

1 **High-Complexity Barcoded Rabies Virus for Scalable Circuit Mapping Using Single-Cell and Single-
2 Nucleus Sequencing**

3
4 David Shin^{1,2,12}, Madeleine E. Urbanek^{1,2,12}, H. Hanh Larson², Anthony J. Moussa³, Kevin Y. Lee², Donovan L.
5 Baker², Elio Standen-Bloom², Sangeetha Ramachandran^{1,2}, Derek Bogdanoff⁴, Cathryn R. Cadwell^{2,5,6,7,8,13*},
6 Tomasz J. Nowakowski^{2,7,9,10,11,13,14**}

7
8 ¹Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA

9 ²Department of Neurological Surgery, University of California, San Francisco, CA, USA

10 ³Medical Scientist Training Program, University of California, San Francisco, CA, USA

11 ⁴Tetrad Graduate Program, University of California, San Francisco, CA, USA

12 ⁵Department of Pathology, University of California, San Francisco, CA, USA

13 ⁶Weill Neurohub, University of California, San Francisco, CA, USA

14 ⁷Weill Institute for Neurosciences, University of California, San Francisco, CA, USA

15 ⁸Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA

16 ⁹Department of Anatomy, University of California, San Francisco, CA, USA

17 ¹⁰Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA

18 ¹¹Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California,
19 San Francisco, CA, USA

20 ¹²These authors contributed equally

21 ¹³Senior author

22 ¹⁴Lead contact

23 *Correspondence: Cathryn.Cadwell@ucsf.edu

24 **Correspondence: Tomasz.Nowakowski@ucsf.edu

25 **SUMMARY**

26 Single cell genomics has revolutionized our understanding of neuronal cell types. However, scalable
27 technologies for probing single-cell connectivity are lacking, and we are just beginning to understand how
28 molecularly defined cell types are organized into functional circuits. Here, we describe a protocol to generate
29 high-complexity barcoded rabies virus (RV) for scalable circuit mapping from tens of thousands of individual
30 starter cells in parallel. In addition, we introduce a strategy for targeting RV-encoded barcode transcripts to the
31 nucleus so that they can be read out using single-nucleus RNA sequencing (snRNA-seq). We apply this tool in
32 organotypic slice cultures of the developing human cerebral cortex, which reveals the emergence of cell type-
33 specific circuit motifs in midgestation. By leveraging the power and throughput of single cell genomics for
34 mapping synaptic connectivity, we chart a path forward for scalable circuit mapping of molecularly-defined cell
35 types in healthy and disease states.

36

37 **KEYWORDS**

38 Barcoded rabies virus, single-cell RNA sequencing, single-nucleus RNA sequencing, human, brain
39 development, cortex, subplate, barcode complexity, barcode diversity

40

41 **INTRODUCTION**

42 Understanding neuronal connectivity at the cell type level is crucial for unraveling the complexities of brain
43 function and dysfunction. Monosynaptic tracing using glycoprotein (G)-deleted rabies virus (RVdG) has been a
44 powerful method for mapping direct synaptic connections between populations of cells^{1,2}. This method exploits
45 the natural ability of RVdG to spread trans-synaptically in the retrograde direction, allowing researchers to
46 trace connections from a genetically targeted starter cell population to its presynaptic partners. Despite its
47 utility, traditional monosynaptic rabies tracing methods have limitations. For example, these techniques
48 typically offer only coarse cell-type specificity due to the limitations of transgenic mouse lines and viral tools
49 used for targeting specific cell populations. With the advent of single-cell RNA sequencing, the neuronal
50 landscape has been shown to be much more complex, revealing a multitude of fine-grained cell types that
51 cannot be distinguished with existing tracing methods.

52 Several recent studies have incorporated a nucleotide ‘barcode’ into the RVdG backbone, enabling
53 simultaneous readout of the connectivity and cell identity of hundreds of cells in a single experiment using
54 single cell or spatial transcriptomics assays^{3–5}. However, this barcoded RVdG technology still faces significant
55 challenges. First, in contrast to other viruses such as lentivirus or adeno-associated virus, it has been
56 challenging to achieve high-complexity libraries of barcoded RVdG, and the limited diversity of barcoded RVdG
57 libraries represents a major roadblock to scaling this technology to study larger networks. There are multiple
58 reasons for this, including the low efficiency of active viral RNA particle recovery from a DNA template and
59 variable clonal expansion of the few barcodes that are recovered, among others^{6–8}. Second, given that RVdG
60 replicates and undergoes transcription in the cytoplasm^{9,10}, it has not been possible to read out RVdG
61 barcodes from isolated nuclei, necessitating whole cell dissociations which compromise neuron viability and
62 integrity, further limiting the utility of this tool.

63 To overcome these challenges, we have developed an optimized protocol for RVdG packaging to
64 improve the complexity of barcoded RVdG libraries by several orders of magnitude compared to currently
65 published tools. This advancement significantly enhances the scalability of trans-synaptic tracing experiments,
66 allowing us to potentially map the inputs to tens of thousands of single cells in parallel. Additionally, we have
67 incorporated a method for localizing RVdG barcodes to nuclei, allowing for high-fidelity connectivity mapping

68 without the need for whole cell dissociations. To demonstrate the power of this tool, we characterize the
69 emergence of cell type–specific connectivity patterns by mapping the inputs to thousands of single starter cells
70 in organotypic slices of the developing human cerebral cortex.

71

72 RESULTS

73

74 **Generation of high-complexity barcoded RVdG libraries enables mapping the inputs to thousands of** 75 **single cells in parallel**

76 To generate a high-complexity barcoded RVdG plasmid library, we have leveraged a recently developed
77 combinatorial barcode system optimized for scRNA-seq readout¹¹. This barcode ‘white list’ system generates
78 barcode complexity exponentially using combinatorial indexing, while maintaining a high (≥ 6) minimum
Hamming distance that is robust to sequencing errors (Figures S1A and S1B; Table S1). We cloned these
80 barcodes into the 3' UTR of the fourth open reading frame of the RVdG genome plasmid encoding dTomato
81 (Figures 1A, 1B, S1C and S1D; Table S2).

82 We optimized a protocol for packaging RVdG to improve barcode complexity and promote a more
83 uniform distribution of viral barcodes (Figure 1C–1G and Figure 2). Using this optimized RVdG packaging
84 protocol, we were able to generate high-complexity barcoded RVdG libraries which contained millions of
85 unique barcodes with a relatively even barcode distribution compared to prior published libraries^{3–5} (GEO:
86 GSE277536). Specifically, no single barcode in our packaged RVdG libraries accounts for more than 0.046%
87 of the total number of barcodes detected (Figure 1D). In order to estimate the number of unique starter
88 infections that can be traced using different barcoded RVdG libraries, we used a simulation to compute the rate
89 of barcode collision, or at least two starter cells receiving the same barcode, as a function of the number of
90 cells infected. This simulation revealed that our optimized RVdG libraries enable unique labeling of 10,000 to
91 100,000 single cells with a barcode collision rate less than 10%, which represents two to three orders of
92 magnitude improvement compared to previously published libraries (Figure 1E). This increased barcode
93 complexity of our libraries persisted across a broad range of simulated sequencing depths (Figure 1F). We

94 also quantified the complexity of our barcoded RVdG libraries using an estimate of Shannon entropy^{12,13} and
95 found that our optimized libraries correspond to an approximately 8-bit improvement in information content
96 compared to previously published libraries (Figure 1G). A difference in a single bit represents a doubling of
97 library complexity through increasing either the number of barcodes, uniformity of the barcode distribution, or
98 both (STAR Methods). In summary, our optimized RVdG packaging protocol leads to a robust improvement in
99 barcoded RVdG library complexity compared to prior studies.

100

101 **The HEK-GT cell line and and Lipofectamine 3000 transfection reagent are optimal for generating high-**
102 **complexity barcoded RVdG libraries**

103 Current state-of-the-art protocols for packaging RVdG involve a three-step process^{4,6,14,15}: First, a packaging
104 cell line (e.g. HEK293T, Neuro2A, or B7GG cells) undergoes transfection with packaging plasmids, which
105 include an RVdG genome plasmid, four plasmids encoding RV proteins (N, P, L, and G) necessary for RVdG
106 packaging and propagation, and a plasmid encoding T7 polymerase to drive the expression of the RVdG
107 genome. The initial recovery of replication-competent viral particles from plasmid DNA at this step is extremely
108 inefficient, with some reports suggesting that less than 0.01% of transfected cells successfully begin to
109 produce RVdG^{4,16}. As a result, in the second step RVdG is given time to propagate throughout the culture until
110 a majority of cells are producing the virus (Figure S1E). Third, G-pseudotyped viral supernatant is harvested
111 and used to transduce BHK21 cells that stably express EnvA in order to produce EnvA-pseudotyped RVdG
112 (Figure S1F), which is subsequently collected and concentrated by ultracentrifugation and used for
113 downstream experiments.

114 We reasoned that improving the efficiency of recovering viral particles from plasmid DNA might improve
115 the diversity and distribution of our barcoded RVdG viral libraries (Figure 2A). We evaluated the efficiency of
116 commonly used cell lines for packaging RVdG: HEK293T, BHK-21, and Neuro2A (Figures 2B, S1G–S1J). We
117 transfected each cell line with packaging plasmids in the absence of rabies G to disable cell-to-cell viral
118 spread, and quantified the percentage of cells that rescued RVdG using flow cytometry. HEK293T cells were
119 more efficient at packaging RVdG, rescuing RVdG at rates approximately 48-fold higher than BHK-21 cells and
120 ~29-fold higher than Neuro2A cells (HEK293T: 0.32±0.13%, BHK21: 0.0067±0.0027%, Neuro2A: 0.011±

121 0.0045%, mean \pm SEM; HEK293T vs. BHK21: p=0.013, HEK293T vs. Neuro2A: p= 0.013, BHK21 vs. Neuro2A:
122 p = 0.53, Wilcoxon rank sum test with Bonferroni-Holm correction for family-wise error rate; [Figures 2B, S1G–](#)
123 [S1J](#).

124 We also tested different transfection reagents to identify those that might further improve viral rescue
125 efficiency in HEK293T cells ([Figures 2C, S1I, and S1J](#)). Lipofectamine 3000 (Lipo3000) and PEI MAX showed
126 the highest efficiencies of viral rescue (Lipo3000: 0.38 \pm 0.05%; PEI MAX: 0.37 \pm 0.05%). These reagents yielded
127 a 2.9-fold improvement in viral rescue on average compared to Lipofectamine 2000 (Lipo2000) and a 5.8-fold
128 improvement compared to Xfect, two transfection reagents previously used for barcoded RVdG packaging^{3–5}
129 ([Figures 2C, S1I, and S1J](#)).

130 We next prepared barcoded viral libraries to directly compare the diversity achieved using Lipo3000
131 and Lipo2000 ([STAR Methods](#)) in HEK293T cells. RVdG prepared with Lipo3000 exhibited a more even
132 barcode distribution compared to Lipo2000, with the most common barcode in Lipo3000 libraries accounting
133 for on average 0.18% of total barcoded genomes detected, compared to 2.84% in Lipo2000 libraries ([Figure](#)
134 [2D](#)). The rate of barcode collision was lower, and the Shannon entropy was higher, in Lipo3000 compared to
135 Lipo2000 libraries ([Figures S1K and S1L; STAR Methods](#)).

136 We reasoned that some barcoded RVdG particles might gain a competitive advantage during viral
137 propagation due to variability in rabies G expression, leading to overrepresentation of a subset of barcodes. To
138 test this, we leveraged a recently developed packaging cell line, HEK-GT, which is a HEK293T cell line that
139 stably expresses the chimeric rabies glycoprotein oG and T7 polymerase^{17,18} ([Figure 2E](#)). Indeed, HEK-GT
140 cells produced RVdG libraries with a more uniform barcode distribution compared to HEK293T ([Figures 2F,](#)
141 [S1K, and S1L](#)). Another proposed solution for uneven viral propagation during packaging is to physically
142 constrain the amplification of barcoded RV clones by using multi-well plates with a smaller surface area¹⁹.
143 However, we found no difference in library complexity between barcoded RV libraries packaged in 15 cm
144 dishes and 384-well plates ([Figures S1M–S1N](#)).

145
146 **Helper virus– and RVdG–infected cells are predominantly neuronal in human prenatal organotypic**
147 **slice cultures**

148 To demonstrate the utility of our barcoded RVdG circuit mapping strategy in a biological circuit, we prepared
149 organotypic slice cultures from the human cerebral cortex during the second trimester of prenatal development,
150 spanning gestational weeks (GW) 16-22. At this developmental stage, puncta positive for the postsynaptic
151 marker PSD-95 are enriched in the marginal zone and along structures resembling dendrites in the cortical
152 plate, while puncta positive for the presynaptic markers synaptophysin (SYP) and VGLUT1 are concentrated in
153 the marginal zone and the upper layer of the subplate (Figures 3A, 3B, and S2A), consistent with previous
154 studies investigating the distribution of synapses at this age^{20,21}. To perform circuit mapping using barcoded
155 RVdG, slices were first infected with a lentivirus helper on day 0 (DIV0) which encodes an optimized RV
156 glycoprotein (oG), which is necessary for trans-synaptic spread, TVA, an avian receptor that enables selective
157 infection by EnvA-pseudotyped viral particles, and the fluorescent reporter GFP or mGreenLantern-KASH
158 (mGL-KASH) (Figure 3C; STAR Methods). On DIV3, slices were transduced with RVdG expressing either
159 dTomato or oScarlet-KASH (Figure 3C and S2B–S2H). By DIV8, we observed both double-labeled starter cells
160 and putative presynaptic non-starter cells positive for RVdG only (Figures 3D–3G and S2B–S2H).
161 Immunohistochemistry revealed that most of the infected cells expressed postmitotic neuronal markers NeuN
162 and NEUROD2, suggesting that the majority of RVdG+ starter and non-starter cells are glutamatergic neurons
163 (Figures 3D–3F and S2B–S2H).
164

165 **Helper virus– and RVdG–infected cells are predominantly layer 2/3 excitatory neurons**
166 To achieve a more granular classification of RVdG-infected cell types, we performed single-cell RNA
167 sequencing (scRNA-seq). Tissue slices from seven individuals were dissociated into single cells and FACS-
168 sorted based on the expression of RVdG-encoded dTomato or oScarlet-KASH (Figures 4A, S3A, and S3B). In
169 a subset of slices, we also collected dTomato/oScarlet-negative cells to serve as uninfected controls. We
170 captured a total of 17,343 RVdG-infected cells and 7,446 uninfected cells, after filtering based on quality
171 control metrics (STAR Methods). We used principal component analysis to reduce the dimensionality of the
172 data and Harmony²² for dataset integration. We visualized the transcriptomic data in high dimensional space
173 using uniform manifold approximation and projection²³ (UMAP) and used Louvain clustering²⁴ to group cells
174 into distinct clusters based on their gene expression profiles (Figure 4B). We annotated the resulting

175 transcriptomic clusters based on expression of canonical marker genes to identify the major cell types: layer
176 2/3 neurons (L2/3 ExNs) that express BHLHE22^{25,26} and CUX2²⁷⁻³⁰, layer 4 neurons (L4 ExNs) that express
177 BHLHE22^{25,26} and RORB^{31,32}, layer 5/6 and subplate neurons positive for TLE4^{30,33-36} and CRYM^{30,37-39}
178 (L5/6/SP ExNs), DLX5/GAD1+ inhibitory neurons (InNs)⁴⁰⁻⁴², PDGFRA+ oligodendroglia (OL)^{43,44}, EOMES+
179 intermediate progenitor cells (IPCs)⁴⁵⁻⁴⁷, HES1+ radial glia (RG)⁴⁸⁻⁵⁰, astrocytes enriched for AQP4^{48,51-53} and
180 GFAP⁵⁴⁻⁵⁶ (AC), and MKI67+ dividing progenitors⁵⁷ (DIV) (Figures 4C-D, S4 and Table S3). Each cell type was
181 represented in each sample (Figure 4E). RVdG-infected cells were further divided into starter and non-starter
182 populations based on the expression of lentiviral helper transcripts (STAR Methods). Compared to uninfected
183 cells, RVdG-infected cells were enriched in GABAergic, L2/3, and L4 ExNs and depleted of RG and astrocytes
184 (one-sample t-test, p=0.00088, 4.304e-09, 6.784e-05, 1.5968e-07, and 6.432e-06) (Figures 4F and 4G).
185 Similarly, when compared to uninfected cells, helper-infected cells were enriched in L2/3 ExNs and depleted of
186 RG and progenitors (one-sample t-test, p=0.00088, 0.01650912, 2.464e-05, and 3.408e-07) (Figure 4G).
187

188 **RVdG-infected neurons exhibit strain-dependent toxicity**

189 Prior work has suggested that the CVS-N2c strain of RVdG is less toxic and spreads more efficiently across
190 synapses compared to the more commonly used SAD-B19 strain⁵⁸. Since our dataset includes slices infected
191 with both the SAD-B19 strain (n=5 individuals at GW 16, 20, 20, 21, and 22) and the CVS-N2c strain (n=2
192 individuals at GW 19 and 21), we next set out to quantify strain-dependent toxicity profiles and cell type biases.
193 In total, we identified 5,840 cells from SAD B19 RVdG–infected slices and 11,503 cells from CVS-N2c RVdG–
194 infected slices after filtering based on quality control metrics (Figure 5A and STAR Methods).
195 We observed that samples infected with either CVS-N2c or SAD B19 RVdG showed an enrichment of neuronal
196 populations, particularly L2/3 ExNs, over glial cells compared to uninfected cells (Figure 5B). This enrichment
197 is likely due, in part, to the use of the human synapsin I promoter to drive helper virus transcripts, which biases
198 starter cell infection toward neurons⁵⁹, coupled with preferential spread of RVdG trans-synaptically between
199 neurons^{60,61}. Gene set enrichment analysis (GSEA) revealed an enrichment in inflammatory and immune
200 response pathways in the SAD B19 datasets (Figures 5C-5D, S5). These signatures were primarily driven by a

201 population of inflammatory astrocytes that were present only in the SAD B19 datasets ([Supplement 5J and 5L](#)),
202 in line with previous studies^{62–64}.

203 We also sought to assess strain-dependent toxicity using targeted whole-cell patch clamp recording of
204 cells with neuronal morphology. SAD B19-infected cells showed blebbing of the axodendritic processes and
205 were less likely to fire action potentials compared to CVS-N2c–infected cells ([Figures 5E, 5F and S6](#)). Intrinsic
206 biophysical properties including cell capacitance, input resistance, and resting membrane potential were more
207 variable in SAD B19–infected compared to CVS-N2c–infected neurons ([Figure 5G–5I](#)), and the resting
208 membrane potential was significantly depolarized in SAD B19–infected compared to CVS-N2c–infected
209 neurons ([Figure 5I](#)). Thus, while similar transcriptomic cell types are present in both the SAD B19–infected and
210 CVS-N2c–infected cell populations, SAD B19-infected cells exhibit both gene expression electrophysiological
211 signatures toxicity compared to CVS-N2c-infected cells.

212

213 **The MS2-MCP-KASH system can be used to target RVdG-encoded barcodes to the nuclear membrane 214 for snRNA-seq readout**

215 Prior versions of barcoded RVdG virus are compatible with scRNA-seq readout; however, adult brain tissue is
216 more commonly studied using snRNA-seq due to loss of susceptible cell types such as projection neurons
217 during single cell dissociation^{58,65}. RVdG viral replication and transcription occurs entirely in the cytoplasm,
218 preventing readout of RVdG-encoded barcodes from nuclei⁶⁶. To overcome this limitation, we leveraged MS2
219 tagging, which takes advantage of strong interactions between MS2 bacteriophage coat protein (MCP) and a
220 defined RNA sequence that forms a hairpin *in situ*^{67,68}. First, we cloned an MCP tagged with the fluorescent
221 protein oScarlet and the KASH outer nuclear membrane localization domain⁶⁹ into the fourth open reading
222 frame of the CVS N2c RVdG genome. We additionally cloned the 6x tandem MS2 hairpin sequence into the 3'
223 UTR of the MCP-oScarlet-KASH sequence proximal to the barcode sequence. Together, these two
224 modifications provide a mechanism to target both the fluorescent reporter oScarlet and the RVdG-encoded
225 barcode transcripts to the outer nuclear membrane, facilitating barcode recovery from sorted nuclei ([Figures
226 6A–6B](#)).

227 To determine how well we could capture RVdG barcodes in nuclei using MS2-KASH tagging, in a
228 subset of cases we isolated nuclei for snRNA-seq and whole cells for scRNA-seq in parallel from adjacent
229 slices infected with the CVS-N2c-MS2-KASH-oScarlet RVdG (Figures 6C and S3C). Our snRNA-seq dataset
230 included all of the major transcriptomic cell types we identified using scRNA-seq, indicating that nuclei
231 isolations preserve the cellular diversity observed in whole cell dissociations (Figures 6D-6E). Within these
232 paired samples, we identified 1,141 nuclei and 9,332 cells after filtering based on quality control metrics (STAR
233 Methods). We performed targeted amplification of the RVdG barcodes (STAR Methods) and quantified RVdG
234 barcodes after deduplication based on cell/nucleus barcode and UMI. In total, we detected 451,324 unique
235 cell:barcode combinations and 115,635 unique nucleus:barcode combinations. We detected slightly fewer
236 UMIs per unique cell/nucleus:barcode combination in nuclei compared to cells (Figure 6F; median=1 UMIs per
237 unique cell:barcode combination, median=1 UMIs per unique nucleus:barcode combination) but similar
238 numbers of total barcode UMIs in both (Figure 6G; median=135 total barcode UMIs per cell, median=120 total
239 barcode UMIs per nucleus). There was a positive correlation between total barcode UMIs detected and
240 number of unique barcodes detected in both cells and nuclei (Figure 6H). Taken together, these findings
241 demonstrate that RVdG barcode capture from nuclei is tractable and only moderately less sensitive than
242 barcode capture from cells. The ability to use snRNA-seq readout of RVdG barcodes provides a path forward
243 for RV-based circuit mapping in more mature tissues that are not amenable to whole cell dissociation, such as
244 the adult human brain.

245

246 **Reduction of ambient barcode sequences using UMI thresholding**

247 Ambient RNA in a cell/nucleus suspension can be aberrantly counted along with a cell's native mRNA during
248 droplet-based sc/snRNA-seq, leading to cross-contamination of transcripts between different cell populations⁷⁰.
249 While low expression of ambient transcripts may be insufficient to alter the cell type classification of a
250 sequenced cell or nucleus, it could potentially lead to false positive connections when reading out connectivity
251 using RVdG-encoded barcodes. Therefore, we sought to establish quality control metrics for assigning RVdG
252 barcodes to cells and nuclei while minimizing potential artifacts due to ambient RNA transcripts. In single cell
253 datasets we detected RVdG barcodes in 5.85% of empty droplets, defined as containing ≤ 10 total UMIs in the

254 paired cell transcriptome library (Figure 7A). Empty droplets contained fewer total barcode UMIs (median=136
255 in real cells, median=1 in empty droplets; Figure 7B) and fewer unique barcodes compared to real cells
256 (median=99 in real cells, median=1 in empty droplets; Figures 7C and 7D). To minimize the risk of inferring
257 false positive connections due to ambient barcodes, we aimed to identify a UMI threshold to remove ambient
258 barcodes from downstream analysis (Figure 7E). We found that implementing a threshold of ≥ 3 UMI counts
259 per cell:barcode combination was sufficient to filter out more than 90% of empty droplets while retaining more
260 than 90% of cells (Figure 7E). We performed a similar analysis on our datasets generated from single nuclei
261 dissociations which revealed RVdG barcodes in 5.06% of empty droplets (Figure 7F). Real nuclei also had
262 more total barcode UMIs (median=116 in real nuclei, median=1 for empty droplets) and more unique barcodes
263 (median=100 in real nuclei, median=1 in empty droplets) compared to empty droplets (Figure 7G, 7H, and 7I).
264 Applying the threshold to keep only nucleus:barcode combinations with a UMI count ≥ 3 filtered out
265 approximately 98% of empty droplets while retaining 87% of nuclei for downstream analysis (Figure 7J). Based
266 on these results, only cell/nucleus:barcode combinations with ≥ 3 UMIs were used for downstream connectivity
267 analysis.
268

269 **Barcoded RVdG circuit mapping reveals the emergence of cell type–specific connectivity motifs in**
270 **second trimester human cerebral cortex**
271 To assess the emerging connectivity matrix in second trimester human cerebral cortex, we pooled together our
272 single-cell and single-nuclei sequencing datasets and their corresponding RVdG barcodes (Table S4). We
273 identified a total of 12,036 unique RVdG barcodes (Figure S7A). To identify putative connections we identified
274 networks of cells that shared a common barcode ('barcode networks'), and annotated cells as starter or non-
275 starter cells based on expression of helper virus (STAR Methods). Barcode networks with no starter cell were
276 excluded from further analysis. We identified 5,047 barcodes in 1,230 starter cells: 2,762 barcodes were found
277 in a single starter cell and 2,285 barcodes were found in multiple starter cells (Figure 8B). The barcode

278 networks containing multiple starter cells were excluded from further analysis due to the ambiguity of
279 connection directionality and possibility of polysynaptic spread through multiple starter cells. Of the 2,762
280 barcodes found in a single starter cell, 1,102 were also found in at least one non-starter cell. We proceeded to
281 infer connectivity using only the 457 barcode networks containing a single starter cell and at least one non-
282 starter cell ('single starter networks'), where directionality can be determined based on retrograde spread of
283 RVdG virus¹. To prevent calling duplicate connections when multiple barcodes are shared between two cells,
284 we collapsed all instances of connections between the same two cells into a single count. Distinct barcode
285 networks with converging cells were then collapsed into singular networks, and duplicate connections were
286 merged into one labeled connection (Figure 8A). After collapsing all duplicate connections, we identified 457
287 singular networks consisting of 4,331 directed connections centered around individual starter cells (median=5
288 cells per network, Figure 8C). The cell type composition in each network was similar across different network
289 sizes (Figure 8D-E) and the vast majority of connections (3622/4331, 83.6%) were between neuronal cell
290 types.

291 Next we merged singular networks together to visualize them as graphs in which each cell appears only
292 once, by linking non-starter cells that could exist in multiple singular networks (Figures 8F and S8). A plurality
293 of connections were between L2/3 ExNs (n=2039/4331, 47.08%) and L2/3 neurons received the largest
294 proportion of inputs compared to other cell types (n=3087/4331, 71.28%; Figure 8G, S7B). Given that L2/3
295 ExNs are also the most prevalent cell type in our dataset, irrespective of RVdG infection (Figures 4G and 5B),
296 we next asked how the observed connectivity matrix compared to a null connectivity matrix with random
297 connections between the defined starter cell population and the pool of possible interacting cells. Specifically,
298 the connectivity expected by chance between any two cell types was modeled as a binomial distribution
299 considering the proportions of those cell types in the starter and uninfected populations (STAR Methods). After
300 controlling for cell type proportions, neuronal cell types were still enriched in connections and glial cell types
301 were depleted of connections (Figure 8H), consistent with RVdG spread being largely restricted to chemical
302 synapses in the developing human brain. The strongest enrichment was observed among GABAergic neurons,
303 which also target all other neuronal cell types more often than predicted by chance. In contrast, L5/6/SP
304 receive inputs from all neuronal populations, but preferentially target other L5/6/SP neurons. Taken together,

305 these findings suggest that cell type–specific circuit motifs are already beginning to emerge in midtrimester
306 human brain development.

307

308 **DISCUSSION**

309 Understanding neuronal connectivity at the level of molecularly defined cell types remains a key challenge in
310 neuroscience. Sequencing-based approaches to connectivity mapping provide a potential path forward for
311 scalable circuit mapping by leveraging the power and throughput of single cell genomics. In particular,
312 barcoded RVdG has recently emerged as one strategy for integrated circuit mapping and molecular
313 interrogation of the mapped cells^{3–5}, but its application has been limited by the degree of barcode complexity
314 and an inability to reliably detect RVdG transcripts in dissociated single nuclei⁷¹. Here we introduce an RVdG
315 packaging protocol that is specifically tailored to improve barcode complexity, increasing the number of cells
316 that can be mapped simultaneously in one experiment by several orders of magnitude compared to prior
317 protocols. We also describe a strategy for nuclear localization of RVdG barcodes that enables snRNA-seq
318 readout of the RVdG-encoded barcodes. Lastly, we demonstrate the power of these new tools by mapping
319 local cell type–specific connectivity in organotypic slice cultures of the developing human cerebral cortex. By
320 converting the problem of synaptic connectivity into a problem of barcode sequencing, barcoded RVdG circuit
321 mapping has the potential to transform connectomics into a routine experiment that can be performed in any
322 lab with modest resources, making it possible to explore how circuits differ between treatment conditions, in
323 disease states, between the sexes, across the lifespan and across species.

324 Barcode complexity is a limiting feature of all barcoded viral tracing strategies⁷², but has been
325 especially problematic for barcoded RVdG circuit mapping due to the low efficiency of viral barcode recovery
326 during the packaging process³. We identified two key factors that improve the complexity of barcoded RVdG
327 libraries: transfection reagent and packaging cell line. Specifically, of the options we tested, Lipo3000 and PEI
328 MAX offer a substantial improvement in the percentage of cells recovering active RVdG particles compared to
329 other reagents including Lipo2000^{3,5} or Xfect⁴. A direct comparison of library complexity between RVdG
330 packaged in Lipo3000 and Lipo2000 revealed a significant improvement in barcode complexity in libraries that
331 were packaged in Lipo3000, suggesting that improved transfection efficiency directly translates to improved

332 barcode complexity. We also found that HEK293T⁴ is more efficient at rescuing RVdG compared to the
333 BHK21-derived B7GG fibroblast line³ and Neuro2A⁵, in line with previous work^{6,73}. One potential argument for
334 packaging RVdG in Neuro2A cells is that it may enhance neurotropism and decrease neurotoxicity⁵⁸. However,
335 at least one recent study found no significant difference in connectivity data acquired using RVdG recovered in
336 HEK293T cells or Neuro2A cells¹⁷. In addition, we show that a HEK293T cell line that stably expresses oG
337 (HEK-GT¹⁷) further improves uniformity of barcode libraries. There could be several reasons for this. First, the
338 dynamic range of rabies G expression is likely narrower in the cell line compared to plasmid-based transient
339 transfection⁷⁴. Because rabies G confers expression-level dependent spread^{18,75}, this may provide a more fair
340 competition between expanding barcode clones. Additionally, oG shows up to 20-fold greater efficiency in
341 promoting transsynaptic spread¹⁸ compared to SAD B19 G, which is traditionally used for packaging RVdG.
342 Finally, transfecting fewer plasmids may improve overall transfection efficiency⁷⁶. New transfection reagents,
343 additives, and cell lines that stably expresses the additional genes required for RVdG packaging may further
344 enhance barcoded RVdG library complexity.

345 We used a defined barcode whitelist¹¹ in lieu of randomer^{3,5} or semi-randomer⁴ barcodes which can
346 require complex probabilistic models to determine whether similar but non-identical barcodes represented the
347 same or distinct sequences. Using a pre-defined whitelist of unique sequences allows us to ensure that any
348 two barcodes differ by at least 6 bp (Hamming distance ≥ 6), making barcode identification robust to
349 sequencing errors or mutations that arise during virus production. Furthermore, by using the whitelist as a
350 reference genome, barcodes can be aligned using standard transcriptomic aligners (e.g., STAR, bowtie2),
351 streamlining the process and reducing the computational complexity typically required to collapse similar
352 barcode sequences⁴. However, our barcodes are 61 bp in length, requiring longer sequencing reads that may
353 preclude spatial transcriptomic readout used by several groups for barcoded RVdG circuit mapping^{5,77}. New
354 barcode strategies that can balance a high Hamming distance with short overall barcode length might further
355 streamline the barcode design to such that it can be read out using any platform.

356 Rabies virus is an RNA virus that is localized primarily within the cytoplasm^{9,10} and prior studies utilized
357 whole-cell single-cell transcriptomics for barcode recovery. However, more mature brain tissue and flash
358 frozen tissue cannot be easily dissociated into intact cells. We developed a method for localizing barcoded

359 transcripts to the nucleus by leveraging MS2 tagging^{67,68} guided by the KASH nuclear localization signal, and
360 demonstrated efficient recovery of RVdG-encoded barcode transcripts from single nuclei. It is possible that
361 tethering the barcode transcripts to a different nuclear protein, such as histone 2B (H2B), could further improve
362 barcode recovery in nuclei.

363 We focused on two commonly used RVdG strains: SAD B19 and CVS-N2c. Consistent with prior
364 reports, our data suggest that the CVS-N2c strain is less toxic than the SAD B19 strain⁵⁸. Despite this impact
365 on cell health, we were able to generate high-complexity libraries using both strains. Circuit mapping
366 experiments showed that both strains captured similar proportions of cell types. Further experiments aimed at
367 elucidating nuanced differences in the tropism of different RVdG strains, and the rabies G that drives trans-
368 synaptic spread, will be important to be able to compare RVdG-inferred connectomes to each other and to
369 ground truth wiring diagram of a circuit, which may be difficult to know a priori.

370 We applied barcoded RVdG to explore connectivity in organotypic slice cultures of the human brain
371 during the second trimester of gestation, a developmental window during which neuronal connectivity is
372 actively being established. We observed an enrichment in connectivity between neuronal cell types compared
373 to non-neuronal cell types, supporting the idea that rabies virus is biased towards trans-synaptic spread. We
374 observed the greatest enrichment in connectivity between GABAergic neurons, and from GABAergic to other
375 neuronal populations. Previous studies have demonstrated the critical role of depolarizing GABAergic signaling
376 in the formation of AMPA receptor-mediated glutamatergic circuitry⁷⁸⁻⁸¹. This mechanism is thought to be
377 mediated by synaptic release of GABA onto maturing glutamatergic neuronal populations, and our data
378 suggest that this may be one of the most prominent circuit motifs during mid-gestation in humans. We also
379 observed enrichment in connectivity from all neuronal populations onto L5/6/SP ExNs, consistent with previous
380 work^{78,82-84}. In particular, the enrichment in connections from L4 to L5/6/SP may correspond to transient
381 synapses formed during the establishment of the thalamus-subplate-thalamus circuit. We also identify shared
382 barcodes between neurons and non-neuronal cell types, suggesting RVdG spread is not entirely restricted to
383 mature synapses^{3,60,61,85}. Shared barcodes between cells may also arise following division of a single infected
384 cell, such as an IPC, RG, or oligodendrocyte precursor cell (OPC, a subset of OL in our dataset). Disentangling
385 the contribution of cell division and trans-synaptic spread in actively dividing cell populations may be possible

386 in future studies by using two barcode systems in parallel - one for tracking cell lineage (e.g. a barcoded
387 lentivirus) and another for tracking connectivity (barcoded RVdG).

388 In summary, we report an optimized protocol for generation of high-complexity barcoded RVdG that is
389 compatible with both single-cell and single-nucleus RNA-sequencing readout. This powerful new tool enables
390 probing synaptic connectivity at unprecedented scale and molecular detail. Future applications of this tool may
391 help to reveal the organizational principles of brain circuits across species, ages, and disease states.

392

393 **ACKNOWLEDGEMENTS**

394 We thank members of the Nowakowski and Cadwell labs for providing helpful feedback throughout this project
395 and Ken Probst and Melissa Logies for assistance with figure layout and schematics. This work was supported,
396 in part, as grants from NIH: U01MH130700, R01NS123263, R01MH128364 and RF1MH125516 (to T.J.N.),
397 K08NS126573 and U01NS132353 (to C.R.C), Awards from the Klingenstein-Simons Fund in Neuroscience,
398 Broad Foundation and Sontag Foundation (to T.J.N.), the Shurl and Kay Curci Foundation (to T.J.N. and
399 C.R.C.), and the Weill Neurohub (to C.R.C.), and gifts from Schmidt Futures and the William K. Bowes Jr
400 Foundation (to T.J.N). T.J.N. is a New York Stem Cell Foundation Robertson Neuroscience Investigator. D.S.
401 was supported by the NSF Graduate Research Fellowship Program (GRFP). M.E.U was supported by the NSF
402 GRFP and the Hertz Foundation Fellowship. Sequencing was performed at the UCSF CAT, supported by
403 UCSF PBBR, RRP IMIA, and NIH 1S10OD028511 grants.

404

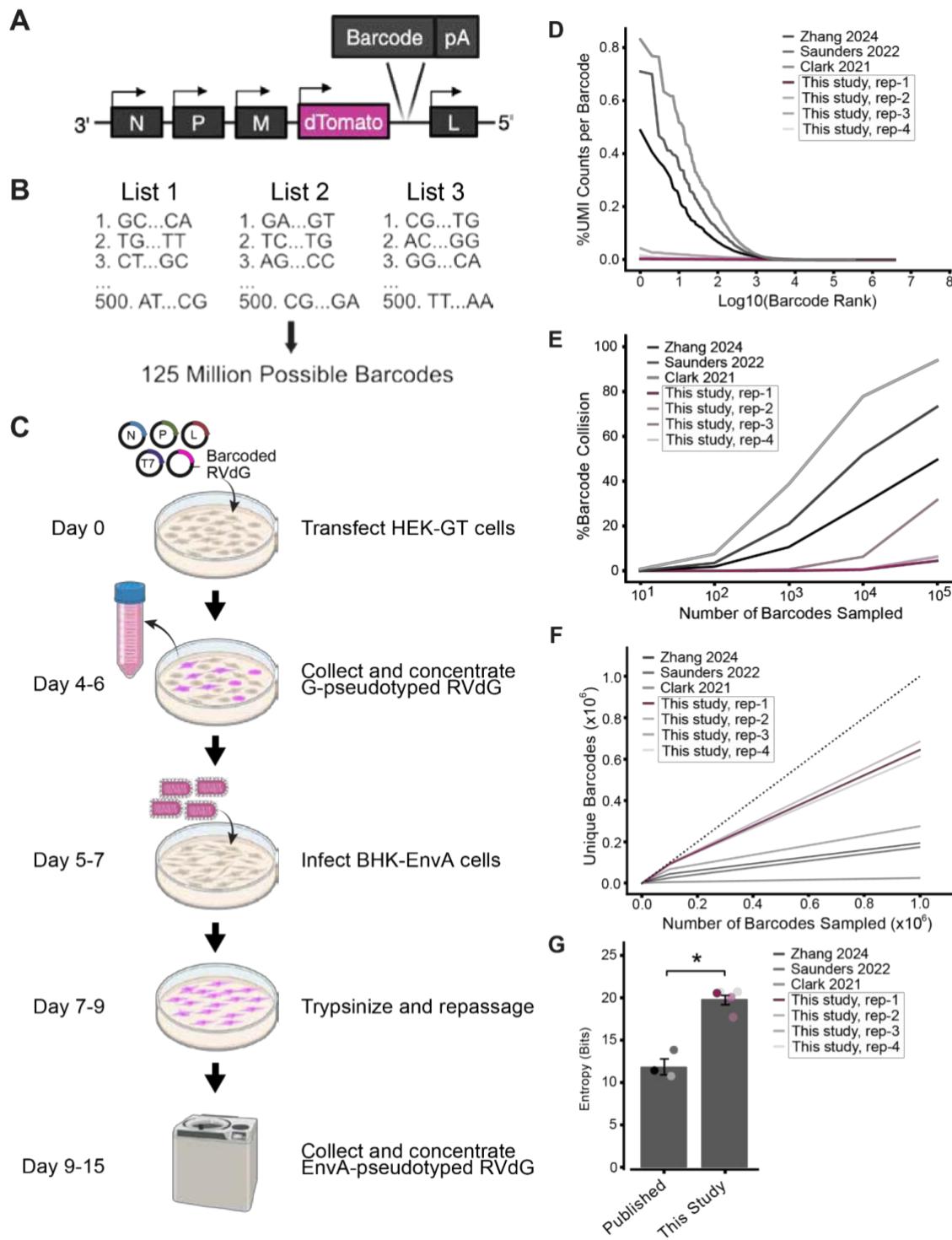
405 **AUTHOR CONTRIBUTIONS**

406 D.S., D.B., T.J.N., and C.R.C. conceptualized the study. D.S., H.H.L., M.E.U., K.L., D.L.B., and E.S.-B.
407 performed experiments. M.E.U., A.J.M., D.S., S.R. and C.R.C. performed analyses. D.S., M.E.U., A.J.M. and
408 C.R.C wrote and edited the manuscript with input from all other authors. C.R.C and T.J.N. supervised the study
409 and acquired funding to support this work.

410
411 **DECLARATION OF INTERESTS**

412 University of California San Francisco has filed a provisional patent application relevant to the technologies
413 described in this manuscript.

414

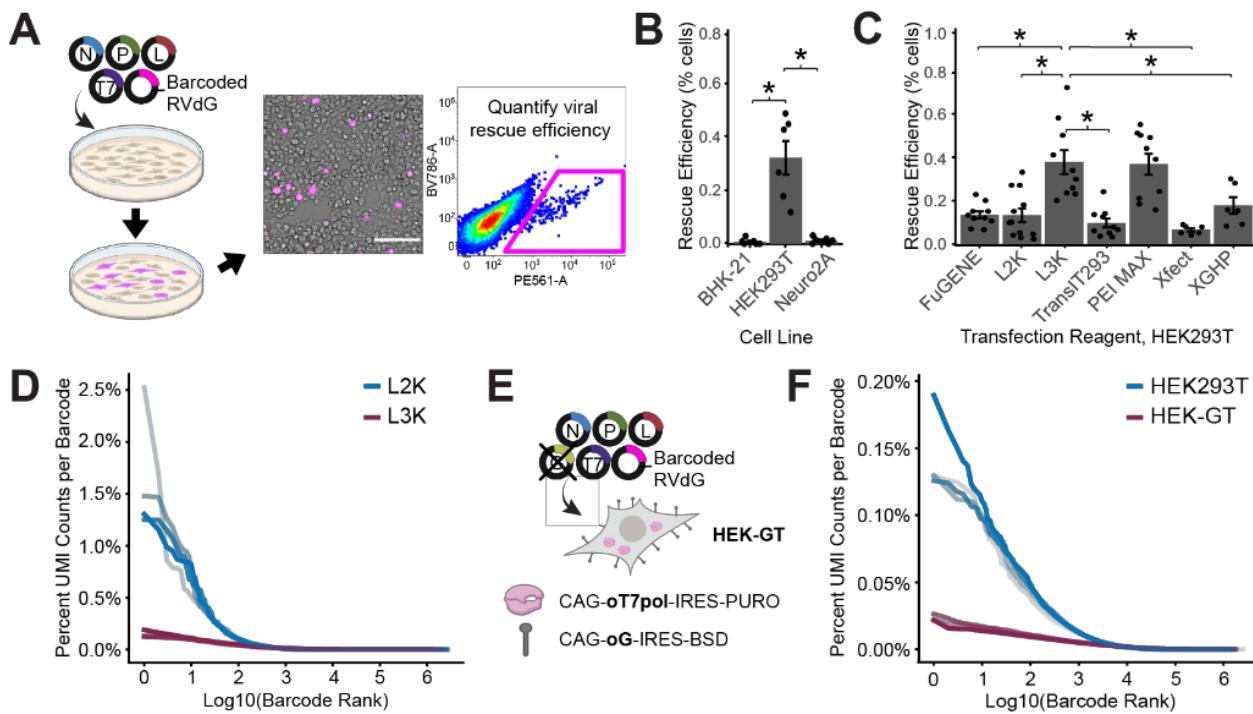

415 **DECLARATION OF GENERATIVE AI AND AI-ASSISTED TECHNOLOGIES**

416 During the preparation of this work, the authors used ChatGPT to suggest changes to improve the clarity of the
417 text. After using this tool or service, the authors reviewed and edited the content as needed and take full
418 responsibility for the content of the publication.

419

420 **FIGURES AND FIGURE LEGENDS**

421

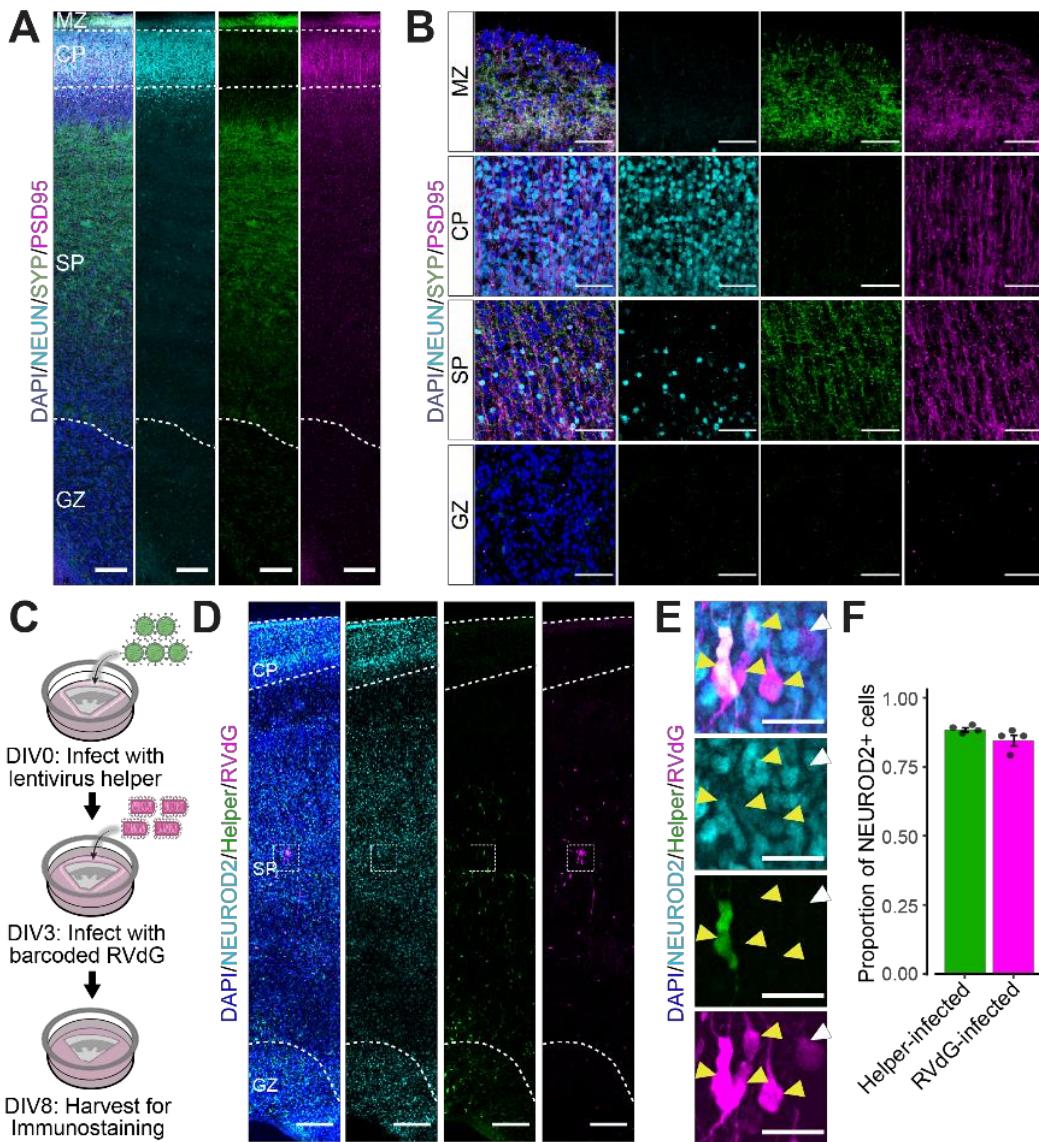


422

423 **Figure 1. Generation of high-complexity barcoded RVdG libraries. A.** Location of barcode cloning site in
 424 the rabies genome. **B.** Design of whitelist combinatorial barcode system. **C.** Schematic of barcoded RV
 425 production protocol. **D.** Distribution of UMI counts per barcode normalized as a percent of total barcode UMI

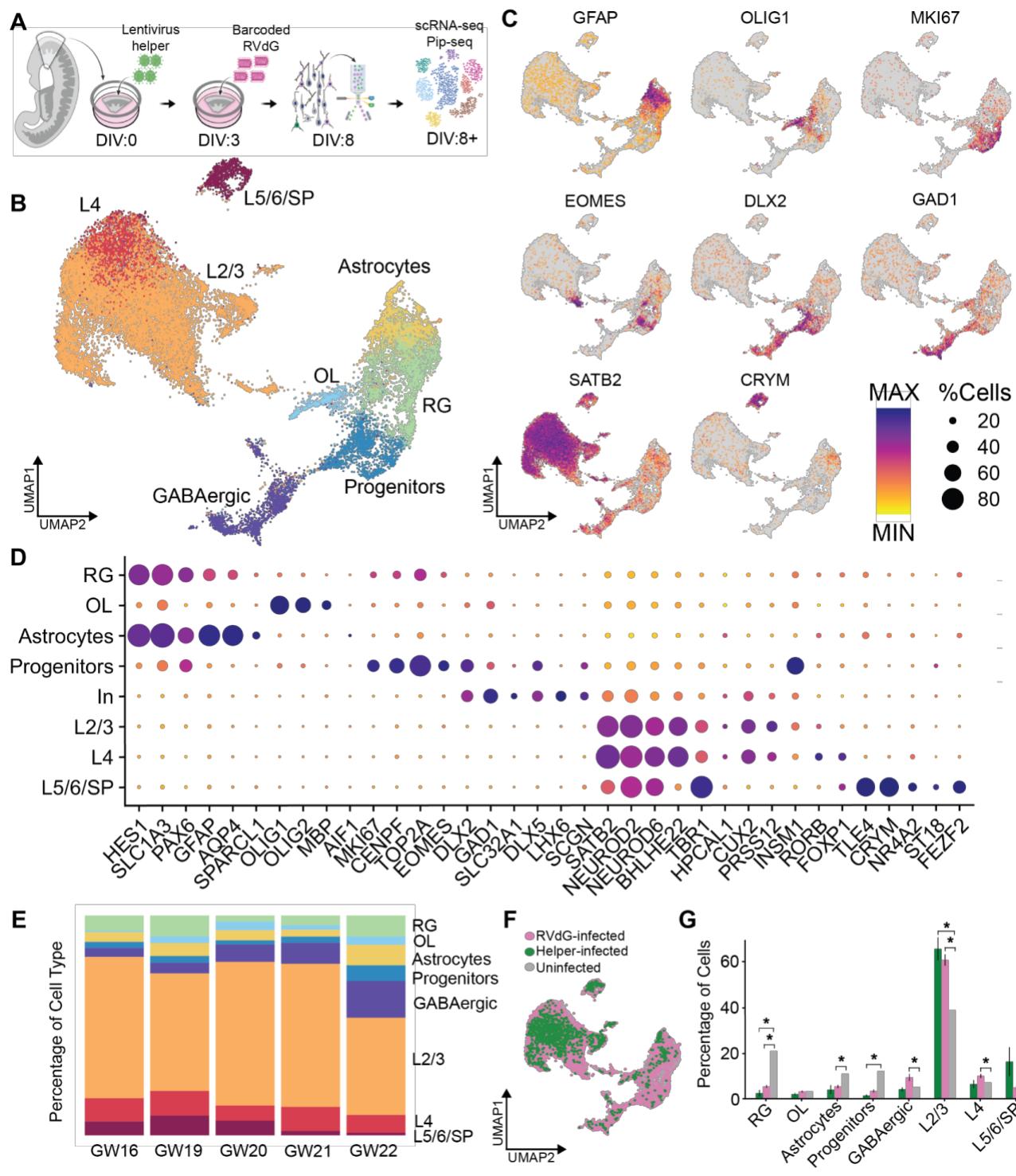
426 counts. Barcoded RVdG libraries from this study are compared to previously published libraries³⁻⁵. **E**.
427 Percentage of simulated barcode collision events, or two cells receiving the same barcode by chance, as
428 a function of the number of infections simulated. Error bars are 95% confidence intervals for 50 iterations. **F**.
429 Number of unique barcodes identified as a function of sequencing depth. Error bars are standard deviation for
430 50 iterations. **G**. Shannon entropy (in bits) of each viral library. P-value computed using the Student's t-test
431 (*p<0.05; published: n = 3 independent libraries, this study: n = 4 independent libraries [replicates 1 and 2 =
432 SAD B19, replicates 3 and 4 = CVS-N2c]).

433



434

435


436 **Figure 2. Viral packaging cell lines and transfection reagents are critical to generate high-complexity**
437 **barcoded RVdG. A.** To assess packaging efficiency, cells are transfected with RVdG packaging plasmids in
438 the absence of rabies G, and the percentage of cells producing rabies virus three days after transfection is
439 measured by flow cytometry. **B.** Percentage of cells successfully producing RVdG three days after transfection
440 using Lipofectamine 3000 (Lipo3000), comparing three commonly used packaging cell lines: BHK-21 (n=6
441 technical replicates), HEK293T (n=6 technical replicates), and Neuro2A (n=6 technical replicates). **C.**
442 Percentage of HEK293T cells successfully packaging RVdG three days after transfection, comparing various
443 commonly used transfection reagents: FuGENE HD (n = 10 technical replicates), Lipofectamine 2000 (n = 12
444 technical replicates), Lipofectamine 3000 (n = 10 technical replicates), TransIT-293 (n = 10 technical
445 replicates), PEI (n = 10 technical replicates), Xfect (n = 6 technical replicates), and XtremeGene HP (n = 6
446 technical replicates). **D.** Distribution of UMI counts per barcode normalized as a percent of total UMI counts,
447 comparing libraries generated from HEK293T cells using Lipo3000 (n=4 technical replicates) and
448 Lipofectamine 2000 (Lipo2000, n=4 technical replicates). Transfection for virus packaging included rabies G.
449 **E.** Schematic of virus packaging using HEK-GT cell line, which was engineered to stably express human

450 codon-optimized T7 polymerase (oT7pol) and the optimized rabies glycoprotein (oG), requiring fewer plasmids
451 to be co-transfected during packaging. **F.** Distribution of UMI counts per barcode normalized as a percent of
452 total UMI counts, comparing libraries generated in HEK293T cells (n=4 technical replicates) compared to HEK-
453 GT cells (n=4 technical replicates) using Lipofectamine 3000. In **(B)** and **(C)**, p-values are computed using
454 Wilcoxon Rank Sum with Bonferroni-Holm correction for multiple comparisons, *p<0.05.
455
456

457
458
459
460
461
462
463
464
465

Figure 3. Helper virus- and RVdG-infected cells are predominantly neuronal in human prenatal organotypic slice cultures. A-B. Full thickness tile scan (A) and high magnification images (B) of gestational week (GW) 22 cortex stained for pan-neuronal marker NeuN, presynaptic marker synaptophysin (SYP), and postsynaptic marker PSD95. **C.** Schematic of RVdG circuit mapping experiment in human prenatal organotypic slice cultures. **D-E.** Full thickness tile scan (D) and high magnification image (E) of slice stained for GFP (cells infected with helper virus), RFP (cells infected with RVdG), and NeuroD2. **F.** Quantification of the proportion of helper virus- and RVdG-infected cells that co-express NEUROD2 (n=4 slices from 4 different donors). Scale bars: 250 μ m in panels (A,D), 50 μ m in panel (B), 25 μ m in panel (E).

466

467

Figure 4. Helper virus- and RVdG-infected cells are predominantly layer 2/3 excitatory neurons. A.

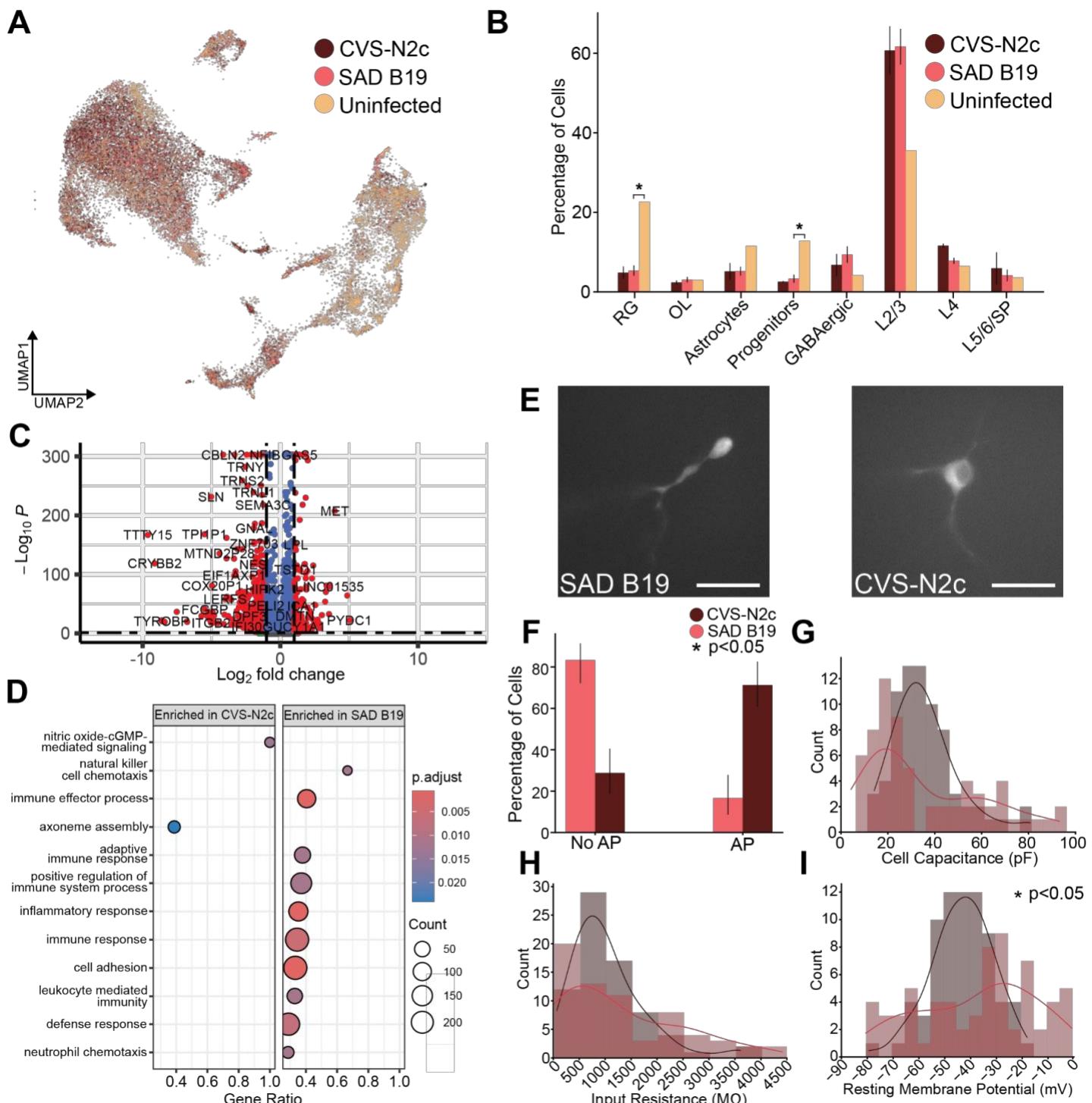
468

Schematic of dissociated RNA- sequencing analysis of RVdG-infected tissue. **B.** UMAP of all pooled datasets

469

annotated with cell types. **C.** Feature plots showing expression of key cell type marker genes across clusters.

470


D. Dot plot of key marker genes across cell type clusters. Color indicates relative expression and size indicates

471

percent of expressing cells within the cluster. **E.** Stacked bar plot showing cell type distribution across sample

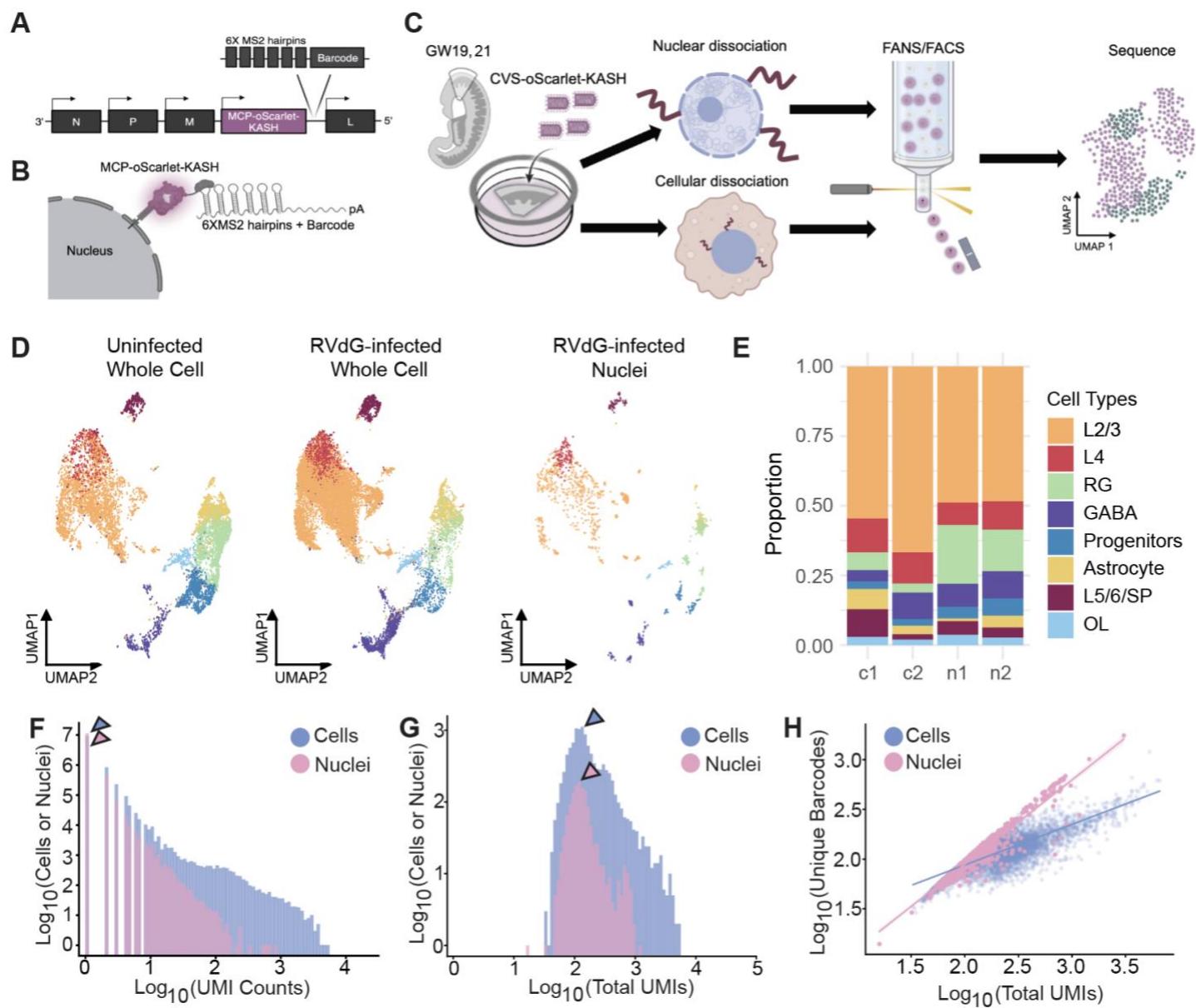
472 ages. **F.** UMAP with cells colored to match either RVdG and helper virus infection status. **G.** Proportions of cell
473 types among RVdG-infected, helper-infected or uninfected populations (bar plot indicates mean \pm SEM; p-
474 values computed using one sample t-test comparing RVdG-infected vs. uninfected and helper-infected vs.
475 uninfected and Bonferroni correction for multiple comparisons, *p<0.05; n=9 datasets for RVdG- and helper-
476 infected populations, n=1 dataset for uninfected population).

477

478

479

480


481

482

483

Figure 5. RVdG-infected neurons exhibit strain-dependent toxicity. A. UMAP visualization of transcriptomic cell types from SAD B19-infected, CVS-N2c-infected, and uninfected cell populations. **B.** Percentage of each major cell type among SAD B19-infected, CVS-N2c-infected and uninfected cell populations (bar plot indicates mean±SEM; *p<0.05, one sample t-tests comparing CVS-N2c versus uninfected and SAD B19 versus uninfected within each cell type, with Bonferroni correction for multiple comparisons; n=2

484 samples for CVS-N2c, n=5 samples for SAD B19, and n=1 sample for uninfected datasets). **C.** Volcano plot
485 showing differentially expressed genes between CVS-N2c– and SAD B19–infected cells. Positive \log_2 (fold
486 change) values indicate enrichment in CVS-N2c–infected cells, while negative \log_2 (fold change) values
487 indicate enrichment in SAD B19–infected cells. Genes with an adjusted p-value ≤ 0.05 are shown in red.
488 Genes from the GO term “Immune Response” are annotated. **D.** Gene set enrichment analysis reveals an
489 enrichment of immune response pathways in SAD B19–infected compared to CVS-N2c–infected cells. **E.**
490 Representative fluorescent images of SAD B19– and CVS-N2c–infected neurons. Scale bars, 30 μm . **F.**
491 Percentage of infected neurons capable of firing action potentials in response to direct current injection. Error
492 bars are 95% Clopper-Pearson confidence intervals. P-value computed using Fisher’s exact test (n=66
493 recordings for SAD B19, n=71 recordings for CVS-N2c). **G-I.** Intrinsic properties of recorded neurons including
494 cell capacitance (**G**), input resistance (**H**), and resting membrane potential (**I**). P-values computed using
495 Wilcoxon rank-sum test (*p<0.05, n=66 recordings for SAD B19, n=71 recordings for CVS-N2c).
496

497

498

499

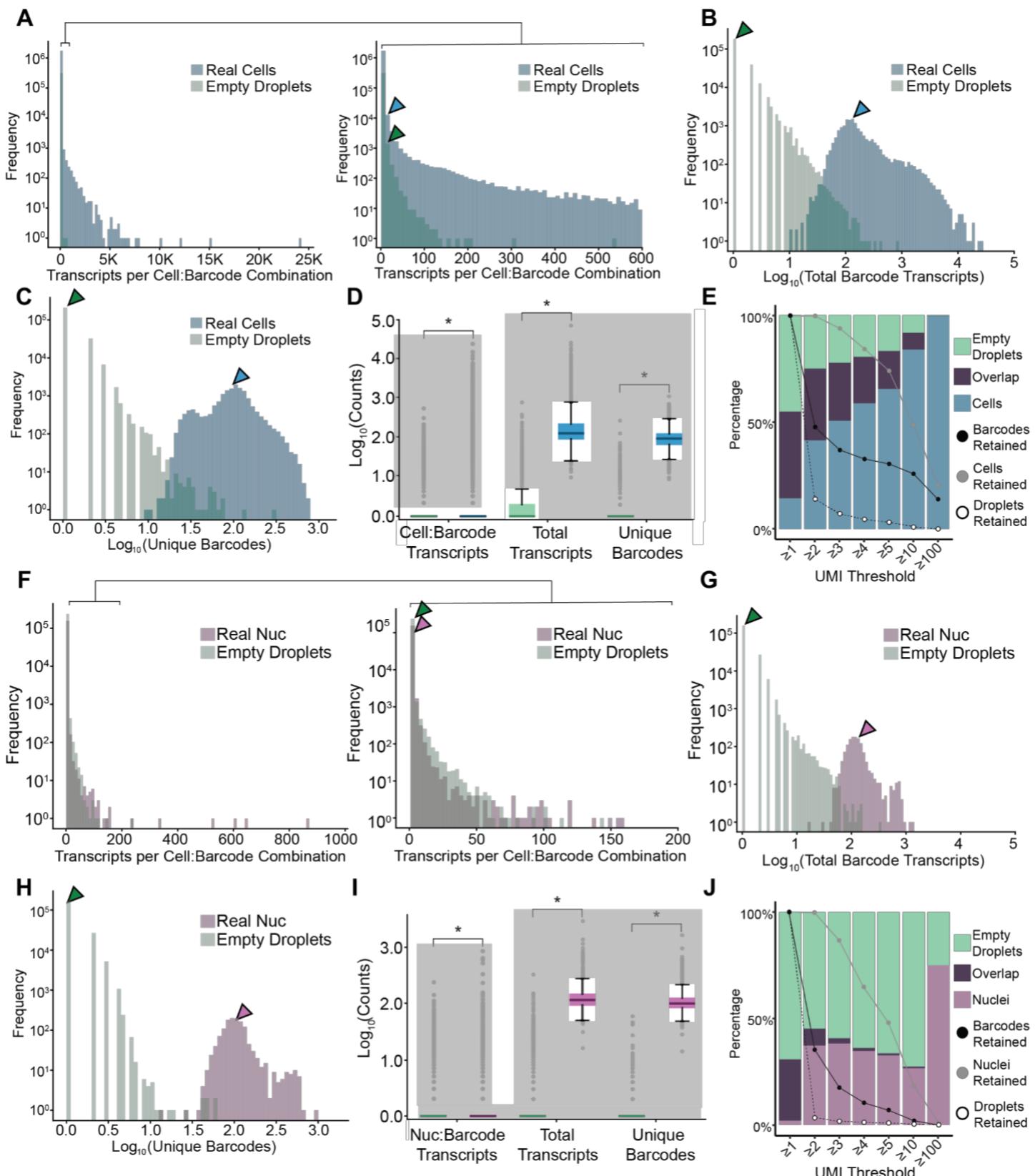
500

501

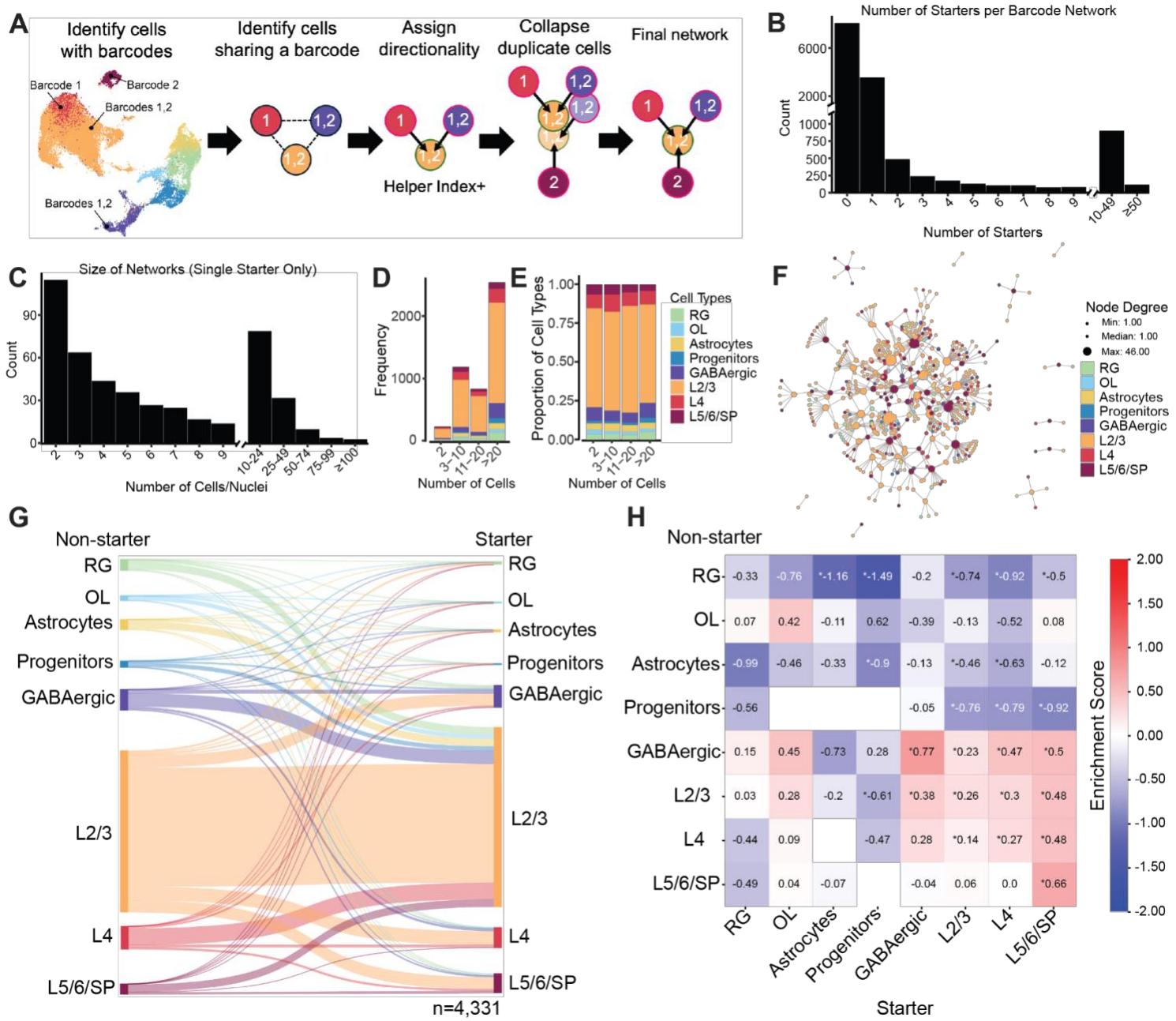
502

503

504


505

506


Figure 6. The MS2-MCP-KASH system can be used to target RVdG-encoded barcodes to the nuclear membrane for snRNA-seq readout. A. Location of barcode and nuclear localization signal cloning site in the rabies genome. **B.** Strategy for targeting of RVdG barcode transcripts to the nucleus utilizing KASH. **C.** Experimental paradigm in which slices from the same donors were dissociated into either single cells or single nuclei before enriching for RVdG-infected cells/nuclei for RNA-seq. **D.** UMAP visualizations of transcriptomic cell types from uninfected whole cell, RVdG-infected whole cell, and RVdG-infected nuclei datasets. **E.** Relative proportions of cell types captured by whole cell (c) and nuclear (n) datasets. **F.** Distribution of UMI counts for each unique barcode found within cells or nuclei. Medians are annotated by arrowheads (median=1 for cells, median=1 for nuclei). P-value computed using the Wilcoxon rank-sum test

507 (*p<0.05). **G.** Distribution of total RVdG barcode UMIs captured per cell or nucleus. Medians are annotated by
508 arrowheads (median=135 for cells and median=120 for nuclei). P-value computed using the Wilcoxon rank-
509 sum test (*p<0.05). **H.** Correlation between total number of UMIs detected and number of unique barcodes
510 detected per cell or nucleus with line of best fit. P-value computed using Spearman's Correlation (cell $R^2=0.66$,
511 nuclei $R^2=0.90$; *p<0.05).

512

515 **Figure 7. Reduction of ambient barcode sequences using UMI thresholding.** **A.** Number of UMI
516 transcripts detected for every barcode in each cell or empty droplet from single cell dissociation experiments,
517 with magnified panel showing distribution from 0-600 UMIs on right (median=1 in both real cells and empty
518 droplets, indicated by arrowheads; n=1,740,015 cell:barcode combinations, n=315,450 empty droplet:barcode
519 combinations). **B.** Distribution of total barcode UMI transcripts detected per cell or empty droplet (median=136
520 in real cells, median=1 in empty droplets, indicated by arrowheads; n=16,036 cells, n=253,000 empty droplets).
521 **C.** Number of unique barcodes detected per cell or empty droplet (median=99 in real cells, median=1 in empty
522 droplets, indicated by arrowheads; n=16,036 cells, n=253,000 empty droplets). **D.** Number of UMI transcripts
523 per each barcode, total barcode UMI transcripts, and number of unique barcodes per cell or empty droplet. Box
524 plot shows median and interquartile range (IQR) of data in **(A–C)**. **E.** Stacked bar plot showing fraction of
525 barcodes uniquely found in empty droplets, cells, or both groups after implementing the indicated UMI
526 threshold. Percent of RVdG barcodes, cells, and empty droplets retained after implementing the UMI threshold
527 is overlaid. **F.** Number of UMI transcripts detected for every barcode in each nucleus or empty droplet from
528 single nucleus dissociation experiments, with magnified panel showing distribution from 0-200 UMIs on right
529 (median=1 in both real nuclei and empty droplets, indicated by arrowheads; n=157,073 nuclei:barcode
530 combinations, n=239,338 empty droplet:barcode combinations). **G.** Distribution of total barcode UMI transcripts
531 detected per nucleus or empty droplet (median=116 in real nuclei, median=1 in empty droplets, indicated by
532 arrowheads; n=1,307 nuclei, n=196,934 empty droplets). **H.** Number of unique barcodes detected per nucleus
533 or empty droplet (median=100 in real nuclei, median=1 in empty droplets; n=1,307 nuclei, n=196,934 empty
534 droplets). **I.** Number of UMI transcripts per each barcode, total barcode UMI transcripts, and unique barcodes
535 per nucleus or empty droplet. Box plot shows median and IQR of data in **(F–H)**. **J.** Stacked bar plot showing
536 fraction of barcodes uniquely found in empty droplets, nuclei, or both groups after implementing the indicated
537 UMI threshold. Percent of RVdG barcodes, nuclei, and empty droplets retained after implementing the UMI
538 threshold is overlaid. In **(D)** and **(I)**, p-values are computed using the Wilcoxon rank-sum test, *p<0.05.
539

541 **Figure 8. Barcoded RVdG circuit mapping reveals the emergence of cell type–specific connectivity**
 542 **motifs in second trimester human cerebral cortex. A.** Schematic of connectivity analysis. **B.** Number of
 543 starter cells per barcode network. **C.** Distribution of total number of cells per single-starter barcode network. **D.**
 544 Frequency of barcode networks containing different numbers of cells. Cell type proportions for each network
 545 size interval are indicated by color. **E.** Proportions of cell types in different barcode network size intervals. **F.**
 546 Example graph network showing the merged networks in one tissue slice infected with CVS-N2c RVdG. **G.**
 547 Sankey diagram showing observed connections by cell type (n=4,331 connections). **H.** Normalized connectivity
 548 matrix showing enrichment scores of observed connections compared to a random connectivity matrix

549 weighted by starter and uninfected cell type proportions (STAR Methods). P-values are computed using the
550 two-sided binomial tests with Bonferroni correction for multiple comparisons; *p<0.05.
551
552

553 **STAR★METHODS**

554 **KEY RESOURCE TABLE**

555

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
NeuN (chicken, 1:500)	MilliporeSigma	ABN91
NeuN (guinea pig, 1:500)	MilliporeSigma	ABN90
VGluT1 (mouse, 1:200)	MilliporeSigma	MAB5502
PSD-95 (rabbit, 1:350)	Invitrogen	51-6900
SYP (guinea pig, 1:1000)	Synaptic Systems	101004
GFP (chicken, 1:1000)	Aves	1020
dsRed (rabbit, 1:250)	Takara	632496
RFP (rat, 1:250)	Chromotek	5F8
DLX2 (mouse, 1:50)	Santa Cruz	sc-393879
NEUROD2 (rabbit, 1:250)	Abcam	ab104430
Bacterial and Viral Strains		
5-alpha Competent E. Coli	New England BioLabs	C2987H
NEB Stable Competent E. Coli	New England Biolabs	C3040H
Stellar TM Competent Cells	Clontech Labs	636763
MegaX DH10B T1 ^R Electrocomp TM Cells	Thermo Fisher	C640003
Chemicals, Peptides, and Recombinant Proteins		
Heat-inactivated FBS	HyClone	SH30071.03HI
DMEM with Glutamax	Gibco	10569044
0.25% Trypsin-EDTA	Gibco	25200114
Poly-D-Lysine	MilliporeSigma	P7280
Polybrene	MilliporeSigma	TR-1003-G
Trans-Isrib	Tocris	5284

Chroman 1	Medchem Express	HY-15392
Emricasan	Selleckchem	S7775
Polyamine Supplement	Sigma-Aldrich	P8483
Glutamax	Gibco	35050-061
N2 supplement	Gibco	17502-048
B27 w/ Vitamin A	Gibco	17504-001
Neurobasal	Gibco	21103049
DMEM/F12 with Glutamax	Gibco	10565042
L-Ascorbic Acid 2-Phosphate	Wako Chemicals USA	321-44823
Non-essential amino acids	Gibco	11140050
Primocin	Fisher Scientific	NC9141851
Donkey Serum	Jackson Immuno	017-000-121
Prolong Gold	ThermoFisher	P36934
Fluoromount-G	ThermoFisher	00-4959-52
PEG8000	Promega	V3011
Sodium Chloride	Spectrum Chemical	SO160
1X PBS	Gibco	10010023
Trizol	ThermoFisher	15596026
Chloroform	Fisher Scientific	60-047-878
Phenol:Chloroform:Isoamyl Alcohol (25:24:1, v/v)	ThermoFisher	15593031
Glycoblue	ThermoFisher	AM9515
Ethanol, 200 proof	Weill Chem Central	TX89125-172SFU
Isopropyl Alcohol	Millipore Sigma	563935
Sodium Acetate, 3M	ThermoFisher	J61928.AE
Lipofectamine 3000	ThermoFisher	L3000015
Lipofectamine 2000	ThermoFisher	11668019

XFect	Takara	631318
XtremeGene HP	Roche	06366236001
FuGENE HD	Promega	E2311
PEI MAX	PolySciences	49553-93-7
TransIT-293	Mirus Bio	MIR2704
Q5 HotStart 2X Master Mix	New England BioLabs	M0494L
KAPA HotStart ReadyMix 2X	Fisher Scientific	NC0295239
EBSS	Worthington	LK003188
DNase I	MilliporeSigma	DN25-1 G
Trehalose	MilliporeSigma	T9531-25G
Potassium Chloride	MilliporeSigma	529552-1KG
Sodium Phosphate Monobasic	MilliporeSigma	S0751-1KG
Sodium Bicarbonate	MilliporeSigma	S5761-1KG
Glucose	MilliporeSigma	G7021-1KG
Magnesium Chloride Solution	MilliporeSigma	M1028-100ML
Calcium Chloride Solution	MilliporeSigma	21115-100ML
Potassium Gluconate	MilliporeSigma	P1847-100G
HEPES Solution	MilliporeSigma	H0887-100ML
Adenosine 5'-triphosphate Magnesium Salt	MilliporeSigma	A9187-100MG
Guanosine 5'-triphosphate Sodium Salt	MilliporeSigma	G8877-10MG
Sodium Phosphocreatine	MilliporeSigma	P7936-1G
Biocytin	MilliporeSigma	B4261-50MG
Potassium Hydroxide Solution	MilliporeSigma	P4494-50ML
EGTA	MilliporeSigma	E3889-100G
Recombinant RNase Inhibitor	Roche	09537589103
Critical Commercial Assays		
PIPseq T2 v4.0PLUS	Fluent Biosciences	FBS-SCR-T2-8-V4.05-FLU

Deposited Data		
scRNA-seq/snRNA-seq datasets	Raw: dbGAP Processed: UCSC Cell Browser	Raw: In Submission Processed: https://barcoded-rabies-cortex.cells.ucsc.edu
Barcoded RVdG Genome Library Sequencing Datasets	GEO	GSE277536
Experimental Models: Cell Lines		
LentiX 293T	Takara	632180
HEK-GT	Ben-Simon Lab	https://elifesciences.org/articles/79848
BHK-EnvA-TVA	Ben-Simon Lab	https://elifesciences.org/articles/79848
BHK-EnvA	Callaway Lab	Salk Institute Virus Core: BHK-EnvA
Neuro2A	ATCC	CCL-131
293T-TVA800	Callaway Lab	Salk Institute Virus Core: 293T-TVA800
Oligonucleotides: see Table S2		
Recombinant DNA		
pMD2.G	Addgene	12259
psPAX2	Addgene	12260
pcDNA 3.1 puro Nodamura B2	Addgene	17228
Barcoded SAD B19 RVdG dTomato genome plasmid	This Study	Will be submitted to Addgene
Barcoded CVS-N2c RVdG MCP- oScarlet-KASH genome plasmid	This Study	Will be submitted to Addgene
pCAG-B19N	Addgene	59924
pCAG-B19P	Addgene	59925
pCAG-B19G	Addgene	59921
pCAG-B19L	This Study	59922
pCAGGS-T7opt	This Study	65974

pSicoFlipped-syn-GFP-TVA-oG-WPRE-bGHPA	This Study	Will be submitted to Addgene
pSicoFlipped-syn-GFP-TVA-WPRE-bGHPA	This Study	Will be submitted to Addgene
pSicoFlipped-syn-GFP-TVA-oG-6xMS2-WPRE-bGHPA	This Study	Will be submitted to Addgene
Software and Algorithms		
ImageJ (Fiji)	ImageJ	https://imagej.net/Fiji
pClamp v11	Molecular Devices	https://www.moleculardevices.com/products/axon-patch-clamp-system/acquisition-and-analysis-software/pclamp-software-suite
PipSeeker v3.3	Fluent Biosciences	https://www.fluentbio.com/products/pipseeker-software-for-data-analysis/
R v4.3.3	R	https://www.r-project.org/
Python v3.11.4	Python	https://www.python.org/
JupyterLab v4.0.2	Project Jupyter	https://jupyter.org/
RStudio v2023.06.0+421	Posit	https://posit.co/download/rstudio-desktop/
Seurat v5.0	Satija Lab	https://satijalab.org/seurat/
Devtools v2.4.5	RStudio	https://devtools.r-lib.org/
BiocManager v1.30.23	Martin Morgan	https://bioconductor.github.io/BioManager/
SeuratObject v5.0.2	Satija Lab	https://github.com/satijalab/seurat-object
dplyr v1.1.4	TidyVerse	https://dplyr.tidyverse.org
Ggplot2 v3.5.1	TidyVerse	https://ggplot2.tidyverse.org
EnhancedVolcano v1.20.0	Kevin Blighe	https://github.com/kevinblighe/EnhancedVolcano

harmony v1.2.0	Raychaudhuri Lab	https://github.com/immunogenomics/harmony
UCell v2.6.2	Carmona Lab	https://github.com/carmonalab/UCell
clusterProfiler v4.10.1	Yu Lab	https://github.com/YuLab-SMU/clusterProfiler
Msigdbr v7.5.1	Igor Dolgalev	https://igordot.github.io/msigdbr/
pandas v2.1.4	pandas Development Team	https://pandas.pydata.org/
NumPy v1.26.2	NumPy	https://numpy.org/
Matplotlib v3.8.2	Matplotlib Development Team	https://matplotlib.org/
SciPy v1.11.1	SciPy	https://scipy.org/
seaborn v0.12.2	Michael Waskom	https://seaborn.pydata.org/
statsmodels v0.14.3	statsmodels	https://www.statsmodels.org/stable/index.html
NetworkX v3.3	NetworkX Developers	https://networkx.org/
graphviz v0.20.3	graphviz Developers	https://pypi.org/project/graphviz/#description
SankeyMATIC	Steve Bogart	https://sankeymatic.com/build/
Affinity Designer	Affinity	https://affinity.serif.com/en-us/designer/
BioRender	BioRender	https://biorender.com/

Bowtie2 v2.5.1	Bowtie2	https://bowtie-bio.sourceforge.net/bowtie2/index.shtml
STAR v2.5.3a	https://sourceforge.net/projects/bbmap/	https://github.com/alexdobin/STAR/
BBMap v39.01	JGI BBTools	https://sourceforge.net/projects/bbmap/
UMI-tools v1.1.4	CGAT	https://github.com/CGATOxford/UMI-tools
Easy Electrophysiology	Easy Electrophysiology Ltd.	https://www.easyelectrophysiology.com/
Other		
Cell Culture Inserts, 0.4 µm pore size	MilliporeSigma	PICM03050
Dounce	Wheaton	EW-04468-00
Leica Widefield-Thunder Imaging System	Leica	UCSF Weill Microscopy Core
Leica SP8 Confocal Microscope	Leica	Nowakowski Lab
NextSeq 2000	Illumina	Canzio Lab, UCSF
NovaSeq X	Illumina	UCSF Center for Advanced Technology
FACSAria Fusion	BD Biosciences	UCSF Laboratory for Cell Analysis
BX51WI Microscope	Olympus	BX51WI
6-8 MΩ Resistance Glass Microelectrodes	Sutter Instruments	BF150-86-10
Multiclamp 700B Amplifier	Molecular Devices	700B
Digidata 1550B	Molecular Devices	1550B

556
557

RESOURCE AVAILABILITY

558

Materials Availability

559 Plasmids generated in this study will be made available through Addgene. Other reagents are available from
560 the Lead Contact, Dr. Tomasz Nowakowski (tomasz.nowakowski@ucsf.edu), upon reasonable request.

561 **Data and Code Availability**

562 scRNA-seq and snRNA-seq raw data will be made available through dbGAP, and processed data are available
563 through the UCSC Cell Browser: <https://barcoded-rabies-cortex.cells.ucsc.edu>. Sequencing data from
564 barcoded viral genome and plasmid libraries for assessing diversity is available through GEO (GSE277536,
565 private token: craxaqkirzkrtit). Other data that support the findings of this study are available from the Lead
566 Contact, Dr. Tomasz Nowakowski (tomasz.nowakowski@ucsf.edu) upon reasonable request. All code used for
567 analysis has been deposited at Github and will be publicly available as of the date of publication.

568 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

569 **Human Primary Cerebral Cortex Specimens**

570 De-identified tissue samples were collected with previous patient consent in strict observance of the legal and
571 institutional ethical regulations. Protocols were approved by the Human Gamete, Embryo, and Stem Cell
572 Research Committee (Institutional Review Board) at the University of California, San Francisco.

573 **METHOD DETAILS**

574

575 **Generation of lentiviral helper plasmid and barcoded RVdG plasmid library**

576 We cloned a lentiviral helper plasmid in which the human synapsin I promoter (hSyn1) drove the expression of
577 a human codon-optimized GFP, TVA, and chimeric glycoprotein oG¹⁸ (pSico-hSyn1::GFP-T2A-TVA-E2A-oG).
578 A modified pSico plasmid¹¹ was utilized as the backbone, and the sequence between the cPPT/CTS and 3'
579 LTR was replaced with DNA fragments containing the hSyn1 promoter and human codon-optimized
580 sequences GFP, T2A, TVA, E2A, and oG via gibson assembly using HiFi DNA Assembly Master Mix (NEB,
581 E2621).

582 To prepare a SAD B19 strain rabies genome plasmid for barcoding (pSADdeltaG-dTomato), the
583 pSADdeltaG-BFP plasmid (Addgene #32639) was digested with NheI-HF (NEB, R3131) and Ascl (NEB,

584 R0558) to replace the gene encoding tagBFP2 with a gblock (IDT) containing a gene encoding a human
585 codon-optimized dTomato and a barcode cloning site in the 3' UTR of dTomato represented by two SacII
586 restriction enzyme sites. To generate the backbone for the barcoded plasmid library, 10 µg of pSADdeltaG-
587 dTomato was digested using SacII (NEB, R0157) overnight and purified using the Zymo DNA Clean and
588 Concentrator-5 kit (Zymo, D4004). The insert containing the barcode library was generated by performing PCR
589 on the STICR barcoded lentiviral plasmid library¹¹ (Addgene 180483) using primers flanking the barcode
590 sequences and containing overhangs matching the SacII-digested pSADdeltaG-dTomato plasmid (Primers 1
591 and 2, [Table S2](#)).

592 Similarly, to prepare a CVS-N2c strain rabies genome plasmid for barcoding and nuclear capture, the
593 RabV CVS-N2c(deltaG)-mCherry plasmid (Addgene #73464) was digested with SmaI (NEB, R0141) and
594 NheI-HF (NEB, R3131) to replace the gene encoding mCherry with a gblock (IDT) encoding a fusion protein
595 consisting of the MS2 coat protein MCP, the fluorescent protein oScarlet, and the KASH nuclear localization
596 signal. The 3' UTR of this gblock carried six MS2 hairpin sequences followed by a barcode cloning site
597 represented by two SacII restriction enzyme sites. 10 µg of the resulting plasmid was digested using SacII
598 (NEB, R0157) overnight and purified using the Zymo DNA Clean and Concentrator-5 kit (Zymo, D4004). The
599 insert containing the barcode library was generated by performing PCR on the STICR barcoded lentiviral
600 plasmid library¹¹ (Addgene 180483), with overhangs matching the SacII digested plasmid (Primers 1 and 2,
601 [Table S2](#)).

602 Based on our initial qPCR optimization (Figure S1C), 10 cycles of PCR were performed on 25 ng of
603 plasmid DNA in 50 µL total volume using KAPA HotStart PCR ReadyMix (Roche KK2601), with the following
604 parameters: Initial denaturation: 95C for 3 min, Denaturation: 98C for 20 s, Annealing: 62C for 15 s, Extension:
605 72C for 10 s. A total of 5 PCR reactions was performed, which represents a starting amount of approximately
606 1.3×10^{10} molecules of DNA, or ~100-fold excess of the theoretical diversity of the plasmid library. Each PCR
607 reaction was subsequently supplemented with 5 µL of CutSmart Buffer (NEB B7204) and digested using 1µL
608 DpnI restriction enzyme (NEB R0176) to eliminate plasmid DNA. Fragments were eluted using the Zymo DNA
609 Clean and Concentrator-5 Kit.

610 To generate the barcoded rabies plasmid library for both SAD B19 and CVS-N2c strains, 12 20- μ L
611 reactions of gibson assembly were performed for 1 hour at 50C using the HiFi DNA Assembly MasterMix
612 (NEB, E2621), with each reaction containing 184.9 ng of SacII-digested plasmid and a 10-fold molar excess of
613 PCR-amplified insert. The 12 gibson assembly reactions together contain $\sim 1.3 \times 10^{11}$ molecules of digested
614 backbone, which is 1000-fold excess to the theoretical complexity of 125 million. The gibson assembly
615 reactions were pooled and purified using Zymo Clean and Concentrator-5 Kit in 12 μ L of nuclease-free water
616 pre-heated to 70C. After cooling on ice, the purified gibson assembly reaction was transformed into a total of
617 300 μ L of MegaX DH10B Electrocompetent E. Coli (Thermo, C640003) and grown overnight at 37C in LB-
618 Carbenicillin broth. Some of the transformed bacteria were also plated at $1:1 \times 10^4$, $1:1 \times 10^5$, and $1:1 \times 10^6$
619 dilution on LB-Agar-Carbenicillin plates, to estimate the total number of colonies to verify sufficient diversity.
620 The following day, LB-containing bacteria were spun down at 4500 $\times g$ for 15 min and plasmid DNA was
621 extracted in AE buffer using the Nucleobond 10000 EF Giga Kit (Machery Nagel, 740548) or the ZymoPure II
622 Plasmid GigaPrep Kit (Zymo D4204).
623

624 **Generation of barcoded RVdG viral libraries**

625 For library Replicates 1-4 (Figure 1), five 15 cm dishes were coated with 10 μ g/mL poly-D-lysine (PDL) diluted
626 in 1 \times PBS for 1 h at room temperature, and rinsed three times with PBS. Lenti-X HEK293T or HEK-GT¹⁷ cells
627 that were 70-80% confluent were dissociated using 0.05% Trypsin-EDTA (Thermo, 25200056) and 13 million
628 cells were plated into each PDL-coated 15-cm dish in “FBS-DMEM media”, which was composed of DMEM
629 (Thermo, 41966) containing 10% Heat-inactivated FBS (HI-FBS, Cytiva, SH30071.03HI) and 2% primocin
630 (Invivogen, ant-pm-1). The next day, when the cells had reached $\sim 90\%$ confluence, each 15 cm dish was
631 transfected with 27.1 μ g of SAD B19-N (Addgene #32630), 13.9 μ g of SAD B19-P (Addgene #32631), 13.9 μ g
632 of SAD B19-L (Addgene #32632), 16.6 μ g of CAGGS-T7opt (Addgene #65974), and either 55.1 μ g of
633 barcoded pSADdeltaG-dTomato (Libraries 1-2) or pCVS-N2c(deltaG)-MCP-oScarlet-KASH-6XMS2 (Libraries
634 3-4), using Lipofectamine 3000 (Thermo, L3000075) following the manufacturer’s recommendations. In
635 addition, the Lenti-X HEK293T was co-transfected with 11 μ g of SAD B19-G (Addgene #32633). For every
636 microgram of plasmid, 2 μ L of P3000 reagent and 2.33 μ L of Lipofectamine 3000 was used. The day following

637 transfection, cells were passaged into PDL-coated plates at a 1.28:1 ratio based on surface area (i.e. one 15
638 cm dish into two 10 cm dishes) using FBS-DMEM media that was additionally supplemented with 1 CEPT
639 cocktail⁸⁷ (50 nM Chroman 1, 5 µM Emricasan, 0.7 µM Trans-Isrib, 1× polyamine supplement). Media was
640 replaced the next day with FBS-DMEM media containing CEPT. Viral supernatant was collected on the fourth,
641 fifth, and sixth day post-transfection to harvest G-pseudotyped virus, with media replacement using FBS-
642 DMEM media containing CEPT. Viral supernatant was collected and filtered through a 0.45 µm syringe filter
643 (Corning 431220). Supernatant was concentrated using PEG precipitation with 1 volume of PEG concentrator
644 for every 3 volumes of supernatant (PEG concentrator: 40% (w/v) PEG 8000 (Promega, V3011) in 1× PBS
645 (Thermo, 10010023) supplemented with 1.2 M NaCl (Fisher, S271-500), and incubated overnight at 4C with
646 gentle agitation. The next day, the precipitated viral particles were spun down by centrifugation at 1600xg for 1
647 hour at 4C. The supernatant was removed and the viral pellet was resuspended using FBS-DMEM media and
648 8 µg/mL of polybrene (Millipore Sigma TR-1003-G) at 1:100 of the original media volume.

649 Per every mL of concentrated G-RVdG virus, 3 million BHK-EnvA-TVA cells¹⁷ (Library 1), BHK-EnvB
650 cells (Library 2; Salk Institute Viral Core), or BHK-EnvA cells (Libraries 3 and 4; Salk Institute Viral Core) were
651 transduced by spin-infection (1500×g, 1.5 hr, room temperature, using a swinging bucket rotor). Subsequently,
652 cells were plated into 10 cm dishes at a density of 3 million cells/dish in FBS-DMEM media containing 8 µg/mL
653 of polybrene. The following day, the media was replaced with fresh media without polybrene. One or two days
654 later, when the plate reached confluence, cells were passaged once more using 0.25% trypsin-EDTA for 10
655 minutes at 37C, in order to deactivate any residual G-pseudotyped virus. FBS-DMEM media was added to
656 trypsinized cells at 3-fold volume excess to quench the trypsin, and cells were spun down to remove the
657 trypsin-EDTA. Cells were pooled and passaged at a 1:2.5 dilution (i.e. one 10 cm dish into one 15 cm dish).
658 Cells were given a media change the next day. Two days later, when plates had reached confluence, viral
659 supernatant was collected every other day for a total of 3-4 collections, depending on the health of the cells.
660 On the day of collection, viral supernatant was filtered through a 0.45 µm syringe filter and concentrated by
661 ultracentrifuge (Beckman Coulter) through a 4 mL sucrose cushion using the SW32Ti rotor (20,300 RPM, 2 hr,
662 4C). After ultracentrifugation, the viral pellet was resuspended in 50 µL of HBSS while gently rocking overnight
663 at 4C. Virus was aliquoted, frozen at -80C, and titered by infecting TVA800 HEK293T cells (Salk Institute Viral

664 Core) using a serial dilution of virus, and measuring the percentage of dTomato-positive cells two days later by
665 flow cytometry. Titers typically ranged from between 10^7 - 10^8 TU/mL, and lack of G-contamination was
666 confirmed by infecting 100,000 Lenti-X HEK293T cells (that do not express TVA) with 1 μ L of undiluted
667 barcoded RVdG virus.

668

669 **Testing the effect of cell lines and transfection reagents on RVdG viral rescue efficiency**

670 To compare rescue efficiency in different packaging cell lines, Lenti-X HEK293T cells, BHK-21, and Neuro2A
671 cells were passaged into PDL-coated 24-well plates as described above at a density of 1.75×10^5 cells per
672 well (HEK293T, Neuro2A) or 1.1×10^5 cells per well (BHK-21). The next day, when the cells had reached
673 ~90% confluence, each well was transfected with 760 ng of barcoded pSADdeltaG-dTomato, 374 ng of SAD
674 B19-N, 192 ng of SAD B19-P, 192 ng of SAD B19-L, and 229 ng of CAGGS-T7opt using Lipofectamine 3000
675 following manufacturer recommendations. For every μ g of DNA, 2 μ L of P3000 reagent and 2.33 μ L of
676 Lipofectamine 3000 were used. The next day, the media was changed with fresh FBS-DMEM media. Two days
677 later, cells were dissociated using 0.05% Trypsin-EDTA, quenched with three volumes of FBS-DMEM media
678 for every one volume of Trypsin-EDTA, and pelleted by centrifugation at 300 \times g for 3 minutes. Cells were
679 resuspended using 1 \times PBS containing 0.1% bovine serum albumin (BSA) and filtered into a flow cytometry
680 tube through a 35 μ m nylon mesh cap. Flow cytometry was performed while recording from 50,000 events to
681 quantify the percentage of cells that had successfully recovered RVdG viral particles based on dTomato
682 expression.

683 To compare rescue efficiency in HEK293T comparing different transfection reagents, Lenti-X HEK293T
684 cells were passaged into PDL-coated 24-well plates as described above, and transfected using Lipofectamine
685 3000 as described above, Lipofectamine 2000 following published recommendations¹⁴ (1.17 μ L per 1 μ g of
686 DNA), Xfect following published recommendations⁴ (0.3 μ L per 1 μ g of DNA), FuGENE HD (3 μ L per 1 μ g of
687 DNA), PEI MAX (3 μ L per 1 μ g of DNA), XtremeGene HP (3 μ L per 1 μ g of DNA), and Mirus TransIT-293 (3 μ L
688 per 1 μ g of DNA). Media was changed the next day and flow cytometry was performed three days after
689 transfection.

690

691 **Production of barcoded RVdG for comparison of transfection reagents, plate size, and cell lines**

692 To compare the effect of packaging RVdG using Lipofectamine 2000 in HEK293T cells, Lipofectamine 3000 in
693 HEK293T cells, and Lipofectamine 3000 in HEK-GT cells on RVdG viral library complexity, eight PDL-coated
694 15-cm dishes were plated with Lenti-X HEK293T cells and four PDL-coated 15-cm dishes were plated with
695 HEK-GT cells as described above. Each dish functioned as a technical replicate for this experiment. Each 15
696 cm dish was transfected with 55.1 µg of barcoded CVS-N2c MCP-oScarlet-KASH, 27.1 of SAD B19-N, 13.9 µg
697 of SAD B19-P, 13.9 µg of SAD B19-L, and 16.6 µg of CAGGS-T7opt using Lipofectamine 3000 or
698 Lipofectamine 2000 as described above. Transfection of HEK293T, but not HEK-GT cells additionally included
699 11 µg of SAD B19-G. The next day, the contents of each 15 cm dish were passaged using 0.05% Trypsin-
700 EDTA into two 10-cm dishes, while keeping cells from each 15 dish separate. Media was changed the next
701 day, and supernatant was collected to harvest G-pseudotyped RVdG when approximately half of the cells were
702 oScarlet-positive (day 5 post-transfection for Lipofectamine 3000 in HEK293T and HEK-GT cells, day 8 post-
703 transfection for Lipofectamine 2000). The supernatant from the 10-cm dishes that originated from the same 15-
704 cm dish were pooled and concentrated using PEG precipitation, and viral genome RNA was isolated as
705 described in the next section.

706 To compare the effect of packaging RVdG in 10-cm dishes and 384 well plates, two PDL-coated 15-cm
707 dishes containing LentiX HEK293T cells were transfected with packaging plasmids as described above. The
708 next day, cells from one 15-cm dish were passaged into two PDL-coated 10-cm dishes, and cells from the
709 other 15-cm dish were passaged into five PDL-coated 384 well plates. Media was changed the next day and
710 supernatant was harvested four days post-transfection for concentration and viral genome RNA isolation as
711 described in the next section.

712
713 **Generation of sequencing library for plasmid and viral barcode diversity quantification**

714 To quantify plasmid barcode library diversity, 50 ng of plasmid DNA was fragmented using seqWell's Tagify
715 UMI reagent, in order to tag each barcode-containing plasmid DNA fragment with a UMI and partial Illumina
716 Read1 adapter. Fragmented fragments were purified using a 1× left-sided size selection using SPRiselect
717 beads according to the manufacturer's protocol. Sample indexing PCR was subsequently performed using

718 custom sample index primers that bind to the TruSeq P5 PCR handle generated during Tn5 tagmentation
719 (Primer 3, [Table S2](#)) and to the BFP primer site sequence immediately proximal to the barcode sequence
720 (Primers 8-15, [Table S2](#)). The library was sequenced using a target of 100 million reads.

721 To quantify viral barcode library diversity, barcoded RVdG from a single 15 cm dish was concentrated
722 by ultracentrifugation or PEG precipitation as described above and RNA was isolated by phenol-chloroform
723 extraction, the procedure for which is described as follows. The viral pellet was resuspended in 1 mL of Trizol
724 (Invitrogen 15596026), and incubated at room temperature for five minutes to permit dissociation of rabies
725 proteins from viral RNA. Subsequently, 200 μ L of chloroform (Fisher 60047878) was added and vortexed for
726 30 seconds, followed by spin at 12000 \times g for 15 min at 4C. 600 μ L of the upper aqueous phase was collected
727 and RNA was precipitated by mixing with 500 μ L of isopropanol and 1 μ L of Glycoblue (Invitrogen AM9515)
728 and incubating for 10 minutes. Precipitated RNA was pelleted by centrifugation at 12000 \times g for 10 min at 4C,
729 washed twice with 80% ethanol, air dried for 2 min, and resuspended in 10 μ L of nuclease-free water. Reverse
730 transcription was performed on 1-5 μ g of RNA using SuperScript IV (ThermoFisher 18090010) and 1 μ L of 50
731 mM custom RT primer (Primer 4, [Table S2](#)) targeting a sequence distal to the barcode relative to the negative
732 stranded viral genome, in order to generate cDNA containing barcodes from viral genome RNA but not from
733 contaminant mRNA. RT primer also contained an overhanging sequence carrying an 8 bp randomer, which
734 functions as a UMI to correct for PCR amplification bias after sequencing, and a binding site for Illumina
735 sample index primer. The resulting cDNA (5 μ L, or 25% of the RT reaction) was amplified using 10-12 cycles of
736 PCR with KAPA HotStart PCR ReadyMix (Roche KK2601) and custom sample index primers (P7 primers:
737 Primers 5-7; P5 primers: Primers 16-23; [Table S2](#)), one of which is specific to an overhang introduced by the
738 RT primer to facilitate viral genome-specific amplification. Each library was sequenced using at least 10 million
739 reads.

740

741 **Organotypic slice culture and viral transduction of human brain**

742 To generate organotypic slice cultures, cortical tissue was identified by visual inspection, embedded in 3% low
743 melting point agarose (Fisher, # BP165-25), and sliced into 300 μ m sections perpendicular to the ventricle
744 using a Leica VT1200S vibrating blade microtome. Slicing was performed in oxygenated artificial cerebrospinal

745 fluid (ACSF) containing 125 mM NaCl, 2.5 mM KCl, 1 mM MgCl₂, 1 mM CaCl₂, 1.25 mM NaH₂PO₄. Slices were
746 cultured on Millicell Standing Cell Culture Inserts (PICM03050) in a serum-free media composed of DMEM-F12
747 with Glutamax (Gibco 10565018) and Neurobasal media (Gibco 21103049) mixed at a 1:1 (v/v) ratio and
748 supplemented with 2% B27 (Gibco 17504044), 1% N2 (Gibco 17502048), 200 µM ascorbic acid-2-phosphate
749 (Wako 50-990-141), and 2% primocin. One hour after plating, slices were transduced with a VSV-G
750 pseudotyped lentiviral helper virus (pSico-hSyn1::GFP-T2A-TVA-E2A-oG) described above by pipetting 2 µL of
751 10⁶ TU/mL over the top of the slice. Half of the media was exchanged every other day subsequently. Slices
752 were transduced with barcoded RVdG-dTomato by pipetting 3 uL of 10⁷ TU/mL virus over the top of the slice
753 three days after the initial helper virus infection. Five days after transduction with RVdG-dTomato, slices were
754 dissociated into a single cell or single nuclei suspension following previously published protocols^{88,89}. For single
755 cell dissociation, 100 units of papain in 1 mM L-cysteine and 0.5 mM EDTA were reconstituted in 5 mL of
756 EBSS containing 5% Trehalose and reactivated for 10 minutes. 500 units of DNase I was added to 5 mL of
757 reactivated papain solution and slices were incubated in 1 mL of papain/slice for 30 min at 37C. Papain was
758 subsequently inactivated using EBSS containing 58.3% ovomucoid inhibitor, 5% DNase I, and 5% Trehalose
759 (EBSS-ovomucoid), using a 1:1 (v/v) papain:EBSS-ovomucoid inhibitor ratio. Slices were spun down at 100×g
760 for 10 min at 4C, resuspended in 1 mL of EBSS-ovomucoid, and gently triturated 30 times using a fire-polished
761 glass pipette, or until the tissue has been fully dissociated into a single cell suspension. 4 mL of PBS
762 containing 1% BSA, 5% Trehalose, and 5% DNase I was added per 1 mL of EBSS-ovomucoid, mixed gently,
763 and spun down at 100×g for 10 min at 4C. Cells were resuspended in ice-cold PBS containing 1% BSA and
764 filtered through a 35 µm strainer mesh in preparation for fluorescence-activated cell sorting (FACS).

765 For single nuclei dissociation, slices were placed in a pre-chilled 1 mL dounce homogenizer (Wheaton
766 EW-04468-00) and slowly dounced ten times with the loose pestle A and ten times with the tight dounce pestle
767 B while on ice using 1 mL EZ lysis buffer (Sigma NUC-101) supplemented with 5 µL of RNase inhibitor
768 (Takara 2313B; 40 U/uL). The contents of the dounce were moved to a pre-chilled 15 ml conical tube,
769 incubated for 5 min on ice, and spun down in a swinging bucket centrifuge at 4C, 500×g, for 5 min.
770 Supernatant was gently removed, and nuclei were gently resuspended in ice-cold 1 mL EZ lysis buffer
771 supplemented with 5 µL of RNase inhibitor using 3-5 triturations using a 1 mL pipet and normal-bore tips.

772 Nuclei were incubated for 5 min, spun down in a swinging bucket centrifuge at 4C, 500×g, for 5 min, and
773 resuspended in ice-cold PBS containing 1% BSA and filtered through a 35 µm strainer mesh in preparation for
774 fluorescence-activated nuclei sorting (FANS).

775 FACS/FANS was performed to isolate dTomato+ cells or oScarlet+ nuclei using a 100 µm or 85 µm
776 nozzle, respectively, on a BD FACSAria Fusion. Cells were collected in a PCR tube nested within a 600 uL
777 tube nested within a 1.5 mL Eppendorf tube⁹⁰ containing 50 µL of collection buffer consisting of PBS-1% BSA
778 and 200 units/mL RNase inhibitor. The PCR tube had previously been precoated with 1% BSA for one hour, to
779 prevent cells from sticking to the side of the tube during FACS/FANS. One final centrifugation was performed
780 to pellet the cells/nuclei (cells: 300×g for 5 min, nuclei: 500×g for 5 min), and the supernatant was carefully
781 removed to leave behind approximately 4 µL of collection buffer.

782

783 **Generation of transcriptome and barcode libraries**

784 scRNA-seq and snRNA-seq was performed on collected cells/nuclei using the PIPseq v4.0 T2 3' Single Cell
785 RNA kit, adhering to the manufacturer's protocol for isolating single-cell and single-nucleus transcriptomes.
786 Transcriptomes were sequenced with a target of 35,000 reads/cell.

787 For generating barcode libraries, PCR was performed on 25% of the cDNA amplification library using
788 custom sample index primers that target the BFP primer site immediately proximal to the barcodes (Primers 8-
789 15; [Table S2](#)) and the partial Illumina Read1 sequence introduced by the 10x RT primer (Primers 16-23; [Table](#)
790 [S2](#)). 10-15 rounds of PCR was performed using the following program: 1) 98C, 30s, 2) 98C, 10 sec, 3) 62C, 20
791 sec, 4) 72C, 10 sec, 5) Repeat steps 2-4 9-14×, 6) 72C, 2 min, 7) 4C, hold, as described previously¹¹. Barcode
792 library was purified by 0.6-1× dual-sided size selection using SPRIselect beads (Beckman Coulter B23317)
793 and sequenced with a target of 5,000-10,000 reads/cell using the following sequencing parameters: Read 1: ≥
794 54 reads, Index 1: 8 reads, Index 2: 8 reads, Read 2: 150 reads.

795

796 **Whole-cell patch-clamp recordings**

797 Electrophysiological experiments were conducted on cultured human prenatal subplate neurons at DIV 6-8 (i.e.
798 3-5 days after transduction with RVdG-dTomato). Cultured brain slices were placed in a recording chamber

799 mounted on a BX51WI microscope (Olympus) and were perfused with artificial cerebrospinal fluid (ACSF)
800 containing (in mM): 125 NaCl, 2.5 KCl, 1.25 Na H₂PO₄, 25 NaHCO₃, 11.1 Glucose, 1 MgCl₂, 2 CaCl₂, pH 7.4,
801 305-310 mOsm, equilibrated with 95% O₂, 5% CO₂ at 34 ± 1°C. Fluorescence imaging with a 40× water
802 immersion objective lens (LUMPLFLN40XW, NA 0.8) was used to identify starter and non-starter cells (GFP
803 and dTomato/oScarlet fluorescence together vs. dTomato/oScarlet fluorescence alone, respectively). Whole-
804 cell patch-clamp recordings were performed on fluorescently labeled cells using 6–8 MΩ resistance glass
805 microelectrodes (BF150-86-10; Sutter Instrument) containing an internal solution comprised of (in mM): 120 K
806 gluconate, 4 KCl, 10 HEPES, 4 MgATP, 0.3 Na₃GTP, 10 sodium phosphocreatine, 13.4 biocytin, pH 7.25 with
807 0.5M KOH, ~320 mOsm. In a subset of experiments, a slightly modified internal solution was used consisting
808 of (in mM): 111 K gluconate, 4 KCl, 10 HEPES, 0.2 EGTA, 4 MgATP, 0.3 Na₃GTP, 5 sodium phosphocreatine,
809 13.4 biocytin, pH 7.25 with 0.5M KOH with addition of 1 U/μl recombinant RNase inhibitor (Roche) immediately
810 prior to experiment and final osmolarity of 315–320 mOsm. All signals were obtained using Multiclamp 700B
811 amplifier and Digidata 1550B (Molecular Devices). Specifically, voltage-clamp recordings were sampled at 20
812 kHz, low-pass filtered at 2kHz, and current-clamp recordings were sampled at 50 kHz, low-pass filtered at 10
813 kHz. Easy Electrophysiology software (Easy Electrophysiology Ltd.) was used to analyze recorded traces that
814 met the following quality control criteria: (1) >1 GΩ seal before whole-cell configuration; (2) series resistance
815 <25 MΩ; and (3) <20% series resistance changes between before, during and after the recording. In current
816 clamp configuration, 1-s long current steps were injected ranging from -20 pA to 60 pA in 2 pA increments to
817 elicit action potentials. The resting membrane potential was measured as the mean membrane potential during
818 100 ms before the current stimulation. The input resistance was calculated as the voltage difference between
819 the steady state and the resting membrane potential divided by the injected current during the hyperpolarizing
820 steps. The cell membrane capacitance was measured as the time constant of a monoexponential fit to the first
821 local minimum of the hyperpolarizing membrane potential during stimulation divided by the membrane
822 resistance. Action potential was identified initially by locating the action potential threshold, which was defined
823 as the potential at which the first derivative of the membrane potential (dV/dt) exceeded 20 mV/ms. Only those
824 peaks with the following criteria were detected as an action potential: > 20 mV amplitude, > 20 mV/ms
825 upstroke, > -0.1 mV/ms downstroke, < 5 ms width.

826

827 **QUANTIFICATION AND STATISTICAL ANALYSIS**

828 Statistical analyses were performed in RStudio and Jupyter. Information regarding statistics including the
829 statistical test, sample sizes, and p-values for each experiment are provided in the figure legends and the
830 Results section. A p-value of less than 0.05 was considered statistically significant, with corrections applied for
831 multiple comparisons when necessary.

832

833 **Viral barcode pre-processing**

834 Output fastqs from sequenced rabies barcode libraries were filtered and processed using the custom script
835 barcode_processing.sh. The bbduk⁹¹ (v39.01) package (BBMap) was used to discard any reads with average
836 quality (maq) below 20. Reads were then trimmed down to individual RVdG barcodes, UMIs, and cell barcodes
837 (for transcriptome-matched datasets). RVdG barcodes were aligned to a custom reference white list (Table S1)
838 with bowtie2, allowing for one base pair mismatch per read. After sorting output files with samtools, the RVdG
839 barcodes, UMIs, and cell barcodes were merged on read IDs. The command line package UMI-tools⁹² (v1.1.2)
840 was then used to quantify the number of UMIs per cell barcode and RVdG barcode combination. A UMI
841 collapsing threshold was set at 1 to collapse any UMIs with only one base pair difference into a single UMI
842 count.

843

844 **Viral barcode diversity analysis**

845 When available, UMI counts per RVdG barcode were retrieved from previously published studies³⁻⁵. For those
846 studies that were not already in the output format of UMI-tools, counts per barcode were generated using UMI-
847 tools from published barcode lists. Barcode library diversity was compared using the percentage of the UMIs
848 covered by each unique rabies barcode per dataset plotted with Matplotlib⁹³ (v3.9.1).

849

850 **Barcode collision simulations**

851 To evaluate the risk of barcode collision (or the chance of a cell receiving the same barcode as a previously
852 infected cell), we set up a simulation in which 10-100,000 cells (for viral libraries) or 10-10,000,000 cells (for
853 plasmid libraries) are assigned a single barcode by bootstrapping from the original dataset with replacement
854 (Figures 1E, S1K, S1M, and S1O). Each simulation was repeated 50 times using numpy.random.choice in the
855 Numpy⁹⁴ package, and duplicate barcodes were counted with the pandas⁹⁵ package's
856 pandas.DataFrame.duplicated(keep=first) command to ensure that barcode collision was counted
857 starting from the first duplicate barcode infection. Barcode collision was then plotted as a function of the
858 number of cells per simulation. Line plots showing the collision metric value at each of the starter cell counts
859 were drawn using the Seaborn⁹⁶ (v0.12.2) package in Python with error bars extended to two standard error
860 widths based on the results from the 50 iterations for each simulation.

861

862 **Barcode sampling simulations**

863 To examine the total number of unique barcode as a function of the number of transcripts sequenced, we set
864 up a simulate in which 10-1,000,000 barcodes were pulled from barcode diversity datasets at random using
865 using numpy.random.choice in the Numpy⁹⁴ with replacement (Figure 1F). These simulations were repeated
866 100 times, and error was calculated as standard deviation. Line plots showing the total number of unique
867 barcodes pulled versus the total number of all barcodes pulled were plotted using Matplotlib⁹³ (v3.9.1) with
868 error bars extending to two standard error widths based on the results from the 100 iterations for each
869 simulation.

870

871 **Shannon entropy calculations**

872 To estimate the Shannon entropy for the libraries presented and previous published ones, the function
873 shannon_entropy_calculator() was created. Iterating through a list of barcode libraries, it computes the
874 observed barcode probability distributions by dividing the UMI count of a barcode by the sum of UMI counts in
875 the library. Uniform barcode probability distributions are calculated by specifying each barcode probability as 1
876 divided by the sum of UMI counts in the library. The probability distributions are inputted into the SciPy
877 entropy() function to calculate the observed and uniform Shannon entropies (in bits) for each library.

878

879 Transcriptomic processing and analysis

880 Output fastqs from PIPseq datasets were first aligned using the PIPseeker³ (v3.3) prebundled hg38 genome to
881 generate mitochondrial gene counts and complete cell barcodes. The argument `-retain-barcoded-fastqs`
882 was used to retain original fastqs with modified cell barcodes. These fastqs were then concatenated per
883 dataset and realigned with STAR (v2.7.11b) to the hg38 reference genome with NCBIRefSeq annotations to
884 generate transcriptomic count matrices. Filtered matrices with the lowest sensitivity were processed using
885 Seurat (v4.3)⁹⁷. Briefly, single-cell datasets were filtered for cells with >1000 features, >1250 UMI counts, and
886 <5% mitochondrial genes. Single-nuclei datasets were filtered for nuclei with >300 features, >300 UMI counts,
887 and <5% mitochondrial genes. To identify cell types, all datasets were merged and normalized using
888 `SCTtransform()`. The top 2000 variable features were selected, and mitochondrial genes were regressed out
889 from further analysis. PCA was calculated using the top 50 principal components of the SCT assay. The
890 package Harmony²² (v1.2.0) was then used to integrate all datasets to account for batch effects and
891 differences between dissociation methods. `RunUMAP()`, `FindNeighbors()`, and `FindClusters()` were used to
892 cluster the resultant object, accounting for dimensions 1:40 with cluster resolution set to 1.0. Marker genes
893 across clusters were identified using the package `presto`⁹⁸ (v1.0.0) and Seurat's `FindAllMarkers()` function.
894 Cell type labels were identified based on expression of key marker genes. These cell type labels were retained
895 for all downstream analyses.

896

897 Gene set enrichment analysis

898 To identify differentially expressed genes between the uninfected, SAD B19-, and CVS-infected datasets
899 dissociated as single-cells, these datasets were merged and then processed using the same parameters
900 described above, excluding integration with Harmony. Differentially expressed genes between uninfected, SAD
901 B19-, and CVS-infected datasets and each cell type were identified using Seurat's `FindMarkers()` function.
902 Top differentially expressed genes were visualized using the EnhancedVolcano⁹⁹ (v1.20.0) package. Gene set
903 enrichment analysis was conducted using the `gseGO()` function in clusterProfiler^{100,101} (v4.10.1) and restricted
904 to the Gene Ontology's Biological Processes database. FDR adjusted p-values were reported, and the top ten

905 pathways with an adjusted p-value <0.05 were visualized using the dotplot() function. Cell type-specific
906 enrichment of certain terms was confirmed by calculating term enrichment per cell using the
907 AddModuleScore_UCell() function in the UCell¹⁰² package (v2.6.2), then mapping enrichment scores using
908 Seurat's FeaturePlot() function.

909

910 **Nuclear and cellular viral barcode metric comparisons**

911 Medians and distributions of UMI counts for every unique rabies barcode found in every unique cell/nucleus, as
912 well as the total number of rabies barcode UMIs per every unique cell/nucleus were plotted using Matplotlib
913 (v3.9). The relationship between total rabies barcode UMIs and total unique rabies barcode per cell/nucleus
914 and lines of best fit were plotted with seaborn (v0.13.2). R^2 was calculated by squaring the Spearman's
915 Correlation coefficients calculated using SciPy's (v1.11.1) spearmanr() function.

916

917 **Empty droplet analysis**

918 Cell/nucleus barcodes representing empty droplets were identified from Pipseeker's generated barcode read
919 info table as any cell barcode with ≤ 10 transcripts mapping to the hg38 reference genome. All rabies barcodes
920 with cell/nucleus barcodes matching those corresponding to empty droplets were considered for empty droplet
921 analysis. The distribution and central tendencies of UMIs per rabies barcode per cell/nucleus or empty droplet,
922 total rabies barcode transcripts, and unique rabies barcode identified across either real cells/nuclei or empty
923 droplets were calculated and visualized using SciPy's¹⁰³ (v1.11.1) ranksums() function with Bonferroni
924 correction and Matplotlib packages. Fractions of barcodes in empty droplets, cells/nuclei, or both were
925 visualized using ggplot2 (v3.5.1).

926

927 **Preparing barcode data for connectivity analysis**

928 Barcode data was prepared for connectivity analysis using the function `process_barcodes_df()` written in
929 Python (Table S4). This filtered for cells that passed QC, and annotated each RVdG barcode-cell/nucleus
930 barcode (CBC) based on the CBC's cell type and number of helper UMIs. Barcode and helper UMI thresholds
931 of ≥ 3 were used to filter for barcodes and assign starter status. Additional annotations were made for barcodes
932 that were found in at least 2 cells; whether the barcode was found in starter cells, non-starters, or both; and
933 whether the barcode was only found in one starter cell (termed “single_starter_barcodes”).

934

935 **Identification of single-starter networks**

936 To systematically infer single-starter networks involving a single starter cell and all of the non-starter cells that
937 share at least one one barcode with the starter, we filtered the dataset generated using the function
938 `process_barcodes_df()` for single starter barcodes that were found in at least one nonstarter cell. All of such
939 barcodes associated with a cell were grouped into a set for each cell. Iterating through each starter cell's
940 barcode set and all of the non-starter cell's barcode sets, non-starters that shared at least one barcode with a
941 given starter cell (as determined by the intersection of their sets being > 0) were matched with that starter cell's
942 network. By running this algorithm for all starter cells that have at least one single-starter barcode, two
943 connectivity datasets are generated: 1) a dataset with each row corresponding to a starter and aggregated
944 information on its connections 2) a dataset outlining, for each connection, the CBCs and cell types of the
945 starter and non-starter cells.

946

947 **Network visualization and analysis**

948 To visualize the outputs from connectivity inference, graph creation functions (`graph_draw()` and
949 `graph_plot()`) were created to convert the datasets into directed graphs using the NetworkX package¹⁰⁴ in
950 Python. Graphs were drawn using the following customizations: Neato layout using Graphviz¹⁰⁵ for node
951 positioning, node size scaled by degree, nodes colored by cell type, edges with uniform thickness, and edges
952 colored by the cell type of the non-starter cell.

953

954 **Analysis of cell type–specific connectivity enrichment**

955 To identify biases in observed cell type connectivity and how they differ from networks predicted by chance,
956 observed and null connectivity matrices were generated. By aggregating data from single-starter networks by
957 cell type, an observed adjacency matrix was calculated with rows and columns corresponding to the non-
958 starter and starter cell types, respectively. To generate the observed connectivity matrix, we divided the
959 number of connections observed between each pair of cell types (e.g. non-starter GABAergic to starter L2/3
960 ExNs) by the total number of connections observed. The null connectivity matrix was determined by the
961 relative abundance of cell types among our starter cell population (starter cell probabilities) and cell types in
962 our slice overall based on the uninfected population (non-starter cell probabilities). Starter cells were defined
963 as cells from all of the combined SAD B19 (n=7 datasets) and CVS-N2c (n=4 datasets) datasets described
964 above with ≥ 3 UMIs of helper virus transcripts detected. In addition, we generated a dataset in which the
965 helper virus expressed GFP and TVA but not G, and included all of the dTomato+ cells from this experiment as
966 starter cells for this analysis (Table S3). Non-starter probabilities were derived from the population of
967 uninfected cells. The null connectivity matrix was then generated by multiplying the proportion of each cell type
968 among non-starter cells in a pairwise manner by the proportion of each cell type among starter cells.
969 Enrichment scores were computed by dividing each observed probability by the corresponding null probability
970 and log10 scaling the ratios to center them around 1, with negative values indicating the observed connection
971 was less likely than chance and positive values indicating the connection was more likely than chance. To
972 assess for statistically significant differences between the observed and null probabilities, the null distributions
973 for each connection were modeled using binomial distributions (n = total number of observed connections, p =
974 null probability of connection between two cell types) and two-sided binomial tests using the SciPy package in
975 Python with Bonferroni corrections were performed. P-values less than .05 were considered significant.

976 **SUPPLEMENTAL INFORMATION**

977 Document S1. Figures S1-S8

978 Table S1. Barcode whitelist. Data from a recent publication¹¹, related to Figures 1 and S1

979 Table S2. Primers used for sequencing library generation, related to Figures 1, 2, 6, 7, and S1

980 Table S3. sc/snRNA-seq metadata, related to Figures 4, 5, 6, 7, 8 and S4, S5, S7, and S8

981 Table S4. Cell type-matched RVdG barcodes for connectivity analysis, related to Figures 8, S7, and S8

982

983

984

985 REFERENCES

1. Wickersham, I.R., Finke, S., Conzelmann, K.-K., and Callaway, E.M. (2007). Retrograde neuronal tracing with a deletion-mutant rabies virus. *Nat. Methods* 4, 47–49.
2. Miyamichi, K., Amat, F., Moussavi, F., Wang, C., Wickersham, I., Wall, N.R., Taniguchi, H., Tasic, B., Huang, Z.J., He, Z., et al. (2011). Cortical representations of olfactory input by trans-synaptic tracing. *Nature* 472, 191–196.
3. Clark, I.C., Gutiérrez-Vázquez, C., Wheeler, M.A., Li, Z., Rothhammer, V., Linnerbauer, M., Sanmarco, L.M., Guo, L., Blain, M., Zandee, S.E.J., et al. (2021). Barcoded viral tracing of single-cell interactions in central nervous system inflammation. *Science* 372. <https://doi.org/10.1126/science.abf1230>.
4. Saunders, A., Huang, K.W., Vondrak, C., Hughes, C., Smolyar, K., Sen, H., Philson, A.C., Nemesh, J., Wysoker, A., Kashin, S., et al. (2022). Ascertaining cells' synaptic connections and RNA expression simultaneously with barcoded rabies virus libraries. *Nat. Commun.* 13, 6993.
5. Zhang, A., Jin, L., Yao, S., Matsuyama, M., van Velthoven, C., Sullivan, H., Sun, N., Kellis, M., Tasic, B., Wickersham, I.R., et al. (2024). Rabies virus-based barcoded neuroanatomy resolved by single-cell RNA and in situ sequencing. *Elife*. <https://doi.org/10.7554/elife.87866>.
6. Wickersham, I.R., Sullivan, H.A., and Seung, H.S. (2010). Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons. *Nat. Protoc.* 5, 595–606.
7. Finke, S., and Conzelmann, K.K. (1999). Virus promoters determine interference by defective RNAs: selective amplification of mini-RNA vectors and rescue from cDNA by a 3' copy-back ambisense rabies virus. *J. Virol.* 73, 3818–3825.
8. Schnell, M.J., Mebatsion, T., and Conzelmann, K.K. (1994). Infectious rabies viruses from cloned cDNA. *EMBO J.* 13, 4195–4203.
9. Negri, A., and Foundation, C.S. (1905). Contributo allo studio dell'eziologia della rabbia (Tipografia e Legatoria Cooperativa).
10. Lahaye, X., Vidy, A., Pomier, C., Obiang, L., Harper, F., Gaudin, Y., and Blondel, D. (2009). Functional characterization of Negri bodies (NBs) in rabies virus-infected cells: Evidence that NBs are sites of viral transcription and replication. *J. Virol.* 83, 7948–7958.
11. Delgado, R.N., Allen, D.E., Keefe, M.G., Mancia Leon, W.R., Ziffra, R.S., Crouch, E.E., Alvarez-Buylla, A., and Nowakowski, T.J. (2022). Individual human cortical progenitors can produce excitatory and inhibitory neurons. *Nature* 601, 397–403.
12. Shannon, C.E. (1948). A mathematical theory of communication. *Bell Syst. Tech. J.* 27, 379–423.
13. Adami, C. (2004). Information theory in molecular biology. *Phys. Life Rev.* 1, 3–22.
14. Wickersham, I.R., and Sullivan, H.A. (2015). Rabies viral vectors for monosynaptic tracing and targeted transgene expression in neurons. *Cold Spring Harb. Protoc.* 2015, 375–385.
15. Osakada, F., and Callaway, E.M. (2013). Design and generation of recombinant rabies virus vectors. *Nat. Protoc.* 8, 1583–1601.
16. Ghanem, A., and Conzelmann, K.-K. (2016). G gene-deficient single-round rabies viruses for neuronal circuit analysis. *Virus Res.* 216, 41–54.

023 17. Sumser, A., Joesch, M., Jonas, P., and Ben-Simon, Y. (2022). Fast, high-throughput production of
024 improved rabies viral vectors for specific, efficient and versatile transsynaptic retrograde labeling. *Elife* 11.
025 <https://doi.org/10.7554/eLife.79848>.

026 18. Kim, E.J., Jacobs, M.W., Ito-Cole, T., and Callaway, E.M. (2016). Improved Monosynaptic Neural Circuit
027 Tracing Using Engineered Rabies Virus Glycoproteins. *Cell Rep.* 15, 692–699.

028 19. Ian Wickersham, Shenqin Yao, Bosiljka Tasic, Xiaoyin Chen (2024). Highly multiplexed circuit mapping
029 using barcoded rabies viruses and in situ sequencing.

030 20. Molliver, M.E., Kostović, I., and van der Loos, H. (1973). The development of synapses in cerebral cortex
031 of the human fetus. *Brain Res.* 50, 403–407.

032 21. Kostovic, I., and Rakic, P. (1990). Developmental history of the transient subplate zone in the visual and
033 somatosensory cortex of the macaque monkey and human brain. *J. Comp. Neurol.* 297, 441–470.

034 22. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., Loh,
035 P.-R., and Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of single-cell data with
036 Harmony. *Nat. Methods* 16, 1289–1296.

037 23. Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I.W.H., Ng, L.G., Ginhoux, F., and Newell, E.W.
038 (2018). Dimensionality reduction for visualizing single-cell data using UMAP. *Nat. Biotechnol.* 37, 38–44.

039 24. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in
040 large networks. *J. Stat. Mech.* 2008, P10008.

041 25. Joshi, P.S., Molyneaux, B.J., Feng, L., Xie, X., Macklis, J.D., and Gan, L. (2008). *Bhlhb5* regulates the
042 postmitotic acquisition of area identities in layers II–V of the developing neocortex. *Neuron* 60, 258–272.

043 26. Ozair, M.Z., Kirst, C., van den Berg, B.L., Ruzo, A., Rito, T., and Brivanlou, A.H. (2018). HPSC modeling
044 reveals that fate selection of cortical deep projection neurons occurs in the subplate. *Cell Stem Cell* 23,
045 60–73.e6.

046 27. Cubelos, B., Sebastián-Serrano, A., Beccari, L., Calcagnotto, M.E., Cisneros, E., Kim, S., Dopazo, A.,
047 Alvarez-Dolado, M., Redondo, J.M., Bovolenta, P., et al. (2010). Cux1 and Cux2 regulate dendritic
048 branching, spine morphology, and synapses of the upper layer neurons of the cortex. *Neuron* 66, 523–
049 535.

050 28. Weiss, L.A., and Nieto, M. (2019). The crux of Cux genes in neuronal function and plasticity. *Brain Res.*
051 1705, 32–42.

052 29. Fame, R.M., MacDonald, J.L., and Macklis, J.D. (2011). Development, specification, and diversity of
053 callosal projection neurons. *Trends Neurosci.* 34, 41–50.

054 30. Qian, X., Coleman, K., Jiang, S., Kriz, A.J., Marciano, J.H., Luo, C., Cai, C., Manam, M.D., Caglayan, E.,
055 Otani, A., et al. (2024). Spatial single-cell analysis decodes cortical layer and area specification. *bioRxiv*.
056 <https://doi.org/10.1101/2024.06.05.597673>.

057 31. Zeng, H., Shen, E.H., Hohmann, J.G., Oh, S.W., Bernard, A., Royall, J.J., Glattfelder, K.J., Sunkin, S.M.,
058 Morris, J.A., Guillozet-Bongaarts, A.L., et al. (2012). Large-scale cellular-resolution gene profiling in
059 human neocortex reveals species-specific molecular signatures. *Cell* 149, 483–496.

060 32. Clark, E.A., Rutlin, M., Capano, L.S., Aviles, S., Saadon, J.R., Taneja, P., Zhang, Q., Bullis, J.B., Lauer,
061 T., Myers, E., et al. (2020). Cortical ROR β is required for layer 4 transcriptional identity and barrel integrity.
062 *Elife* 9. <https://doi.org/10.7554/eLife.52370>.

063 33. Allen, T., and Lobe, C.G. (1999). A comparison of Notch, Hes and Grg expression during murine
064 embryonic and post-natal development. *Cell. Mol. Biol.* **45**, 687–708.

065 34. Molyneaux, B.J., Arlotta, P., Menezes, J.R.L., and Macklis, J.D. (2007). Neuronal subtype specification in
066 the cerebral cortex. *Nat. Rev. Neurosci.* **8**, 427–437.

067 35. Galazo, M.J., Emsley, J.G., and Macklis, J.D. (2016). Corticothalamic projection neuron development
068 beyond subtype specification: Fog2 and intersectional controls regulate intraclass neuronal diversity.
069 *Neuron* **91**, 90–106.

070 36. Galazo, M.J., Sweetser, D.A., and Macklis, J.D. (2023). Tle4 controls both developmental acquisition and
071 early post-natal maturation of corticothalamic projection neuron identity. *Cell Rep.* **42**, 112957.

072 37. Arlotta, P., Molyneaux, B.J., Chen, J., Inoue, J., Kominami, R., and Macklis, J.D. (2005). Neuronal
073 subtype-specific genes that control corticospinal motor neuron development in vivo. *Neuron* **45**, 207–221.

074 38. Trevino, A.E., Müller, F., Andersen, J., Sundaram, L., Kathiria, A., Shcherbina, A., Farh, K., Chang, H.Y.,
075 Paşa, A.M., Kundaje, A., et al. (2021). Chromatin and gene-regulatory dynamics of the developing
076 human cerebral cortex at single-cell resolution. *Cell* **184**, 5053–5069.e23.

077 39. Ziffra, R.S., Kim, C.N., Ross, J.M., Wilfert, A., Turner, T.N., Haeussler, M., Casella, A.M., Przytycki, P.F.,
078 Keough, K.C., Shin, D., et al. (2021). Single-cell epigenomics reveals mechanisms of human cortical
079 development. *Nature* **598**, 205–213.

080 40. Wang, Y., Dye, C.A., Sohal, V., Long, J.E., Estrada, R.C., Roztocil, T., Lufkin, T., Deisseroth, K., Baraban,
081 S.C., and Rubenstein, J.L.R. (2010). Dlx5 and Dlx6 regulate the development of parvalbumin-expressing
082 cortical interneurons. *J. Neurosci.* **30**, 5334–5345.

083 41. Cobos, I., Long, J.E., Thwin, M.T., and Rubenstein, J.L. (2006). Cellular patterns of transcription factor
084 expression in developing cortical interneurons. *Cereb. Cortex* **16 Suppl 1**, i82–i88.

085 42. Yao, Z., van Velthoven, C.T.J., Kunst, M., Zhang, M., McMillen, D., Lee, C., Jung, W., Goldy, J., Abdelhak,
086 A., Aitken, M., et al. (2023). A high-resolution transcriptomic and spatial atlas of cell types in the whole
087 mouse brain. *Nature* **624**, 317–332.

088 43. Pringle, N.P., and Richardson, W.D. (1993). A singularity of PDGF alpha-receptor expression in the
089 dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. *Development*
090 **117**, 525–533.

091 44. Pringle, N.P., Mudhar, H.S., Collarini, E.J., and Richardson, W.D. (1992). PDGF receptors in the rat CNS:
092 during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the
093 oligodendrocyte lineage. *Development* **115**, 535–551.

094 45. Englund, C., Fink, A., Lau, C., Pham, D., Daza, R.A.M., Bulfone, A., Kowalczyk, T., and Hevner, R.F.
095 (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and
096 postmitotic neurons in developing neocortex. *J. Neurosci.* **25**, 247–251.

097 46. Kawaguchi, A., Ikawa, T., Kasukawa, T., Ueda, H.R., Kurimoto, K., Saitou, M., and Matsuzaki, F. (2008).
098 Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis.
099 *Development* **135**, 3113–3124.

100 47. Hevner, R.F., Hodge, R.D., Daza, R.A.M., and Englund, C. (2006). Transcription factors in glutamatergic
101 neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. *Neurosci. Res.* **55**,
102 223–233.

103 48. Pollen, A.A., Nowakowski, T.J., Chen, J., Retallack, H., Sandoval-Espinosa, C., Nicholas, C.R., Shuga, J.,

104 Liu, S.J., Oldham, M.C., Diaz, A., et al. (2015). Molecular identity of human outer radial glia during cortical
105 development. *Cell* 163, 55–67.

106 49. Nakamura, Y., Sakakibara, S. i., Miyata, T., Ogawa, M., Shimazaki, T., Weiss, S., Kageyama, R., and
107 Okano, H. (2000). The bHLH gene *hes1* as a repressor of the neuronal commitment of CNS stem cells. *J.*
108 *Neurosci.* 20, 283–293.

109 50. Ohtsuka, T., Sakamoto, M., Guillemot, F., and Kageyama, R. (2001). Roles of the basic helix-loop-helix
110 genes *Hes1* and *Hes5* in expansion of neural stem cells of the developing brain. *J. Biol. Chem.* 276,
111 30467–30474.

112 51. Verkman, A.S., Binder, D.K., Bloch, O., Auguste, K., and Papadopoulos, M.C. (2006). Three distinct roles
113 of aquaporin-4 in brain function revealed by knockout mice. *Biochim. Biophys. Acta* 1758, 1085–1093.

114 52. Nagelhus, E.A., and Ottersen, O.P. (2013). Physiological roles of aquaporin-4 in brain. *Physiol. Rev.* 93,
115 1543–1562.

116 53. Yao, X., Derugin, N., Manley, G.T., and Verkman, A.S. (2015). Reduced brain edema and infarct volume
117 in aquaporin-4 deficient mice after transient focal cerebral ischemia. *Neurosci. Lett.* 584, 368–372.

118 54. Brenner, M., Kisseberth, W.C., Su, Y., Besnard, F., and Messing, A. (1994). GFAP promoter directs
119 astrocyte-specific expression in transgenic mice. *J. Neurosci.* 14, 1030–1037.

120 55. Holst, C.B., Brøchner, C.B., Vitting-Seerup, K., and Møllgård, K. (2019). Astrogliogenesis in human fetal
121 brain: complex spatiotemporal immunoreactivity patterns of GFAP, S100, AQP4 and YKL-40. *J. Anat.* 235,
122 590–615.

123 56. Su, M., Hu, H., Lee, Y., d’Azzo, A., Messing, A., and Brenner, M. (2004). Expression specificity of GFAP
124 transgenes. *Neurochem. Res.* 29, 2075–2093.

125 57. Gerdes, J., Schwab, U., Lemke, H., and Stein, H. (1983). Production of a mouse monoclonal antibody
126 reactive with a human nuclear antigen associated with cell proliferation. *Int. J. Cancer* 31, 13–20.

127 58. Reardon, T.R., Murray, A.J., Turi, G.F., Wirblich, C., Croce, K.R., Schnell, M.J., Jessell, T.M., and
128 Losonczy, A. (2016). Rabies virus CVS-N2c(ΔG) strain enhances retrograde synaptic transfer and
129 neuronal viability. *Neuron* 89, 711–724.

130 59. Kügler, S., Kilic, E., and Bähr, M. (2003). Human synapsin 1 gene promoter confers highly neuron-specific
131 long-term transgene expression from an adenoviral vector in the adult rat brain depending on the
132 transduced area. *Gene Ther.* 10, 337–347.

133 60. Marshel, J.H., Mori, T., Nielsen, K.J., and Callaway, E.M. (2010). Targeting single neuronal networks for
134 gene expression and cell labeling *in vivo*. *Neuron* 67, 562–574.

135 61. Beier, K.T. (2021). The Serendipity of Viral Trans-Neuronal Specificity: More Than Meets the Eye. *Front.*
136 *Cell. Neurosci.* 15, 720807.

137 62. Detje, C.N., Lienenklaus, S., Chhatbar, C., Spanier, J., Prajeeth, C.K., Soldner, C., Tovey, M.G., Schlüter,
138 D., Weiss, S., Stangel, M., et al. (2015). Upon intranasal vesicular stomatitis virus infection, astrocytes in
139 the olfactory bulb are important interferon Beta producers that protect from lethal encephalitis. *J. Virol.* 89,
140 2731–2738.

141 63. Pfefferkorn, C., Kallfass, C., Lienenklaus, S., Spanier, J., Kalinke, U., Rieder, M., Conzelmann, K.-K.,
142 Michiels, T., and Staeheli, P. (2015). Abortively infected astrocytes appear to represent the main source of
143 interferon beta in the virus-infected brain. *J. Virol.* 90, 2031–2038.

144 64. Drokhlyansky, E., Göz Aytürk, D., Soh, T.K., Chrenek, R., O'Loughlin, E., Madore, C., Butovsky, O., and
145 Cepko, C.L. (2017). The brain parenchyma has a type I interferon response that can limit virus spread.
146 *Proc. Natl. Acad. Sci. U. S. A.* **114**, E95–E104.

147 65. Bakken, T.E., Hodge, R.D., Miller, J.A., Yao, Z., Nguyen, T.N., Aevermann, B., Barkan, E., Bertagnolli, D.,
148 Casper, T., Dee, N., et al. (2018). Single-nucleus and single-cell transcriptomes compared in matched
149 cortical cell types. *PLoS One* **13**, e0209648.

150 66. Patiño, M., Lagos, W.N., Patne, N.S., Tasic, B., Zeng, H., and Callaway, E.M. (2022). Single-cell
151 transcriptomic classification of rabies-infected cortical neurons. *Proc. Natl. Acad. Sci. U. S. A.* **119**,
152 e2203677119.

153 67. Bernardi, A., and Spahr, P.F. (1972). Nucleotide sequence at the binding site for coat protein on RNA of
154 bacteriophage R17. *Proc. Natl. Acad. Sci. U. S. A.* **69**, 3033–3037.

155 68. Chubb, J.R., Trcek, T., Shenoy, S.M., and Singer, R.H. (2006). Transcriptional pulsing of a developmental
156 gene. *Curr. Biol.* **16**, 1018–1025.

157 69. Ostlund, C., Folker, E.S., Choi, J.C., Gomes, E.R., Gundersen, G.G., and Worman, H.J. (2009). Dynamics
158 and molecular interactions of linker of nucleoskeleton and cytoskeleton (LINC) complex proteins. *J. Cell
159 Sci.* **122**, 4099–4108.

160 70. Yang, S., Corbett, S.E., Koga, Y., Wang, Z., Johnson, W.E., Yajima, M., and Campbell, J.D. (2020).
161 Decontamination of ambient RNA in single-cell RNA-seq with DecontX. *Genome Biol.* **21**, 57.

162 71. Patiño, M., Rossa, M.A., Lagos, W.N., Patne, N.S., and Callaway, E.M. (2024). Transcriptomic cell-type
163 specificity of local cortical circuits. *Neuron* **0**. <https://doi.org/10.1016/j.neuron.2024.09.003>.

164 72. Kebischull, J.M., and Zador, A.M. (2018). Cellular barcoding: lineage tracing, screening and beyond. *Nat.
165 Methods* **15**, 871–879.

166 73. Lin, K.-Z., Li, L., Ma, W.-Y., Yang, X., Han, Z.-P., Luo, N.-S., Wang, J., and Xu, F.-Q. (2023). A rabies
167 virus-based toolkit for efficient retrograde labeling and monosynaptic tracing. *Neural Regeneration Res.*
168 **18**, 1827–1833.

169 74. Fus-Kujawa, A., Prus, P., Bajdak-Rusinek, K., Teper, P., Gawron, K., Kowalcuk, A., and Sieron, A.L.
170 (2021). An overview of methods and tools for transfection of eukaryotic cells in vitro. *Front. Bioeng.
171 Biotechnol.* **9**, 701031.

172 75. Miyamichi, K., Shlomai-Fuchs, Y., Shu, M., Weissbourd, B.C., Luo, L., and Mizrahi, A. (2013). Dissecting
173 local circuits: parvalbumin interneurons underlie broad feedback control of olfactory bulb output. *Neuron*
174 **80**, 1232–1245.

175 76. Kalidasan, V., Ng, W.H., Ishola, O.A., Ravichantar, N., Tan, J.J., and Das, K.T. (2021). A guide in lentiviral
176 vector production for hard-to-transfect cells, using cardiac-derived c-kit expressing cells as a model
177 system. *Sci. Rep.* **11**, 19265.

178 77. Lin, Z., Ophir, O., Trimbuch, T., Brokowski, B., Tibi, M., Pavletsov, P., Schmidt, H., Rosenmund, C.,
179 Hochgerner, H., and Zeisel, A. (2024). Brain-wide monosynaptic connectivity mapping with ROInet-seq.
180 bioRxiv, 2024.04.04.588058. <https://doi.org/10.1101/2024.04.04.588058>.

181 78. Kanold, P.O., Deng, R., and Meng, X. (2019). The integrative function of silent synapses on subplate
182 neurons in cortical development and dysfunction. *Front. Neuroanat.* **13**, 41.

183 79. Cancedda, L., Fiumelli, H., Chen, K., and Poo, M.-M. (2007). Excitatory GABA action is essential for
184 morphological maturation of cortical neurons in vivo. *J. Neurosci.* **27**, 5224–5235.

185 80. Wang, D.D., and Kriegstein, A.R. (2008). GABA regulates excitatory synapse formation in the neocortex
186 via NMDA receptor activation. *J. Neurosci.* **28**, 5547–5558.

187 81. Ge, S., Goh, E.L.K., Sailor, K.A., Kitabatake, Y., Ming, G.-L., and Song, H. (2006). GABA regulates
188 synaptic integration of newly generated neurons in the adult brain. *Nature* **439**, 589–593.

189 82. Kostović, I. (2020). The enigmatic fetal subplate compartment forms an early tangential cortical nexus and
190 provides the framework for construction of cortical connectivity. *Prog. Neurobiol.* **194**, 101883.

191 83. Viswanathan, S., Bandyopadhyay, S., Kao, J.P.Y., and Kanold, P.O. (2012). Changing microcircuits in the
192 subplate of the developing cortex. *J. Neurosci.* **32**, 1589–1601.

193 84. Viswanathan, S., Sheikh, A., Looger, L.L., and Kanold, P.O. (2017). Molecularly defined subplate neurons
194 project both to thalamocortical recipient layers and thalamus. *Cereb. Cortex* **27**, 4759–4768.

195 85. Chen, T.-L., Deng, Q.-S., Lin, K.-Z., Zheng, X.-D., Wang, X., Zhong, Y.-W., Ning, X.-Y., Li, Y., Xu, F.-Q.,
196 Du, J.-L., et al. (2024). An applicable and efficient retrograde monosynaptic circuit mapping tool for larval
197 zebrafish. <https://doi.org/10.7554/elife.100880.1>.

198 86. Paranjape, N., Lin, Y.-H.T., Flores-Ramirez, Q., Sarin, V., Johnson, A.B., Chu, J., Paredes, M., and Wiita,
199 A.P. (2022). A CRISPR-engineered Isogenic Model Reveals Altered Neuronal Phenotypes of the 22q11.2
200 A-B Syndromic Deletion. *bioRxiv*, 2022.06.22.497212. <https://doi.org/10.1101/2022.06.22.497212>.

201 87. Chen, Y., Tristan, C.A., Chen, L., Jovanovic, V.M., Malley, C., Chu, P.-H., Ryu, S., Deng, T., Ormanoglu,
202 P., Tao, D., et al. (2021). A versatile polypharmacology platform promotes cytoprotection and viability of
203 human pluripotent and differentiated cells. *Nat. Methods* **18**, 528–541.

204 88. Saxena, A., Wagatsuma, A., Noro, Y., Kuji, T., Asaka-Oba, A., Watahiki, A., Gurnot, C., Fagiolini, M.,
205 Hensch, T.K., and Carninci, P. (2012). Trehalose-enhanced isolation of neuronal sub-types from adult
206 mouse brain. *Biotechniques* **52**, 381–385.

207 89. Habib, N., Avraham-David, I., Basu, A., Burks, T., Shekhar, K., Hofree, M., Choudhury, S.R., Aguet, F.,
208 Gelfand, E., Ardlie, K., et al. (2017). Massively parallel single-nucleus RNA-seq with DroNc-seq. *Nat.*
209 *Methods* **14**, 955–958.

210 90. Martelotto, L.G., Kalavros, N., Vlachos, I., and Wang, S. (2023). BIDMC TMC - low input single nuclei
211 sequencing isolation (NNLB).

212 91. Bushnell, B. (2022). BBMap. SourceForge. <https://sourceforge.net/projects/bbmap/>.

213 92. Smith, T., Heger, A., and Sudbery, I. (2017). UMI-tools: modeling sequencing errors in Unique Molecular
214 Identifiers to improve quantification accuracy. *Genome Res.* **27**, 491–499.

215 93. Hunter, J.D. (2007). Matplotlib: A 2D Graphics Environment. *Comput. Sci. Eng.* **9**, 90–95.

216 94. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
217 Taylor, J., Berg, S., Smith, N.J., et al. (2020). Array programming with NumPy. *Nature* **585**, 357–362.

218 95. The pandas development team (2020). Pandas (Zenodo) <https://doi.org/10.5281/zenodo.3509134>.

219 96. Waskom, M. (2021). seaborn: statistical data visualization. *J. Open Source Softw.* **6**, 3021.

220 97. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee, M.J., Wilk, A.J.,
221 Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573–
222 3587.e29.

223 98. Korsunsky, I., Nathan, A., Millard, N., and Raychaudhuri, S. (2019). Presto scales Wilcoxon and auROC
224 analyses to millions of observations. *Bioinformatics*.

225 99. Blighe, K., Rana, S., Lewis, M. EnhancedVolcano: Publication-ready volcano plots with enhanced
226 colouring and labeling (Github).

227 100. Yu, G., Wang, L., Han, Y., and He, Q. (2012). “clusterProfiler: an R package for comparing biological
228 themes among gene clusters. *OMICS* 16, 284–287.

229 101. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., et al. (2021).
230 clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *Innovation (Camb)* 2, 100141.

231 102. Andreatta, M., and Carmona, S.J. (2021). UCell: Robust and scalable single-cell gene signature scoring.
232 *Comput. Struct. Biotechnol. J.* 19, 3796–3798.

233 103. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
234 Peterson, P., Weckesser, W., Bright, J., et al. (2020). SciPy 1.0: fundamental algorithms for scientific
235 computing in Python. *Nat. Methods* 17, 261–272.

236 104. Aric, A., Hagberg, D.A., and Schult, P.J. (2008). Exploring network structure, dynamics, and function using
237 NetworkX”. In Proceedings of the 7th Python in Science Conference (SciPy2008), G  el Varoquaux, T.
238 Vaught and J. Millman, eds., pp. 11–15.

239 105. Gansner, E.R., and North, S.C. (2000). An open graph visualization system and its applications to
240 software engineering. *Softw. Pract. Exp.* 30, 1203–1233.