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Abstract—Sequence alignment based on dynamic program-
ming, e.g., Smith-Waterman (SW), remains central to bioinfor-
matics both in various standalone scenarios and as a function
in other critical bioinformatics tasks. Much work has been
done in optimizing SW for various accelerators; CPU-based
platforms, however, are possibly still the most accessible com-
putational resource for bioinformatics and our focus here. CPU
acceleration necessarily involves applying vector extensions; a
recent CPU/SW study resulted in the creation of an extensive
autotuning framework. We add to this corpus a number of
contributions: (i) a new optimization based on a novel mapping of
the scoring matrix together with interleaving data coming from
the substitution matrix; (ii) an implementation that combines
disjoint optimizations from previous studies; (iii) a variable
(8/16) bit width implementation; (iv) a finding of the benefits of
learned compiler hyperparameters; (v) performance comparisons
with respect to different usage scenarios; and (vi) a results
showing that, despite appearing memory bound, multicore SW
remains CPU bound. Among the most significant findings are that
for protein alignments these approaches result in performance
superior to that of the Parasail library’s approaches, with
the added benefit of determinism and robustness. Versus the
deterministic Parasail+diag the improvement is 3.9×; versus the
non-deterministic Parasail+scan and Parasail+striped, it is 1.9×
and 1.5×, respectively.

Index Terms—Smith-Waterman, Sequence Alignment, Intel
Intrinsics, Vector Extensions

I. INTRODUCTION

Bioinformatics relies on efficient and accurate sequence

alignment to extract valuable insights from the ever-growing

volumes of biological sequence data [1]. Smith-Waterman

algorithm (SW) offers a provably optimal method of pro-

viding high sensitivity and precision with a computational

complexity of O(nm) where n and m are the database and

query size, respectively. However, aligning large-scale datasets

poses computational challenges that necessitate the use of

high performance methods [2]. This is especially true in many

application, such as multiple sequence alignment and genome

sequencing, where SW is invoked repeatedly. Research has

been rich with respect to the use of GPUs (e.g., [3]–[5]) and

FPGAs (e.g., [6]–[9]).

The day-to-day workhorses, however, for thousands of

bioinformatics practitioners remain workstation CPUs and

CPU clusters [10], [11]. Continuing recent advances in se-

quence alignment using vector intrinsics (e.g., [12]), we ex-

plore further enhancements in SW/CPU for protein sequence

alignment in the evolving computational landscape. In addi-

tion, a further question is investigated: with the increase in

CPU compute capabilities, has SW transitioned from being

compute-bound to memory-bound (as in [13])?

This work has the following contributions and innovations.

Enhanced Alignment Kernel: At the core of this paper is

the refinement of the alignment kernel, which is crucial for the

performance improvement obtained. One aspect is the redesign

of the data memory layout so that it is optimized to align

effectively with current CPU memory hierarchies, an approach

previously applied for GPUs [14]. A further aspect is that the

kernel mixes interleaving and wavefront approaches.

Compiler Hyperparameter Optimization: Complementing

the kernel enhancement, we delve into compiler hyperparam-

eter optimization. This approach exploits compiler settings to

enhance kernel performance, demonstrating significant gains

in computational efficiency.

Memory and Microarchitecture Analysis: Extending pre-

vious research, we include an analysis of recent advances in

memory technologies and their impact on sequence alignment.

This analysis offers strategies for overcoming memory-related

challenges through hardware-software co-design.

Client-Specific SW Algorithm Variations: Addressing di-

verse client needs, we introduce algorithmic variations opti-

mized for different operational contexts, from high-throughput

to memory-limited environments.

Comprehensive Portability Analysis: A detailed analysis

of the methodologies’ adaptability across various platforms

is presented, showcasing the practical applicability of the

proposed improvements.

Among the most significant findings is that these ap-

proaches result in performance comparable, or superior to,

performance of the Parasail library’s approaches, but with the

benefit of determinism and robustness. Versus the determin-

istic Parasail+diag the improvement is 3.9×; versus the non-

deterministic Parasail+scan and Parasail+striped, it is 1.9× and

1.5×, respectively.

II. BACKGROUND

A. DNA vs Protein alignment

In bioinformatics, understanding the key differences be-

tween protein and DNA alignments is crucial. Protein align-

ments involve sequences of 20 different amino acids. The

lengths are highly variable, extending from a few dozen to

thousands of amino acids, necessitating flexible alignment

strategies. For protein alignments, scoring matrices like BLO-

SUM or PAM are typically used [15]. On the other hand, DNA

alignments, though dealing with just four nucleotides (adenine,

561

2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

979-8-3503-6460-6/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPSW63119.2024.00113

20
24

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g 
Sy

m
po

siu
m

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
79

-8
-3

50
3-

64
60

-6
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IP

DP
SW

63
11

9.
20

24
.0

01
13

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 30,2025 at 18:25:58 UTC from IEEE Xplore.  Restrictions apply. 



thymine, cytosine, and guanine), confront the challenge of

managing extremely long sequences, particularly in eukaryotes

where genomes can span billions of base pairs. DNA align-

ments employ simpler scoring matrices. The choice between

affine and linear gap penalties depends on the alignment task:

protein alignments commonly use affine gap penalties to better

reflect the significant impact of gaps in protein structures,

while DNA alignments use either affine or linear gap models,

tailored to the sequence characteristics [16].

B. Smith-Waterman

In this study, we implement the affine gap penalty model

using a modified Smith-Waterman algorithm [12]. The model

employs two auxiliary arrays, F and E, to effectively manage

gap penalties, with F being of the same size as the database

sequence for storing horizontal gap penalties, and E corre-

sponding to the query sequence for vertical gap penalties. This

approach is specifically designed to handle the complexity of

affine gap penalties, where the cost of opening a gap is differ-

ent from extending it. Equation (1) shows the implementation.

H(i, j) = max{0, H(i− 1, j − 1) + S[q(i− 1), r(j − 1)]}
H(i, j) = max{H(i, j), F [j], E[i]}

F [j] = max{F [j] + e,H(i, j) + o}
E[i] = max{E[i] + e,H(i, j) + o} (1)

After completing the construction of the matrix H , which

captures the optimal scoring of subsequence alignments, the

traceback process determines the best-aligned subsequences.

This phase traverses the matrix H from the highest-scoring

cell (local alignment), or from the bottom-right cell (global

alignments). This step is computationally demanding, as it

requires both additional memory to store the traceback matrix

and additional processing to interpret the traceback path [17].

C. Smith-Waterman Usage Scenarios

SW is adaptable across various usage scenarios, with differ-

ent data set assumptions. In particular, different studies have

made different usage assumptions, which sometimes leads to

difficulty in making direct comparisons.

Scenario 1: Single Query versus Database. For protein

queries it is likely that the query resides in the highest level

of storage; the database is streamed with little reuse.

Scenario 2: Batch of Queries versus Database. Multiple

query sequences are aligned against a database, either from a

single client or multiple clients batched in a shared resource.

This scenario becomes a many-to-many problem with much

potential data reuse.

Scenario 3: SW as a Subroutine. Here SW is often applied

to aligning small query sequences against a small database,

as demonstrated by the SSW Library for optimal protein or

genome sequence alignment [10]. There is substantial reuse

and the working set often fits in the highest level memory.

Fig. 1: Different vectorization approaches.

D. Data parallelism and SIMD instructions

A key step in SW is constructing and traversing a similarity

matrix. This matrix, typically denoted as H , is filled following

the dependencies between its elements. Each cell Hi,j depends

on its neighboring cells: Hi−1,j , Hi,j−1, and Hi−1,j−1.

Researchers have developed several ways to fill in the

similarity matrix [18]. Fig. 1 illustrates four such methods. In

method (a), the matrix is filled diagonally, with each lane of the

vector working on one element of the diagonal at a time [19].

This method is a classic way of resolving dependencies. In

method (b), every lane of the vector is responsible for building

a separate similarity matrix for different a pair of sequences,

which also avoids dependency problems altogether [20]. The

other two methods shown, (c) and (d), do face dependency

challenges, but researchers have come up with clever solutions

for these with some correction loops. In method (c), each

vector is in charge of a portion of the query sequence [21],

while in method (d), each lane of a vector processes a different

part of the query sequence [22].

We chose method (a) for our project because it doesn’t

have the issue of dependencies, and it helps build a robust

and deterministic implementation of SW. Also, Using this

approach improves the locality, which is important for larger

sequences, since the current vector will be reused as the

diagonal neighbor of the previous vector. In the next section,

we’ll describe how we implemented this method effectively.

E. Compiler Hyperparameters

Compiler hyperparameters, set before compilation, direct

the compiler in code optimization. They include optimization

levels, which determine the degree of code optimization [23];

memory management parameters, which guide how the com-

piler allocates and utilizes memory; and instruction scheduling,

which involves the ordering of machine code instructions.

Properly configured hyperparameters can lead to significant

enhancements in execution speed, memory efficiency, and

overall computational resource management [24].

III. IMPROVED ALIGNMENT KERNEL

This section presents the development and optimization of

the kernel. Sequence alignment demands both precision and
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Fig. 2: Diagonal-based linearization of the memory improves

access and results in better spatial locality.

efficiency. We introduce several heuristic techniques specifi-

cally designed to address common challenges.

A. Diagonal-Based Memory Indexing

We depart from the traditional row-based traversal of the

alignment matrix, opting instead for a diagonal-based method.

This shift in traversal strategy, as illustrated in Fig. 2, yields

significant benefits. By traversing the matrix diagonally, we

align the memory access pattern with the diagonal filling

order. This means that, as the matrix is being filled, we

access and fill elements that are consecutive in memory along

each diagonal. This arrangement optimizes spatial locality, as

elements that are logically adjacent in the alignment are also

physically adjacent in memory. Also, it improves temporal

locality, since each row will be used for updating the next

row. The advantage of this setup is twofold: it reduces the

number of memory accesses and enhances processing speed.

Additionally, diagonal-based traversal is more aligned with the

inherent flow of sequence alignment calculations due to the

natural data dependencies between different elements.

Fig. 2 shows the diagonal-based indexing with its advanta-

geous arrangement of elements in memory.

B. Handling Variable-Length Diagonal Segments

One of the challenges in implementing the diagonal ap-

proach for sequence alignment is dealing with segments of

the matrix diagonal that are shorter than the number of lanes

in the vector. Our solution involves using zero-padding for the

unused lanes in these segments. For small segments, we revert

to standard CPU instructions. A crucial point is that it enables

the computation of as many cells as possible at a given time.

While this means that the highest capacity of the CPU is not

always fully harnessed, this is a limitation stemming from the

nature of the problem itself and only affects a minor portion

of the computations, roughly around 15%. This balance is

essential for optimizing performance within the constraints of

the alignment problem. Fig. 3 shows how some segments are

smaller than the size of the array and pinpoints where in the

process the zero padding occurs.

C. Enhanced Substitution Matrix Utilization

In this work, the substitution matrix is reorganized by

reordering its columns and rows and adding extra ones for

characters that don’t represent an amino acid. This reorgani-

zation aids in efficient data retrieval using the gather vector

instructions of AVX2. Fig. 4 demonstrates this process of

transforming characters into indices for accessing the substi-

tution matrix.

Fig. 3: Vector assignment of different segments of the simi-

larity matrix. Yellow sections need padding with zeros.

Fig. 4: Index calculation of the substitution matrix for gather

instruction. Each character is an index to access the matrix.

Although this approach can be useful for 32-bit and 16-

bit implementations, the performance degrades with 8-bits. To

address this issue, a query profile is made before computing

the alignment. The query profile contains the possible score

for each query residue. For the sake of a good alignment in

memory (as described above) the substitution matrix has 32

residues in each row, which fits exactly into 256 bits and can

be read with a single AVX instruction.

In addition to the query profile, which is made at runtime,

the database can be organized for more efficient access. This

is done once, offline. The database sequences are stored in

batches containing 32 transposed sequences, i.e., 32 for the

number of lanes in AVX2 when using 8-bit integers. This

enables the immediate use of AVX shuffling instructions. As

shown in Figure 5, each adjacent transposed residue represents

a residue from a different sequence. Then for every batch we

compute the score once and store it in a scratch buffer. At this

point, there are numerous ways to tune the kernel depending

on cache parameters.

In computing the maximum score, the local maximum for

each vector lane is stored. A reduction using shift operations

on the matrix is then employed to find the overall maximum

score. This approach not only simplifies the calculation, but

also improves the use of vector processing capabilities.

D. Maximum Score Calculation

During sequence alignment, determining the maximum

alignment score is a crucial yet computationally expensive

task. Calculating the maximum score after computing the

scores along each diagonal would require a reduction operation

on a vector. Such operations, especially when performed fre-

quently, can be costly: while AVX512 does offer instructions

for this purpose, it is limited in the size of integers it can

handle and is not fast. To optimize this process and minimize

computational overhead, we have adopted a strategy of storing

the local maxima of each lane in a separate vector. This

approach allows us to defer the computationally intensive task
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Fig. 5: Extracting scores from the substitution matrix based

on query and batch of database sequences

of finding the global maximum score until the end of the

computation.

E. Hyperparameter Tuning in Compiler Optimization

Besides code optimization, we also investigated improving

SW performance through tuning of compiler hyperparameters

using an evolutionary algorithm. This method diverges from

traditional software tuning techniques, leveraging the princi-

ples of natural selection to evolve a population of potential

solutions over time. Such an approach is particularly suited

for dynamic and adaptive optimization, where traditional de-

terministic methods might fall short.

IV. RESULTS AND DISCUSSION

This section presents findings and analyses. It encompasses

a detailed examination of SIMD length choices, various design

implementations, compiler hyperparameter optimizations, and

assessments of memory and microarchitecture. The results

are further augmented by investigating three specific usage

scenarios of the Smith-Waterman algorithm and a comparative

analysis with the Parasail library.

A. Methodology

Processors: Our study utilized four Intel architectures: Intel

Haswell E5-2660 (8 core), Intel Broadwell E5-2680 (14 core)

for baseline performance, and Intel Skylake Gold 6132 (16

core), Intel Cascadelake Gold 6242 (16 core) for advanced

processing capabilities. For memory analysis, we used the Intel

Alderlake i9-12900HK (10 core).

Dataset and Queries: We used the protein

UniProtKB/Swiss-Prot [25] dataset. For queries, we randomly

selected 10 proteins from this dataset with a range of lengths.

The reason for this limited number (used, e.g., [22]) is that

the execution is deterministic with respect to query size and

only behaviors related to size need to be measured.

Compilation: The code, designed with macro definitions

for flexibility, was compiled using GCC version 11.2.0 with

-O3 optimization.

B. AVX512 versus AVX2

We focused on two of the newer (but not the latest) Intel

architectures to compare the performance implications of using

AVX 512, a deprecated version of AVX. As indicated in Fig.

6, use of AVX512 did not result in a significantly enhanced

performance as initially anticipated. Despite expectations of

double the performance of AVX2, the results did not align

with these projections. This discrepancy led us to continue our

analyses primarily with AVX2, which not only is the current

version of AVX in newer Intel CPUs, but also offers com-

patibility with older architectures. This choice was guided by

the relative performance benefits and the broader applicability

of AVX2 across various hardware platforms, ensuring a more

generalizable and practical approach.

C. Design Choices Based on Client Needs

Effect of Affine Gap Penalty: Incorporating affine gap

penalties did not result in a noticeable performance drop as

shown in Fig. 7. This finding is significant as it suggests

that the added complexity of an affine gap model, which is

generally expected to be computationally more intensive, does

not necessarily compromise performance.

Traceback Functionality: The integration of traceback

functionality, while necessitating the storage of extensive

information in memory for backtracking, surprisingly did not

degrade performance (as shown in Fig. 8). This includes

recording from which cell (up, left, or diagonal) a particular

cell was updated. The ability to maintain performance despite

the additional memory requirements suggests an effective

utilization of memory resources. This finding is particularly

relevant for applications where detailed alignment histories are

crucial, as it demonstrates that incorporating traceback does

not come at the cost of reduced processing speed.

Impact of Substitution Matrix: The implementation of a

substitution matrix significantly impacted performance com-

pared to the case with fixed alignment scores, primarily leading

to a core-bound scenario due to extensive shuffling and register

reads as depicted in Fig. 9. The utilization of Intel’s gather

function, although not exceptionally fast, played a key role

in this aspect. Despite these challenges, the performance

was reasonably good, especially for smaller-sized queries,

which are more common in protein datasets. This highlights a

crucial trade-off between the complexity of matrix operations

and the accuracy benefits it brings, particularly relevant for

applications where query size varies.

Previously the performance of the 8-bit version was de-

graded (versus the 16-bit version) because there is no 8-bit

gather in Intel. The new approach, presented in the previous

section and used here, alleviates this problem and the perfor-

mance is now comparable.

D. Compiler Hyperparameter Optimization and Its Impact

Inspired by the genetic algorithm, we employed a random

initialization to grow a population that evolves randomly into a

new one. Within each population, we select the best possible

solution to maximize the real-time performance of the SW
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Fig. 6: Performance evaluation for AVX 256 vs AVX 512 on different architectures for 10 different protein queries

Fig. 7: Performance for designs with and without affine gap penalty on different architectures for 10 different proteins

implementation. This method allows us to fine-tune the GCC

parameters over several iterations, further optimizing our SW

implementation. We start with a random initialized population

of hyperparameter values (all those provided by GCC). Each

hyperparameter then evolves within its particular allowable

set of values. Each new population is evaluated and the best

is selected for the final selection. Since this approach is not

guaranteed to find the best solution the results and the fine-

tuned versions of the program might vary. This variability

is influenced by several factors, including the datasets used

and the specific tuning materials applied. As illustrated in

Fig. 10, this approach led to improvements in performance

across almost all architectures. However, it’s noteworthy that

some architectures exhibited significantly better enhancements

compared to others.

Moreover, the size of the query emerged as a crucial factor

affecting performance. Our analysis revealed that tuning could

substantially improve performance for certain query sizes. This

indicates that the effectiveness of hyperparameter optimization

is not uniform across different scenarios; rather, it is highly

dependent on specific conditions such as architecture and

query size.
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Fig. 8: Performance for designs with and without traceback on different architectures for 10 different proteins

Fig. 9: Performance for designs with and without substitution matrix on different architectures for 10 different proteins

This variability underscores the complexity of achieving

optimal performance and highlights the importance of context-

specific tuning in sequence alignment applications. It also

suggests that while general improvements are attainable, max-

imizing efficiency requires careful consideration of the unique

characteristics of each use case.

E. Multi-Threading and Scalability Analysis
Given that SW is both a batch application and that per-

formance per core degrades with the number of cores, our

hypothesis was that this was due to memory contention. We

found rather that it was due to variations in operating fre-

quency. A microbenchmark specifically designed for analyzing

CPU frequency revealed that the frequency is not consistently

stable in multi-core mode. This variability led us to recalibrate

our performance metrics, particularly for the single-threaded

version, to take into account the frequency drop during multi-

core operations.
As demonstrated in Fig. 11, this recalibration was crucial,

especially in the case of hyperthreading and full-core utiliza-

Fig. 10: Performance improvement after hyperparameter tun-

ing for different architectures

tion. For larger queries, which rely heavily on AVX2 compu-

tations, the performance closely matched our projections. This

was notably apparent in scenarios with hyperthreading across
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Fig. 11: Performance scaling using more threads for different architectures according to the number of cores

all cores, where we consistently observed high efficiency.

Furthermore, the effectiveness of hyperthreading in improv-

ing performance provides additional evidence supporting the

notion that our computation is not significantly limited by

memory. The ability of hyperthreading to efficiently manage

CPU resources and enhance throughput, especially in larger

query scenarios, suggests that the primary constraints are

related to CPU performance rather than memory capability.

This finding has important implications for our understand-

ing of SW’s performance limitations. With the CPU frequency

showing considerable variability and hyperthreading signifi-

cantly boosting performance, it becomes clear that the imple-

mentation is not currently constrained by memory. Instead, the

scalability and efficiency appear to be more influenced by the

interplay between CPU multi-threading capabilities, frequency

stability, and the strategic use of hyperthreading.

F. Microarchitecture Analysis Using Vtune Profiler

A microarchitectural investigation using the Vtune profiler

was used to reveal detailed behaviors within different sce-

narios, particularly those involving large queries. Although

smaller protein results, as shown in Fig. 12, were found to be

less reliable, the analysis with larger queries provided robust

insights.

Given its significant impact on performance, we focused

on scenarios with and without a substitution matrix. Notably,

in scenarios with a substitution matrix, the execution was

predominantly CPU bound. This was largely due to the core

limitations while executing gather instructions.

Moreover, our findings were further reinforced when ex-

amining scenarios where hyperthreading was employed, using

two threads per core. Here, we observed an increase in

efficiency, aligning with our earlier observations in the thread

scalability analysis. This efficiency boost is likely due to the

decreased backend-bound limitations, as the second thread

could progress while one was busy, thus reducing idle time

and enhancing overall throughput.

In both scenarios with and without the substitution matrix, at

least 8 percent of the slots were memory-bound, and up to 18

percent in cases without the substitution matrix. However, the

introduction of hyperthreading and the resultant efficient use

of CPU pipeline slots suggest that while memory constraints

are a factor, the optimization of CPU resources through

hyperthreading plays a crucial role in overcoming backend-

bound limitations, particularly in CPU-intensive scenarios.

G. Smith-Waterman Usage Scenarios Analysis

We structured our analysis around three distinct scenarios

to understand the Smith-Waterman algorithm’s performance

under varying conditions:

Single Query Scenario: Here, we computed the average

performance across different proteins, as there was noticeable

variability. Interestingly, larger query sizes yielded better per-

formance. This could be attributed to the efficient utilization
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(a) Analysing the backend bound limitation
of our work. Backend bound can be either
due to being memory bound or core bound.

(b) Efficiency of using the pipeline slots for
different numbers of threads for large number
of query sequences

(c) Efficiency of using the pipeline slots for
different numbers of threads and different
query protein

Fig. 12: Analysis using Intel Vtune profiler

Fig. 13: Performance for different SW usage scenarios

of the dataset by multiple threads, where each thread handles

a different segment of the database. Larger queries allow for

more optimal usage of these segments.

Multiple Query Scenario: When handling a large number

of query sequences, we observed an enhanced performance

efficiency. This improvement likely results from the increased

parallel processing capability, where multiple queries effec-

tively utilize the database’s different sections. In practical ap-

plications, this suggests that in environments with a centralized

server handling multiple queries, it may be more efficient to

accumulate several queries before beginning the computation.

This approach could lead to a shorter overall processing time

compared to processing each query individually.

Small Sets of Queries and References: In this scenario,

we compared a small number of queries with a small database.

The performance in this case provided insights into the algo-

rithm’s efficiency when dealing with limited data, crucial for

smaller-scale or more targeted sequence alignment tasks.

These varied scenarios underscore the adaptability of the

Smith-Waterman algorithm to different data scales and query

sizes as illustrated in Fig. 13. The findings highlight that

the algorithm’s performance is not just a function of its

computational design but is also heavily influenced by how

it is deployed in different operational contexts.

H. Comparison with Parasail Library

In the final phase of this study, we conducted a compara-

tive analysis between our implementation and the established

benchmarks of the Parasail library [26]. Parasail was selected

because it has a collection of many different implementations

for SW, including, wavefront [19], scan [18], and striped

[22]. These are well maintained, documented, and easy to

use. Moreover, the various implementations are all modular

functions within a unified framework giving some degree of

fairness when their performance is compared. Some other SW

implementations were not used here because they are limited

in the queries or data sets supported [27], or because an open

source version could not be found [28].

This comparison revealed some insights into the benefits of

our approach. Notably, our method consistently outperformed

the scan, diag, and striped approaches of Parasail across all

cases. Of note is that our approach is diag-based, whereas the

best performing Parasail version is striped. Also significant is

that the striped and scan versions in Parasail do not always

yield stable results: speculative computations are used, which

necessitates subsequent correction loops to rectify potential

miscalculations [29].

I. Discussion

This study opens several avenues for further research. Fur-

ther investigation is needed of the centralized server scenario.

Our findings suggest that processing a larger number of queries

concurrently can significantly boost performance. Another area

for future investigation is to make an autotuner to decide what

should be the block size in the case of using a substitution

matrix which we are currently hand-tuning.

Exploring compiler optimization tuning, including optimiza-

tion phase ordering and selection, is especially promising.

Such tuning has demonstrated improvements in various ap-

plications and could be particularly impactful when coupled

with advanced hyperparameter tuning strategies [30].

Finally, it could be possible to adapt the proposed methods

to FPGAs and GPUs.

V. RELATED WORK

GPU-Based Sequence Alignment: Several studies (e.g.,

CUDASW++ 3.0 [31] and [32]), have focused on using GPUs
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Fig. 14: Performance evaluation for Parasail library implementation of SW versus our work on different architectures for 10

different proteins as the query

to accelerate sequence alignment. The review article [33]

highlights the significant performance benefits. [3] investigated

the theoretical hardware capability and compared it with their

approach.

FPGA-Based Sequence Alignment: There has been much

work in FPGA-based SW (e.g., [34]). [35] proposes fine-

grained parallelized SW algorithms including backtracking.

[36] focuses on implementing multiple sequence alignment.

[37] used OpenCL to implement design.

CPU Vectorization-Based Sequence Alignment: Many

studies have explored CPU vectorization techniques, e.g. [38]

for AVX2 and [39] for ARM’s Scalable Vector Extension

(SVE). The Parasail library includes [26] three different im-

plementations of SW (as describe above). Works such as [12]

and [27] compare their models with some of these functions.

Each work demonstrates a different approach in mapping,

computation, or algorithm. Other work studies the implemen-

tation of the substitution matrix: [21] and [18] precompute

the database. [10] introduces a new way of computing the

maximum, computing it in an array for all the vector lanes.

We applied a disjoint set of these implementations and show

the benefits of this approach. Note that combining multiple

methods often involves substantial recoding, e.g., to deal with

dependencies and SIMD instruction limitations.

Hybrid (CPU-GPU or Heterogeneous) Approaches: [40]

presents CloudSW, a hybrid computing framework that lever-

ages Apache Spark and SIMD instructions for large-scale bio-

logical sequence database search on heterogeneous computing

environments. [41] introduces OSWALD, a hybrid approach

combining OpenMP multithreading and SIMD computing

on the host with OpenCL on FPGAs to optimize sequence

alignment efficiency. [42] discusses experiences in porting the

SWdb sequence alignment tool from CUDA to DPC++ for

utilization on heterogeneous architectures.

VI. CONCLUSION

This study provides an exploration of sequence alignment

using the Smith-Waterman algorithm, emphasizing its applica-

tion across a variety of Intel architectures and computational

scenarios. Our analysis covers critical aspects such as SIMD

length choices, the role of substitution matrices, affine gap

penalties, and the importance of traceback functionality.
One of the most significant advances comes from compiler

hyperparameter tuning, which resulted in an average perfor-

mance improvement of 10% and up to 50% in certain cases.

These improvements, however, were found to be query size-

dependent, underlining the importance of targeted optimization

strategies. Additionally, the implementation of a centralized

server for batch processing of sequence alignment queries

proved to be highly effective, enhancing computational effi-

ciency by a factor of two in some cases.
Our approach demonstrated robust performance, in partic-

ular, for all query sizes, and exhibited a deterministic nature,
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ensuring consistent results. This was further validated in our

comparative analysis with the Parasail library, where our

methods also showed significantly improved performance.
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