of the VirtlO interface on the FPGA
do not change based on the type of device implemented.
Only the minimum number of queues and the device-specific
configuration structure change across device types. Therefore,
the modifications required to the FPGA design to support
different device types are minimal. The main benefit of using
semantics specific to different devices is the ability to leverage
the host software stack for tasks that otherwise would have to
be implemented in the user application.

For instance, assume that a user implements a SmartNIC
using an FPGA. When using the VirtIO network device driver,
the FPGA appears as a network interface card for the host
OS. This means that a user application can use the host OS’s
network stack to send packets to the FPGA SmartNIC. In
contrast, the vendor-provided XDMA device driver acts as a
character device regardless of the application implemented on
the FPGA. Therefore, to implement the SmartNIC, a user must
either generate packets in the user application before using the
device driver to move the generated packets to the FPGA, or
write a new device driver that behaves like a network device.

This study uses a VirtlO network device to highlight the
semantic differences described above. When using the VirtIO
driver, the test program sends UDP packets to the FPGA using
the C socket API. The user logic on the FPGA responds with
a UDP packet of the same size. The test program measures
the round-trip latency. Since the XDMA driver is a character
device, the test program for the vendor-provided driver simply
moves the same amount of data to the FPGA and back, and
measures the round-trip time. Alternatively, it is possible to
make the XDMA test program generate a packet before issuing
awrite() system call to move data to the FPGA. However,
we have opted not to as the latencies recorded are similar
despite the additional overheads associated with the VirtlO
test case, e.g., generating packets and calculating checksums.

Hardware performance counters on the FPGA are used to
measure the time taken by the hardware to perform the DMA
operation once a notification is received. These times can be
deducted from the latency measured by the test program to
estimate the latency introduced by the software stack. For the
VirtlO test, the time to generate the response packet is also
deducted from the latency measurement since it is not relevant
to the data movement latency. The buffer sizes for the VirtlO
test program are set to ensure that the amount of data moved
over the PCle link to the FPGA is the same in both VirtlO
and XDMA tests taking into account the protocol headers.

C. FPGA design

The FPGA designs used to test the two drivers differ in
several ways. The difference that impacts the comparison the
most is that the XDMA example design does not include user



logic to generate interrupts for C2H data transfers. Therefore,
the test application performs back-to-back H2C and C2H
transfers without waiting for an interrupt from the device.
This discounts the latency incurred by the XDMA driver
to receive and handle two interrupts and underestimates the
latency introduced by the XDMA driver in a real use case.
While the vendor does provide another example design which
includes logic to generate user interrupts for C2H transfers,
this design generates the interrupts in response to an I/O
write to the device. Since this introduces additional latency
unnecessary for a real use case, this design is not considered.
The final alternative is to implement a new design that receives
data, monitors the DMA engine’s status signals, and generates
an interrupt when the H2C transfer is complete. This approach
was not taken because that would increase the latency for the
XDMA driver and the latency measurements for the two device
drivers are comparable even with the favorable setup for the
legacy driver.

V. EVALUATION

This section presents and analyzes the results of the ex-
periments described in Section III-B. Figure 3 summarizes
the round trip latency distribution for different payloads when
using VirtlO and vendor-provided XDMA device drivers. The
payload varies between 64 Bytes and 1 KB. The payload sizes
are selected such that the total latency is not dominated by the
bus transactions and the effects of the drivers and the rest of
the software stack are observable. The results show that the
VirtlO driver provides performance comparable to the vendor-
provided device driver despite the unfavorable experimental
setup. Also, the VirtlO results show much lower variance.
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Fig. 3. Round-trip latency with VirtlO and vendor-provided device drivers.

Figure 4 presents a breakdown of the average round-trip
latency for the VirtlO driver. The error bars represent the
standard deviation. This shows that the time taken by the hard-
ware to perform the DMA operations has minimal variance.
Therefore, we can infer that the software stack is responsible
for the majority of the variance in latency. It is also worth

noting that the average latency for the software stack remains
virtually constant throughout the range of payloads considered.

Figure 5 presents the same latency breakdown for the
XDMA driver. An interesting distinction between the two
latency breakdowns is that the time taken by the hardware
is higher than the time for software with the VirtlO driver and
vice versa with the XDMA driver. In the VirtlO use model,
the back-end device performs data movement and does most
of the work. In this scenario, the FPGA is the back-end VirtIO
device. Therefore, it makes sense that the hardware performs
more work when using the VirtIO driver. This difference could
also explain the lower variance in the VirtlO latencies. As the
variance in hardware latency is minimal, the setup that offloads
more tasks to the hardware results in lower overall variance.
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Fig. 5. Data movement latency breakdown with the vendor-provided driver.

Table I presents tail latencies for data movement with the
two device drivers at different payloads. VirtlO shows lower
tail latencies at 95 and 99 percentiles. However, there isn’t a
significant difference when we approach 99.9% tail latency.



TABLE I
TAIL LATENCIES FOR DATA MOVEMENT WITH VIRTIO AND XDMA.

Payload 95% (us) 99% tail latency (us) 99.9% (us)
(Bytes) VirtlO | XDMA | VirtlO XDMA VirtlO | XDMA
64 35.1 51.3 44.8 70.1 66.5 85.8
128 33.6 51.4 48.1 60.0 88.4 88.2
256 39.6 51.5 53.8 57.5 75.1 70.6
512 44.1 59.1 57.4 64.5 82.1 87.5
1024 57.8 72.8 65.9 76.7 99.6 97.3

Our overall recommendation is as follows. For highly opti-
mized applications with highly optimized software where low
variance and tail latencies are critical, it is better to use a
custom device driver. With such stringent requirements, the
application is likely sufficiently important to be worth the
additional cost of maintaining the driver. For all other everyday
applications, however, VirtlO is preferred to vendor-provided
reference drivers (including with possible minor changes).

VI. CONCLUSION

In this work, we have demonstrated that it is possible to
replace vendor-provided or user-developed device drivers for
FPGAs with generic in-kernel VirtlO drivers. The potential
consequence is to significantly reduce the vast space of device-
specific and custom FPGA device drivers. The performance
analysis shows that in no case was the performance affected
and in most cases it was marginally improved with reduced
variance in data movement latency. However, the comparison
was performed against a vendor-provided reference driver and
a user could implement further optimized drivers based on it.

We now summarize the benefits of the proposed approach:
1) Using VirtIO drivers eliminates the requirement to write and
maintain device drivers for FPGAs; 2) VirtlO drivers provide
comparable performance to vendor-provided drivers; 3) VirtIO
drivers make it easier to implement different types of devices
and leverage the host OS’s software stack for different tasks
that otherwise would have to be implemented by the user
application, probably with a loss of efficiency.

In conclusion, we recommend using custom drivers only for
applications with strict performance requirements that far sur-
pass the capabilities of vendor-provided reference drivers. For
all other everyday applications, however, VirtlO is preferred
to vendor-provided reference drivers to alleviate the overhead
of maintaining device drivers.

We are currently in the process of performing the same ex-
periments on different FPGA devices (different device families
and from different vendors) and on different operating systems
to demonstrate the portability of the proposed approach on
both the device and host side.

This work is part of a bigger effort to enhance the usability
of FPGAs through the automated generation of hardware
operating systems using a specification of user requirements
and component libraries as inputs. The generator is called
the “Dynamic Infrastructure Services Layer” (DISL), which
generates a layer of hardware implementing services such

as memory, I/O, and host interfaces to be used by a user
application implemented on the FPGA.
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