bioRxiv preprint doi: https://doi.org/10.1101/2024.11.14.623530; this version posted November 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

00 NO O WND =

—_ = d A a a a d
O NOoO Ok, WD O

—_
©

NN
- O

available under aCC-BY-NC-ND 4.0 International license.

Multiscale Cloud-based Pipeline for
Neuronal Electrophysiology
Analysis and Visualization

Jinghui Geng © %", Kateryna Voitiuk © '->*, David F. Parks © >, Ash Robbins © #, Alex
Spaeth © '#, Jessica L. Sevetson | *#, Sebastian Hernandez '#, Hunter E. Schweiger
34 John P. Andrews © 5, Spencer T. Seiler © >4, Matthew A.T. Elliott © >, Edward F.
Chang 5, Tomasz J. Nowakowski © 56782 Rob Currie *, Mohammed A. Mostajo-Radiji © *,
David Haussler © 24, Tal Sharf © 2#, Sofie R. Salama © **, Mircea Teodorescu © 24"
'Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz,
CA, USA

2Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
3Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa
Cruz, CA, USA

“Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA

SDepartment of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
SWeill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA

7 The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of
California San Francisco, San Francisco, CA, USA

8 Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San
Francisco, CA, USA

9 Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
"Correspondence Author. Email: jgeng2@ucsc.edu, mteodorescu@ucsc.edu

ABSTRACT

Electrophysiology offers a high-resolution method for real-time measurement of neural
activity. The vast amount of data generated requires efficient storage and sophisticated
processing to extract neural function and network dynamics. However, analysis is of-
ten challenging due to the need for multiple software tools with different runtime depen-
dencies. Longitudinal recordings from high-density microelectrode arrays (HD-MEAS)
can be of considerable size for local storage, complicating data management, sharing,
and backup. To address these challenges, we developed an open-source cloud-based
pipeline to store, analyze, and visualize neuronal electrophysiology recordings from HD-
MEAs. This pipeline is dependency agnostic by utilizing cloud storage, cloud computing
resources, and an Internet of Things messaging protocol. We containerized the analy-
sis algorithms to serve as scalable and flexible building blocks within the pipeline. We
designed graphical user interfaces and command line tools to remove the requirement
of programming skills. The interactive visualizations provide multi-modality information
on various neuronal features. This cloud-based pipeline is an efficient solution for elec-
trophysiology data processing, the limitations of local software tools, and storage con-
straints. It simplifies the electrophysiology data analysis process and facilitates under-
standing neuronal activity. In this paper, we applied this pipeline on two types of cultures,
cortical organoids and ex vivo brain slice recordings.

INTRODUCTION

Recent advances in hardware and software platforms for neuronal recordings have enabled si-
multaneous recording of neuronal activity with high spatial and temporal resolution across var-
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ious samples, including brain slices™2, 2D cultures®™=, and 3D cerebral organoids®’. These
technologies facilitate comprehensive studies of brain function, neurodevelopment, and network
topology &Y. However, the exponential growth in data volume and complexity™ 713 presents sig-
nificant challenges in data storage, processing, and analysis. Recordings, images, and analysis
results can consume substantial storage on computers and hard drives. Interpreting this multi-
dimensional data requires specialized algorithms and tools to extract single neuronal unit activity,
visualize firing patterns, and understand neuronal network-level information14-16. While efforts
have been made to unify standards in electrophysiology, biologists still face difficulties performing
comprehensive analyses.

Spike sorting algorithms are crucial for analyzing multi-electrode array (MEA) recordings/721,
identifying and categorizing individual neuronal spikes from raw voltage traces to analyze neu-
ronal features?272% and network dynamics©92Z, While various software tools have been devel-
oped to process MEA recordings and visualize neuronal features?328-33| challenges persist due
to differing programming languages, limited user support, and compatibility issues. Although in-
tegrated platforms offer end-to-end analysis capabilities, they may restrict custom data manipula-
tion, requiring researchers to develop their own workflows and navigate steep learning curves for
effective data interpretation.

Cloud computing enables processing a large amount of data in parallel by utilizing abundant re-
sources while still being a cost-effective solution®436, Cloud-based storage can address the is-
sue of massive experimental data filling up local disks. It also provides extensive data sharing
ability for collaborations across research labs. Infrastructures and web platforms have been de-
veloped to store and analyze various types of data, including electrophysiology, neuroimaging,
and sequencing®/™42. These platforms are designed to benefit the broader neuroscience com-
munity, emphasizing data publication and sharing4344. A research laboratory-oriented data plat-
form is needed to support consistent experiments and data processing.

The Internet of Things (IoT) has made a significant impact in many fields, including healthcare*>4é
and, in recent years, has been applied to cellular biology#/48 and in vitro electrophysiology ex-
periments“21 |ts resource efficiency enables the messaging protocol to work across different
hardware, allowing networks to grow from a few devices to a large number without compromising
performance.

We developed a cloud-based pipeline for electrophysiology data storage, processing, and shar-
ing to facilitate the day-to-day research. We used containerization as the minimum building block.
The loT messaging services and data analysis algorithms are packaged into individual contain-
ers. The loT services run on a web server to stream data, monitor processing tasks, and com-
municate with researchers through user interfaces. We applied Kubernetes®? to orchestrate the
analysis containers on the cloud computing clusters. By using cloud computing resources, the
pipeline can process a large number of datasets with different algorithms in parallel, optimizing
resource utilization, scalability, and flexibility. Moreover, we lower costs by replacing local com-
puting hardware, such as CPUs and GPUs, with cloud-based technology. We also remove the
barriers to data analysis by providing user interfaces, minimizing the software setup process,

and making the Python code open source. The pipeline provides a suite of algorithms, includ-
ing spike sorting, autocuration of putative neural units, visualization, and downstream analyses
for specific goals using the curated data. We tested this pipeline with two applications. First, we
analyzed mouse cortical organoid longitudinal recordings, 10 minutes long, one hour apart, over
a 7-day period. This demonstrated the utility of our approach for neuron tracking. Second, we ap-
plied the pipeline to study optogenetic modulation of epileptiform activity in human hippocampus
slices, contributing to our understanding and potential treatment of neurological diseases.
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RESULTS

Our platform allows users to upload recordings from electrophysiology devices directly to cloud
storage. The data is organized by experiment date and is annotated with automatically extracted
as well as user-specified metadata. The pipeline can be scaled up as algorithms and services
are containerized, making it easy to integrate new analytical tools as they become available. The
pipeline supports multiple data processing paradigms to accommodate diverse research require-
ments. The graphical interface allows users to initiate, monitor, and visualize data processing
after upload, offering multimodal analysis and result downloads. An integrated loT messaging
service connects users, local recording devices, and the cloud, streamlining workflow.

Framework Design

The pipeline is generic and capable of processing data from any electrophysiology platform that
uses HDF5 and NWB®3%3 formats. In this paper, we tested it with data generated by a MaxOne
HD-MEA (MaxWell Biosystems)®6. The system has 26,400 electrodes in a 2.10x3.85mm? area.
It supports data collection from 1,020 channels and can simulate 32 channels simultaneously at
a 20kHz sample rate. Together with a small inter-electrode pitch (17.5um), the system provides
high temporal and spatial resolution, where the activity of a typical neuron will be recorded on
multiple pads. We utilize Ceph S3 and the National Research Platform (NRP) computing clusters
for data storage and processing.

The overview of the platform is shown in Figure[1. Neuronal tissue culture activity data is col-
lected on a MaxWell MEA headstage, connected to a local computer running MaxLab software
(Figure [1A). After recording, datasets are streamed to S3 and the data uploader generates cor-
responding metadata and maintains the applicable S3 file structure for these datasets (Figure
[1B). Upon completion, an MQTT message is sent from the data uploader to the processing ser-
vice — the job listener. This message contains the experiment identifiers and the image of the
dockerized algorithm. The listener parses the message to gather the S3 paths for each dataset
and calls the Kubernetes-Python API to deploy data processing jobs to the NRP computing clus-
ter 15. The pipeline provides several containerized data processing applications, including spike
sorting, data curation, and visualization. Once a job is completed on the NRP, the result is saved
to S3 (Figure [1C). Researchers can access and download these results through the user inter-
face.

To make the pipeline accessible to non-programmers, we have developed user interfaces for
managing and interacting with both local and remote data processes (Figure [2A). Through these
interfaces, researchers can have complete control over their data while bridging the gap between
running complex algorithms and requiring extensive programming knowledge or technical exper-
tise.

These interfaces include a data uploader, a Dashboard webpage, and a Slack channel, each
serving distinct purposes while bridging local data collection, cloud-based data manipulation,
and user notifications. The data uploader, installable on local laptops, enables users to upload
electrophysiology recordings to S3 storage and initiate batch processing jobs with predefined
parameters after the experiment is finished. The web Dashboard, accessible from any internet-
connected device, provides access to existing S3 data for both batch and chained jobs. The data
uploader and the Dashboard support downloading files from S3 to local directories. Addition-
ally, the Dashboard features a visualization page displaying post-processing figures of selected
recordings. A Slack channel is used to post status notifications for data processing jobs. Detailed
descriptions of these user interfaces are provided in the Methods section. Screenshots of the ap-
plications are shown in Supplementary Figure S2, S3.
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Figure 1: Cloud-based electrophysiology data processing pipeline architecture. (A)
Electrophysiology data from neuronal cultures is recorded on a local computer. Different neuronal
cultures and their recordings are shown in Figures[4/and (7] (B) Once the dataset is saved, it is
uploaded to a uniquely identified data bucket AWS S3 for permanent storage using the Uploader. An
MQTT message is simultaneously sent to the job listener service to initiate data processing jobs.
These jobs run containerized algorithms and are launched on the National Research Platform (NRP)
computing cluster using Kubernetes. Results, including post-processed data and figures, are saved
back to AWS S3. (C) The analysis outputs various interactive analytical figures for each dataset’s
network features and single-unit activity.
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For cloud integration, we used the Message Queuing Telemetry Transport (MQTT) messaging
protocol, a lightweight publish-subscribe protocol designed for Internet-of-Things (loT) appli-
cations. This approach reduces the dependency requirements for edge devices to run cloud-
computing jobs. A local computer can utilize the pipeline as long as it can run a Python envi-
ronment and has a network connection. We have designed job listener and scanner services to
run and monitor jobs on the cloud (Figure [2B,C). For cloud computing, we used the National Re-
search Platform (NRP), a distributed commodity compute cluster based on Kubernetes and the
Ceph distributed file system. It has special CPUs and GPUs for data science, simulations, and
machine learning. This setup allows for parallel data processing and can help reduce the com-
puting infrastructure cost of individual labs.

We have a job scanner (Figure [2B) that checks on data processing jobs in the cloud every 30
minutes. It updates a list of current job statuses using the Kubernetes Python API. The scanner
reads job names and information, which are named based on the dataset or a job list. This helps
the scanner find the correct information in the NRP. The scanner then updates the listener and
the user about how jobs are progressing.

To keep the flexibility of data processing, we implemented two types of jobs: batch processing
and chained jobs. Chained jobs run through several steps on different data, with subsequent
processing dependent on prior results. When the scanner detects a status change in a chained
job, it sends a message to the listener to update the corresponding job look-up table and initiate
the next processing step. Concurrently, it notifies the user about completing the prior job and the
start of the next. This notification is done through the “slack-bridge” service. For completed batch
processing jobs, the scanner sends only a user notification. After a message is sent, finished
jobs are removed from the scanner’'s memory to prevent duplicate notifications.

The job listener (Figure [2C) receives messages from both the user interface and the scanner. It
also sends user notifications to the “ephys-pipeline” Slack channel. The primary function of the
job listener is to initiate cloud computing jobs. Upon receiving a run job message, the listener
parses it to extract the data path, data format, parameter setting, and job type (analysis algo-
rithms). The listener then calls functions from a Python Kubernetes object (Figure[2) to allocate
computing resources on NRP and the appropriate analysis docker image for each dataset. This
object creates a job on the NRP and a pod within each job. Finally, it sends a “job created” no-
tification to the Slack channel. Both the scanner and listener services maintain logs on S3 for
historical tracking and ease of maintenance. These logs are updated after each new message is
received or sent.

The data organization on S3 (Figure [2D) is structured based on data types and characteristics.
Electrophysiology recordings are grouped by experiment batch, assigned a universally unique
identifier (UUID), and paired with a “metadata.json” file for overall content description and ex-
periment notes. We create sub-buckets: “original/data” for raw recordings and “derived/algo” for
analysis output, where “algo” represents the algorithm used to analyze the data. Additionally, we
maintain a “service” bucket for the chained job scheduler and logging of listener and scanner ac-
tivities. Since the computing clusters are designed to run containerized data processing jobs, we
have created docker images for electrophysiology algorithms with minimum software dependen-
cies.

As illustrated in Figure [2E, when the listener deploys a job to NRP, the platform assigns a node
with all the requested resources. The node creates a pod, pulls the docker image from Docker-
Hub, and retrieves data from S3 to run the analysis. The processing results are then uploaded
back to S3 from the container. Figure 2F demonstrates an example of a containerized batch pro-
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cessing algorithm. In this container, a Python script reads an electrophysiology recording, per-
forms spike sorting on the raw data to identify putative firing neurons (single units), applies au-
tocuration to preserve high-quality units, and generates both visualization figures and spike data
for the recording. The spike data is stored as a NumPy data structure with temporal and spatial
information of the single units.

Figure [2G shows the Python Kubernetes object configuration in the listener for job execution.
This configuration specifies the number of CPUs and GPUs and the amount of memory and stor-
age required to run a specific container. These resource allocations are calculated based on the
algorithm workload and data size, optimized for efficient utilization of cloud computing resources.
To execute a specific container, the configuration is provided with the corresponding docker im-
age, input data (such as the recording or derived results from the recording), and metadata (in-
cluding data format or parameter settings). Examples of Kubernetes configurations can be found
in Supplementary Table S2.

This Pipeline Enables Versatile Jobs

Data processing and analysis often require multiple iterations for new experiments due to changes
in recording hardware, biological samples, and data requirements. To ensure versatility in data
processing jobs, we developed a minimum building block for the pipeline and designed various
job execution paradigms.

Figure [BA shows the minimum building blocks of our pipeline. It includes paths to S3 data stor-
age and a containerized algorithm. Each algorithm needs two inputs (data and parameters) and
produces one output file with results (processed data, visualization figures, and logs). We store
input data and outputs in designated buckets on S3 under each UUID. We keep these param-
eters in designated sub-buckets (“service/params/algo”) on S3, named after each algorithm.
Users can pick existing parameters or make new ones on the Dashboard’s “Job Center” page
(Figure [3B, Supplementary Figure S3).

The pipeline supports both batch processing and chained jobs (Figure [3C,D). Batch processing
enables the analysis of numerous recordings using identical parameter settings. All jobs can be
processed in parallel on NRP. Users can initiate a batch job from the local data uploader after
the experiment. In batch processing, each recording undergoes spike sorting, autocuration, and
visualization. Detailed descriptions of these three steps can be found in the Methods section.

As algorithms are packaged in individual docker containers as minimum building blocks, multiple
analysis jobs can be chained for a recording, with stage results passed to subsequent jobs upon
completion of the previous job (Figure [3D). To implement this functionality, we designed a CSV
job scheduler integrated into the Dashboard, Listener, and Scanner services. When users se-
lect recordings and a list of analysis jobs from the Dashboard, a CSV file is generated, with each
row representing an analysis job. Columns contain sufficient information to initiate the job, includ-
ing the S3 data path, computing resource requirements (job metadata), and parameter settings.
We use the “next_job” column to index the row of the job to run after the current row, allowing for
multiple indices. After saving this CSV file to S3, the Dashboard sends a message to the Listener
to start the first stage jobs by indexing them in the message body. We create the NRP job name
using the CSV file name, enabling the Scanner to differentiate chained jobs from batch jobs by
simply parsing the name. Upon completing the first stage jobs, the Scanner sends the Listener
an "update" message. The Listener then checks for any available “next_job” in the CSV file and
launches the second-stage jobs. Detailed information on job chaining can be found in the Meth-
ods section.
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Figure 2: Pipeline components and workflow.. (A) The user interface allows researchers to upload
their electrophysiology recordings to cloud storage, initiate data processing jobs, receive notification
upon completion, and download results to local computers. (B) MQTT-based job scanner service
monitors job status on the NRP, sends a message to the listener for the next job, and notifies users.
(C) MQTT-based job listener service that subscribes to specific topics to run data processing jobs.
When the service receives a message, it parses the JSON format to extract experiment identifiers
and computing requirements, then deploys jobs to NRP through Python-Kubernetes API. Both
scanner and listener services update their status to S3 log files on a scheduled basis. (D) S3 file
structure for service logging and experiment data. Log files are human-readable text files that track
service status. Experiment data is stored in batches, each with a unique identifier (UUID), metadata
file, “original” bucket for experiment data, and “derived” bucket for analysis outputs. (E) Computing
cluster (NRP) for running containerized jobs using Kubernetes. (F) An analysis container for batch
processing is capable of loading electrophysiology recordings, running spike sorting and autocuration
algorithms, producing visualization figures, and generating Numpy files for single units. (G)
Kubernetes configuration for job deployment to a computing cluster.
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Figure 3: Minimum building block and job types. (A) The minimum pipeline building block utilizing
dockerized algorithms and S3 data storage. Data and parameter settings are retrieved from S3,
processed by containerized algorithms on NRP, and results are uploaded back to S3. (B) Users can
save and load parameter settings to and from the S3 “service” bucket through the Dashboard. (C)
Batch processing of numerous recordings is achieved by providing UUID and default parameter
settings to the pipeline. Users can initiate this process through the local data uploader. (D) Chained
jobs are implemented using a CSV job scheduler containing S3 data paths, job metadata, and
parameter settings. Users can initiate job chaining from the online Dashboard.

Pipeline Output for Individual Recordings

The pipeline output is designed to be comprehensive, structured, and accessible so the data can
be reproduced and distributed easily. Using batch processing algorithms, for example, each pro-
cessing step produces one compressed file (zip format). For spike sorting, the compressed file

is compatible with Phy GUI®Z. Users can download the file, uncompress it, and open it in Phy to
check the sorting result and perform manual curation. We also developed a function to load the
data directly into a Python object, enabling automated downstream analysis of the single-unit
features. Autocuration, the second step, outputs a compressed file (zip format) containing a spike
data object in NumPy array and Python dictionary. This object consists of a spike train list, a neu-
ron data dictionary, the recording’s sample rate, and electrode configuration. The neuron data
dictionary has spatial information such as the channel’s coordinates, neighbor channels, and
spike features such as waveform and amplitude. The spike train list and the neuron data dictio-
nary index match each other. The size of the autocuration file is approximately 10 times smaller
than the spike sorting output by re-constructing the data. For the final step, data visualization, the
pipeline generates interactive HTML format figures for the recording and a PNG format figure for
each single unit. All of the output files have a log to keep track of the actions and decisions made
by the algorithm. To make the data structure consistent, other algorithms’ outputs that are pro-
duced by this pipeline are also sorted into NumPy arrays and dictionaries. These outputs can be
easily converted to Pandas DataFrame and distributed as tabular data.

Figure [4 illustrates the visualization output for a 10-minute recording from a mouse cortical organoid
on day 42 in culture. Figure [4A is a photograph of the mouse cortical organoid on the HD-MEA.
Initially, two organoids were plated on the same HD-MEA for this experiment. As the majority

of activity originated from the right organoid, our analysis was focused on this organoid. The
pipeline’s interactive HTML overview figure includes a footprint map showing the spiking wave-
forms on the corresponding electrode locations (Figure [4B). The HD-MEA can detect a unit’s
footprint by multiple electrodes and potentially show the neuron’s orientation. Since a single elec-
trode can record activity from many neurons, different colors are used to label the units. Along-
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233 side every single unit’s colored footprint (Figure [4B) we provide descriptive electrophysiology

234 features (Figure [4C). We present the unit's temporal firing rate using 50 ms binning of the spike
235 times over the course of the recording (Figure [4C-i). The result is smoothed by a Gaussian ker-
236 nel with a sigma of 5. We also provide the amplitude of each spike and a histogram of the am-
237 plitude distribution (Figure [4C-ii,iv). Raw spikes and the averaged waveform are also displayed
238 (Figure [4C-iii). Both the amplitudes and raw spikes are from the best channel which recorded the
239 highest mean amplitude of the unit. Interspike interval (ISl) is a crucial feature for neurons, as it
240 is associated with firing patterns and cell types2324:8:59 \We show this information through an
241 auto-correlogram in the range of -50 to 50 ms and a histogram of I1S| values in the range of 0 to
242 50ms (Figure [4C-v,C-vi).

243 In addition to the footprint map, the interactive HTML overview figure includes a spike raster and
244 several statistical plots for population features for the organoid. The spike raster shows each
245 unit's spike times and the population firing rate with labeled burst peaks (Figure 4D,E). Bursts
246 are detected by thresholding the population firing rate. We show burst features such as the distri-
247 butions of peak firing rate, interburst interval, and each unit’s burstiness index in violin plots (Fig-
248 ure[4G). Furthermore, we display the distribution of firing rates, minimum IS values, and mean
249 spike amplitudes for all single units in the recording (Figure [4F-i,ii,iii). We also illustrate the pair-
250 wise correlation of units’ firing activity by calculating the Spike Time Tiling Coefficient (STTC)®2
251 value of each unit relative to the others. We designed the overview figures to be interactive, al-
252 lowing users to zoom in for a closer examination of the data. The figures for individual units are
253 high-resolution. These figures can give users useful information to evaluate the recording object
254 and perform cross-comparisons. Detailed descriptions of data visualization can be found in the
255 Methods section. The complete figures are available in the Supplementary Figure S4, S5.

256 Longitudinal Organoid Electrophysiology Properties

257 Longitudinal neuronal recordings provide invaluable data to study how neuron activity patterns
258 change over time. The cortical organoid shown in Figure [4A was subjected to hourly ten minute
259 recordings on the HD-MEA over seven days (see Voitiuk et al., 2024°0). During this experiment,
260 recordings were automatically scheduled at the beginning of each hour, uploaded to S3, and pro-
261 cessed by the pipeline. Data processing included spike sorting using Kilosort2 and autocuration
262 with quality metrics. Detailed descriptions of the data processing can be found in the Methods
263 section.

264 Over time, we observed an increasing number of single units and intensified spiking activity. Fig-
265 ure[5A illustrates the time-lapse images of the units’ locations and their action potential ampli-
266 tudes on the HD-MEA. With a grayscale color bar, the darker color denotes a higher amplitude.
267 The scale ranges from OuV (white) to 30uV (black). There is a noticeable increase in the activity
268 intensity and clustering of active areas as days progress, especially prominent between days 3 to
269 5. To visualize the development of the organoid neuronal network we plotted the number of de-
270 tectable units in each recording (Figure [5C,D) and the individual unit firing rate (Figure [5E,F) over
271 the recording time course. Figure [5C shows the distribution of the unit count across recordings
272 for each day, while figure [5D shows the average number of units each day. There is a substantial
273 growth in the number of units from day 0 to day 2 and decreased variability among the record-
274 ings. From day 2 to day 7, the number of units is relatively stable, with an increased variability
275 across the samples. There is a clear upward trend for the firing rate for the individual neural units
276 from each recording (Figure [5E) and the average firing rate for each day (Figure [5F). As the days
277 progress, the firing rate distribution of individual units becomes wider with some units showing
278 higher firing rates while other units have a firing rate between 0 and 10 Hz.
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Figure 4: Pipeline Output for an Electrophysiology Recording. (A) Photograph of a mouse
organoid on HD-MEA. (B) Zoomed-in view of spiking activities in the mouse organoid. Each color
represents a single unit. Waveforms from all single units are shown in the top right corner. (C) Spiking
features for the single unit labeled in B: i) Firing rate distribution over the recording time, calculated by
binning spike train with a 50 ms time window. ii) Amplitude of each spike over the recording time. iii)
Raw spike waveforms (black) and the averaged waveform (red). iv) Amplitude distribution. v)
Auto-correlogram from -50 ms to 50 ms. vi) Interspike interval distribution for intervals in the 0 - 50 ms
range. (D) Spike raster (black) overlaid with population firing rate (red) for the recording. Dots above
the plot label population burst peaks. (E) Zoomed-in view of a population burst. (F) Distribution of i)
unit firing rates, ii) minimum ISls, iii) mean amplitudes, and iv) spike time tiling coefficients. (G) Violin
plots showing the distribution of i) population burst peak firing rates, ii) interburst intervals, and iii)

burstiness of each single unit.
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We also found changes in neuron firing patterns over time. The neural unit firing patterns are
represented by the coefficient of variation (CV) of interspike intervals (1S1)6162. We show the
evolution of CV by plotting the standard deviation of I1SI to the mean of ISI for each unit over the
7 days. The stacked bar charts represent the proportion of neurons with different CV values,
where the red portion indicates neurons with CV < 1, and the blue portion represents neurons
with CV>1 (Figure [5B). Over the 7 days, we observe a trend of an increasing number of units
showing a more regular pattern with CV < 1, implying the maturity of the neural network. Day 0
to day 2 starts with a fairly even split, with slightly more neurons having CV>1 (44%, 54%, and
53%) and CV < 1 (56%, 46%, and 47%). As time progresses, there is a clear shift towards neu-
rons with CV < 1. By day 6, the majority of neurons have CV < 1 (72%), and a small proportion of
neurons have CV>1 (28%).

Overall, this analysis suggests maturation of the mouse cortical organoid neuronal activity over
the 7 days with increases in both the number of units detected and their firing rate. The increased
firing rate variability could indicate the emergence of more complex and heterogeneous neural
circuits within the organoid.

Neuron Tracking for Longitudinal Recordings

The consistency of the pipeline enables tracking putative neurons throughout the longitudinal ex-
periment, as the same processing steps and parameters are applied to all datasets. A trackable
unit can be identified by its consistent spike waveform and location on the HD-MEA. After spike
sorting a recording, we gathered the average waveform (2.5ms), the best channel’s location (x,

y coordinate on the HD-MEA), footprint, and firing rate for each single unit. We used a waveform
clustering algorithm (WaveMap)424 to label the units and observed the change of electrophysi-
ological features across multiple days. We ran WaveMap using both the waveform and the best
channel’s location. The best channel is defined as the one that recorded the unit’s highest mean
amplitude. For each unit, we concatenated the best channel’s location to the end of the wave-
form. Then, we aggregated units from all recordings. The waveforms and the locations were nor-
malized separately. As a result, WaveMap yielded 20 distinct clusters for the mouse organoid,

as shown in Figure [6A. For each cluster, we characterized the waveform features by measuring
the trough-to-peak width and Full Width at Half Maximum (FWHM) of the amplitude. The violin
plots (Figure [6C) show significant differences in the waveform features among clusters, indicat-
ing potentially different cell types in the organoid. Details of running the algorithm can be found in
Methods: Waveform Clustering for Cell Tracking.

For a trackable unit at a static location on the organoid, the unit’s waveforms sampled across
recordings should be in the same cluster and appear on adjacent recording channels. Using
HD-MEA, we can locate a unit within a small area with an electrode pitch of tens of microme-
ters (17.5um for MaxOne HD-MEA). We labeled each footprint by the color of the correspond-
ing waveform cluster and observed the duration and change of its best channel throughout the
recordings. For each cluster, we summarized the best channels for each recording and the fre-
quency of each channel (Supplementary Figure S7) that shows activity.

Among these clusters, we selected Cluster 4 as our primary focus (Figure 6B, D). Figure [6B
shows this cluster on the UMAP and the waveforms across recordings. We observed the channel
locations of the units in this cluster and arranged the footprints from the three adjacent channels
that showed the most activity. These activities are highly likely to be from an individual neuron.
We labeled the best channels as L1, L2, and L3 and overlaid corresponding footprints for each
channel (Figure[6D,E). On an HD-MEA, the electrical signal from a neuron can be picked up by
nearby electrodes, which can be beneficial in identifying a neuron’s orientation and movement.
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Figure 5: Single neuron features from hourly recordings over days. (A) Spatial area of spiking
activity in the mouse organoid on the HD-MEA over the recording time course. Color intensity
corresponds to the amplitude of the neuron’s action potential. (B) Changes in the Coefficient of
Variation (CV) of interspike interval distribution over time. The bar plot shows the percentage of units
with CV < 1 (red) and CV >= 1 (blue). (C) Distribution of the total number of single units for each day.
(D) Average unit count with standard error of the mean (SEM) over time (Day 0: 16+£2.58, Day 1:
17.45+1.55, Day 2: 25.25+1.03, Day 3: 23.64+1.18, Day 4: 24.04+1.49, Day 5: 23.22+1.12, Day 6:
22.2910.81, Day 7: 25.28+1.20). (E) Single unit firing rate distribution over the 7 days. (F) Average
firing rate (Hz) with SEM over time (Day 0: 2.33+0.35, Day 1: 2.7410.16, Day 2: 2.7+0.13, Day 3:
3.19+0.14, Day 4: 3.11+0.16, Day 5: 3.27+0.15, Day 6: 3.352£0.16, Day 7: 3.49+0.22)
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During the experiment, this unit initially showed activity on L3. Then its signals were sampled
mostly between the two main locations L1 and L2 (Figure [6F). We calculated the firing rate for
each sample across recordings and locations (Figure [6F), and grouped the firing rates for each
location in Figure [6G. Interestingly, while distributions of firing rates between L1 and L2 did not
differ significantly (two-sample Kolmogorov—Smirnov test, p=0.11), there was a significant dif-
ference between L2 and L3 distributions (two-sample Kolmogorov—Smirnov test, p=0.019). This
finding suggests that L3 may represent a subset of activity of L2 based on differences in their re-
spective footprints.

Using this study, we show the pipeline provides stable, consistent and reproducible data analysis.
The neuron tracking function can improve our understanding of an individual neuron’s long-term
activity by monitoring its electrophysiological features. Thus, this pipeline offers new possibilities
to investigate neural dynamics, plasticity, and neural circuit development.

Pipeline Applied to Optogenetics Modulation of Epileptiform Activity from Human Hippocam-
pus Slices

Epilepsy is a neurological disorder characterized by abnormal brain activity resulting from an im-
balance between excitatory and inhibitory processes®. Light-responsive channelrhodopsins en-
able optogenetic interventions to modulate the neuronal activity of brain tissues. We applied this
pipeline’s data processing and analysis functionality to study the optogenetic modulation of neu-

ral circuits from human hippocampus slices.

Before optogenetics illumination, human organotypic tissue slices from hippocampus tissue were
established. The hippocampus tissue was obtained from patients with drug-refractory tempo-
ral lobe epilepsy, sliced to 300um, and cultured at an air-liquid interface. Slices were transduced
with AAV9 carrying an HCKCR1 transgene driven by a CaMKlla promoter and a fluorescent tag
(eYFP) (see Andrews et al., 2024%%). A hippocampus slice was plated on an HD-MEA (Max-
One) for electrophysiology recording, with a fiber-coupled LED to illuminate the slice from the
top. Since HCKCR1 encodes a kalium channelrhodopsin, a light-gated potassium channel that
hyperpolarizes the neuronal membrane, the probability of neuronal spiking is reduced when ac-
tivated by 530nm light. Bicuculline was applied to the slice after plating to increase neuron firing
rates, inducing epileptiform activity. During the experiment, we illuminated the slice for 10 sec-
onds at 0.6 light intensity (35.8 mW/mm2) of the LED driver, and observed the neuronal popula-
tion firing activity for 10s prior to illumination (Pre-Stim), 10s during illumination (Light-On) and
10s following the end of illumination (Light-OFF). The experimental setup is shown in Figure [7A.
Each HD-MEA recording was processed by the described pipeline using spike sorting and au-
tocuration algorithms. Neuronal activities were aligned to optogenetics stimulation timestamps
that were synchronized with the recording. As illustrated in Figure [7B, the units’ footprints were
overlaid with NeuN staining of the slice on the HD-MEA recording area, showing the physical lo-
cation of the spiking activity. Examples of spike waveforms and auto-correlograms are shown.

The optogenetics modulation of population firing is shown in Figure [7D and Supplementary Fig-
ure S8. The bicuculline-provoked recurrent burst activity was rapidly suppressed by the illumi-
nation. Interestingly, the burst activity didn’t completely recover when the illumination was off.
The firing rate suppression of individual neuronal units was consistent among trials (Figure [7E).
This pipeline is capable of providing multiple perspectives of an individual neuron’s firing activity
(Figure[7C). In addition to firing rate, the suppression of activity is visualized on the hippocam-
pus slice through the electrodes on the HD-MEA. The pipeline can extract local field potential
(LFP) data by applying a 5th-order Butterworth bandpass (0.1-100Hz) filter to the raw voltage
data. During the 10 seconds "Light-ON" period, activities in the LFP frequency bands were also
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Figure 6: Neuron tracking in a mouse organoid over seven days of recording Pipeline output
demonstrating the capability of neuron tracking for longitudinal recordings. (A) UMAP of waveform
clusters with location coordinates. The inset shows the mean waveforms of each cluster from a total
of 20 clusters superimposed. (B) The cluster of interest (orange) is highlighted on the UMAP, with
other clusters in gray. Inset displays the individual waveforms from this cluster, with the mean
waveform in black obtained by averaging all the waveforms. (C) Distribution of waveform features for
each cluster. The features include trough-to-peak width and Full Width Half Maximum (FWHM) of the
amplitude. (D) Footprint projection on the organoid recorded on the MEA. The footprint is color-coded
according to the UMAP cluster. (E) Footprints for the cluster of interest overlaid across the recording
time course. L1, L2 and L3 are the best channels on the footprints. (F) Temporal tracking of location
and firing rate change for the units in the orange cluster. (G) Firing rate distribution for the three
locations.
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Figure 7: Pipeline facilitates seizure study by analyzing electrophysiology data from human
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slice HD-MEA recording®. Brain tissue from a seizure patient in 300um thick slices cultured
expressed channelrhodopsin delivered through adeno-associated virus (AAV) delivery. The slice is
placed on HD-MEA for simultaneous optogenetic stimulation and recording detailed in Andrews et al.,
202464 (B) NeuN-stained hippocampus slice overlaid with an image of the slice on HD-MEA and
footprint of spiking activities on the slice. Example spike waveforms and auto-correlograms from
representative neurons. (C) Hippocampus slice overlaid with single units’ firing on the HD-MEA. The
change in firing activity is shown for the three steps of Trial 3 (T3). From top to bottom, the panels
display the single unit’s location overlaid with GFP-stained slice, firing rate, local field potential
spectrum, spike raster, and voltage data from all recording channels. (D) Spike raster with population
firing rate for four experimental trials under Pre-Stim, Light-On, and Light-Off conditions. The
population firing rate shows epileptiform activity suppressed by optogenetics illumination, with the
firing rate remaining low afterwards. (E) The single unit’s firing rate distribution for each Trial in (D).
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attenuated.

This application showcases the pipeline’s adaptability to diverse experimental paradigms, ex-
tending its utility beyond basic neural activity analysis to more complex neurological disease
studies. This advancement opens new avenues for studying neurological disease mechanisms
and potentially developing therapeutic approaches, highlighting the pipeline’s significance in
translational neuroscience research.

DISCUSSION

The cloud-based electrophysiology data pipeline presented in this study represents an advance-
ment in the processing and analysis of HD-MEA recordings, which are enabled by loT and cloud
computing technology. The flexible and modular architecture can meet different data processing
goals, enabling high data quality and comprehensive electrophysiology feature extraction. The
integration of the MQTT messaging protocol provides remote access to the pipeline as well as
communications between various components of the pipeline. The cloud-based infrastructure
addresses the challenge of storing and processing large volumes of long-term, high-throughput
experiments. The parallelized processing capabilities allow for rapid analysis of multiple datasets
simultaneously. In addition, the ability to process recordings consistently and without human in-
tervention saves time and reduces the potential for human error and bias in data analysis.

The user interface allows easy access to the pipeline, and open source makes the pipeline adapt-
able to different computing environments and infrastructure setups. Cloud data storage and com-
puting contribute to the scalability of the pipeline. The pipeline output data structure is straightfor-
ward and size efficient, making it easy for computational tasks.

Consistent and Reliable Data Processing

By using the same parameter settings for spike sorting and curation across all recordings, we en-
sure that data is processed uniformly without human intervention. This consistency is crucial for
longitudinal studies, where tracking changes in neural activity over time requires a stable and re-
producible processing framework. The use of Kilosort2 for spike sorting, combined with autocu-
ration algorithms, allows us to accurately identify and classify single-unit activity, even in complex
datasets with overlapping spikes. Recent studies have highlighted the importance of such con-
sistent processing in large-scale electrophysiology data analysis.

One of the most critical aspects of our pipeline is its ability to process data consistently and reli-
ably. By using the same parameter settings for spike sorting and curation across all recordings,
we ensure that data is processed uniformly without human intervention. This consistency is cru-
cial for longitudinal studies, where tracking changes in neural activity over time requires a stable
and reproducible processing framework. The use of Kilosort2 for spike sorting, combined with
auto-curation algorithms, allows us to accurately identify and classify single-unit activity, even in
complex datasets with overlapping spikes. Recent studies have highlighted the importance of
such consistent processing in large-scale electrophysiology data analysis20:69,

Data Management and Visualization

Our pipeline’s data management capabilities are enhanced by the use of a hierarchical structure
with strategically named buckets on AWS S3. This structure, combined with metadata files that
store detailed experiment-related information, ensures that data is organized efficiently and can
be accessed quickly. The integration of user interfaces, such as the data uploader and Dash-
board, further empowers researchers by providing tools for data management, algorithm param-
eter configuration, and result visualization. The Dashboard, built using the Plotly Dash library,
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415 offers interactive features that allow users to explore and analyze their data in depth. Similar ap-
416 proaches have been successfully implemented in recent neuroscience data management and
417 visualization systems®®.

418 Code Availability
419 This electrophysiology data pipeline is an open-source project. The code will be released on
420 GitHub upon manuscript publication and is currently available upon request.

421 Data Availability

422 No new data was generated for this paper. All datasets described were obtained from Voitiuk et
423 al., 2024°% Andrews et al., 2024%4,

424 METHODS AND MATERIALS

425 Mouse Cortical Organoids

426 The data presented in this manuscript was collected using an integrated system for neuronal cell
427 culture®?. Mouse cortical organoids were made using a protocol described in Park et al., 202467,
428 Cortical organoid recordings were performed on a MaxWell Biosystems MaxOne CMOS HD-
429 MEA chip. The system captured 10-minute recordings every hour for seven days. The recording
430 configuration remained consistent throughout the experiment. Details can be found in Voitiuk et
431 al., 2024°0.

432 User Interfaces, Data uploader, and Dashboard

433 To give researchers full control over their experimental data, we designed user interfaces that
434 enable data management, data processing, algorithm parameter configuration, and result visual-
435 ization. We developed the data uploader installed on a local computer of the recording device as
436 well as an online Dashboard for remote data access.

437 The data uploader, created using the Python PyQt library, facilitates the uploading of experi-
438 ment recordings from a local laptop to S3. Upon opening this application, users can navigate
439 to a folder where recordings are stored. An initial Universally Unique Identifier (UUID) is gener-
440 ated usingthe date of the recordings, and users can add more descriptive labels to this UUID.
441 Before uploading, users must generate a metadata file by loading a template and inputting any
442 experiment-related information such as notes, cell lines, media used for culture, and recording
443 features for each dataset. Recording features such as recording length, number of active chan-
444 nels, and data path are automatically populated in the metadata template. When users press the
445 upload button, all recordings in the selected local folder are reorganized according to the S3 file
446 structure and are uploaded to the UUID folder on S3. Users can start the data analysis pipeline
447 after uploading by sending a request a message to the job listener.

448 The Dashboard was created using the Python Plotly Dash library. This library uses callback func-
449 tions to achieve user-interactive features like dropdown lists, buttons, and tables. We built a multi-
450 page website, with each page serving a different purpose.

451 On the “Data Processing Center” page, users can choose recordings from the S3 dropdown list,
452 select preferred data processing jobs, set parameters, and start NRP jobs. It allows users to per-
453 form batch processing or chained tasks for chosen recordings. Batch processing is the most

454 commonly used case since all parameters and algorithms are usually the same for an experi-
455 ment. Chained tasks are practical for testing parameter and algorithm combinations for new ex-
456 periment setups. Supplementary Figure S3 shows the job center webpage.
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457 On the “Status” page, users can monitor the job status of current tasks on the NRP cluster. By
458 using the "Show Status" button, users can check jobs labeled with prefix “edp-". This function
459 parses the information returned by Kubernetes Python API for all jobs in the namespace. Upon
460 refreshing with the button, the NRP job name, running status, and data summary will be dis-
461 played on the webpage.

462 The “Visualization” page is designed to display figures of post-processed results. Users can se-
463 lect a processed recording from the dropdown menu to display an interactive raster plot and elec-
464 trode map. Clicking a unit on the electrode map highlights its spike times in light red on the raster
465 plot and shows its waveform and interspike interval histogram. This page allows users to evalu-
466 ate MEA recordings effectively.

467 Cloud Data Storage and Organization

468 Efficient cloud data organization is crucial for optimizing access performance and storage man-
469 agement. In this pipeline, we employ a hierarchical structure with strategically named buckets.
470 We use a UUID that reflects the experiment date and key information. Upon data uploading,
471 the metadata file is automatically generated and uploaded with the raw data. For each UUID,
472 we keep the raw data in “/original/data”, and the processed result files in “/derived/algo”, where
473 “algo” can be “kilosort2”, “connectivity” and others that are named after the specific algorithms.

474 We store logging files on S3 for MQTT services and data analysis jobs. Detailed logs provide
475 a comprehensive record of each pipeline component by capturing essential information. These
476 logs enable researchers to track the progression of data processing, identify potential bottle-

477 necks, and troubleshoot issues effectively. Service logs are generated when the MQTT broker
478 sends or receives a message and updated to the S3 “/service” bucket on a schedule. Logs from
479 the data analysis jobs include processing steps, quantities, and malfunctions. These log files are
480 kept in the algorithm output directory.

481 Cloud Orchestration

482 Each analysis algorithm is packaged into a Docker container with the minimum required de-
483 pendencies, enabling parallel processing of a large volume of electrophysiology recordings in a
484 cloud-agnostic environment. This approach simplifies the addition of new analysis algorithms to
485 the pipeline.

486 We use Kubernetes to deploy and monitor data processing jobs on NRP. For each container,

487 based on the input data size and algorithm requirements, we request computing resources from
488 NRP, such as the number of CPUs, GPUs, memory, and storage. Supplementary Table S2 sum-
489 marizes the computing resource requirements for each algorithm on a 10-minute HD-MEA record-
490 ing with 1000 active channels. When a job is deployed to NRP, a pod with a job is created to run
491 the data in a container. To get the status of the pod, we extract metadata from the return of the
492 Kubernetes “list_namespace_pod” function. From the metadata, we provide the status of the job,
493 such as "running" or "succeeded," and the timestamps for running this job.

494 MQTT Messaging Application

495 To enable remote job execution for a large number of recordings, we implemented services us-
496 ing MQTT messaging. This infrastructure has been previously described4°0, All messaging
497 services are hosted on the Braingeneers UCSC Genomics Institute server. We package these
498 services into Docker containers and manage them using Docker Compose.

499 Job Listener
500 We designed a centralized MQTT service to parse analysis job run messages. This service sub-
501 scribes to specific topics and responds by running the corresponding Docker container on the

18


https://doi.org/10.1101/2024.11.14.623530
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.11.14.623530; this version posted November 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

502
503

504
505
506
507

508
509
510
511
512
513

514
515
516
517
518
519

520
521
522
523
524
525
526

527
528
529
530

531
532
533
534
535
536

537
538
539
540

541
542

543
544
545
546

available under aCC-BY-NC-ND 4.0 International license.

given data. We assign the topics “experiments/upload” for batch processing or “services/csv_job”
for chained tasks.

The message body is designed according to the different topics. For “experiments/upload”, we
use the UUID and recording file name from the metadata.json file. The service can assemble the
S3 file path for each recording from this information. The computing requirements for running
batch processing jobs are written to a look-up table in the listener service.

For “services/csv_job”, we first create a CSV file where each row contains the UUID, recording
file name, job type, and computing requirements for running the analysis. We name the CSV
file using the current timestamp, upload it to the S3 services bucket, and create a message con-
taining the path to the CSV file and the indices of the CSV rows. When the listener receives this
message, it pulls the information from the CSV file and deploys jobs using the given indices. Ex-
amples of the messages are included in Supplementary Materials.

Job Scanner

When running analysis jobs on the NRP, we use the prefix label “edp-" in the job name. We name
batch processing and chained jobs differently. For batch processing, we name the job using a
prefix and the recording file name. For chained jobs, we name the job using a prefix, the CSV file
name, and the index of the CSV row. This naming convention allows us to parse the job name to
determine which analysis algorithm is running on which data.

The job scanner is designed to scan the “edp-” jobs on a schedule with two main aims. First, it
notifies the job listener when the current step in a chained job is finished. This message body
contains the keyword “update”. When the listener receives this message, it checks the corre-
sponding CSV file to launch any pending jobs related to the current job. The scanner scans NRP
every 2 minutes to minimize delays in running chained jobs. Second, it notifies users of their job
status via a Slack channel using the messaging bridge service 18. These notifications are sent
every 30 minutes.

Job information is pulled from NRP using Python-Kubernetes functions. We use the “list_namespaced_pod”
function to get all "edp-" jobs. We loop through them, extracting job name, data file name, job

type, and timestamps. This information is stored in a Python dictionary and updated when the

scanner service scans NRP on schedule.

The scanner identifies job status and sends messages to other MQTT services. For batch pro-
cessing jobs, the scanner sends a user notification message when the job status is “pending”,
“running”, “failed”, or “succeeded”. Since “failed” and “succeeded” jobs are finished, the scanner
removes these jobs from NRP and the dictionary after sending the message. For chained jobs,
when a job is finished as “succeeded”, in addition to sending a user notification, the scanner also
sends an "update" message to the listener to run the next job.

User Notification to a Slack Channel

Both the job listener and scanner can send user notifications. When a run job message is sent to
the listener, and the listener successfully deploys jobs to NRP, a notification is sent to the Slack
channel with the S3 data path, job type, and “start” status.

To make user notifications human-readable and clear, when the scanner sends messages to the
Slack channel, it groups the jobs by UUID and lists the recordings in each UUID.

Spike Sorting

Spike sorting is fundamental in analyzing extracellular recordings for assigning action potentials
picked up by electrode channels to neurons in an ensemble. For the HD-MEA recordings, Kilo-

sort2 was used to sort the raw voltage data into single unit activity. Since HD-MEAs can record
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547 one neuron from tens of channels, it is common for spikes from many neurons to overlap in time
548 on a single channel. The template matching and clustering algorithm in Kilosort2 can distinguish
549 spikes between different neurons based on their waveform. Before spike sorting, the raw data
550 is bandpass filtered using an IIR filter with a 300 - 6000 Hz bandwidth. The data type is con-

551 verted to int16 for running Kilosort2. The voltage detection threshold of Kilosort2 is set to 6 RMS
552 over the baseline. Parameter settings for Kilosort2 are shown in Supplementary Table S1. Spike
553 sorting was performed on the NationalResearch Platform computing cluster with an NVIDIA A10
554 GPU. The sorting output is saved to a compressed file (zip format) and uploaded to S3. The out-
555 put file structure is compatible with the software Phy for performing manual curation. An autocu-
556 ration process is built on top of the sorting result.

557 Autocuration

558 The autocuration process is applied after spike sorting for each single unit. To assess data qual-
559 ity and retain good units for downstream analysis, we evaluate each unit by calculating the Inter-
560 spike Interval (ISI) violation ratio, Signal-to-Noise ratio (SNR), firing rate, and spike waveform.
561 We use the curation module from Spikelnterface API®% in our Python script. For ISI violation,
562 we apply the Hill method®® of false positive errors with an absolute refractory period of 1.5 ms.
563 We set the maximum violation rate to 20%. The SNR is calculated using the spike amplitude of
564 a unit and the baseline voltage, with a minimum SNR threshold of 5 RMS. The unit’s firing rate
565 is defined as the total number of firing events divided by the recording length in seconds. In our
566 default autocuration algorithm, this threshold is set to 0.1 Hz.

567 To check the spiking waveform for a unit, we run the WaveformExtractor class across all active
568 channels and take the average of a maximum of 500 spikes. We then find the best channel and
569 a maximum of eight neighboring locations on a 3x3 grid by sorting their waveform amplitudes
570 on each channel from highest to lowest. The best channel is defined as the channel that cap-
571 tures the neuron’s highest mean amplitude among all recording channels. Since HD-MEAs can
572 record one neuron across multiple channels simultaneously, we expect the waveform distribution
573 to have an adequate layout. This layout is defined as the unit’s footprint. Thus, we save units that
574 show a waveform on the best channel and at least one neighboring channel within a distance of
575 17.5um for further analysis.

576 Visualization of Electrophysiology Features

577 For each recording, the pipeline generates an interactive overview figure in HTML format that in-
578 cludes the activity map of the MEA, the neuron’s footprint at its physical location on the map, a
579 spike raster with population burst detection’”, and a summary of electrophysiology features for all
580 single units. The population firing rate is smoothed using moving average (20 ms window size)
581 applied to aggregated spike trains, then further smoothed using a Gaussian kernel with sigma =
582 20. The population burst detection threshold is set to 2 RMS of the population’s baseline firing
583 rate. Burst detection is performed using scipy.signal.find_peaks with a minimum peak distance of
584 800 ms. Burst edges are defined as points where the firing rate drops by 90% from the peak on
585 both sides. The “burstiness index”6? of a single unit is represented by a number from 0 to 1 that
586 measures the synchronization in spiking activity by binning (40 ms bin size) the spike train. Elec-
587 trophysiology features include interspike interval (ISI), minimum ISI, firing rate, amplitude, spike
588 time tiling coefficient (STTC)®? and average spike waveforms. Distributions of these features for
589 all single units are provided in the interactive figure. Each single unit is also paired with a PNG
590 format figure showing the unit’s footprint, raw and average spike waveform, auto-correlogram

591 (ACQ), ISl distribution, instantaneous firing rate and amplitudes. Both the interactive figure and
592 single unit figures are created using the Plotly Python graphing library. Parameters for the visual-
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593 ization are adjustable in the source code.

594 Waveform Clustering for Cell Tracking

595 Neuronal cell types and their spiking waveforms are known to be correlated. To demonstrate the
596 capability of tracking units in longitudinal recordings, we performed waveform clustering using
597 the WaveMAP Python package*24. This package combines non-linear dimensionality reduction
598 (UMAP) with the Louvain clustering method.

599 To prepare the waveforms, we first extracted the spike times for each single unit through spike
600 sorting. Since the spike time represents the peak of each spike, we initially took a 5 ms window
601 of the complete waveform from the best channel, then averaged across up to 500 spikes. Be-
602 fore input into the WaveMAP algorithm, we centered the waveforms at their peak and truncated
603 them to 1 ms before and 1.5 ms after the peak. Units with positive spikes were not included in
604 this clustering due to the high possibility of axonal signals. We extracted waveforms for each
605 recording, stacked them into a NumPy array, and pre-processed them using 12 normalization.
606 The total number of waveforms was 3526 from 160 recordings.

607 Given that the mouse organoid recordings were taken hourly across seven days, and neurons
608 can migrate during development, we appended the corresponding electrode location (x, y) to the
609 end of each waveform for clustering. The location was normalized as a percentage of the maxi-
610 mum x and y coordinates, respectively, to ensure the data range was within [0, 1], comparable to
611 the normalized waveform.

612 The UMAP parameters were set with 20 neighbors and a minimum distance of 0.1, while the
613 Louvain clustering resolution was set to 1.5. As a result, the algorithm identified 20 distinct clus-
614 ters and assigned a color to each. Based on the clustering results, we plotted the footprint of
615 each unit on the electrode map using the assigned color. Throughout the recordings, we were
616 able to track changes in a neuron’s location and firing rate.

617 Local Field Potential

618 Local field potentials (LFPs) are low frequency signals up to about 500 Hz that are generated by
619 multiple signal processes in a neural population’?. These signals are traditionally decomposed
620 into frequency domain. In this pipeline, we focused on LFPs in the range of 0.1 to 100 Hz, and
621 subband frequencies as delta (0.5 - 4 Hz), theta (4 - 8 Hz), alpha (8 - 13 Hz), beta (13 - 30 Hz)
622 and gamma (30 - 50 Hz).

623 To get LFPs and subband frequencis, we first bandpass filter the raw voltage signal from all record-
624 ing channels with 0.1-100 Hz 5-order Butterworth filter. Then, these signals are downsampled 1
625 kHz. A second bandpass filter is applied to seperate subband frequencies. We use spectrograms
626 to show the signal strength of different subbands. A spectrogram is the time-frequency spectrum
627 of the local field potential signal, based on the power values, over the given time and frequency
628 range. We applied a continuous wavelet transform (CWT) on the local field potentials to obtain

629 wavelet coefficients and corresponding frequencies using the complex Morlet wavelet (‘cmor1-1’)
630 in PyCWT library. Signal strengthl is computed as the magnitude squared of the wavelet coeffi-

631 cients and smoothed using a Gaussian filter with sigma of 2.
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