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Abstract
Experimental neuroscience techniques are advancing rapidly, with major recent developments in high-
density electrophysiology and targeted electrical stimulation. In combination with these techniques,
cortical organoids derived from pluripotent stem cells show great promise as in vitro models of brain
development and function. Although sensory input is vital to neurodevelopment in vivo, few studies
have explored the e�ect of meaningful input to in vitro neural cultures over time. In this work, we
demonstrate the first example of goal-directed learning in brain organoids. We developed a closed-loop
electrophysiology framework to embody mouse cortical organoids into a simulated dynamical task
(the inverted pendulum problem known as ‘Cartpole’) and evaluate learning through high-frequency
training signals. Longitudinal experiments enabled by this framework illuminate how di�erent methods
of selecting training signals enable improvement on the tasks. We found that for most organoids,
training signals chosen by artificial reinforcement learning yield better performance on the task
than randomly chosen training signals or the absence of a training signal. This systematic approach
to studying learning mechanisms in vitro opens new possibilities for therapeutic interventions and
biological computation.

Keywords: biocomputing, organoid intelligence, artificial intelligence, reinforcement learning,
electrophysiology, stimulation, electrical stimulation, in vitro, neurons
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2 Goal-Directed Learning in Cortical Organoids

Introduction

Neurons have an unmatched capability for intel-
ligent and dynamic information processing. Deep
artificial neural networks require over five layers
to achieve an adequate approximation of a single
biological neuron [1]. Modern methods of inter-
facing with neural tissue involve any combination
of encoding information, decoding information, or
perturbing the underlying dynamics through vari-
ous timescales of plasticity [2–6]. These biological
networks operate at a fraction of the power con-
sumption of artificial systems [7]. Understanding
how they process and dynamically adapt to infor-
mation has profound implications, from developing
targeted stimulation protocols for neural rehabil-
itation to creating energy-e�cient bio-electronic
computation [8].

In vivo training methods commonly exploit
principles of reinforcement learning [9–11] and
Hebbian learning [2, 12, 13] to modify biologi-
cal networks. However, in vitro training has not
seen comparable success, and often cannot utilize
the underlying, multi-regional circuits enabling
dopaminergic learning [14]. Early work by Bakkum
et al. [15]) demonstrated promising results, yet
there have been few significant advances in in

vitro learning since then. Our knowledge of bio-
logical learning rules has not yet translated to
reliable methods for consistently training neu-
ral tissue in a goal-directed fashion. Successfully
harnessing in vitro learning could reveal fundamen-
tal mesoscale learning principles. We developed
a training paradigm that applies fundamental
training patterns to achieve control in a dynam-
ical task by embodying an organoid in a virtual
environment.

Pluripotent stem cells-derived brain organoids
have been shown to recapitulate key aspects
of neuronal development, including diverse cell
types and complex electrophysiological circuitry
[16, 17]. Although these organoids can model many
aspects of development, they are typically grown in
mono-directed di�erentiation, lacking key inputs
from other regions [18, 19]. The combination of
organoid complexity with high-density microelec-
trode arrays (HD-MEAs) enables precision in both
recording and stimulating at single-cell resolu-
tion [20]. This fine-grained control allows us to
systematically perturb these networks and lon-
gitudinally observe their responses, providing a

platform for iterative investigation of learning at
the circuit-level.

Within the last three decades, labs have used
varying methodologies of stimulation in e�orts
to harness biological computation through closed-
loop interaction[15, 21, 22]. Pioneering work
demonstrated this by repurposing vestibular cir-
cuits of a lamprey to control a robot [23], leading
to numerous studies embodying cultures into
closed-loop tasks [24–31]. Di�erent frameworks
for in vitro learning have emerged, influenced
by factors like species, brain regions, neuron
distributions, and network architectures. Early
work accomplished supervised learning through
slow frequency stimulation which evoked network
bursts, ceasing stimulations when the desired
e�ect was achieved [32, 33], formalized as learning
by stimulation avoidance [34]. Many approaches
use tetanic (high-frequency) stimulation patterns
as training signals [5, 15]. These tetanic electri-
cal stimulations (> 5 Hz) have been shown to
induce functional and stimulus-evoked changes
for pattern recognition [35], burst information [5],
exploring LTP/LTD [36–39], and embodied tasks
[25, 26, 28]. Tetanic stimulation is thought to
induce changes through associative mechanisms
due to increased neural activity. Reservoir com-
puting, which leverages machine learning readout
layers, has demonstrated success in unsupervised
tasks like predicting dynamical equations and clas-
sifying speech snippets [22], as well as a control
task [30]. The free energy principle has been pro-
posed as a theoretical framework to explain blind
source separation tasks [40, 41] and control in a
simplified “Pong” environment [21], drawing paral-
lels to artificial reinforcement learning approaches
to curiosity [42]. Recent work has shown that even
inanimate hydrogels, when electrically embodied
in a “Pong” task space, can achieve learning [43],
highlighting the importance of appropriate con-
trols and careful interpretation and investigation of
apparent learning in these systems. While previous
work has demonstrated that stimulation can mod-
ify synaptic plasticity, key questions remain about
the optimal selection of target neurons, stimulation
frequencies, and timing.

In this paper, we propose a systematic approach
to characterizing and training biological controllers
through high-frequency training signals within a
task-based framework. First, we employ automated
analysis to yield putative neurons, units which
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Goal-Directed Learning in Cortical Organoids 3

we then characterize through repeated electrical
stimulations. Next, we derive causal connectivity
metrics from the stimulation responses, which are
used to determine a neural configuration. Finally,
we embody the cortical organoids in the classical
inverted pendulum control stabilization problem
[44, 45] (similar to balancing a ruler vertically
on your hand). We used a two dimensional “vir-
tual” cart that can move on the horizontal axis
to balance a vertical pole (Fig. 1). This is com-
monly known as “cartpole” [46, 47]. Unlike pattern
recognition tasks, this problem requires continu-
ous, active stabilization of an inherently unstable
system where small lapses in control lead to fail-
ure - making it particularly suitable for assessing
both real-time processing and adaptation. We use
short, high-frequency training signals, and inves-
tigate three distinct methods of delivering train-
ing patterns: “Null”, “Random”, and “Adaptive”,
demonstrating that adaptive training significantly
outperforms the alternatives. Through extended
experiments with continuous adaptive training, we
further validate this approach while showing how
our proposed causal connectivity metrics correlate
strongly with performance outcomes.

Results

Multi-Phase Experimentation

We developed a framework that consists of three
key experimental phases to achieve goal-directed
learning in cortical organoids: 1) network char-
acterization through spontaneous recording, 2)
stimulus-response mapping through targeted elec-
trical stimulation, and 3) closed-loop training in
the dynamical task (Fig. 1a). Each phase builds
upon automated analysis from the previous phase
to systematically identify and interface with rele-
vant neural circuits. This approach enables us to
first characterize the network’s causal connectiv-
ity before attempting to dynamically modify the
stimulus-evoked responses through training. The
framework provides millisecond-precision control
to minimize latency between the neural culture
and virtual environment, and it also supports
reproducibility through an automated analysis
pipeline.

To implement this framework, we generated
mouse cortical organoids to serve as a biological
substrate for learning. Functional neural networks

were developed through directed patterning and
self-organization (Fig. 2a) of three-dimensional
aggregates from embryonic stem cells into struc-
tured neural tissue (Fig. 2b) that recapitulates
key features of cortical architecture [48]. By day
10, the networks show forebrain specified radial
glia (Pax6) and medial ganglionic eminence pro-
genitors (Nkx2.1), maturing by day 30 to express
subtype-specific markers including upper (Satb2)
and deep (Tbr1) layer neurons (Fig. 2c) along with
inhibitory neurons (Sst) and astrocytes (Gfap) Sup-
plementary Fig. S2. We specifically chose cortical
patterning due to the cortex’s well-established role
in adaptive information processing and its capa-
bility to encode, decode, and modify responses
to novel inputs [49]. The organoids were inter-
faced with high-density microelectrode arrays
(HD-MEAs) [50–52] (Fig. 2d-f), providing pre-
cise spatio-temporal control over the culture with
a high number of putative neuronal units for
potential computation.

Neural Configuration

Our targeted approach to cortical organoid compu-
tation focuses on characterizing capabilities within
small sub-circuits. To do this, we require a few
separate components. First, we begin by capturing
spontaneous neural activity in the Record phase,
using it to identify locations of putative neurons
and the best electrodes to stimulate them. As
shown in a previous study, electrically stimulating
the axon initial segment yields the best chance at
triggering action potentials [53]. The spontaneous
activity recording is used to generate a spatial
map of putative neural unit locations through a
metric (Methods: Record Phase) incorporating fir-
ing rate and action potential amplitude (Fig. 2e,f).
We then perform signal-averaging triggered by the
local maxima at these locations to extract spatio-
temporal footprints and remove duplicates for each
unit. Larger amplitudes yield neurons which are
easier to identify in real-time experiments. This
analysis enables us to reliably detect neural activity
on distinct electrodes throughout the experiment.

To map causal information flow through these
neural circuits, we characterized stimulus-response
relationships during the Stimulate phase by deliv-
ering bi-phasic pulses to each identified neural
unit (50 pulses at 2Hz) as seen in Fig. 3a and
c. Automated analysis quantified three major
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4 Goal-Directed Learning in Cortical Organoids

Fig. 1 Experimental overview for in vitro learning

a Schematic of multiphase experimental design. The Record phase uses a spontaneous recording to locate and characterize
putative neural units. The Stimulate phase uses electrical stimulation on each of these units to measure stimulus-evoked
activity through di�erent temporal ranges. Human experimenters then select putative neuron roles from the causal connectivity
analysis. The Train phase consists of repeated interactions with the simulated dynamical environment, organized into
episodes. b Flowchart of each episode of the training loop. The virtual environment is simulated at a fixed frame rate
while interacting with the organoid in a closed loop (yellow box). The episode is terminated when the pole falls into an
unrecoverable position. Finally, depending on the training paradigm, a pattern of pulses may be delivered.

temporal response signatures: first-order causal
connectivity representing direct neural pathways
(Fig. 3b), multi-order causal connectivity show-
ing network-mediated responses (Fig. 3d), and
probability of evoking network-wide bursts (Sup-
plementary Fig. S3). Based on these metrics, we
created a neural configuration defining units for
encoding, decoding, and training. We select two
encoding and two decoding units, prioritizing pairs
with strong first-order causal connectivity to maxi-
mize information transmission potential, and used
multi-order connectivity as a secondary prefer-
ence (Fig. 3e and f). Units exhibiting frequent

network bursting responses were deemed less suit-
able as encoding units since widespread activation
could interfere with more fine-grained control.
After encoding and decoding units were selected,
between 5–12 training units were selected indepen-
dent of connectivity patterns to explore optimal
training stimulations.

Training Paradigm

Using our characterized neural configuration, in
the Train phase we trained organoids to balance a
pole on the cartpole task, where an inverted pendu-
lum must be balanced by applying horizontal forces
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Goal-Directed Learning in Cortical Organoids 5

Fig. 2 Organoid generation and interaction with electrical interface

a Schematic of the protocol for generating mouse embryonic stem cell (ESC) derived cortical organoids. b Brightfield
images of organoids over development. c Immunohistochemistry of day 10 cortical organoids show the presence of Pax6
(radial glia), Nkx2.1 (medial ganglionic eminence) and Day 30 organoids express post-mitotic excitatory neuronal subtypes
Tbr1 (deep layer) and Satb2 (upper layer). d Illustration of organoid plated on HD-MEA chip. e Heatmap of activity from
electrode configuration overlayed on the HD-MEA and a representative plot of the electrode configuration. f Representative
plot of the waveforms from individual neuronal units overlayed on electrode configuration
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6 Goal-Directed Learning in Cortical Organoids

Fig. 3 Electrical stimulation characterization and causal connectivity

a Stimulus-evoked responses showing (top) overlapping voltage responses from multiple stimulation repetitions and (bottom)
latency from stimulation raster combined with peri-stimulus time histograms. This example highlights short-term responses.
Inset shows the first 20ms. b First-order causal connectivity heatmap displaying the probability that a stimulus input
evokes a reaction event within 18ms for the corresponding electrodes of interest. c Similar to a, highlighting a multi-order
bursting response. d Similar to b, showing mean response count within 200ms. e First-order causal connectivity with
chosen roles for an experiment. f Similar to e however with multi-order causal connectivity.
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Goal-Directed Learning in Cortical Organoids 7

(between ≠10 N and 10 N) to the cart (Fig. 1).
We implemented a rate-coding scheme [11, 54, 55]
for both encoding pole angle and decoding motor
commands as detailed in Methods: Encoding and
Decoding Information. Each learning episode ran
from initialization until the pole exceeded a termi-
nal angle of ±16¶, which generally represents an
unrecoverable state. A series of episodes is called
a training cycle. To allow for both learning and
recovery, experiments were organized into typically
15-minute training cycles with 45-minute rest peri-
ods. Performance-based feedback was delivered to
the training units only at the ends of episodes
when the organoid failed to balance the pole; no
training feedback was given during the time it
was balancing. Specifically, training signals were
administered only when the 5-episode mean per-
formance fell below the 20-episode moving average,
allowing the system to focus on larger-scale adap-
tations while filtering out the impact of individual
episodes of poor performance. If the time balanced
never surpassed 10 s within the first cycle, di�erent
encoding/decoding units were selected. See Meth-
ods: Cartpole Environment for further details on
training.

Superior Performance of Adaptive

Training Signals over Random and

Null Conditions

To investigate whether training signals sent to the
training neurons could modify information pro-
cessing between input and output neurons, we
compared three distinct experimental conditions:
1) “Null” without stimulation, 2) “Random” with
stimulation of 5 randomly chosen training units
(neurons), and 3) “Adaptive” with stimulation of
a pair of training units (neurons) selected through
reinforcement learning with eligibility traces - a
technique that weights unit pairs based on their
historical contribution to performance improve-
ments (Fig. 4a,b). We refer to a 5-tuple or a pair of
units selected for training stimulation feedback as
a training pattern. Random-ordered 5-tuples were
chosen to replicate previous studies [15, 21] and
pairs were used adaptively as a more fundamental
training signal. Refer to Methods Section: Training
Signal Implementation for a detailed explanation
of the training options tested. In each experiment,
we tested two or more of these conditions in sequen-
tial 15-minute cycles (e.g., Null � Random �

Adaptive) with one condition per cycle. Fig. 4c
showcases a representative experiment where the
adaptive condition (green) repeatedly achieved
superior performance, improving from a baseline of
10 seconds to over 60 seconds of balanced control
across multiple cycles. This improvement is quan-
tified in the cycle-averaged performance metrics
(Fig. 4d). The emergence of e�ective control behav-
ior becomes evident when examining the pole angle
trajectories over time (Fig. 4e). The e�ects of train-
ing stimulation delivered when the 5-episode mean
performance dropped below the 20-episode mean
is illustrated for three example cycles (Fig. 4f).

We evaluated 16 cortical organoids across 38
experiments, totaling over 125 hours of recorded
activity. Organoids underwent 1–6 experiments
each (median: 2) spanning 3–75 cycles (median: 27).
The most extensive experiment ran continuously
over 48 hours. To quantify consistent performance
across experiments, we used the 90th percentile
of episode duration (time balanced) within each
cycle as our primary metric. We then established
a rigorous benchmark for successful control based
on the top 1% of performance achieved by the
best-performing in silico random control algorithm
(Supplementary Fig. S4). This threshold separates
experiments where organoids reliably achieved pro-
ficient control from those showing only transient
or inconsistent performance.

From these training paradigms (Null: n = 131,
Random: n = 68, Adaptive: n = 92), adaptive
stimulation significantly outperformed both ran-
dom and null cases (p = 1.06e-3 and p = 2.45e-8
respectively, Mann-Whitney U test). Random stim-
ulation outperformed the null case (p = 0.031), but
to a lesser degree. Still, this shows that organoids
can still learn something from a completely generic
and randomly varying feedback signal when it is
administered specifically when performance drops.
While 22.8% of cycles reached proficiency under
adaptive training, only 4.4% did so with random
stimulation, and 2.3% with no stimulation.

Given the superior performance of adaptive
training, we conducted extended experiments
using only the adaptive paradigm without cycling
between conditions. We will refer to this train-
ing strategy as “Continuous Adaptive“ training.
Fig. 5a demonstrates sustained learning across
multiple hours, with performance consistently
exceeding the proficiency threshold. The temporal
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8 Goal-Directed Learning in Cortical Organoids

Fig. 4 Training paradigms enable task-specific learning and performance evaluation

a Square wave biphasic pulse shape, 400µV peak to peak, 400µs period positive first. Training patterns consist of multiple
pulses on separate channels spaced by 10ms within each pulse pattern, repeating the pattern at 100ms or 10Hz. b Description
of the three separate training paradigms. Null: no stimulation, Random: 5-pulse patterns with the order randomly sampled
from all possible training units, Adaptive: 2-pulse patterns chosen based on performance improvements attributed to specific
stimulations. c A alternating experiment showing performance (time balanced in seconds) where the training paradigm is
alternated, indicated by color (null-blue, red-random, green-adaptive). Each cycle lasts 15 minutes, with a 45 minute rest
between cycles for 21 cumulative hours. d Mean and inter-quartile range of performance per training paradigm for the
experiment in c. e Overlaid trajectories of pole angle throughout time within each training cycle for chosen cycles. f Plots
of individual cycles, with each episode shown as scatter points, and training delivery times shown for the relevant episodes.
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Fig. 5 Continuous adaptive training reveals learning dynamics and control policy development

a Performance plot of the adaptive training paradigm running continuously for all cycles. Threshold indicates 20.5s which
was designated as proficient Supplementary Fig. S4. b Improvement metric for various training patterns. Line color denotes
first neuron in training pattern, scatter color denotes second neuron in training pattern. Grey shaded envelope designates
brownian motion as explained in Supplementary Fig. S5. Roman numerals indicate highest maximum improvements. c Inset
of performance through time with corresponding value estimation of training signals. The inset highlights two specific training
patterns in blue and purple, showing their value changing through performance gain after the feedback stimulation pulses.
With blue, a later pulse results in decreasing performance, thus the value of the blue pattern is decreased correspondingly.
d Zoomed-out graph of previous inset, indicating longer-term value changes of performance through an entire experiment.
e Sigmoid estimations of the organoids control policy through one training cycle. Early episodes show no cohesive structure,
late episodes approach a sigmoid centered around 0°. f Early episodes (first third) dynamics of how the spike count
di�erence between the output units respond to input frequencies dependent on the cartpoles angle. These responses are short
and show less coherent flow patterns. g Similar to f, but late episodes (last third) show multiple round trips on the attractor
and much higher density around a preferred state state near 0°. Late episodes also have less variability in initial responses.

pattern of performance peaks shows clear auto-
correlation (Supplementary Fig. S1.2), suggesting
underlying state-dependent changes occurring over
multi-hour periods. Post-hoc analysis revealed cer-
tain pulse combinations yielded consistently higher
improvement metrics (Fig. 5b), measured as the
cumulative change in time balanced following each

training signal delivery. These highly e�ective
patterns—identified by improvement exceeding
random walk bounds—often shared common train-
ing units. To elucidate how the eligibility trace-
based value estimation method optimizes training
signals, Fig. 5c visualizes the dynamic tracking
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10 Goal-Directed Learning in Cortical Organoids

of 2-unit training pattern value during an exper-
iment with multiple cycles. The inset highlights
how individual pulse patterns could drive either
improvement or deterioration depending on the
network’s state, emphasizing the importance of
adaptive training signal selection.

We visualize a representative proficient
organoid’s control strategy in two complemen-
tary ways. A simplified sigmoid policy estimation
(Fig. 5d) shows the emergence of structured con-
trol centered around the vertical position, while
the complete input-output flow fields in the phase
space of neural activation patterns (Fig. 5f,g)
reveal richer dynamics. These flow fields—which
capture how neural responses relate to the pole’s
state through time—show adaptation towards
an o�-center balancing point that accounts for
both angle and angular velocity (see Supplemen-
tary Fig. S6). Early episodes show scattered,
inconsistent responses, but late episodes demon-
strate coherent control strategies with multiple
stable oscillation patterns and increased activity
density near this preferred state. In late episodes,
the phase space of the dynamical system of pooled
neural activations is also better at entraining
the phase space trajectory from an initial pre-
ferred state into a 2-dimensional attractor manifold
reflecting the problem’s control dynamics. A well-
trained organoid circumnavigates this attractor
many times.

These improvements in control strategy were
reflected in overall performance metrics - contin-
uous adaptive experiments achieved proficiency
in 45.4% of cycles, substantially higher than
the 22.8% rate observed in adaptive alternating
experiments(Fig. 6a,b). We analyzed correlations
between the best 90th percentile performance
for each experiment and a range of connectiv-
ity metrics derived from both spontaneous and
stimulus-evoked activity. Our first-order causal
connectivity metric proved especially predictive of
performance outcomes (R2 = 0.446, p < 0.001, n =
30), substantially outperforming traditional func-
tional connectivity as calculated by spike-time
tiling coe�cient within 20 ms [56] (R2 = 0.288, p <
0.01, n = 32) (Fig. 6c,d). This advantage was most
pronounced in proficient experiments, where causal
connectivity showed remarkably strong correla-
tion with learning performance (R2 = 0.58, p <
0.01, n = 12), whereas functional connectivity

showed a weaker correlation (R2 = 0.200, p =
0.140, n = 12). The strength of first-order causal
connections, which guided our neural configuration
selection, emerged as a key predictor of learn-
ing capability (Fig. 6e). Output units’ ability
to evoke multi-order responses (p < 0.01) and
network-wide bursts (p < 0.01) correlated with per-
formance, suggesting that output units’ capacity
to recruit broader network activity may facili-
tate adaptive control. Other connectivity metrics,
including burst probability and functional coupling
between non-input/output units, showed weaker
or non-significant correlations, further supporting
the importance of first-order causal pathways in
enabling successful learning.

These results demonstrate both the e�ective-
ness of adaptive training and the importance of
proper neural configuration selection. While high-
frequency stimulation generally enhanced network
performance over baseline, adaptive selection of
training signals led to significantly better outcomes
than random selection, with proficiency rates
doubling in continuous experiments. The state-
dependent nature of each cycle’s 90th percentile
performance suggests persistent network states
conducive to adaptation, rather than indepen-
dent and isolated initializations. Our experimental
design—delivering training pattern only at episode
completion and selecting training units distinct
from input/output units—isolates the learning
e�ects from potential artifacts. The strong predic-
tive power of first-order causal connectivity guided
successful neural configuration selection, though
learning remained configuration-dependent even
within individual organoids.

Discussion

Our results demonstrate the first instance of
goal-directed learning in brain organoids using
intentionally selected circuits, establishing a new
paradigm for biological computation beyond
the successful unsupervised reservoir learning
approach demonstrated in [22]. Organoids natu-
rally recapitulate neural development and, to some
extent, circuit architecture in three-dimensional
space, providing a highly parallel substrate for
spatial computation. HD-MEAs enable millisecond-
precision closed-loop control, allowing us to map
specific computational roles to individual neurons
despite capturing only a subset of the total network
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Fig. 6 Statistical validation and neural correlates of learning performance

a Box plots of each condition with inter-quartile range where each datapoint represents the 90th percentile performance
within a cycle (Null: n = 131, Random: n = 68, Adaptive: n = 92, Continuous Adaptive: n = 141 cycles), showing significant
improvements (Mann-Whitney U test, P = 2.13 ◊ 10≠18 vs null, P = 5.12 ◊ 10≠9 vs random, P = 2.78 ◊ 10≠3 vs alternating
adaptive). We separate when adaptive was used for each cycle within an experiment versus when it was alternated. Threshold
of ”proficient” is shown as a red line. b Percentage of proficient cycles above the threshold. c Each experiments best 90th
percentile performance predicted by functional connectivity calculated in the baseline recording (R2 = 0.288, P = 0.004,
n = 32), along with regression lines fit to both proficient and not proficient cycles. d Similar to c, but with the first-order
causal connectivity metric showing stronger predictive power (R2 = 0.446, P = 6.0 ◊ 10≠4, n = 30). e Correlation of
features with 90th percentile performance (n = 32). i and o represent the input and output units respectively.
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12 Goal-Directed Learning in Cortical Organoids

activity. Using a novel multi-phase experimental
approach, we designed a rapid analysis pipeline
that enables iterative experimentation, character-
izing neural responses and adjusting parameters
within minutes between experimental phases. This
capability for systematic investigation mirrors the
rapid prototyping that accelerated artificial neural
network development. Mouse cortical organoids,
with their quick development cycle[57, 58], provide
an ideal testbed for this engineering approach to
biological computation. This framework opens new
possibilities for both fundamental neuroscience and
hybrid bio-electronic systems.

Unlike previous in vitro learning studies
focused on pattern recognition or fixed behav-
iors [15, 22], our framework tackles a continuously
unstable control problem requiring active state
maintenance, demonstrating that biological cir-
cuits can optimize complex dynamical systems
even without canonical reward circuitry. Notably,
even random stimulation improved performance
over baseline, suggesting that high-frequency
stimulation alone can modify network dynamics.
However, our adaptive training paradigm, which
optimized training signal selection based on per-
formance changes, significantly outperformed both
random and null conditions achieving proficiency
in 45.1% of continuous cycles, demonstrating that
biological neural networks can be systematically
modified through precise electronic control. Our
results show that task-specific adaptation can be
achieved instead just through targeted 300 ms
electrical stimulation patterns.

The e�ectiveness of training signals showed
clear state-dependence, building on observations
from [15] that di�erent stimulation patterns suc-
ceed at di�erent times. This suggests an interaction
between training signals and recent activity history,
providing an opportunity to explore fundamental
stimulus-based learning rules at the circuit level.
While mechanisms like spike-timing-dependent
plasticity or short-term synaptic facilitation may
underlie individual neuron-to-neuron modifica-
tions, how these local changes contribute to larger
networks remains a key question for learning in

vitro. We observed rapid modulation of control
policies through these brief training cycles while
also discovering temporal correlation in the net-
work’s ability to achieve high performance over
multi-hour periods, revealing distinct timescales
of network modulation. Although our focus was

on short-term modulation of network control poli-
cies, the temporal structure of network behavior
evolved continuously over hours without clear
directional trends. This suggests that future work
should explore how to intentionally shape these
longer-term dynamics to enhance both initial per-
formance and learning capacity. Such adaptation
across multiple timescales demonstrates a key
advantage of biological systems for hybrid bio-
electronic applications: while our training signals
enabled rapid tuning of task-specific responses,
the observed long-term state dependencies sug-
gest potential for shaping underlying network
dynamics to support and enhance these rapid adap-
tations. Training adaptations in di�erent organoids
lead to similar inverted pendumlum-dynamics-
modeling low-dimensional attractors in the phase
space of the organoid neurodynamics, even though
the details of the neural connectivity in each
organoid di�er greatly. This reflects the flexibility
of task-switching of mammalian cortex in vivo.

Causal connectivity analysis reveals how inter-
facing with the network influences learning capa-
bility, providing a framework for predicting and
optimizing performance. The strong predictive
power of first-order causal connectivity (R2 =
0.59 in proficient cycles) compared to traditional
functional connectivity metrics demonstrates the
importance of direct, stimulus-evoked pathways in
architecting successful learning. The correlation
between output units’ ability to evoke network-
wide responses and performance suggests that
e�ective neural interfaces benefit from neurons
capable of recruiting broader network activity.
This methodology of causal characterization could
inform both therapeutic interventions and the
design of future biological computing systems. By
isolating fundamental stimulus-based functionality
in simplified circuits, we can systematically iden-
tify and explore learning rules that may scale to
complex bio-electronic systems.

Our open-source Python-based platform
BrainDance (https://braingeneers.github.io/
braindance) enables exploration of biological
learning mechanisms through flexible and acces-
sible experimental design, following the rapid
iteration paradigm that accelerated machine learn-
ing development. We demonstrated success with
rate coding and brief training patterns, however,
the current technical limitations include planar
HD-MEA recordings capturing only activity on
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the organoid side in contact with the HD-MEA,
potential multi-unit activity due to single elec-
trode thresholding, and manual expert-selection
of neural configurations. More comprehensive
investigations should examine performance across
organoid development stages, regional specifica-
tions, and systematic methods for neural role
assignment and real-time detection [59]. The
current approach using predefined input/output
units could be enhanced through latent space
representations, and the integration of local field
potentials may provide additional insight into
network dynamics. Our simple eligibility trace-
based value estimation method proved e�ective,
yet more sophisticated reinforcement learning
approaches could further optimize training signal
selection based on information from the task and
current estimated control policy. Future work
should also investigate how di�erent stimulation
patterns, frequencies, and encoding schemes might
improve learning outcomes. By systematically
addressing these limitations while expanding our
experimental toolkit, we can bring biological
neural circuit investigation into an era of rapid
and reproducible improvement, enabling deeper
understanding and more e�ective utilization of
their computational capabilities.

Materials and Methods

Electrophysiology experiments

Mouse cortical organoids were plated, as previously
described by our group [57]. We plated mouse cor-
tical organoids at day 25 on MaxOne high-density
multielectrode arrays (Maxwell Biosystems). Prior
to organoid plating, the multielectrode arrays were
coated in 2 steps: First, we performed an overnight
coating with 0.01% Poly-L-ornithine (Millipore
Sigma # P4957) at 37°C overnight. Then washed
the plates 3 times with PBS. We then performed
an overnight coating with 5 µg/mL mouse Laminin
(Fisher Scientific # CB40232) and 5 µg/mL human
Fibronectin (Fisher Scientific # CB40008) at 37°C.

After coating, we placed the organoids on the
chip and removed excess media. The organoids
were then incubated at 37°C for 10 minutes to
promote attachment. We then added pre-warmed
neuronal maturation medi and changed the media
every 2-3 days.

High-Density MEA Recording

Extracellular signals were obtained through the
MaxWell MaxOne system (MaxOne, Maxwell
Biosystems) [60], using custom experimental soft-
ware for the precise stimulation setup and timing
[51]. Signals were recorded at a sampling rate
of 20 kHz/channel with a 1 Hz hardware filter,
for up to 1024 channels. At most 32 stimu-
lation electrodes could be selected at a time.
Cultures were maintained within incubators full-
time during recordings. Experiments were ran
with the BrainDance (https://braingeneers.github.
io/braindance) python library and longitudinally
scheduled using an Internet of Things framework
[61]

Embryonic stem cell maintenance

All experiments were performed in the adapted
BRUCE-4 mouse embryonic stem cell (ESC)
line (Millipore Sigma #SF-CMTI-2). This line
is derived from a male of the C57/BL6J mouse
strain. Mycoplasma testing confirmed lack of
contamination.

ESCs were maintained on Recombinant Human
Protein Vitronectin (Thermo Fisher Scientific
# A14700) coated plates using mESC main-
tenance media containing Glasgow Minimum
Essential Medium (Thermo Fisher Scientific
# 11710035), Embryonic Stem Cell-Qualified
Fetal Bovine Serum (Thermo Fisher Scientific #
10439001), 0.1 mM MEM Non-Essential Amino
Acids (Thermo Fisher Scientific # 11140050),
1 mM Sodium Pyruvate (Millipore Sigma # S8636),
2 mM Glutamax supplement (Thermo Fisher Scien-
tific # 35050061), 0.1 mM 2-Mercaptoethanol (Mil-
lipore Sigma # M3148), and 0.05 mg/ml Primocin
(Invitrogen # ant-pm-05). mESC maintenance
media was supplemented with 1,000 units/mL of
Recombinant Mouse Leukemia Inhibitory Factor
(Millipore Sigma # ESG1107). Media was changed
every day.

Vitronectin coating was incubated for 15 min
at a concentration of 0.5 µg/mL dissolved in 1X
Phosphate-bu�ered saline (PBS) pH 7.4 (Thermo
Fisher Scientific # 70011044). Dissociation and
cell passages were done using ReLeSR passaging
reagent (Stem Cell Technologies # 05872) accord-
ing to the manufacturer’s instructions. Cell freezing
was done in mFreSR cryopreservation medium
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(Stem Cell Technologies # 05855) according to the
manufacturer’s instructions.

Mouse cortical organoid generation

Mouse cortical organoids were grown as previ-
ously described by our group [57, 62]; with some
modifications. To generate cortical organoids we
single cell dissociated ESCs using TrypLE Express
Enzyme (ThermoFisher Scientific #12604021) for
5 minutes at 37°C and re-aggregated in lipidure-
coated 96-well V-bottom plates at a density of
3,000 cells per aggregate, in 100 µL of mESC main-
tenance media supplemented with Rho Kinase
Inhibitor (Y-27632, 10 µM, Tocris # 1254) and
1,000 units/mL of Recombinant Mouse Leukemia
Inhibitory Factor (Millipore Sigma # ESG1107)
(Day -1).

After one day (Day 0), we replaced the medium
with cortical di�erentiation medium containing
Glasgow Minimum Essential Medium (Thermo
Fisher Scientific # 11710035), 10% Knockout
Serum Replacement (Thermo Fisher Scientific #
10828028), 0.1 mM MEM Non-Essential Amino
Acids (Thermo Fisher Scientific # 11140050),
1 mM Sodium Pyruvate (Millipore Sigma # S8636),
2 mM Glutamax supplement (Thermo Fisher Sci-
entific # 35050061), 0.1 mM 2-Mercaptoethanol
(Millipore Sigma # M3148), and 0.05 mg/ml Pri-
mocin (Invitrogen # ant-pm-05). Cortical di�er-
entiation medium was supplemented with Rho
Kinase Inhibitor (Y-27632, 20 µM # 1254), WNT
inhibitor (IWR1-‘, 3 µM, Cayman Chemical #
13659), and TGF-Beta inhibitor (SB431542, Tocris
# 1614, 5 µM). Days 0-5 media were changed every
day.

On day 5, organoids were transferred to ultra-
low adhesion plates (Millipore Sigma # CLS3471)
where media was aspirated and replaced with
fresh neuronal di�erentiation media. The plate
with organoids was put on an orbital shaker at
60 revolutions per minute. Neuronal di�erentia-
tion medium contained Dulbecco’s Modified Eagle
Medium: Nutrient Mixture F-12 with GlutaMAX
supplement (Thermo Fisher Scientific # 10565018),
1X N-2 Supplement (Thermo Fisher Scientific #
17502048), 1X Chemically Defined Lipid Concen-
trate (Thermo Fisher Scientific # 11905031) and
0.05 mg/ml Primocin (Invitrogen # ant-pm-05).
Organoids were grown under 5% CO2 conditions.
The medium was changed every 2-3 days.

On day 14 and onward, we transferred the
organoids to neuronal maturation media con-
taining BrainPhys Neuronal Medium (Stem Cell
Technologies # 05790), 1X N-2 Supplement, 1X
Chemically Defined Lipid Concentrate (Thermo
Fisher Scientific # 11905031), 1X B-27 Supplement
(Thermo Fisher Scientific # 17504044), 0.05 mg/ml
Primocin (Invitrogen # ant-pm-05) and 0.5% v/v
Matrigel Growth Factor Reduced (GFR) Basement
Membrane Matrix, LDEV-free.

Immunohistochemistry and confocal

imaging

Organoids were collected and fixed in room tem-
perature 4% Paraformaldehyde (PFA) (Thermo
Fisher Scientific # 28908) and cryopreserved in
30% Sucrose (Millipore Sigma # S8501). They
were then embedded in a solution containing 50%
of Tissue-Tek O.C.T. Compound (Sakura # 4583)
and 50% of 30% sucrose dissolved in 1X Phosphate-
bu�ered saline (PBS) pH 7.4 (Thermo Fisher
Scientific # 70011044). Organoids were then sec-
tioned to 20 µm using a cryostat (Leica Biosystems
# CM3050) directly onto glass slides. After 2
washes of 5 minutes in 1X PBS and 1 wash in
deionized water (Chem world #CW-DW-2G), the
sections were incubated in blocking solution 5%
v/v donkey serum (Millipore Sigma # D9663), and
0.1% Triton X-100 (Millipore Sigma # X100) for
1 hour. The sections were then incubated in pri-
mary antibodies overnight at 4°C. They were then
washed 3 times for 10 minutes in PBS and incu-
bated in secondary antibodies diluted in blocking
solution for 90 minutes at room temperature. They
were then washed 3 times for 10 minutes in PBS
and coverslipped with Fluoromount-G Mounting
Medium (Thermo Fisher Scientific # 00-4958-02).

Primary antibodies used were: mouse anti
Gfap (Thermo Fisher Scientific #G6171, RRID:
AB 1840893, 1:100); rabbit anti Map2 (Protein-
tech #17490-1-AP, RRID: AB 2137880, 1:2000);
mouse anti Sst (Santa Cruz Biotechnology #sc-
55565, RRID: AB 831726, 1:100); mouse anti Satb2
(Abcam #ab51502, RRID: AB 882455, 1:100);
rabbit anti Tbr1 (Millipore Sigma #AB10554,
RRID: AB 10806888, 1:500); mouse anti Pax6 (BD
Biosciences #561462, RRID: AB 10715442, 1:100).
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Secondary antibodies were of the Alexa series
(Thermo Fisher Scientific), used at a concen-
tration of 1:750. Nuclear counterstain was per-
formed using 300 nM DAPI (4’,6-Diamidino-2-
Phenylindole, Dihydrochloride) (Thermo Fisher #
D1306).

Imaging was done using an inverted confocal
microscope (Zeiss 880) and Zen Blue software
(Zeiss). Images were processed using Zen Black
(Zeiss) and ImageJ software (NIH).

Experiment Phases

Record Phase

In order to rapidly determine the location and
footprint of the neurons to use for the experiment,
we initially perform a spontaneous recording. This
captures spontaneous neural activity, and does
rapid, automatic analysis in order to locate neurons
based on the quantity and magnitude of action
potentials above a threshold. The spike detection
threshold was chosen in the MaxLab Live software
(MaxWell Biosystems) as 5 times the root-mean-
square amplitude of the signal of the channel. (To
ensure that the most relevant units are selected,
this is more conservative than the threshold used
for later phases.)

Channels with activity were then combined into
putative neural unit footprints by taking a spike
triggered average of electrical signal in all other
channels. Channels whose spike-triggered average
had peak-to-peak variation above an empirically
chosen threshold were considered part of the same
footprint; this forms an ad-hoc test for channels
which are significantly likely to demonstrate activ-
ity at the same time. Redundant footprints were
eliminated by finding pairs which shared at least
50% of their spike times, and retaining the one
with larger peak-to-peak signal amplitude in its
own spike-triggered average.

From these footprints, up to 32 putative units
were selected for stimulation based on a custom
metric ÷, designed to identify the electrodes where
spikes could be detected most consistently by com-
bining the firing rate and mean spike amplitude
µamp as follows:

÷ = (1 + r̂) · (1 + 0.1|µamp|)

The normalized log spike rate r̂ is defined with
respect to the minimum and maximum spike rates

across all electrodes as follows:

r̂ = ln(1 + r) ≠ min(ln(1 + r))
max(ln(1 + r)) ≠ min(ln(1 + r))

Stimulation Phase

After identifying putative neural units, we char-
acterize their stimulus-response properties by
delivering biphasic pulses to each unit and record-
ing the network’s response. Previous studies have
identified multiple di�erent response timescales
[63], so we consider two separate connectivity
metrics: the first-order connectivity C1, and the
multi-order connectivity Cm.

For a window of stimulus-relative time, we
define a response tensor indexed by the stimulus
repetition k, the stimulus electrode i, the recording
channel j.

Ri,j
k [0,T ] œ Nnreps◊nstim◊nchannels

where nreps is the number of stimulus repetitions
(50), nstim is the number of stimulation electrodes
corresponding to putative neurons, and nchannels
is the number of recording channels specifically
under putative neurons. The value of the tensor
is the number of spikes in an interval of time rel-
ative to each stimulus, with spikes identified by
thresholding at 3 standard deviations.

First-order connectivity C1 is the observed
probability of evoking at least one spike within
10ms:

C1(i, j) = 1
nreps

nrepsÿ

k=1

I
1 if Ri,j

k [0,10 ms] > 0
0 otherwise

Multi-order connectivity Cm is the average
number of spikes observed in a longer window:

Cm(i, j) = 1
nreps

nrepsÿ

k=1
Ri,j

k [10 ms,200 ms]

To identify network-wide bursts of the units, we
compute the total spike count across all channels
for each stimulation. A burst is detected when this
count exceeds the median count plus three median
absolute deviations (MAD). Bursts are excluded
from the multi-order connectivity calculation to
focus on specific neural pathways rather than larger
network activations.
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These metrics enable identification of both
direct and network-mediated connections between
neural units.

Cartpole Environment

Cartpole (also known as inverted pendulum) is a
traditional control problem which tests an agent’s
ability to balance an unstable dynamical system.
The task is typically restricted to 2D, involving
a cart that can move horizontally balancing a
pole vertically that is free to rotate around the
attachment joint. The goal is to keep the pole
upright by applying horizontal forces to the cart.
This benchmark is valuable for its simple formula-
tion yet inherent instability, real-world parallels,
and widespread use in both control theory and
reinforcement learning [46, 47].

The system state is fully described by four vari-
ables: cart position x, cart velocity ẋ, pole angle ◊,
and angular velocity ◊̇. The agent can apply a force
F œ {≠10N, 10N} to the cart at each timestep.
The full equations of motion describing the nonlin-
ear dynamics can be found in [45]. Episodes begin
with small random perturbations to ◊ and ◊̇ and
proceed in discrete timesteps until |◊| > 16¶, at
which point the pole is considered to be in an unre-
coverable state. We chose to remove traditional
horizontal position bounds to focus solely on the
pole balancing aspect of the task.

Each timestep involves decoding spike rates
from the culture to determine the applied force,
updating the virtual environment state with said
force, and adjusting the encoding stimulation rates
corresponding to the current virtual state.

Encoding and Decoding Information

Throughout this study, we use rate coding for
both input/encoding and output/decoding signals,
which provides su�cient information transmission,
especially when focusing on small numbers of neu-
rons [10, 64, 65]. The virtual state is encoded to
the culture through two input neurons receiving
stimulation frequencies determined by the pole
angle ◊:

f1 = a · (b ≠ sin(◊))2

f2 = a · (b + sin(◊))2 (1)

where a = 7 and b = 0.15 are scaling factors that
maintain stimulation frequencies in a biologically
relevant range (both neurons receive ¥1.1 Hz when

the pole is vertical, with frequencies diverging to
¥0.8 Hz and ¥8.9 Hz at terminal angles) while still
being able to represent the sign of the angle. This
functional form was chosen because the sinusoidal
encoding ensures that the neurons receive opposing
signals based on the pole’s deviation from vertical,
while the exponent enables the frequency to change
faster as it nears the terminal angle.

For decoding signal from the culture, spikes are
detected by a threshold of 3 standard deviations.
Each output neuron’s activity is then converted to
a smoothed firing rate by an exponential moving
average:

rt = –rt≠1 + (1 ≠ –)ct (2)
where rt is the smoothed firing rate at time t, ct

is the raw spike count in the current window, and
– = 0.2 balances immediate responses with firing
rate stability.

The force F applied to the cart is determined
by the di�erence between the two output units’
smoothed firing rates, which are clipped to the
range from ≠1 to 1 and then multiplied by 10 N.

Real-time Implementation

The closed-loop system operates through discrete
timesteps involving three key components: the
organoid’s neural activity, the simulated environ-
ment, and the training signals. Each timestep
consists of:

1. Read Phase (200 ms):
• Process raw signals using SALPA (Sub-

traction of Artifacts by Local Polynomial
Approximation) [66] for artifact removal

• Detect spikes via thresholding at 3 standard
deviations, or set threshold above noise

• Monitor motor neuron activity via smoothed
firing rates rt (Eq. 2)

2. Environment Update:
• Decode motor signals r1,t and r2,t to output

force F
• Update cartpole state according to physics
• Encode new state to stimulation frequencies

via Eq. 1

3. Training Phase (200 ms, conditional):
• Skip unless episode completed
• Deliver training patterns if 5-episode mean

performance below 20-episode mean
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• For adaptive protocol (see below), update
value estimates based on performance

Each phase requires precise timing to maintain
real-time control. A longer read phase yields reli-
able spike counts and smoother actions, whereas a
shorter read phase leads to more responsive, yet
noisy control. Experiments used either 200 ms or
300 ms read phases. For direct comparison, per-
formance metrics from 200 ms experiments were
scaled by a factor of 1.5 to normalize to a 300 ms
time base.

Training Signal Implementation

Three experimental conditions were tested: a null
case without stimulation, and two stimulation
paradigms, random and adaptive, with signals
administered conditionally based on performance
metrics, ether to randomly chosen training neurons
or adaptively selected training neurons. Specif-
ically, stimulation occurred when the 5-episode
mean performance fell below the 20-episode moving
average, allowing the system to focus on larger-
scale adaptations while filtering out the impact
of individual poor episodes. The pool from which
individual training neurons and corresponding elec-
trodes (”training electrodes”) were selected to
receive feedback stimulation (n = 8–15) was cre-
ated in the Record phase based on the activity
metric described in Methods: Record Phase.

The random paradigm delivered sequential
biphasic pulses (5 ms inter-pulse interval) through
5 training electrodes selected randomly without
replacement. Each stimulation epoch consisted of
one complete pulse sequence delivered at 10 Hz for
300 ms.

In contrast to the random paradigm, the
adaptive paradigm utilized a weighted sampling
approach for paired-pulse patterns (5 ms inter-
pulse interval). Each electrode i had a value
estimate Vi updated at the end of each episode via:

Vi,t+1 = Vi,t + –(Rt ≠ Vi,t)Ei,t

where Rt denotes time balanced (our performance
metric, episode duration), – (0.3) is the learning
rate, and Ei,t represents the eligibility trace:

Ei,t = “Ei,t≠1 +
I

1 for selected pulse i

0 for all other pulses

where “ (0.3) is the decay factor that diminishes
the influence of past selections. The eligibility trace
enables temporal credit assignment by storing a
decaying record of recent stimulation patterns.
weighted by their previous success in improving
performance.

Value estimates were not allowed to decrease
between the minimum possible episode reward of
10. Selection probabilities were computed as:

P (i) = Viq
j Vj

Training patterns were sampled according to
these probabilities and delivered as paired pulses
at 10 Hz for 300 ms.

Statistical Analysis

Prior to statistical testing, we assessed normality
of performance distributions using Shapiro-Wilk
tests, which revealed significant deviations from
normality across all conditions (p < 0.001). Given
this non-normal distribution, we employed the
non-parametric Mann-Whitney U test for pairwise
comparisons between conditions (null, random,
adaptive, and continuous adaptive), with Holm-
Bonferroni correction for multiple comparisons.

Performance thresholds were determined based
on the 99th percentile of simulated random con-
trollers (see Supplementary Methods). A cycle was
considered “proficient” if its 90th percentile time
balanced exceeded this threshold. All statistical
tests used an alpha level of 0.05, with p-values
reported where appropriate.
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[53] Radivojevic, M., Jäckel, D., Altermatt, M.,
Müller, J., Viswam, V., Hierlemann, A.,
Bakkum, D.J.: Electrical Identification and
Selective Microstimulation of Neuronal Com-
partments Based on Features of Extracel-
lular Action Potentials. Scientific Reports
6(1), 31332 (2016) https://doi.org/10.1038/
srep31332

[54] Romo, R., Hernández, A., Zainos, A.,
Salinas, E.: Somatosensory discrimination
based on cortical microstimulation. Nature
392(6674), 387–390 (1998) https://doi.org/
10.1038/32891

[55] Penfield, W., Boldrey, E.: Somatic motor and
sensory representation in the cerebral cortex
of man as studied by electrical stimulation.
Brain 60(4), 389–443 (1937) https://doi.org/
10.1093/brain/60.4.389

[56] Cutts, C.S., Eglen, S.J.: Detecting Pairwise
Correlations in Spike Trains: An Objective
Comparison of Methods and Application
to the Study of Retinal Waves. The Jour-
nal of Neuroscience 34(43), 14288–14303
(2014) https://doi.org/10.1523/JNEUROSCI.
2767-14.2014

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.12.07.627350doi: bioRxiv preprint 

https://doi.org/10.1016/j.xcrp.2024.102151
https://doi.org/10.1016/j.xcrp.2024.102151
https://doi.org/10.1080/14786440809463763
https://doi.org/10.1080/14786440809463763
https://coneural.org/florian/papers/05_cart_pole.pdf
https://coneural.org/florian/papers/05_cart_pole.pdf
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1016/j.stem.2008.09.002
https://doi.org/10.1016/j.stem.2008.09.002
https://doi.org/10.1371/journal.pbio.0000042
https://doi.org/10.1371/journal.pbio.0000042
https://doi.org/10.1101/2024.11.14.623530
https://doi.org/10.1101/2024.03.15.585237
https://doi.org/10.1038/s41593-024-01782-5
https://doi.org/10.1038/srep31332
https://doi.org/10.1038/srep31332
https://doi.org/10.1038/32891
https://doi.org/10.1038/32891
https://doi.org/10.1093/brain/60.4.389
https://doi.org/10.1093/brain/60.4.389
https://doi.org/10.1523/JNEUROSCI.2767-14.2014
https://doi.org/10.1523/JNEUROSCI.2767-14.2014
https://doi.org/10.1101/2024.12.07.627350


22 Goal-Directed Learning in Cortical Organoids

[57] Elliott, M.A., Schweiger, H.E., Robbins, A.,
Vera-Choqqueccota, S., Ehrlich, D., Hernan-
dez, S., Voitiuk, K., Geng, J., Sevetson,
J.L., Core, C., et al.: Internet-connected cor-
tical organoids for project-based stem cell
and neuroscience education. eneuro 10(12),
0308–232023 (2023) https://doi.org/10.1523/
ENEURO.0308-23.2023

[58] Mostajo-Radji, M.A., Leon, W.R.M.,
Breevoort, A., Gonzalez-Ferrer, J., Schweiger,
H.E., Lehrer, J., Zhou, L., Schmitz,
M.T., Perez, Y., Mukhtar, T., et al.:
Fate plasticity of interneuron specifica-
tion. bioRxiv, 2024–1002614266 (2024)
https://doi.org/10.1101/2024.10.02.614266

[59] van der Molen, T., Lim, M., Bartram, J.,
Cheng, Z., Robbins, A., Parks, D.F., Petzold,
L.R., Hierlemann, A., Haussler, D., Hansma,
P.K., et al.: RT-Sort: an action potential
propagation-based algorithm for real time
spike detection and sorting with millisecond
latencies. PloS one 19(12), 0312438 (2024)

[60] Müller, J., Ballini, M., Livi, P., Chen, Y.,
Radivojevic, M., Shadmani, A., Viswam, V.,
Jones, I.L., Fiscella, M., Diggelmann, R., et

al.: High-resolution cmos mea platform to
study neurons at subcellular, cellular, and net-
work levels. Lab on a Chip 15(13), 2767–2780
(2015) https://doi.org/10.1039/C5LC00133A

[61] Parks, D.F., Voitiuk, K., Geng, J., Elliott,
M.A., Keefe, M.G., Jung, E.A., Robbins, A.,
Baudin, P.V., Ly, V.T., Hawthorne, N., et

al.: Iot cloud laboratory: Internet of things
architecture for cellular biology. Internet of
Things 20, 100618 (2022) https://doi.org/10.
1016/j.iot.2022.100618

[62] Park, Y., Hernandez, S., Hernandez, C.O.,
Schweiger, H.E., Li, H., Voitiuk, K., Dechiraju,
H., Hawthorne, N., Muzzy, E.M., Selberg,
J.A., et al.: Modulation of neuronal activ-
ity in cortical organoids with bioelectronic
delivery of ions and neurotransmitters. Cell
Reports Methods 4(1), 100686 (2024) https:
//doi.org/10.1016/j.crmeth.2023.100686

[63] Wagenaar, D.A., Pine, J., Potter, S.M.: E�ec-
tive parameters for stimulation of dissoci-
ated cultures using multi-electrode arrays.
Journal of Neuroscience Methods 138(1), 27–
37 (2004) https://doi.org/10.1016/j.jneumeth.
2004.03.005

[64] Adrian, E.D., Zotterman, Y.: The impulses
produced by sensory nerve endings. The Jour-
nal of Physiology 61(4), 465–483 (1926) https:
//doi.org/10.1113/jphysiol.1926.sp002308

[65] Chao, Z.C., Bakkum, D.J., Potter, S.M.:
Region-specific network plasticity in simu-
lated and living cortical networks: comparison
of the center of activity trajectory (CAT) with
other statistics. Journal of Neural Engineer-
ing 4(3), 294 (2007) https://doi.org/10.1088/
1741-2560/4/3/015

[66] Wagenaar, D.A., Potter, S.M.: Real-time
multi-channel stimulus artifact suppression
by local curve fitting. Journal of Neuroscience
Methods 120(2), 113–120 (2002) https://doi.
org/10.1016/S0165-0270(02)00149-8

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.12.07.627350doi: bioRxiv preprint 

https://doi.org/10.1523/ENEURO.0308-23.2023
https://doi.org/10.1523/ENEURO.0308-23.2023
https://doi.org/10.1101/2024.10.02.614266
https://doi.org/10.1039/C5LC00133A
https://doi.org/10.1016/j.iot.2022.100618
https://doi.org/10.1016/j.iot.2022.100618
https://doi.org/10.1016/j.crmeth.2023.100686
https://doi.org/10.1016/j.crmeth.2023.100686
https://doi.org/10.1016/j.jneumeth.2004.03.005
https://doi.org/10.1016/j.jneumeth.2004.03.005
https://doi.org/10.1113/jphysiol.1926.sp002308
https://doi.org/10.1113/jphysiol.1926.sp002308
https://doi.org/10.1088/1741-2560/4/3/015
https://doi.org/10.1088/1741-2560/4/3/015
https://doi.org/10.1016/S0165-0270(02)00149-8
https://doi.org/10.1016/S0165-0270(02)00149-8
https://doi.org/10.1101/2024.12.07.627350

	Introduction
	Results
	Multi-Phase Experimentation
	Neural Configuration
	Training Paradigm

	Superior Performance of Adaptive Training Signals over Random and Null Conditions

	Discussion
	Materials and Methods
	Electrophysiology experiments
	High-Density MEA Recording
	Embryonic stem cell maintenance
	Mouse cortical organoid generation 
	Immunohistochemistry and confocal imaging
	Experiment Phases
	Record Phase
	Stimulation Phase
	Cartpole Environment
	Encoding and Decoding Information

	Real-time Implementation
	Training Signal Implementation

	Statistical Analysis


