2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) | 979-8-3503-6460-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/IPDPSW63119.2024.00113

2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Further Optimizations and Analysis of
Smith-Waterman with Vector Extensions

Reza Sajjadinasab**, Hamed Rastaghi*, Hafsah Shahzad*, Sanjay Arora!, Ulrich Drepper’, and Martin Herbordt**
*ECE Department, Boston University Red Hat Inc. ¥{sajjadi, herbordt} @bu.edu

Abstract—Sequence alignment based on dynamic program-
ming, e.g., Smith-Waterman (SW), remains central to bioinfor-
matics both in various standalone scenarios and as a function
in other critical bioinformatics tasks. Much work has been
done in optimizing SW for various accelerators; CPU-based
platforms, however, are possibly still the most accessible com-
putational resource for bioinformatics and our focus here. CPU
acceleration necessarily involves applying vector extensions; a
recent CPU/SW study resulted in the creation of an extensive
autotuning framework. We add to this corpus a number of
contributions: (i) a new optimization based on a novel mapping of
the scoring matrix together with interleaving data coming from
the substitution matrix; (ii) an implementation that combines
disjoint optimizations from previous studies; (iii) a variable
(8/16) bit width implementation; (iv) a finding of the benefits of
learned compiler hyperparameters; (v) performance comparisons
with respect to different usage scenarios; and (vi) a results
showing that, despite appearing memory bound, multicore SW
remains CPU bound. Among the most significant findings are that
for protein alignments these approaches result in performance
superior to that of the Parasail library’s approaches, with
the added benefit of determinism and robustness. Versus the
deterministic Parasail+diag the improvement is 3.9x; versus the
non-deterministic Parasail+scan and Parasail+striped, it is 1.9x
and 1.5x, respectively.

Index Terms—Smith-Waterman, Sequence Alignment, Intel
Intrinsics, Vector Extensions

I. INTRODUCTION

Bioinformatics relies on efficient and accurate sequence
alignment to extract valuable insights from the ever-growing
volumes of biological sequence data [1]. Smith-Waterman
algorithm (SW) offers a provably optimal method of pro-
viding high sensitivity and precision with a computational
complexity of O(nm) where n and m are the database and
query size, respectively. However, aligning large-scale datasets
poses computational challenges that necessitate the use of
high performance methods [2]. This is especially true in many
application, such as multiple sequence alignment and genome
sequencing, where SW is invoked repeatedly. Research has
been rich with respect to the use of GPUs (e.g., [3]-[5]) and
FPGAs (e.g., [6]-[9]).

The day-to-day workhorses, however, for thousands of
bioinformatics practitioners remain workstation CPUs and
CPU clusters [10], [11]. Continuing recent advances in se-
quence alignment using vector intrinsics (e.g., [12]), we ex-
plore further enhancements in SW/CPU for protein sequence
alignment in the evolving computational landscape. In addi-
tion, a further question is investigated: with the increase in

CPU compute capabilities, has SW transitioned from being
compute-bound to memory-bound (as in [13])?

This work has the following contributions and innovations.
Enhanced Alignment Kernel: At the core of this paper is
the refinement of the alignment kernel, which is crucial for the
performance improvement obtained. One aspect is the redesign
of the data memory layout so that it is optimized to align
effectively with current CPU memory hierarchies, an approach
previously applied for GPUs [14]. A further aspect is that the
kernel mixes interleaving and wavefront approaches.
Compiler Hyperparameter Optimization: Complementing
the kernel enhancement, we delve into compiler hyperparam-
eter optimization. This approach exploits compiler settings to
enhance kernel performance, demonstrating significant gains
in computational efficiency.

Memory and Microarchitecture Analysis: Extending pre-
vious research, we include an analysis of recent advances in
memory technologies and their impact on sequence alignment.
This analysis offers strategies for overcoming memory-related
challenges through hardware-software co-design.
Client-Specific SW Algorithm Variations: Addressing di-
verse client needs, we introduce algorithmic variations opti-
mized for different operational contexts, from high-throughput
to memory-limited environments.

Comprehensive Portability Analysis: A detailed analysis
of the methodologies’ adaptability across various platforms
is presented, showcasing the practical applicability of the
proposed improvements.

Among the most significant findings is that these ap-
proaches result in performance comparable, or superior to,
performance of the Parasail library’s approaches, but with the
benefit of determinism and robustness. Versus the determin-
istic Parasail+diag the improvement is 3.9x; versus the non-
deterministic Parasail+scan and Parasail+striped, it is 1.9x and
1.5x, respectively.

II. BACKGROUND
A. DNA vs Protein alignment

In bioinformatics, understanding the key differences be-
tween protein and DNA alignments is crucial. Protein align-
ments involve sequences of 20 different amino acids. The
lengths are highly variable, extending from a few dozen to
thousands of amino acids, necessitating flexible alignment
strategies. For protein alignments, scoring matrices like BLO-
SUM or PAM are typically used [15]. On the other hand, DNA
alignments, though dealing with just four nucleotides (adenine,

979-8-3503-6460-6/24/$31.00 ©2024 IEEE 561
DOI 10.1109/IPDPSW63119.2024.00113
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 30,2025 at 18:25:58 UTC from IEEE Xplore. Restrictions apply.

thymine, cytosine, and guanine), confront the challenge of
managing extremely long sequences, particularly in eukaryotes
where genomes can span billions of base pairs. DNA align-
ments employ simpler scoring matrices. The choice between
affine and linear gap penalties depends on the alignment task:
protein alignments commonly use affine gap penalties to better
reflect the significant impact of gaps in protein structures,
while DNA alignments use either affine or linear gap models,
tailored to the sequence characteristics [16].

B. Smith-Waterman

In this study, we implement the affine gap penalty model
using a modified Smith-Waterman algorithm [12]. The model
employs two auxiliary arrays, F' and F, to effectively manage
gap penalties, with F' being of the same size as the database
sequence for storing horizontal gap penalties, and £ corre-
sponding to the query sequence for vertical gap penalties. This
approach is specifically designed to handle the complexity of
affine gap penalties, where the cost of opening a gap is differ-
ent from extending it. Equation (1) shows the implementation.

H(i,j) =max{0,H(i— 1,7 — 1)+ S[gti — 1),7(j — 1)]}
H(i,§) = max{H,), Fljl, Eli}

Flj] = max{F[j] + ¢, H(i,) + o}

Eli] = max{E[i| +e,H(i,j) + o} (1)

After completing the construction of the matrix H, which
captures the optimal scoring of subsequence alignments, the
traceback process determines the best-aligned subsequences.
This phase traverses the matrix H from the highest-scoring
cell (local alignment), or from the bottom-right cell (global
alignments). This step is computationally demanding, as it
requires both additional memory to store the traceback matrix
and additional processing to interpret the traceback path [17].

C. Smith-Waterman Usage Scenarios

SW is adaptable across various usage scenarios, with differ-
ent data set assumptions. In particular, different studies have
made different usage assumptions, which sometimes leads to
difficulty in making direct comparisons.

Scenario 1: Single Query versus Database. For protein
queries it is likely that the query resides in the highest level
of storage; the database is streamed with little reuse.
Scenario 2: Batch of Queries versus Database. Multiple
query sequences are aligned against a database, either from a
single client or multiple clients batched in a shared resource.
This scenario becomes a many-to-many problem with much
potential data reuse.

Scenario 3: SW as a Subroutine. Here SW is often applied
to aligning small query sequences against a small database,
as demonstrated by the SSW Library for optimal protein or
genome sequence alignment [10]. There is substantial reuse
and the working set often fits in the highest level memory.

562

Dataset sequence(s)
a b c d

TTTT1]

Query sequence

| 5 O I L

0 O Y O 4)

Fig. 1: Different vectorization approaches.

D. Data parallelism and SIMD instructions

A key step in SW is constructing and traversing a similarity
matrix. This matrix, typically denoted as H, is filled following
the dependencies between its elements. Each cell H; ; depends
on its neighboring cells: H; 1 ;, H; j_1, and H;_1 j_;.

Researchers have developed several ways to fill in the
similarity matrix [18]. Fig. 1 illustrates four such methods. In
method (a), the matrix is filled diagonally, with each lane of the
vector working on one element of the diagonal at a time [19].
This method is a classic way of resolving dependencies. In
method (b), every lane of the vector is responsible for building
a separate similarity matrix for different a pair of sequences,
which also avoids dependency problems altogether [20]. The
other two methods shown, (c) and (d), do face dependency
challenges, but researchers have come up with clever solutions
for these with some correction loops. In method (c), each
vector is in charge of a portion of the query sequence [21],
while in method (d), each lane of a vector processes a different
part of the query sequence [22].

We chose method (a) for our project because it doesn’t
have the issue of dependencies, and it helps build a robust
and deterministic implementation of SW. Also, Using this
approach improves the locality, which is important for larger
sequences, since the current vector will be reused as the
diagonal neighbor of the previous vector. In the next section,
we’ll describe how we implemented this method effectively.

E. Compiler Hyperparameters

Compiler hyperparameters, set before compilation, direct
the compiler in code optimization. They include optimization
levels, which determine the degree of code optimization [23];
memory management parameters, which guide how the com-
piler allocates and utilizes memory; and instruction scheduling,
which involves the ordering of machine code instructions.
Properly configured hyperparameters can lead to significant
enhancements in execution speed, memory efficiency, and
overall computational resource management [24].

II1. IMPROVED ALIGNMENT KERNEL

This section presents the development and optimization of
the kernel. Sequence alignment demands both precision and

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 30,2025 at 18:25:58 UTC from IEEE Xplore. Restrictions apply.

— [l [S

Fig. 2: Diagonal-based linearization of the memory improves
access and results in better spatial locality.

efficiency. We introduce several heuristic techniques specifi-
cally designed to address common challenges.

A. Diagonal-Based Memory Indexing

We depart from the traditional row-based traversal of the
alignment matrix, opting instead for a diagonal-based method.
This shift in traversal strategy, as illustrated in Fig. 2, yields
significant benefits. By traversing the matrix diagonally, we
align the memory access pattern with the diagonal filling
order. This means that, as the matrix is being filled, we
access and fill elements that are consecutive in memory along
each diagonal. This arrangement optimizes spatial locality, as
elements that are logically adjacent in the alignment are also
physically adjacent in memory. Also, it improves temporal
locality, since each row will be used for updating the next
row. The advantage of this setup is twofold: it reduces the
number of memory accesses and enhances processing speed.
Additionally, diagonal-based traversal is more aligned with the
inherent flow of sequence alignment calculations due to the
natural data dependencies between different elements.

Fig. 2 shows the diagonal-based indexing with its advanta-
geous arrangement of elements in memory.

B. Handling Variable-Length Diagonal Segments

One of the challenges in implementing the diagonal ap-
proach for sequence alignment is dealing with segments of
the matrix diagonal that are shorter than the number of lanes
in the vector. Our solution involves using zero-padding for the
unused lanes in these segments. For small segments, we revert
to standard CPU instructions. A crucial point is that it enables
the computation of as many cells as possible at a given time.
While this means that the highest capacity of the CPU is not
always fully harnessed, this is a limitation stemming from the
nature of the problem itself and only affects a minor portion
of the computations, roughly around 15%. This balance is
essential for optimizing performance within the constraints of
the alignment problem. Fig. 3 shows how some segments are
smaller than the size of the array and pinpoints where in the
process the zero padding occurs.

C. Enhanced Substitution Matrix Utilization

In this work, the substitution matrix is reorganized by
reordering its columns and rows and adding extra ones for
characters that don’t represent an amino acid. This reorgani-
zation aids in efficient data retrieval using the gather vector
instructions of AVX2. Fig. 4 demonstrates this process of
transforming characters into indices for accessing the substi-
tution matrix.

563

LT AT AT AL W e
VYIS AN S ——
A2 D dt:,nn',::eﬁr::oa:u\l
. ,’ - ;J:;}/ vector
WW.V.V.V.V.V.y.r.r. .
T/ Jrjrj jr} A7 f_” SIMD vector

Fig. 3: Vector assignment of different segments of the simi-

larity matrix. Yellow sections need padding with zeros.
A [+ c D c [] 2 2 3 2

A [[2 2 3 2

E 5 | 160 | 162 | 162 | 163 | 162

c * 2|64 | 66 | 66 | 67 | 66

D 3|9 | 98 |98 | 99 | 98

Fig. 4: Index calculation of the substitution matrix for gather
instruction. Each character is an index to access the matrix.

Although this approach can be useful for 32-bit and 16-
bit implementations, the performance degrades with 8-bits. To
address this issue, a query profile is made before computing
the alignment. The query profile contains the possible score
for each query residue. For the sake of a good alignment in
memory (as described above) the substitution matrix has 32
residues in each row, which fits exactly into 256 bits and can
be read with a single AVX instruction.

In addition to the query profile, which is made at runtime,
the database can be organized for more efficient access. This
is done once, offline. The database sequences are stored in
batches containing 32 transposed sequences, i.e., 32 for the
number of lanes in AVX2 when using 8-bit integers. This
enables the immediate use of AVX shuffling instructions. As
shown in Figure 5, each adjacent transposed residue represents
a residue from a different sequence. Then for every batch we
compute the score once and store it in a scratch buffer. At this
point, there are numerous ways to tune the kernel depending
on cache parameters.

In computing the maximum score, the local maximum for
each vector lane is stored. A reduction using shift operations
on the matrix is then employed to find the overall maximum
score. This approach not only simplifies the calculation, but
also improves the use of vector processing capabilities.

D. Maximum Score Calculation

During sequence alignment, determining the maximum
alignment score is a crucial yet computationally expensive
task. Calculating the maximum score after computing the
scores along each diagonal would require a reduction operation
on a vector. Such operations, especially when performed fre-
quently, can be costly: while AVX512 does offer instructions
for this purpose, it is limited in the size of integers it can
handle and is not fast. To optimize this process and minimize
computational overhead, we have adopted a strategy of storing
the local maxima of each lane in a separate vector. This
approach allows us to defer the computationally intensive task

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 30,2025 at 18:25:58 UTC from IEEE Xplore. Restrictions apply.

Query segeunce

_—

Database Sequences

81 82 83 54

11-1]-2|-3
) TEREE Tansposed
Substitution .l b Scratch Buffer
Matrix 20-1]4]-1
11-1]13|2
S3-1]-1) 2
11112
3(1]-1]-2
Shuffl
G el A2
Scratch Buffer
Query A)-113]-1
Profile
Read 11a3]1]-2
_— d
3111111 Transpose
212|241

Fig. 5: Extracting scores from the substitution matrix based
on query and batch of database sequences

of finding the global maximum score until the end of the
computation.

E. Hyperparameter Tuning in Compiler Optimization

Besides code optimization, we also investigated improving
SW performance through tuning of compiler hyperparameters
using an evolutionary algorithm. This method diverges from
traditional software tuning techniques, leveraging the princi-
ples of natural selection to evolve a population of potential
solutions over time. Such an approach is particularly suited
for dynamic and adaptive optimization, where traditional de-
terministic methods might fall short.

IV. RESULTS AND DISCUSSION

This section presents findings and analyses. It encompasses
a detailed examination of SIMD length choices, various design
implementations, compiler hyperparameter optimizations, and
assessments of memory and microarchitecture. The results
are further augmented by investigating three specific usage
scenarios of the Smith-Waterman algorithm and a comparative
analysis with the Parasail library.

A. Methodology

Processors: Our study utilized four Intel architectures: Intel
Haswell E5-2660 (8 core), Intel Broadwell E5-2680 (14 core)
for baseline performance, and Intel Skylake Gold 6132 (16
core), Intel Cascadelake Gold 6242 (16 core) for advanced
processing capabilities. For memory analysis, we used the Intel
Alderlake 19-12900HK (10 core).

Dataset and Queries: We used the protein
UniProtKB/Swiss-Prot [25] dataset. For queries, we randomly
selected 10 proteins from this dataset with a range of lengths.
The reason for this limited number (used, e.g., [22]) is that
the execution is deterministic with respect to query size and
only behaviors related to size need to be measured.

Compilation: The code, designed with macro definitions
for flexibility, was compiled using GCC version 11.2.0 with
-O3 optimization.

564

B. AVX512 versus AVX2

We focused on two of the newer (but not the latest) Intel
architectures to compare the performance implications of using
AVX 512, a deprecated version of AVX. As indicated in Fig.
6, use of AVX512 did not result in a significantly enhanced
performance as initially anticipated. Despite expectations of
double the performance of AVX2, the results did not align
with these projections. This discrepancy led us to continue our
analyses primarily with AVX2, which not only is the current
version of AVX in newer Intel CPUs, but also offers com-
patibility with older architectures. This choice was guided by
the relative performance benefits and the broader applicability
of AVX2 across various hardware platforms, ensuring a more
generalizable and practical approach.

C. Design Choices Based on Client Needs

Effect of Affine Gap Penalty: Incorporating affine gap
penalties did not result in a noticeable performance drop as
shown in Fig. 7. This finding is significant as it suggests
that the added complexity of an affine gap model, which is
generally expected to be computationally more intensive, does
not necessarily compromise performance.

Traceback Functionality: The integration of traceback
functionality, while necessitating the storage of extensive
information in memory for backtracking, surprisingly did not
degrade performance (as shown in Fig. 8). This includes
recording from which cell (up, left, or diagonal) a particular
cell was updated. The ability to maintain performance despite
the additional memory requirements suggests an effective
utilization of memory resources. This finding is particularly
relevant for applications where detailed alignment histories are
crucial, as it demonstrates that incorporating traceback does
not come at the cost of reduced processing speed.

Impact of Substitution Matrix: The implementation of a
substitution matrix significantly impacted performance com-
pared to the case with fixed alignment scores, primarily leading
to a core-bound scenario due to extensive shuffling and register
reads as depicted in Fig. 9. The utilization of Intel’s gather
function, although not exceptionally fast, played a key role
in this aspect. Despite these challenges, the performance
was reasonably good, especially for smaller-sized queries,
which are more common in protein datasets. This highlights a
crucial trade-off between the complexity of matrix operations
and the accuracy benefits it brings, particularly relevant for
applications where query size varies.

Previously the performance of the 8-bit version was de-
graded (versus the 16-bit version) because there is no 8-bit
gather in Intel. The new approach, presented in the previous
section and used here, alleviates this problem and the perfor-
mance is now comparable.

D. Compiler Hyperparameter Optimization and Its Impact

Inspired by the genetic algorithm, we employed a random
initialization to grow a population that evolves randomly into a
new one. Within each population, we select the best possible
solution to maximize the real-time performance of the SW

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 30,2025 at 18:25:58 UTC from IEEE Xplore. Restrictions apply.

Sequence Alignment Performance Improvement - AVX 512

Caskadelake Architecture

- VX 256

0.8

0.6

0.4+

Relative Performance

0.2

0.0+

Protein (length)

Relative Performance

Sequence Alignment Performance Improvement BN AVX 256 NN AVX 512

Skylake Architecture

2.004

1754

1.50 4

1.25 1

1.00 {

0.75 4

0.50 1

0.25 1

0.00 -

N o 5 N N N o) N 2 & &
& o 3 > & rf;\ 2 & 93”& & &
> © N\ Q \U N\ N 2 R &
o Sv (g & & > > > i o &
& F & @"W & & < & & €
o & o w2 < & &

Protein {length)

Fig. 6: Performance evaluation for AVX 256 vs AVX 512 on different architectures for 10 different protein queries

Sequence Alignment Performance Improvement
Broadwell Architecture, AVX2

W 16-Dit w/ affine gap
= 16-Dit w/o affine gap

W 8-bit wf affine gap
W 5-bit wro affine gap

Relative Performance

Protein (length)

Sequence Alignment Performance Improvement
Haswell Architecture, AVX2

BN 16-bit wf sub. mat
N 16-bit w/o sub. mat

BN 8.bit w/ sub mat
N 8-bit w/o sub. mat

Relative Performance

Protein (length)

Relative Performance

Relative Performance

Performance Impr
Cascadelake Architecture, AVX2

BN 16-bit w sub. mat
= 16-bit w/o sub. mat.

B B-bit w/ sub mat
BN 5-bit w0 sub. mat.

Protein (length)

Performance Impr

i W 16-bit wf sub. mat.
Skylake Architecture, AVX2

= 16-bit w/o sub. mat

BN 8.bit w/ sub mat
N 8-bit w/o sub. mat

Protein (length)

Fig. 7: Performance for designs with and without affine gap penalty on different architectures for 10 different proteins

implementation. This method allows us to fine-tune the GCC
parameters over several iterations, further optimizing our SW
implementation. We start with a random initialized population
of hyperparameter values (all those provided by GCC). Each
hyperparameter then evolves within its particular allowable
set of values. Each new population is evaluated and the best
is selected for the final selection. Since this approach is not
guaranteed to find the best solution the results and the fine-
tuned versions of the program might vary. This variability
is influenced by several factors, including the datasets used
and the specific tuning materials applied. As illustrated in

565

Fig. 10, this approach led to improvements in performance
across almost all architectures. However, it’s noteworthy that
some architectures exhibited significantly better enhancements
compared to others.

Moreover, the size of the query emerged as a crucial factor
affecting performance. Our analysis revealed that tuning could
substantially improve performance for certain query sizes. This
indicates that the effectiveness of hyperparameter optimization
is not uniform across different scenarios; rather, it is highly
dependent on specific conditions such as architecture and
query size.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 30,2025 at 18:25:58 UTC from IEEE Xplore. Restrictions apply.

&P e § R G A A
O g ¢ N R g T
LA N g & s ¢ & &

& &
& &
poten (eng)

. .
gs gs g3
1 £
: : :
g3 g®]
i EE :
& F

Fig. 8: Performance for designs with and without traceback on different architectures for 10 different proteins

Sequence Alignment Performance Improvement BN 16-bit W/ sub. mat. m G-bit wf sub. mat. i Performance Impr W 16-bit w/ sub. mat. W G-bit wf sub. mat.
Broadwell Architecture, AVX2 BN 16.bit wio sub. mat WM 6-bit wio sub. mat Cascadelake Architecture, AVX2 W 16.bit wfo sub. mat WEE B-bit w/o sub mat

Relative Performance
Relative Performance

Protein (length) Protein (length)

Sequence Alignment Performance Improvement B 165-bit wf sub. mat. W B-bit w/ sub. mat i Performance Impr B 16-bit wf sub. mat. W B-bit w/ sub. mat
Haswell Architecture, AVX2 WS 16-Dit wfo sub mat EEE B-bit w/o sub. mat Skylake Architecture, AVX2 WS 16-bit wfo sub mat EEE B-bit w/o sub. mat

Relative Performance
Relative Performance

Protein (length) Protein (length)
Fig. 9: Performance for designs with and without substitution matrix on different architectures for 10 different proteins

This variability underscores the complexity of achieving Sequence Alignment Usage Scenarios mm trssuel mm Gocascae mm feel | mm Syaie
optimal performance and highlights the importance of context- 50|
specific tuning in sequence alignment applications. It also
suggests that while general improvements are attainable, max-
imizing efficiency requires careful consideration of the unique
characteristics of each use case.

E. Multi-Threading and Scalability Analysis

Percentage of improvement

Given that SW is both a batch application and that per- 0l
formance per core degrades with the number of cores, our
hypothesis was that this was due to memory contention. We ARG R N AN A AN
found rather that it was due to variations in operating fre- S A R A A
P g € o & & & L & P& & S
<

quency. A microbenchmark specifically designed for analyzing
CPU frequency revealed that the frequency is not consistently
stable in multi-core mode. This variability led us to recalibrate
our performance metrics, particularly for the single-threaded
version, to take into account the frequency drop during multi-

Protein (length)

Fig. 10: Performance improvement after hyperparameter tun-
ing for different architectures

core operations. tion. For larger queries, which rely heavily on AVX2 compu-

As demonstrated in Fig. 11, this recalibration was crucial, ~ tations, the performance closely matched our projections. This

especially in the case of hyperthreading and full-core utiliza- was notably apparent in scenarios with hyperthreading across
566

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 30,2025 at 18:25:58 UTC from IEEE Xplore. Restrictions apply.

— Bpected we 2thesads
- lhread e dthreads

- threads
14 threads

Performance - 28 threads

Broadwell Architecture, AVX2

— Bpected e 2thieads W Bthveads W 32 threads

Sequence Alignment Performance Scalability T g o e

Cascadelake Architecture, AVX2

Relative Performance (log)

Protein (length)

— Expectsd wem Ithreads mem Gifveads w16 threads

Performance
—lvead w4 threads

Haswell Architecture, AVX2

Relative Performance (log)

Protein (length)

— Giveads w28 threads

-4 threads

— Epsctsd e 2chrsads

Sequence Alignment Performance Scalability T o

skylake Architecture, AvX2

Relative Performance (log)

Protein (length)

Relative Performance (log)

Protein (length)

Fig. 11: Performance scaling using more threads for different architectures according to the number of cores

all cores, where we consistently observed high efficiency.
Furthermore, the effectiveness of hyperthreading in improv-
ing performance provides additional evidence supporting the
notion that our computation is not significantly limited by
memory. The ability of hyperthreading to efficiently manage
CPU resources and enhance throughput, especially in larger
query scenarios, suggests that the primary constraints are
related to CPU performance rather than memory capability.

This finding has important implications for our understand-
ing of SW’s performance limitations. With the CPU frequency
showing considerable variability and hyperthreading signifi-
cantly boosting performance, it becomes clear that the imple-
mentation is not currently constrained by memory. Instead, the
scalability and efficiency appear to be more influenced by the
interplay between CPU multi-threading capabilities, frequency
stability, and the strategic use of hyperthreading.

E. Microarchitecture Analysis Using Vtune Profiler

A microarchitectural investigation using the Vtune profiler
was used to reveal detailed behaviors within different sce-
narios, particularly those involving large queries. Although
smaller protein results, as shown in Fig. 12, were found to be
less reliable, the analysis with larger queries provided robust
insights.

Given its significant impact on performance, we focused
on scenarios with and without a substitution matrix. Notably,
in scenarios with a substitution matrix, the execution was

567

predominantly CPU bound. This was largely due to the core
limitations while executing gather instructions.

Moreover, our findings were further reinforced when ex-
amining scenarios where hyperthreading was employed, using
two threads per core. Here, we observed an increase in
efficiency, aligning with our earlier observations in the thread
scalability analysis. This efficiency boost is likely due to the
decreased backend-bound limitations, as the second thread
could progress while one was busy, thus reducing idle time
and enhancing overall throughput.

In both scenarios with and without the substitution matrix, at
least 8 percent of the slots were memory-bound, and up to 18
percent in cases without the substitution matrix. However, the
introduction of hyperthreading and the resultant efficient use
of CPU pipeline slots suggest that while memory constraints
are a factor, the optimization of CPU resources through
hyperthreading plays a crucial role in overcoming backend-
bound limitations, particularly in CPU-intensive scenarios.

G. Smith-Waterman Usage Scenarios Analysis

We structured our analysis around three distinct scenarios
to understand the Smith-Waterman algorithm’s performance
under varying conditions:

Single Query Scenario: Here, we computed the average
performance across different proteins, as there was noticeable
variability. Interestingly, larger query sizes yielded better per-
formance. This could be attributed to the efficient utilization

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 30,2025 at 18:25:58 UTC from IEEE Xplore. Restrictions apply.

Sequence Alignment Hardware Limitation

Alderiake Architecture, AVX2
Alderiake Architecture, Avx2 == Mem. bound w/ sub. mat

= Mem. bound w/o sub. mat.

Sequence Alignment Efficiency

= w/sub.mat. mEE w/o subj mat.

Sequence Alignment Efficiency mmm 1thread mmm 4threads W 10 threads

W Core bound w/ sub. mat. _ WEm Core bound w/o sub. mat

&

8

162

Percentage of Backend Bound slots of pipeline

77|89

75

o
2 threads 4 threads Bthreads 10 threads Lthread 2threads 4 threads

Number of Threads

1thread 20 threads

(a) Analysing the backend bound limitation
of our work. Backend bound can be either

due to being memory bound or core bound. of query sequences

(b) Efficiency of using the pipeline slots for
different numbers of threads for large number

Alderlake Architecture, AVX2 B 2threads WEN Bthreads EEE 20 threads

2 100

rchitecturs

Percentage of Microa

& threads 20 threads Geometric Mean

Protein (length)

10 threads
Protein (length)

(c) Efficiency of using the pipeline slots for
different numbers of threads and different
query protein

Fig. 12: Analysis using Intel Vtune profiler

Sequence Alignment Usage Scenarios

mEm Avg. onequery-Bbit MEm Small query vs small dataset - 16 bit
g one query - 16 bit

= Many query - 8 bit
wew Small query vs small dataset - 6 bit wmm Many query - 16 bit

Relative Performance
®

Haswell Geometric Mean

Architecture

Broadwell Cascadelake Skylake

Fig. 13: Performance for different SW usage scenarios

of the dataset by multiple threads, where each thread handles
a different segment of the database. Larger queries allow for
more optimal usage of these segments.

Multiple Query Scenario: When handling a large number
of query sequences, we observed an enhanced performance
efficiency. This improvement likely results from the increased
parallel processing capability, where multiple queries effec-
tively utilize the database’s different sections. In practical ap-
plications, this suggests that in environments with a centralized
server handling multiple queries, it may be more efficient to
accumulate several queries before beginning the computation.
This approach could lead to a shorter overall processing time
compared to processing each query individually.

Small Sets of Queries and References: In this scenario,
we compared a small number of queries with a small database.
The performance in this case provided insights into the algo-
rithm’s efficiency when dealing with limited data, crucial for
smaller-scale or more targeted sequence alignment tasks.

These varied scenarios underscore the adaptability of the
Smith-Waterman algorithm to different data scales and query
sizes as illustrated in Fig. 13. The findings highlight that
the algorithm’s performance is not just a function of its
computational design but is also heavily influenced by how
it is deployed in different operational contexts.

H. Comparison with Parasail Library

In the final phase of this study, we conducted a compara-
tive analysis between our implementation and the established
benchmarks of the Parasail library [26]. Parasail was selected
because it has a collection of many different implementations
for SW, including, wavefront [19], scan [18], and striped
[22]. These are well maintained, documented, and easy to
use. Moreover, the various implementations are all modular
functions within a unified framework giving some degree of
fairness when their performance is compared. Some other SW
implementations were not used here because they are limited
in the queries or data sets supported [27], or because an open
source version could not be found [28].

This comparison revealed some insights into the benefits of
our approach. Notably, our method consistently outperformed
the scan, diag, and striped approaches of Parasail across all
cases. Of note is that our approach is diag-based, whereas the
best performing Parasail version is striped. Also significant is
that the striped and scan versions in Parasail do not always
yield stable results: speculative computations are used, which
necessitates subsequent correction loops to rectify potential
miscalculations [29].

1. Discussion

This study opens several avenues for further research. Fur-
ther investigation is needed of the centralized server scenario.
Our findings suggest that processing a larger number of queries
concurrently can significantly boost performance. Another area
for future investigation is to make an autotuner to decide what
should be the block size in the case of using a substitution
matrix which we are currently hand-tuning.

Exploring compiler optimization tuning, including optimiza-
tion phase ordering and selection, is especially promising.
Such tuning has demonstrated improvements in various ap-
plications and could be particularly impactful when coupled
with advanced hyperparameter tuning strategies [30].

Finally, it could be possible to adapt the proposed methods
to FPGAs and GPUs.

V. RELATED WORK

GPU-Based Sequence Alignment: Several studies (e.g.,
CUDASW++ 3.0 [31] and [32]), have focused on using GPUs

568

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 30,2025 at 18:25:58 UTC from IEEE Xplore. Restrictions apply.

Sequence Alignment Performance Improvement
Broadwell Architecture, AVX2, With Affine Gap

BN Parasail Diag WM Parasail Striped
WS Parasail Scan WEE Our Approach

Relative Performance

Protein (length)

Sequence Alignment Performance Improvement
Haswell Architecture, AVX2, With Affine Gap

BN Parasail Diag N Parasail Striped
mem Parasail Scan EEE Our Approach

Relative Performance

Protein (length)

Relative Performance

Relative Performance

Performance Impr
Cascadelake Architecture, AVX2, With Affine Gap

N Parasail Diag WM Parasail Striped
WS Parasail Scan WEEL Our Approach

Protein (length)

Performance Impr

i WM Parasail Diag MMM Parasail Striped
Skylake Architecture, AVX2, With Affine Gap

e Parasail Scan EEE Our Approach

Protein (length)

Fig. 14: Performance evaluation for Parasail library implementation of SW versus our work on different architectures for 10

different proteins as the query

to accelerate sequence alignment. The review article [33]
highlights the significant performance benefits. [3] investigated
the theoretical hardware capability and compared it with their
approach.

FPGA-Based Sequence Alignment: There has been much
work in FPGA-based SW (e.g., [34]). [35] proposes fine-
grained parallelized SW algorithms including backtracking.
[36] focuses on implementing multiple sequence alignment.
[37] used OpenCL to implement design.

CPU Vectorization-Based Sequence Alignment: Many
studies have explored CPU vectorization techniques, e.g. [38]
for AVX2 and [39] for ARM’s Scalable Vector Extension
(SVE). The Parasail library includes [26] three different im-
plementations of SW (as describe above). Works such as [12]
and [27] compare their models with some of these functions.
Each work demonstrates a different approach in mapping,
computation, or algorithm. Other work studies the implemen-
tation of the substitution matrix: [21] and [18] precompute
the database. [10] introduces a new way of computing the
maximum, computing it in an array for all the vector lanes.

We applied a disjoint set of these implementations and show
the benefits of this approach. Note that combining multiple
methods often involves substantial recoding, e.g., to deal with
dependencies and SIMD instruction limitations.

Hybrid (CPU-GPU or Heterogeneous) Approaches: [40]
presents CloudSW, a hybrid computing framework that lever-

569

ages Apache Spark and SIMD instructions for large-scale bio-
logical sequence database search on heterogeneous computing
environments. [41] introduces OSWALD, a hybrid approach
combining OpenMP multithreading and SIMD computing
on the host with OpenCL on FPGAs to optimize sequence
alignment efficiency. [42] discusses experiences in porting the
SWdb sequence alignment tool from CUDA to DPC++ for
utilization on heterogeneous architectures.

VI. CONCLUSION

This study provides an exploration of sequence alignment
using the Smith-Waterman algorithm, emphasizing its applica-
tion across a variety of Intel architectures and computational
scenarios. Our analysis covers critical aspects such as SIMD
length choices, the role of substitution matrices, affine gap
penalties, and the importance of traceback functionality.

One of the most significant advances comes from compiler
hyperparameter tuning, which resulted in an average perfor-
mance improvement of 10% and up to 50% in certain cases.
These improvements, however, were found to be query size-
dependent, underlining the importance of targeted optimization
strategies. Additionally, the implementation of a centralized
server for batch processing of sequence alignment queries
proved to be highly effective, enhancing computational effi-
ciency by a factor of two in some cases.

Our approach demonstrated robust performance, in partic-
ular, for all query sizes, and exhibited a deterministic nature,

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 30,2025 at 18:25:58 UTC from IEEE Xplore. Restrictions apply.

ensuring consistent results. This was further validated in our
comparative analysis with the Parasail library, where our
methods also showed significantly improved performance.

ACKNOWLEDGMENTS

This work was supported, in part, by the NSF through
awards CCF-1919130 and CCF 2151021; the NIH through
award R44GM128533; and by Red Hat through awards 2023-
01-RH13 and 2024-01-RHOI.

REFERENCES

[11 M. Orobitg, F. Guirado, F. Cores, J. Llados, and C. Notredame, “High
performance computing improvements on bioinformatics consistency-
based multiple sequence alignment tools,” Parallel Computing, vol. 42,
pp. 18-34, 2015.

[2] M. R. Aniba, O. Poch, and J. D. Thompson, “Issues in bioinformatics
benchmarking: the case study of multiple sequence alignment,” Nucleic
Acids Research, vol. 38, no. 21, pp. 7353-7363, 2010.

[3] L. Ligowski and W. Rudnicki, “An efficient implementation of Smith
Waterman algorithm on GPU using CUDA for massively parallel
scanning of sequence databases,” in JEEE International Symposium on
Parallel & Distributed Processing, 2009.

[4] E. F. d. O. Sandes and A. C. M. de Melo, “Smith-Waterman alignment
of huge sequences with GPU in linear space,” in IEEE International
Parallel & Distributed Processing Symposium, 2011.

[51 Y. Liu, W. Huang, J. Johnson, and S. Vaidya, “Gpu accelerated smith-
waterman,” in 6th Int. Conf. on Computational Science. Springer, 2006.

[6] T. Van Court and M. C. Herbordt, “Families of fpga-based accelerators
for approximate string matching,” Microprocessors and Microsystems,
vol. 31, no. 2, pp. 135-145, 2007.

[7] Z. Nawaz, M. Nadeem, H. Van Someren, and K. Bertels, “A parallel

FPGA design of the Smith-Waterman traceback,” in Int. Conf. on Field-

Programmable Technology, 2010.

Y. Yamaguchi, H. K. Tsoi, and W. Luk, “FPGA-based Smith-Waterman

algorithm: Analysis and novel design,” in 7th Int. Symp. on Reconfig-

urable Computing: Architectures, Tools and Applications, 2011.

[9] B. Harris, A. C. Jacob, J. M. Lancaster, J. Buhler, and R. D. Cham-
berlain, “A banded Smith-Waterman FPGA accelerator for Mercury
BLASTP,” in Int. Conf. Field Prog. Logic and Applications, 2007.

[10] M. Zhao, W.-P. Lee, E. P. Garrison, and G. T. Marth, “SSW library: an
SIMD Smith-Waterman C/C++ library for use in genomic applications,”
PloS one, vol. 8, no. 12, 2013.

[11] D. Zou, Y. Dou, and F. Xia, “Optimization schemes and performance
evaluation of Smith—Waterman algorithm on CPU, GPU and FPGA,”
Concurrency and Computation: Practice and Experience, vol. 24, no. 14,
pp. 1625-1644, 2012.

[12] D. T. Popovici, M. G. Awan, G. Guidi, R. Egan, S. Hofmeyr, L. Oliker,
and K. Yelick, “Designing Efficient SIMD Kernels for High Performance
Sequence Alignment,” in IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2023, pp. 167-176.

[13] A. Mahram and M. Herbordt, “NCBI BLASTP on High Performance
Reconfigurable Computing Systems,” ACM Transactions on Reconfig-
urable Technology and Systems, vol. 15, no. 4, pp. 6.1-6.20, 2015.

[14] L. Lindsey, M. Haseeb, H. Sundar, and M. Awan, “TANGO: A GPU
optimized traceback approach for sequence alignment algorithms,” in
Proceedings of the SC’23 Workshops of The International Conference
on High Performance Computing, Network, Storage, and Analysis, 2023,
pp. 760-765.

[15] S. Henikoff and J. G. Henikoff, “Amino acid substitution matrices
from protein blocks,” Proceedings of the National Academy of Sciences,
vol. 89, no. 22, pp. 10915-10919, 1992.

[16] M. Vingron and M. S. Waterman, “Sequence alignment and penalty
choice: Review of concepts, case studies and implications,” Journal of
Molecular Biology, vol. 235, no. 1, pp. 1-12, 1994.

[17] S. Lloyd and Q. O. Snell, “Hardware accelerated sequence alignment
with traceback,” Int. J. of Reconfigurable Computing, pp. 1-10, 2009.

[18] T. Rognes, “Faster Smith-Waterman database searches with inter-
sequence SIMD parallelisation,” BMC Bioinformatics, vol. 12, no. 1,
pp. 1-11, 2011.

[19] A. Wozniak, “Using video-oriented instructions to speed up sequence
comparison,” Bioinformatics, vol. 13, no. 2, pp. 145-150, 1997.

8

570

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

B. Alpern, L. Carter, and K. Su Gatlin, “Microparallelism and high-
performance protein matching,” in Proceedings of the 1995 ACM/IEEE
Conference on Supercomputing, 1995.

T. Rognes and E. Seeberg, “Six-fold speed-up of smith-waterman
sequence database searches using parallel processing on common mi-
croprocessors,” Bioinformatics, vol. 16, no. 8, pp. 699-706, 2000.

M. Farrar, “Striped Smith—Waterman speeds database searches six times
over other SIMD implementations,” Bioinformatics, vol. 23, no. 2, pp.
156-161, 2007.

W. Von Hagen, The definitive guide to GCC. Apress, 2011.

A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano,
“A survey on compiler autotuning using machine learning,” ACM
Computing Surveys, vol. 51, no. 5, pp. 1-42, 2018.

E. Boutet, D. Lieberherr, M. Tognolli, M. Schneider, and A. Bairoch,
“UniProtKB/Swiss-Prot: the manually annotated section of the UniProt
KnowledgeBase,” in Plant Bioinformatics: Methods and Protocols.
Springer, 2007, pp. 89-112.

J. Daily, “Parasail: SIMD C library for global, semi-global, and local
pairwise sequence alignments,” BMC Bioinformatics, vol. 17, no. 1, pp.
1-11, 2016.

E. Rucci, C. Garcia Sanchez, G. Botella Juan, A. D. Giusti, M. Naiouf,
and M. Prieto-Matias, “SWIMM 2.0: enhanced smith-waterman on
intel’s multicore and manycore architectures based on AVX-512 vector
extensions,” Int. J. of Parallel Programming, vol. 47, pp. 296-316, 2019.
K. Hou, H. Wang, and W.-c. Feng, “AAlign: A SIMD framework
for pairwise sequence alignment on x86-based multi- and many-core
processors,” in IEEE International Parallel and Distributed Processing
Symposium, 2016, pp. 780-789.

R. Snytsar, “De (con) struction of the lazy-f loop: improving per-
formance of Smith Waterman alignment,” in IEEE 19th International
Conference on Bioinformatics and Bioengineering, 2019, pp. 7-10.

S. Kulkarni and J. Cavazos, “Mitigating the compiler optimization
phase-ordering problem using machine learning,” in Proceedings of the
ACM international conference on Object oriented programming systems
languages and applications, 2012, pp. 147-162.

Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: accelerating
Smith-Waterman protein database search by coupling CPU and GPU
SIMD instructions,” BMC bioinformatics, vol. 14, pp. 1-10, 2013.

A. Khajeh-Saeed, S. Poole, and J. B. Perot, “Acceleration of the Smith—
Waterman algorithm using single and multiple graphics processors,” J.
Computational Physics, vol. 229, no. 11, pp. 4247-4258, 2010.

Z. Xia, Y. Cui, A. Zhang, T. Tang, L. Peng, C. Huang, C. Yang, and
X. Liao, “A review of parallel implementations for the Smith—Waterman
algorithm,” Computational Life Sciences, pp. 1-14, 2021.

I. T. Li, W. Shum, and K. Truong, “160-fold acceleration of the Smith-
Waterman algorithm using a Field Programmable Gate Array (FPGA),”
BMC Bioinformatics, vol. 8, pp. 1-7, 2007.

X. Fei, Z. Dan, L. Lina, M. Xin, and Z. Chunlei, “FPGASW: accelerating
large-scale Smith—Waterman sequence alignment application with back-
tracking on FPGA linear systolic array,” Computational Life Sciences,
vol. 10, pp. 176-188, 2018.

A. Mahram and M. C. Herbordt, “FMSA: FPGA-accelerated ClustalW-
based multiple sequence alignment through pipelined prefiltering,” in
Int. Symp. on Field-Programmable Custom Computing Machines, 2012.
E. Rucci, C. Garcia, G. Botella, A. De Giusti, M. Naiouf, and M. Prieto-
Matias, “SWIFOLD: Smith-Waterman implementation on FPGA with
OpenCL for long DNA sequences,” BMC Systems Biology, vol. 12, no. 5,
pp. 43-53, 2018.

M. Malik, S. Malhotra, and N. Prasanth, “Time Improvement of Smith-
Waterman Algorithm Using OpenMP and SIMD),” in Futuristic Trends in
Networks and Computing Technologies. ~Springer, 2020, pp. 686—697.
D.-H. Park, J. Beaumont, and T. Mudge, “Accelerating smith-waterman
alignment workload with scalable vector computing,” in 20/7 IEEE
International Conference on Cluster Computing, 2017, pp. 661-668.
B. Xu, C. Li, H. Zhuang, J. Wang, Q. Wang, and X. Zhou, “Efficient
distributed Smith-Waterman algorithm based on Apache Spark,” in 10th
International Conference on Cloud Computing, 2017, pp. 608-615.

E. Rucci, C. Garcia, G. Botella, A. E. De Giusti, M. Naiouf, and
M. Prieto-Matias, “OSWALD: OpenCL Smith—Waterman on Altera’s
FPGA for Large Protein Databases,” Int. J. High Performance Comput-
ing Applications, vol. 32, no. 3, pp. 337-350, 2018.

M. Costanzo, E. Rucci, C. Garcia-Sdanchez, M. Naiouf, and M. Prieto-
Matias, “Migrating CUDA to oneAPI: A Smith-Waterman case study,”
in Bioinformatics and Biomedical Engineering, 2022, pp. 103-116.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 30,2025 at 18:25:58 UTC from IEEE Xplore. Restrictions apply.

