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Abstract

The analysis of tissue cultures, particularly brain organoids, requires a sophisti-
cated integration and coordination of multiple technologies for monitoring and
measuring. We have developed an automated research platform enabling indepen-
dent devices to achieve collaborative objectives for feedback-driven cell culture
studies. Our approach enables continuous, communicative, non-invasive interac-
tions within an Internet of Things (IoT) architecture among various sensing and
actuation devices, achieving precisely timed control of in vitro biological exper-
iments. The framework integrates microfluidics, electrophysiology, and imaging
devices to maintain cerebral cortex organoids while measuring their neuronal
activity. The organoids are cultured in custom, 3D-printed chambers affixed
to commercial microelectrode arrays. Periodic feeding is achieved using pro-
grammable microfluidic pumps. We developed a computer vision fluid volume
estimator used as feedback to rectify deviations in microfluidic perfusion dur-
ing media feeding/aspiration cycles. We validated the system with a set of 7-day
studies of mouse cerebral cortex organoids, comparing manual and automated
protocols. The automated protocols were validated in maintaining robust neural
activity throughout the experiment. The automated system enabled hourly elec-
trophysiology recordings for the 7-day studies. Median neural unit firing rates
increased for every sample and dynamic patterns of organoid firing rates were
revealed by high-frequency recordings. Surprisingly, feeding did not affect fir-
ing rate. Furthermore, performing media exchange during a recording showed
no acute effects on firing rate, enabling the use of this automated platform for
reagent screening studies.

Keywords: Neural Development, Brain Organoid, Microfluidics, Electrophysiology,
Stem Cells, Internet of Things

Introduction

Recently, advances in biological research have been greatly influenced by the devel-
opment of organoids, a specialized form of 3D cell culture. Created from pluripotent
stem cells, organoids are effective in wvitro models in replicating the structure and
progression of organ development, providing an exceptional tool for studying the com-
plexities of biology [1]. Among these, cerebral cortex organoids (hereafter “organoid”)
have become particularly instrumental in providing valuable insights into brain for-
mation [2—4], function [5, 6], and pathology [7, 8]. Despite their potential, organoid
experiments present significant challenges. Brain organoids require a rigorous, months-
long developmental process, demanding substantial resources and meticulous care to
yield valuable data on aspects of biology such as neural unit electrophysiology [9],
cytoarchitecture [10], and transcriptional regulation [8].

The primary methods for generating and measuring organoids depend on media
manipulations, imaging, and electrophysiological measurements [11], which are all
labor- and skill-intensive, limiting the power and throughput of experiments [12]. Cell
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culture feeding and data collection occur at intervals realistic for researchers. Further-
more, during manual feeding and data collection, the cell cultures are removed from
the incubator, which provides a controlled gas, temperature, and humidity environ-
ment [13]. Ideally, feeding should be aligned with the cells’ metabolic cycles, and data
should be collected at intervals on par with the biological phenomenon. The distur-
bance incurred by leaving the incubator environment is shown to increase metabolic
stress and batch-to-batch variability, potentially impacting the quality of the exper-
iment [14], as well as increasing contamination risk. These limitations hinder the
depth of insights gained from these organoid models, particularly in studies focused
on dynamic neural processes and disease modeling [11].

Laboratory robotics, most often liquid handling devices [15], offer increased preci-
sion and throughput but are primarily designed for pharmaceutical screens, limiting
their adoption in research labs due to high costs, large footprints, and inflexible work-
flows [16]. Moreover, many of these systems lack the ability to seamlessly integrate
new technologies as they emerge. Conversely, academic research labs are benefit-
ing from advancements in commercial and custom-made technologies, facilitated by
in-house fabrication methods like 3D printing [17, 18], which are enhancing their
capacity to manipulate and measure biological systems. However, without an easy-
to-integrate, device-agnostic robotic platform, researchers are constrained to manual
operations, restricting the power and scope of their experiments. By outfitting devices
to carry out automated jobs and relay data through communication networks, they
acquire around-the-clock functionality and increased fidelity [19]. The flexibility in
size (number of devices per integrated system) allows researchers to optimize for the
experimental design and budget. Implementing programmable feedback loops derives
precision and self-optimization by dynamically adjusting to real-time data [20-22],
offering a practical alternative to complex mathematical modeling for experiment con-
trol. This approach would enable more integrated, flexible automation in research
settings, broadening the scope and efficiency of experiments.

Automating multiple devices to report data presents a challenge for device
management and communication, necessitating flexible and efficient infrastructure.
Addressing this need for an interconnected ecosystem of devices, services, and tech-
nologies is possible through designing networks using standards defined by the Internet
of Things (IoT). This approach has already impacted wearables [23], agriculture [24],
city infrastructure [25], security [26], and healthcare [27]. It was recently proposed
to expand this approach to biology research [28]. Previously, each researcher built
a custom device and code from scratch with unique assumptions for communication
and behavior. Each device operated in solitude, lacking integration and feedback with
other devices. Here, we establish a platform that addresses these challenges, combin-
ing electrophysiology, microscopy, microfluidics, and feedback control, automated and
integrated through IoT technology for touch-free, in-incubator tissue research.
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Fig. 1 Schematic diagram of the integrated feedback platform. (a) A syringe pump and
valve system dispense fresh media and aspirate conditioned media at user-defined intervals. The
blue background represents 4°C refrigeration. (b) Microscopy and HD-MEA electrophysiology record
morphology and functional dynamics of the biological sample. The red background represents 37°C
incubation. Exploded view: the microfluidic culture chamber for media exchange couples with the HD-
MEA. (c) A camera captures images of the aspirated conditioned media drawn from each culture and
relays them through cloud-based data processing for volume estimation feedback to the syringe pump
system. (d) Devices communicate over MQTT (Message Queuing Telemetry Transport) protocol
and automatically upload data to the cloud, where it is stored, processed, and presented on a web
page. (e) The experimental setup in the incubator shows two microfluidic culture chambers and
two conventional membrane lids. (f-g) 3D printed microfluidic culture chamber and cross-section
diagram. The media level, noted by the upper black arrow (559uL) and lower black arrow (354pL)
on the glass rod, is the ideal operating range that keeps the rod immersed in media. The biological
sample is adhered to the HD-MEA sensor at the bottom.
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Results

An integrated microfluidic, electrophysiology, and imaging
organoid research platform

We have developed an integrated platform (Figure 1) that automates organoid
culture and data collection in individual microenvironments. While microfluidics
(Figure 1a) controls the media environment, digital microscopy captures the mor-
phogenic features. The neural activity is recorded by local field potential measurements
using complementary-metal-oxide semiconductor (CMOS) high-density microelec-
trode arrays (HD-MEA)[29](Figure 1b). The IoT cloud network brokers the commu-
nication between all devices and facilitates data storage, processing, and presentation
services including an interactive webpage (Figure 1d). Through touch-free automation,
samples remain undisrupted in the incubator, increasing the consistency of images and
allowing for higher frequencies of feeding and recording.

At user-defined intervals, conditioned media is aspirated by a syringe pump through
a system of distribution valves (Figure 1a), stored in a collection reservoir (without
passing through the syringe pump vial) (Figure 1c¢), and replaced by an equivalent
volume of fresh media. Both types of media are perfused through flexible fluorinated
ethylene propylene (FEP) tubing at 110 mm/s, which leads to low shear forces [30]
(see Materials and Methods, Microfluidic cell culture). This equates to a flow rate of
44.1 pL/s.

The digital microscope (Figure le) is attached using 3D-printed parts on aluminum
posts. The 3D printed culture chambers integrate the microfluidics and HD-MEAs. A
liquid-impermeable O-ring gasket ensures media retention inside the chamber. The well
lid includes a polished glass rod submerged in the media, improving image quality and
removing the effects of condensation. Alignment grooves in the glass rod lid prevent
rotation and incorrect fitting. The lid exchanges gas with the incubator conditions
through ventilating air ducts (Figure 1g), similar to a cell culture well plate. The
removable and re-attachable lid reduces manufacturing complexity and enables future
use of other lids with applications beyond imaging.

Figure 1c shows the cross-section of the culture chamber attached to the HD-MEA.
The media flows in (red) and out (blue). The sinuous media path and well geometry
ensure minimum disturbance to the biological sample [30]. Fresh media is delivered
on top of the volume present in the chamber, similar to partial media changes found
in manual feeding protocols [31, 32]. The ideal operating range is between 350 to 700
nL (see Supplementary Materials and Methods, Figure 1 and Table 1 for numerical
volume limits). In the case of over-aspiration, media drops to a minimum of 170 uL
before aspirating air from the chamber’s headspace. The 3D-printed catch tray guards
against overflow, collecting up to 1.5ml (200% of the chamber’s capacity) to protect
the recording equipment from liquid damage.

Computer vision for microfluidic flow feedback

We developed a computer vision volume estimation system to monitor the accumula-
tion of aspirated media and identify anomalies during culture feeding events. Figure


https://doi.org/10.1101/2024.03.15.585237
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.15.585237; this version posted December 7, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Row-wise sum of HSV channels Segmentation

\Y
H S | A:initial segment
| | B: meniscus segment
C: final segment (A-+B)
— - Row value
T T Count of
\ white pixels
|
| Segmentation area
| I
{ i
Sum |
Area versus volume calibration Estimated volume percent error
d 7 e Mean error (%)
o 3.0

of Min to max range (%)

I
8 /
6 y 44/
4 //’

& ® Cylinder 05

g Fitted curve (Cylindler)
® Cone
Fitted curve (Cone)

Absolute error (%)

Ground truth volume (mL)

0 5k 10k 15k 20k 0 2 4 6 8 10 12
Segmentation area (pixels) Ground truth volume (mL)

Fig. 2 Computer vision for volume estimation. (a) Example of a raw image captured by the
camera module. (b) In-refrigerator volume estimation setup in Figure 1c. The CMOS camera module
(the white triangle) images the conical tubes with a diffused LED backlight for even illumination. (c)
Fluid segmentation: a rectangular pixel patch down the center of the conical tube; Row-wise summa-
tions of the HSV channels are used to detect the location of the meniscus. The initial liquid potion
segmentation is added to the meniscus portion to yield the final segmentation. (d) Calibration graph
with a fitted relationship of segmented pixel count to ground truth volume. (e) The absolute error
percentage: orange dots represent the average error at selected volumes. The shaded bar represents
the minimum to maximum error range.

2a-b provides a detailed view of the setup inside a refrigerator, which includes three
main components: a collection reservoir support system, an LED panel, and a camera
module (see Materials and Methods, Assembled devices and custom 3D-printed com-
ponents). The camera module remains on standby for image capture requests made
by other IoT devices or users. Upon request, computer vision techniques are employed
to estimate the media volume within the reservoirs accurately.

Figure 2c¢ shows the computer vision process (see Materials and Methods, Com-
puter vision for fluid volume estimation) for segmenting area related to the media
in the reservoir. A calibration was required to establish the relationship between the
segmented area in pixels and volume in milliliters. We captured 184 images of the
collection reservoirs containing volumes of media ranging from 0 to 12 mL (several pic-
tures for each volume), with each volume confirmed by a scale, accurate to 1 pL. For
each specific volume in Figure 2d, multiple points overlap and are all accounted for
to calculate the polynomial regression lines. To accommodate the reservoir’s conical
section (volumes <1.5 mL) and cylindrical section (volumes >1.5 mL), two distinct
regressions were applied, ensuring a high degree of precision for each geometrical shape.

A Leave-One-Out cross-validation (LOO) [33] approach was employed to quantify
the model’s error. This method tests the model’s accuracy and generalizability in an
unbiased manner, ensuring that the calibration results in a model that performs reli-
ably across different samples. The effectiveness of the model is assessed quantitatively
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with the following metrics: an average Mean Absolute Error (MAE) of 0.56% (equiv-
alent to 27 nL), an average standard deviation of errors at 0.53% (22 uL), and an
average Root Mean Square Error (RMSE) of 0.77% (35 pL). The polynomial models
exhibit R-squared values of >0.99, denoting an optimal fit of pixel area to liquid vol-
ume. Figure 2e shows the average absolute error percentage at a specific volume, with
the bar indicating the error range from minimum to maximum.

IoT infrastructure creates an ecosystem of devices and
cloud-based services

We built a cloud-based IoT ecosystem that enables communication between users,
devices, and services to implement actions, record data, and streamline upload, stor-
age, and analysis. All devices (here: pumps, microscopes, and microelectrode arrays)
run software using the device-class Python framework (Figure 3a and Supplementary
Materials and Methods). Devices operate collectively with shared core software and
complementary behaviors: they can request jobs from each other, yield during sensi-
tive operations, and ensure collaborative functions and smooth operation (Figure 3d).
Devices update their shadow in the database whenever their state information changes
(i.e, assigned experiment, schedule, current job and estimated completion time, and
other dynamic variables) to eliminate the need for device polling. Messages (i.e., job
requests) between devices and services are sent through a centralized MQTT broker
via the publish/subscribe protocol. This decoupled architecture allows for independent
and extensible deployment of components. Data generated by devices is immediately
uploaded to an S3 object storage in a predefined structure using an experiment Uni-
versally Unique IDentifier (UUID) as the top-level key. A ‘metadata.json’ file stores
experiment details, sample information, notes, and an index of the produced data.
Raw data is stored separately from analyzed data under different sub-keys. Cloud jobs,
which operate as shared services, process raw data from S3 and write results back to
S3, reporting status via MQTT messages. To utilize the IoT ecosystem, users initiate
experiments, control devices, and visualize data through a website (see Materials and
Methods, Website and screenshots in Supplemental Figure 2), with the typical user
workflow in Figure 3c.

Automated study of cerebral cortex organoids

The integrated research platform was used to study the effects of automation on the
neuronal activity of pluripotent stem-cell-derived mouse cerebral cortex organoids.
Embryonic stem cells were aggregated, patterned, and expanded to generate organoids
using a previously defined differentiation protocol [34, 35]. Day 32 post-aggregation,
organoids were plated two-per-chip directly onto HD-MEAs. Two were plated to max-
imize use of the HD-MEA surface (3.85 x 2.10 mm?). For the 7-day study, 8 chips
across two batches were split into groups that were fed and recorded with standard
manual procedures (Controls, N=4), manual feeding and automated recording (AR,
N=1), automatic feeding and manual recording (AF, N=1), or automatic feeding and
automatic recording (AFAR, N=2). All chips were imaged in the incubator every hour,
each using a dedicated upright digital microscope (DinoLite).
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Fig. 3 Cloud-based device interactions. (a) The device-class is a generalized state machine
framework of all IoT devices. The device participates in experiments by taking in job requests (from
experimenters or other devices), scheduling and executing the jobs, and producing data files that
are queued and uploaded to cloud storage. (b) IoT infrastructure. Device states (pink) are saved in
a database and displayed on the website user interface. Device-generated data (gray) is saved and
organized in cloud storage, where it can be accessed by user interface or analysis cloud jobs. Devices
send communications (purple) through a message broker and use message bridges to translate mes-
sages to analysis pipelines or text messaging applications. (c¢) User workflow. Devices are physically
primed in accordance with experimental procedures such as sterilization. On the ‘Initialize’ webpage,
an experiment is created with a unique ID (UUID) and descriptive notes (metadata). On the ‘Con-
trol” webpage, devices are called to start working on the experiment and are given a job schedule.
The ‘View’ webpage and notifications allow the user to monitor the ongoing experiment. (d) Exam-
ple of inter-device communication: (1) A RECORD job request is made from the ‘Control’ panel.
(2) The message broker delivers the record request to the electrophysiology recording unit. (3) The
electrophysiology unit pauses all other devices to ensure a quality recording. (4) All devices receive a
pause request. The pump reschedules a feed until after the pause. (5) Upon finishing the recording,
the electrophysiology unit delivers a spike sorting request to commence data analysis.

Automated microfluidic feeds were used to increase the consistency and frequency
of cell culture media replacement. We removed conditioned cell supernatant from the
well and dispensed the equivalent volume of fresh media for each feed cycle. The
controls had 1.0 mL media replacement every 48 hours, consistent with standard
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protocols. AF and AFAR were placed on a protocol in which 143 pl. media were
replaced every 6 hours, matching the total media volume turnover across groups for the
7-day study. The schedule of automated media feeds was defined at the experiment’s
launch and initiated by a timed feeding job command sent to the microfluidic pump.
The fidelity of feeding was controlled through a computer vision volumetric feedback
loop on the aspirated conditioned media (Figure 2, 4a).

Conditioned media has a high protein content, contains cellular debris, and is
susceptible to forming salt crystals [36, 37]. In microfluidic systems, this leads to clogs,
error accumulation, and failure modes [38]. To overcome this, a volume estimation
feedback loop was initiated each time the pump performed a job. At the time the
medium was perfused to/from a specific well, the pump sent a job request to the camera
module responsible for imaging the well’s collection reservoir. The image was captured,
uploaded to the cloud, its volume estimated by the computer vision Estimator, and
returned to the pump for feedback interpretation. Within tolerance, the action was
declared a success (marked as a green check mark in Figure 4a), and no further action
was taken. Outside of tolerance, the pump scheduled itself a new job proportional to
the volume discrepancy and in relation to the number of previous feedback attempts
(see Materials and Methods, Feedback interpreter).

The system was designed to resolve discrepancies using feedback. However, in cases
where volume estimation returns a value outside of reason (i.e., > expectation + 2
mL) or if the feedback iteration limit is reached (i.e., > 20 attempts), the system was
programmed to send an alert to a Slack messaging channel and pause. During both
batches of the 7-day experiments, the system resolved errors independently, and this
condition was not reached.

The automated feeding and feedback results for AF and AFAR 1 are visually rep-
resented in Figure 4b-d. Figure 4c shows the traces of expected volume and computer
vision estimated volume for AFAR 1 (left) and AF (right) for the 7-day study (Days 5
to 12 post-plating). There was a collection reservoir change on Day 8 in which the 15
mL conical was replaced with a fresh tube. In both samples, the drop in estimated and
expectation reflects the collection reservoir exchange. For AFAR 1 (Figure 4b, left),
a zoomed-in view of the feedback loop following the scheduled feeding cycle at 7:12
on Day 9 highlights feedback actions taken to remedy a volumetric discrepancy. In
this instance, the volume estimation was less than expected after the feed cycle. Five
consecutive aspiration jobs were carried out, and the estimated volume still remained
under expectation. At the 6th iteration of feedback, a pull job was sent to the pumps,
which raised the collection volume above the expected volume. In the 7th and 8th
iterations of feedback, two dispense jobs were engaged to supplement the well for the
over-aspiration. In a similar case, for AF (Figure 4b, right), a total of 6 iterations of
feedback were engaged to bring the estimated volume into tolerance with the expected
volume; however, in this example, no dispense jobs were required. Figure 4d shows
histograms of the sum of pump events per day by subcategory. Each feeding cycle
(four per day) was scheduled, and all other events occurred through feedback.
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Fig. 4 Volume feedback. (a) Volume estimation feedback loop. After the pump completes a
microfluidic action, it requests a picture of the media collection reservoir from the camera module.
The picture is passed to the cloud-based computer vision program to estimate the current volume.
The results is compared with the expected volume, and a decision is made: within tolerance (green
checkmark), a microfluidic volume adjustment action is needed (red “x”), or an anomaly is detected
(yellow question mark). Once the estimated volume is within tolerance (green check mark), the
feedback cycle ends and proceeds to the next job. If this cannot be achieved or an anomaly is detected,
such as out-of-range volumes, an alert is sent to the user messaging service to request assistance.
(b-d) On these graphs, the “Day” x-axis summarizes the timeline: organoids were plated on the HD-
MEA on Day 32, automation started 5 days after plating and continued to day 12. Above this axis,
dots mark the occurrence of microfluidic events. (b) Graphs of the Expected Volume and Estimated
Volume for the automated AFAR 1 (left) and AF (right) during a period of feedback events. Event
types are marked with dots below the graph. (¢) The complete view of Expected and Estimated
volume traces over the 7-day study. (d) Stacked histogram pump events per day organized by type.

High-frequency HD-MEA recordings and automated feeding
do not disrupt neuronal activity

To evaluate organoid neuronal activity, extracellular field potentials were measured
using 26,400 electrode HD-MEAs, which can record up to 1,020 electrodes simulta-
neously. We conducted daily activity scang to monitor neural activity. Activity heat
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maps derived from the first and final activity scans for each sample are presented in
Figure 5b, with an outline of the organoid edge based on alignment of corresponding
microscopy image. To optimize electrode coverage, we generated specific configura-
tion files for electrode selection based on the regions with the highest activity, which
remained constant for seven of the eight chips. In one case (AF, Day 32+6), we updated
the configuration due to the emergence of a new high-signal area on the second day of
recording. Stable configuration maps allowed for automated electrode recordings over
days, optimizing long-term analysis.

Manual recordings involved an experimenter placing each HD-MEA on the record-
ing unit and initiating 10-minute recordings via software. In contrast, the hourly
recordings (AFAR 1-2 and AR) featured the HD-MEA remaining on the recording
unit while automated software handled the entire process, from power management
to data uploading. AFAR 1-2 and AR each amassed over 158 recordings, totaling over
26.3 hours (525 GB) of electrophysiology data per sample. Conversely, all manually
recorded samples (Controls 1-4 and AF) accumulated 7 recordings each, amounting
to 1.2 hours (23 GB) of electrophysiology data. The studies generated over 2 TB of
data from over 100 hours of mouse organoid recordings.

From these data, we analyzed the effects of our automated microfluidic, imaging,
and recording system on the neuronal activity of the brain organoids housed therein.
Imaging of the chips from above (Figure 5a) allowed us to align the body of the
organoid with neural activity (Figure 5b). In some instances, such as in Control 1,
neurite outgrowths were evident in the images and activity scans.

Initial activity scans were used to distribute samples into experimental and control
conditions. We sought even distribution of the samples into conditions to reduce biases
with respect to initial activity levels. Neural units identified from initial recordings
by spike sorting with Kilosort2 [39] were: Control 1: 87 units, Control 2: 292 units,
Control 3: 144 units, Control 4: 80 units, AR: 173 units, AFAR 1: 43, AFAR 2: 250,
AF: 29. Three chips were omitted from the study for having a unit count less than
25. Throughout the 7-day study, all samples with unit counts 29 to 80 (Control 4,
AFAR 1, and AF) increased their detected unit counts during the 7-day study, while
all samples with unit counts 87 and above (Control 1-3, AR, and AFAR 2) decreased
their detected unit counts (Figure 5c).

The average firing rate per neural unit increased for every sample, irrespective of
feeding or recording schedules (Figure 5¢). All samples started with an average firing
rate of 1.95 Hz (¢ = 0.48), increased by 0.24 Hz per day (¢ = 0.09), and concluded
with an average of 3.98 Hz (¢ = 1.22). The automated conditions (AR, AFAR, and
AF) presented no divergence from the controls on neural unit count, firing rate, or
morphology resulting from increased frequency of feeding and/or increased frequency
of recording.

High-frequency HD-MEA recordings reveal dynamic neuronal
activity states in organoids

The hourly recorded conditions (AFAR 1-2 and AR) revealed transient states, not
apparent with single daily recordings (Figure 5c-¢). Linear regression trendlines com-
paring the hourly and daily recordings for a single sample are congruent, however
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Fig. 5 Electrophysiology analysis of the 7-day cerebral cortex organoid study. (a) Digital
microscope images of example organoid conditions. (b) Boundaries of each organoid were outlined
using image segmentation and overlaid with activity scans from the initial recording “Day 0” (top)
and last recording “Day 7” (bottom). Experimental conditions are labeled underneath, with a color
legend. (c) Total detected neural units (left column) and median firing rates per unit (right column)
in daily 10-minute recordings, grouped by experimental condition. (d-e) Detected neural units (left)
and median firing rates (right) in hourly resolution for AFAR 1 (d) and AFAR 2 (e) using their
automated 10-minute recordings. Feeding events are noted as vertical violet lines. (f) The two AFAR
samples had a 6-hour automation cycle that included one 143 pL feed (violet) and six 10-minute
recordings (green). (g-h) Violin graph of all unit’s firing rates per recording for AFAR 1 (g) and
AFAR 2 (h) organized into bins of the 6-hour automation cycle following each feeding event. The
6-hour feeding regimen did not induce cyclical changes for either sample.

daily recordings do not capture the prominent oscillatory dynamics of neuronal unit
count and median firing rate captured by the hourly recordings. Median firing rates
were observed to fluctuate as much as 3-fold over the course of a day and are not
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well-characterized by linear regression fit (AFAR 1 R?=0.31, AFAR 2 R?>=0.42, AR
R?2=0.69).

We inspected the effect of feeding on these dynamics. The AFAR samples had a
six-hour automation cycle (Figure 5f) that included one 143 nL feed and six 10-minute
recordings. We examined effect by aligning recordings to a six-hour ‘time since feed’
cycle. Figures 5g and h present the composite graphs of aggregated neuronal firing
rates of AFAR 1 and AFAR 2, comprising 26 feeding cycles with all recordings binned
with respect to their time since feeding. The superimposed feeding cycles did not show
a trend in units (not shown) nor firing rate in relation to feeding cycles. The variance
presented in Figures 5d and e do not align with the six-hour feeding cycle.

Effects of feeding during recording

We further investigated the effect of feeding with a follow-up experiment that
included microfluidic feeds during electrophysiology recordings to capture the imme-
diate response on neuronal activity to a media injection. The AR sample from the
7-day study (Figure 5) was equipped with a microfluidic culture chamber and set on a
new feeding and recording schedule. Automated 15-minute recordings were performed
every hour for 36 hours. Feedings occurred every third hour that began at minute 5
of the ongoing recording (Figure 6a). Each feeding cycle was defined as an aspiration
and dispense of 150 pL. Automated feeds increased in their number of cycles each
third hour for four experimental conditions (1 cycle = 150 nL, 2 cycles = 300 nL, 4
cycles = 600 pL, and 6 cycles = 900 pL). Each of these conditions were performed
three times (Figure 6b).

Figure 6¢ presents neural unit raster plots and the average neuron firing rate for
representative recordings of each condition. Raster plots of neural unit firing over time
show no change in unit activity during microfluidic manipulation (light purple overlay).
The average firing rate did not show unusual variability during or after the feeding
window and did not correlate to pump actions (Dispense, Aspirate, or Cycle). To
further inspect this computationally, we performed normalization and z-score analysis
(detailed description in Materials and Methods, Normalization and z-score calculation
for effect of feeding during recording). Within each recording, a 90-second sliding
window was applied to the spike raster with 1-second steps. The firing rate of a single
unit at any particular window was normalized to the same unit’s average firing rate
across all windows within a recording. This scales changes in activity for any neural
unit to be comparable irrespective of average firing rate. For all non-feeding recordings
(N = 28), we calculated the firing rate mean and standard deviation (STD) of all
normalized units in each window. The results of the experimental conditions (Figure
6d) (N = 3 per condition) were calculated with z-scores generated for each neural
unit in each window to relate how much firing rate changed with respect to baseline
variability. The STD of £+ 1 in relation to the non-feed activity are marked (dashed
blue line). In the 10 minutes following the onset of microfluidic feeding, the largest
increase in firing rate was +0.7 STD above the mean at 3.9 minutes (150 nL condition),
largest decrease was 0.6 STD below the mean at 0.8 minutes (300 pL condition). Z-
scores for all conditions (150 pL, 300 pL, 600 pL, and 900 pL) remained within 4+ 0.7
STD showing no significant change in activity during microfluidic manipulations.
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Fig. 6 Effect of feeding during recording. (a) 15-minute recordings were collected hourly from
a cerebral cortex organoid, with automated microfluidic feeding beginning at minute 5. (b) Feedings
occurred every third hour of ascending fixed-volume cycles of 150 pL, 300 pL, 600 pL, and 900 nL,
then repeated for three trials (36 hours). (c) Graphs of select recordings showcasing each of the five
conditions. Top: spike raster of neuronal units (y axis) firing over time (x axis). Middle: average
firing rate per neuronal unit computed by dividing the total spikes in a 100 ms bin by number of
neuronal units. Bottom: microfluidic feeding actions performed by the pump. Each feeding “cycle” is
composed of one “aspirate” action followed by one “dispense” action. No “pull” actions occurred in
the graphs. Pink shading in the Top and Middle graphs represents the summed feeding duration, while
the Bottom graph breaks down the specific pump actions performed. Additional actions triggered by
feedback are outside the pink feeding window. (d) Firing rate dynamics in response to feeding events
across ascending cycle conditions. Neural activity was analyzed using 90-second sliding windows (in 1-
second steps) and normalized in two stages: first using contrast normalization (||z|| = (a—m)/(a+m),
where ||z|| is the norm, a is the firing rate of a neural unit in each window and m is the mean
firing rate across all windows for that unit within its recording) to account for individual unit firing
rate differences, followed by z-score normalization at each time window against the no-feed control
recordings to account for natural baseline firing variability. Z-scores were averaged across units within
each feed volume condition (150 pL to 900 pL) to evaluate the influence of progressively larger feed
volumes.

Feed cycles of different total volume and time length did not elicit immediate
changes in firing rates during or minutes after feeding. Combined with our findings in
Figure 5 showing no changes in firing rate distributions for six hours following feeding
cycles, these results suggest that neural activity remains stable despite media exchange
and the associated fluid movement.

14


https://doi.org/10.1101/2024.03.15.585237
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.15.585237; this version posted December 7, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Discussion

This automated platform advances orgnaoid research methodology, enabling contin-
uous monitoring and manipulation of brain organoids while maintaining optimal cell
culture conditions through non-disruptive, automated protocols. It addresses issues of
manual handling, variability, and limited temporal resolution. By integrating microflu-
idics, electrophysiology, and imaging through an IoT framework, we’ve created a
system that supports experimental reproducibility and reveals temporal dynamics pre-
viously difficult to capture in manual protocols. Running on a distributed IoT network
offers dual benefits: a local MQTT broker ensures reliable performance even during
internet outages while Cloud integration enables global collaboration across distant
labs for shared or complementary research. This setup enhances the continuity of indi-
vidual experiments and the integration of worldwide scientific efforts. The reduction of
human intervention enabled by the microfluidic feeding system reduces the risk of con-
tamination, variations in time outside the controlled temperature and CO2 incbator
environment during feeding and imaging, and other human-introduced variance. This
degree of control is particularly valuable in long-term organoid experiments towards
reducing batch effects.

Automated feedback mechanisms provide essential experimental control by main-
taining conditions within defined target ranges without manual supervision. Here,
we demonstrated one method of feedback: computer vision to maintain a consis-
tent volume in the organoid growth chamber. During our 7-day studies, the system
achieved this feedback autonomously and did not require manual intervention to rectify
anomalies. Further applications of feedback using existing hardware could modulate
electrical stimulation, media variety, or frequency of feeding based on media collec-
tions, morphology assessments, and electrophysiological measurements. Devices can
use the flexibility of MQTT messaging to allow for the creation of additional feed-
back loops to control the experiment. The computer vision techniques we applied
to volume estimation could be extended to further applications such as colorimetric
and absorbance sensing using the same setup to interrogate biochemical properties
of the media. Such measurements could provide additional analysis of organoid cul-
tures leading to a nuanced understanding of their behavior and responses to different
stimuli.

The interval between electrophysiological recordings is essential for characterizing
neural network dynamics. Neural processes unfold with remarkable complexity and
variability, but for practical reasons, many experimental paradigms are limited to
once-a-day recordings [5, 40-42]. Recent work [43] demonstrated that important neu-
ral network properties, including firing rate distributions and small-world topology, are
“preconfigured” rather than emerging solely through experience-dependent processes.
Their finding that stable network properties exist from very early developmental stages
validates that automated maintenance and monitoring systems, like the one presented
here, can reliably capture intrinsic developmental processes without disrupting natural
network organization. By providing the ability to schedule recordings at any interval,
our system is particularly well-suited to investigate the relationship between innate
and experience-dependent aspects of network development. Our high-frequency record-
ings revealed trends not captured in once-a-day sampling, enabling the detection of
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patterns, oscillations, and interactions that may be overlooked in sporadic recordings
[44, 45]. These capabilities are further relevant for studying phenomena on shorter
timescales, such as neuroplasticity [46], circadian rhythms [44], and for investigat-
ing neurodevelopmental disorders hypothesized to be ’connectopathies,” characterized
by abnormal connectivity [47]. By enabling simultaneous tracking of morphological,
electrophysiological, and network-level changes over extended time periods, our auto-
mated platform could help resolve questions about how early network properties evolve
throughout development, potentially yielding new insights into both the stability and
plasticity of developing neural circuits.

The greater the complexity of experiments, the more automation becomes essential
to coordinate and manage the different technical modalities. The use of 3D printing
technology enhances this flexibility, allowing for the seamless combination of multiple
systems, such as the integration of our custom media exchange setup with the com-
mercial HD-MEA and portable microscope. We foresee the integration of additional
sensory data and feedback mechanisms to analyze cell culture conditions. The lack of
effect due to media manipulation presented in Figure 6 opens the opportunity dispense
and aspirate pharmacological reagents or small molecule factors without the perturba-
tion of manual interventions. With this system one could precisely measure the onset
of electrophysiological responses to chemical manipulation of the culture. The plat-
form’s consistency and reliability are ideal for comparative studies involving organoids
of different genotypes or subjected to pharmacological manipulations. This capacity
to facilitate direct comparisons between diverse experimental conditions in controlled
environments holds promise for advancing our understanding of neurodevelopment
and neurodevelopmental disorders.

Materials and Methods

Assembled devices and custom 3D-printed components

The Bill of Materials listing components and costs are provided in Supplementary
Materials. STL files for 3D printing are provided in Printed Accessories.zip.

Microfluidic cell culture

The automated microfluidic pump system builds on previous work [30]. The microflu-
idic system was configured for this study to support two chips (AF and AFAR) and
their respective collection reservoirs (right and left) were imaged by the camera setup.
Replicates of the conditions were achieved by repeating the experiment on a following
batch of organodis.

Fresh cell culture media is kept at 4°C refrigeration and accessed by the pump
through flexible FEP tubing routed into a benchtop refrigerator and to a media bottled
with a reagent delivery cap (Cole-Parmer VapLock). Fresh media is kept refrigerated
to increase longevity and may be replaced during experimentation. To dispense, the
syringe pump and distribution valves draw fresh media into the syringe vial and dis-
tribute the programmed volume into flexible FEP tubing routed through an access
port in the incubator. Here, the media is heated in incubator conditions prior to being
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delivered to the organoid inside the culture chamber. To keep media dispenses available
on demand, a preheated 450 pL reserve (59% of the chamber’s volumetric capacity)
of fresh media remains idle in the FEP tubing so that upon dispensing, 37°C media
is delivered to the well in less than 10 seconds. The FEP tubing is interfaced with
the fluidic module with threaded ferrule lock and nut fittings (Cole-Parmer VapLock).
Outflow from the fluidic module is drawn away with FEP tubing routed out of the
incubator and into a refrigerator containing the collection reservoirs and computer
vision camera setup.

For the collection reservoirs, we selected 15 mL Polyethylene Terephthalate (PET)
conical tubes (430055, Corning) for high optical clarity, ease of replacement, and dura-
bility in downstream analysis and cold storage. To enhance visibility for computer
vision imaging, we removed the factory-printed writing area on the conical PET tubes
using generic, multipurpose tape. Flexible FEP tubing was interfaced with the PET
tubes using a rubber cork plug (#6448K95, McMaster-Carr). The cork was pierced
with 8-gauge steel needles that served as supportive conduits for the tubing. The tub-
ing was secured inside the needle with glue (Loctite 4011) to create a hermetic seal at
the point of interface. The steel encasing of the needles ensures a smooth, unobstructed
flow within the flexible FEP tubes. Each collection reservoir had two flexible FEP
tubes: one for media coming from the fluidic module and one for pressurized opera-
tion connected to the syringe pump. This ensured that spent media never entered the
syringe (only air). The air is expelled into a filtered (Millipore AA 0.22 nm syringe
filter) safety container (not shown in Figure 1).

For the 7-day studies described here, we designed for equivalent media exchange
across conditions. The Controls were fed 4 times at 1 mL per feed, totaling 4 mL of
replacement media. AF and AFAR were fed 28 times at 143 pL per feed, totaling 4
mL of replacement media over the week. Summing the scheduled feeds and feedback
adjustments, a single collection reservoir could store conditioned media for 2-3 weeks.

Cell culture

Cell culture protocols and organoid plating on HD-MEA, which occurred prior to the
experiment, are described in Supplementary Materials and Methods.

Priming the experiment

Before starting a 7-day recording experiment, membrane lids for HD-MEAs (AF and
AFAR) were replaced with microfluidic culture chambers. During the replacement
process, all media was aspirated from the HD-MEA’s well with a P-1000 pipette. The
microfluidic catch tray, followed by the culture chamber, was inserted inside the well,
and 750 pL of the original media was added back to the microfluidic culture chamber.
Excess media was discarded. The glass rod lid was placed on top.

Flexible FEP tubes (idling with DI water) were flushed with 1.0 mL of fresh media.
After priming the lines with media, the AF/AFAR chips were connected with fluidic
fittings wrapped with Teflon tape. An initial aspiration leveled the media to the target
fluidic operating range. The collection reservoirs were replaced with new empty conical
tubes.
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Running the experiment

During the experiment, the media was exchanged using a feed cycle operation con-
sisting of an aspiration followed by fresh media dispense. Here, we performed 143 pL
aspirations and dispenses every 6 hours to match 1.0mL feeds every two days in the
manual feeding controls. Feedback performed additional aspiration, dispense, and pull
actions in addition to the basic feed cycle schedule to ensure the system stayed within
normative error ranges. See section Feedback interpreter.

Teardown of the experiment

Once the experiment was stopped, chips were disconnected from the flexible FEP tubes
by unscrewing the fittings. The flexible FEP tubes with fittings were sterilized in a
flask containing disinfectant (Cydex) and covered with aluminum foil. The collection
reservoirs with the experiment’s conditioned media were disconnected and taken for
analysis. New collection reservoirs were inserted for the cleaning cycle. The pump ran
a cleaning solution (Cydex) through the entire internal cavity for 1 hour to disinfect
the system. Following disinfection, DI water and dry, sterile air were profused through
the system for 124 hours (overnight) to clear the disinfectant. The flexible FEP tubes
were left resting with DI water until the next experiment.

Computer vision for fluid volume estimation

The computer vision setup, located inside a 4°C refrigerator, included a support for the
collection reservoir, a camera module, and an LED panel positioned behind the conical
tubes. The LED panel served as backlighting to enhance the clarity and contrast
of the images. The reservoir support was a two-plex 3D-printed system capable of
multiplexity to tailor alternate experiments (see Assembled devices and custom 3D-
printed components). The camera and LED panel were both controlled by a Raspberry
Pi.

To generate the calibration dataset, the camera module captured images of media
in the collection reservoirs at select volumes over the entire range of the tube (0-12 mL),
totaling 184 images. The volumes associated with each image were measured using a
high-precision scale (30029077, Mettler Toledo). This approach enabled a correlation
between the visual representation of media in the images and its actual volume (see
Results).

To ensure image quality, our study introduced two checks to validate the integrity
of the captured images: Lighting and blurriness. A region of interest (ROI) was des-
ignated within the panel’s area to verify the lighting conditions by checking that the
average RGB color values each exceeded a minimum threshold of 20 out of 255. Blur-
riness was assessed by computing the variance of the Laplacian for the image, with a
necessary threshold of 50 to pass. The thresholds were empirically determined using
the calibration dataset.

Figure 2c illustrates the methodology applied to fluid segmentation, outlined in
the Results section. The process begins with capturing an RGB image of the collection
reservoirs that are fixed in place by the setup. To facilitate better segmentation and
feature extraction, the RGB image is transformed into the HSV (Hue, Saturation,
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and Value) color space. A summation of the HSV values row-wise from the bottom
to the top of the collection reservoir results in three distinctive profiles that allow
differentiation between the liquid and background. Each profile, as illustrated in Figure
2c, presents a vertex at the boundary. A row value was established by averaging three
rows identified in each HSV channel: an abrupt rise in the curve for the Hue channel,
the absolute maximum for the Saturation channel, and the absolute minimum for
the Value channel. From the average row value, the first segmentation was created.
Everything below this row was set as white pixels, and everything above it was set as
black pixels. A local evaluation around the average row was made to incorporate the
meniscus in this segmentation. Utilizing HSV thresholds, the meniscus was accurately
characterized and incorporated into the initial segmentation, culminating in the final
image segmentation, in which white pixels represented the liquid portion.

The estimated volume was given by Equation 1, where x represents the segmented
area in pixels, and the resultant volume is in microliters. Two different curves are used
to account for the conical section for volumes under 1.5 mL (and pixel area less than
4446) and the cylindrical section for larger volumes.

Vi) = 5.09 x 107223 +2.39 x 10~°22 + 0.13z — 1.28 if x < 4446 pixels
)7 902.60 x 1071123 4 5.38 x 10722 + 0.627 — 1288.37 > 4446 pixels
(1)

The image segmentation and estimation based on the mathematical model
(Equation 1) is carried out by a software program named the “Estimator.” The pro-
cess initiates with a feeding cycle, which triggers a picture request. Upon receiving
the image of the collection reservoir, the “Estimator” analyzes the image and returns
the estimated value of the fluid volume. The volume is relayed to the next module for
feedback interpretation within the pump system (see Feedback interpreter).

Feedback interpreter

Computer vision volume estimations were compared to expectation values based on
the sum total of pump action jobs. The feedback interpreter classified estimations
into four categories: within tolerance, out-of-tolerance, anomaly, and tube change.
Tolerance was a static volume selected at the start of the experiment. For the results
shown here, the tolerance was 143 pL. If the volume estimation received was within
the expectation value +/- the tolerance, the pump action was determined a success,
and feedback ceased. If the volume estimation received was beyond the expectation
value +/- the tolerance and also less than +/- 2000 pL, another cycle of feedback
was engaged. When the volume was less than expected, for the first 5 iterations of
feedback, aspiration jobs were sent to the pump with the difference of expectation
and estimation. For iterations 6 to 19, pull jobs were sent to the pump, increasing
by one for each subsequent interaction. A “pull” is a 1000 pL aspiration at 10x the
standard syringe speed (applying a 1.1 x 103 mm/s flow rate), shown to generate the
force required to break through variably high resistance in the conditioned media. At
20 iterations, the feedback interpreter requests manual intervention via the messaging
application, and all further pump actions are suspended until the issue is resolved.
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When the volume was more than expected, dispense jobs were sent to the pump with
the difference of expectation and estimation. Dispense actions were limited to 200
pL per action and 2 iterations of feedback in total to prevent overflow. A volume
estimation that was 2000 pL or more above the expectation value was determined
as an anomaly and requested manual intervention via the messaging application, and
all further pump actions were suspended until the issue was resolved. The feedback
interpreter automatically detected collection reservoir tube changes when the volume
estimation dropped by 2000 pL or more compared to the previous estimation and the
total volume present was estimated as less than 2000 pL.

Computer vision for in-incubator organoid culture imaging
In-incubator imaging

A 5MP digital microscope (AM7115MZTL, Dino-Lite) was placed over the organoid
culture on the HD-MEA using holders described in Assembled devices and custom
3D printed components. Imaging was performed from the top through a glass rod
(quartz drawn rod, 5mm =+ 0.20mm dia x 15mm =+ 0.20mm long, UQG Optics) (in
AF/AFAR chips) or through a membrane lid (in control chips). The image is captured
using reflected light from a built-in brightfield LED source next to the camera sensor.
The 3D printed alignment trays handle most of the chip placement, with initial minor
focal plane adjustment required. The microscope remains shut off until the software
triggers it to turn on the lights and take a photo.

Image segmentation for organoid

In the process of image segmentation for organoid analysis, the first step involves
applying an image calibration to correct any distortion. This procedure requires identi-
fying four source points and four destination points. The former were manually selected
from the distorted image. The latter were calculated based on an initial pixel (left cor-
ner of the HD-MEA), the size of the electrodes, and the spacing between them, both
in millimeter units. This relationship between pixels and millimeters was established
by using known dimensions of the HD-MEA border and electrode pitch in the image.

The organoid segmentation within the rectified image was accomplished using the
Segment Anything Model (SAM) [48]. This model combines neural network archi-
tectures, allowing for precise and versatile image segmentation without requiring
specialized training on new images. The segmented image is analyzed to detect varia-
tions in pixel intensity, which signify the presence of organoid contours. Both images
with the organoid’s contour and electrode grid are overlayed. Each electrode area is
checked for the presence of the organoid’s border. When a border is detected within an
electrode’s bounds, that particular electrode is marked prominently on the grid image
to signify contact with the organoid (see Figure 5b). The step-by-step illustration of
the analysis process is shown in Supplemental Figure 4.
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Plotting & alignment to neural activity data

Electrode numbers as (x,y) position were plotted in matplotlib and exported as SVG.
The SVG aligns over other plots, such as activity heatmaps, which follow the same
x:3580 by y:2100 axis dimensions. Since electrophysiology plots use the electrode coor-
dinate system with the same (x,y) positions, the image segmentation grid and neural
activity plots are aligned on the same coordinate system.

Measuring neural activity

Extracellular field potential recordings were performed using CMOS-based high-
density microelectrode arrays (HD-MEAs) (MaxOne, Maxwell Biosystems). Each
HD-MEA contains 26,400 recording electrodes within a sensing area of 3.85 mm x
2.1 mm (each electrode has a diameter of 7.5 pm, spaced 17.5 pm apart center-to-
center). A subset of up to 1020 electrodes (defined spatially by a configuration) can be
selected for simultaneous recording [49]. Across one configuration, neuronal activity
in microvolts was sampled over time at 20kHz and stored in HDF5 file format.

The experiment involved each chip’s daily activity scans and recordings (described
below). Each chip underwent an activity scan and subsequent recording every day, con-
sistently conducted within the same one-hour time window. All chips shared the same
recording unit and were recorded one at a time. For the AFAR condition, beyond the
daily recordings and activity scans, the chip remained on the HD-MEA for automated
hourly recordings. The gain was set to 1024x with a 1 Hz high pass filter for both
activity scans and recordings. The recording was set up to save 5 RMS thresholded
spike times as well as all raw voltage data for downstream analysis and plotting.

All neural activity measurements were performed inside the incubator at 36.5°C,
5% CO2.

Normalization and z-score calculation for effect of feeding
during recording

In section Effects of feeding during recording, Figure 6d, the firing rate variability to
feeding was derived as follows:

For every recording, a 90-second sliding window was used to further analyze the
sorted and curated spike raster with steps of 1-second. For every window, the average
firing rate per unit was computed. To account for intrinsic variability in firing rate
between units, the average firing rate per window was normalized for each unit as
lz]| = (¢ —m)/(a + m), where ||z| is the norm, @ is the window rate and m is the
mean value across all window rates in the recording. This normalization yields a values
between -1 and 1, reflecting the deviation from the average firing rate of each unit. A
value of 0 means that the average firing rate for a unit in a given window is the same
as the average firing rate for that unit. A value of + 1/3 means that the firing rate
for a unit in a given window is approximately twice (for +1/3) or half (for -1/3) the
mean firing rate for that unit.

Subsequently, the normalized firing rates per unit for all no-feed recordings were
taken and for each window relative to the start of the recording, the mean and standard
deviation were computed over all units in all no-feed recordings. These values were
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then used to z-score normalize the normalized firing rates of every unit in every window
throughout all feed recordings as z = (|| feed||—Lnofeed)/Tnofeed, Where z is the z-
score, HmfeedH is the norm in the feeding condition, pnofeeq is the mean of the norm
in the no feeding condition, and o, feeq is the standard deviation of the norm in the
no feeding condition. This normalization yields a value for each unit per fed recording
at every window that reflects the variability from the average firing rate of that unit.
This is expressed as the number of standard deviations that any particular value is
removed from the average variability from the mean firing rate of all units over all
no-feed recordings at that same window in the recording. If the firing rate of the unit
during any point in the feed recording substantially increases or decreases relative to
the average firing rate over the whole recording and if this is not the case for units in
the no-feed recording, this will be reflected as a positive or negative z-score normalized
value. In addition, the z-scores were averaged over all units in all feed recordings with
the same feed volume to see the effects for each individual feed volume.

Internet of Things (IoT)
Cloud Infrastructure

The cloud infrastructure, including S3, MQTT messaging, and cloud processing within
the IoT system, has been previously described [28]. Additionally, we added a database
service and defined a consistent organizational structure for MQTT messages and
topics across devices and cloud jobs.

We use a combination of self-hosted services running on a server, and large data
storage and analysis are performed on the National Research Platform (NRP) cloud
compute cluster [50]. The devices are integrated with these cloud services:

® S3 cloud data storage: file storage using S3 object store, hosted on NRP cloud.

® Database: Strapi database stores device states, is self-hosted on our server, and is
backed up to S3.

e MQTT messaging: EMQX MQTT broker, self-hosted on the server, and a Python
messaging library (braingeneers.iot.broker) utilized by all software endpoints to send
and receive messages from the broker.

® Cloud jobs/processing: utilizes a Kubernetes cluster on NRP and launches jobs.
Employs software modularized by Docker containers and orchestrated by Kuber-
netes.

e User interfaces: features a website and integration with messaging apps (e.g., Slack)
for interaction with devices, self-hosted on the server.

All custom software functionalities run in Docker containers and operate in a
microservice architecture: specialized to a specific task and interface with minimal
dependencies. A reverse proxy shields all web services from direct exposure to the inter-
net. For example, webpages are configured through a reverse NGINX proxy, which not
only assigns a specific domain to each service but also handles SSL and authentication
services.
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Security

Devices initiate communication with the server. Devices take MQTT commands in a
specific format and are limited to the set of their defined commands, making them
robust to command injection attacks. Accessing all cloud services requires authentica-
tion with credentials. All web, MQTT messages, database, and S3 storage operations
are encrypted. Access to the user interface website is restricted through the proxy
with a login authentication step. On the server side, all web-based microservices are
secured through an NGINX proxy. The proxy allows web-based services to be rela-
tively untrusted by providing security (https, authentication, internet visible network
listener) and keeping all other web-based services on an internal docker network inac-
cessible from the internet. This simplifies security for services which may change often
and accommodates programmers with minimal security training.

Data availability

Electrophysiological data will be made available on a DANDI public server at:
https://dandiarchive.org/dandiset /001268.

Other data including Bill of Materials, CAD models, and code will be available in the
GitHub repository:
https://github.com/braingeneers/integrated-system-v1-paper.

Additional data related to this paper may be requested from the authors.
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Supplementary Materials and Methods

Embryonic stem cell culture

All experiments were performed in the adapted C57/BL6 mouse embryonic stem cell
(ESC) line (Millipore Sigma # SF-CMTI-2). This line is derived from a male of the
C57/BL6J mouse strain. Mycoplasma testing confirmed lack of contamination.

ESCs were maintained on Recombinant Human Protein Vitronectin (Thermo
Fisher Scientific # A14700) coated plates using mESC maintenance media containing
Glasgow Minimum Essential Medium (Thermo Fisher Scientific # 11710035), Embry-
onic Stem Cell-Qualified Fetal Bovine Serum (Thermo Fisher Scientific # 10439001),
0.1 mM MEM Non-Essential Amino Acids (Thermo Fisher Scientific # 11140050),
1 mM Sodium Pyruvate (Millipore Sigma # S8636), 2 mM Glutamax supplement
(Thermo Fisher Scientific # 35050061), 0.1 mM 2-Mercaptoethanol (Millipore Sigma
# M3148), and 0.05 mg/ml Primocin (Invitrogen # ant-pm-05). mESC mainte-
nance media was supplemented with 1,000 units/mL of Recombinant Mouse Leukemia
Inhibitory Factor (Millipore Sigma # ESG1107). Media was changed daily.

Vitronectin coating was incubated for 15 min at a concentration of 0.5 pg/mL
dissolved in 1X Phosphate-buffered saline (PBS) pH 7.4 (Thermo Fisher Scientific #
70011044). Dissociation and cell passages were done using ReLeSR passaging reagent
(Stem Cell Technologies # 05872) according to the manufacturer’s instructions. Cell
freezing was done in mFreSR cryopreservation medium (Stem Cell Technologies #
05855) according to the manufacturer’s instructions.

Cerebral cortex organoids generation

Mouse cortical organoids were grown as previously described by our group [34, 51]
with some modifications. To generate cortical organoids we single cell dissociated ESCs
using TrypLE Express Enzyme (ThermoFisher Scientific #12604021) for 5 minutes
at 37°C and re-aggregated in lipidure-coated 96-well V-bottom plates at a density
of 3,000 cells per aggregate, in 150 pl. of mESC maintenance media supplemented
with Rho Kinase Inhibitor (Y-27632, 10 nM, Tocris # 1254) and 1,000 units/mL of
Recombinant Mouse Leukemia Inhibitory Factor (Millipore Sigma # ESG1107) (Day
-1).
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After one day (Day 0), we replaced the medium with cortical differentiation
medium containing Glasgow Minimum Essential Medium (Thermo Fisher Scientific #
11710035), 10% Knockout Serum Replacement (Thermo Fisher Scientific # 10828028),
0.1 mM MEM Non-Essential Amino Acids (Thermo Fisher Scientific # 11140050),
1 mM Sodium Pyruvate (Millipore Sigma # S8636), 2 mM Glutamax supplement
(Thermo Fisher Scientific # 35050061) 0.1 mM 2-Mercaptoethanol (Millipore Sigma
# M3148) and 0.05 mg/ml Primocin (Invitrogen # ant-pm-05). Cortical differentia-
tion medium was supplemented with Rho Kinase Inhibitor (Y-27632, 20 uM # 1254),
WNT inhibitor (IWRI1- ¢ ; 3 pM, Cayman Chemical # 13659) and TGF-Beta inhibitor
(SB431542, Tocris # 1614, 5 uM, days 0-7). Media was changed daily.

On day 5, organoids were transferred to ultra-low adhesion plates (Millipore Sigma
# CLS3471) where media was aspirated and replaced with fresh neuronal differentia-
tion media. The plate with organoids was put on an orbital shaker at 60 revolutions
per minute. Neuronal differentiation medium contained Dulbecco’s Modified Eagle
Medium: Nutrient Mixture F-12 with GlutaMAX supplement (Thermo Fisher Scien-
tific # 10565018), 1X N-2 Supplement (Thermo Fisher Scientific # 17502048), 1X
Chemically Defined Lipid Concentrate (Thermo Fisher Scientific # 11905031) and
0.05 mg/ml Primocin (Invitrogen # ant-pm-05). Organoids were grown under 5% CO2
conditions. The medium was changed every 2-3 days.

On day 14 and onward, we transferred the organoids to neuronal maturation media
containing BrainPhys Neuronal Medium (Stem Cell Technologies # 05790), 1X N-2
Supplement, 1X Chemically Defined Lipid Concentrate (Thermo Fisher Scientific #
11905031), 1X B-27 Supplement (Thermo Fisher Scientific # 17504044), 0.05 mg/ml
Primocin (Invitrogen # ant-pm-05) and 0.5% v/v Matrigel Growth Factor Reduced
(GFR) Basement Membrane Matrix, LDEV-free.

Organoid plating on microelectrode array

Mouse cerebral cortex organoids were plated, as previously described by our group
[34], with two organoids per well. We plated the organoids at day 32 on MaxOne
high-density microelectrode arrays (Maxwell Biosystems # PSM). Prior to organoid
plating, the microelectrode arrays were coated in 2 steps: First, they were coated with
0.01% Poly-L-ornithine (Millipore Sigma # P4957) at 36.5°C overnight. Then, the
microelectrode arrays were washed 3 times with PBS and coated with a solution of 5
pg/ml mouse Laminin (Fisher Scientific # CB40232) and 5 pg/ml human Fibronectin
(Fisher Scientific # CB40008) prepared in PBS, at 36.5°C overnight.

After coating, we placed the organoids on the microelectrode arrays and removed
excess media. The organoids were incubated at 36.5°C for 20 minutes to promote
attachment. We then added prewarmed neuronal maturation media (described in the
section above). We exchanged 1.0 mL of conditioned media for fresh every 2 days.

HD-MEAs containing the organoid cultures are stored in an incubator at 36.5
°C, 5% CO2, covered with membrane lids described in the section below, Assembled
devices and custom 3D-printed components.
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Computer vision for fluid level detection
Camera details

A 16MP camera (B0290, Arducam) and a set of conical tubes are fixed 12 mm apart
from each other on an optical breadboard (SAB10x30-M, Base Lab Tools). The camera
was specifically configured without autofocus, with its focus statically set at 344 on a
scale from 1 to 1023. A two-second warm-up period stabilizes the focus setting before
a picture is taken. Exposure was set at 45 on a scale from 1 to 5000.

LED panel details

A 16x16 LED matrix (WS2812B-16x16ECO, BTF-LIGHTING) covered with 0.1mm
thick polyester diffusion film (BOSPTCGTX9, RENIAN) creates a uniformly illumi-
nated background (we used 8 sheets of diffuser film spaced 1 mm apart by double-sided
foam mounting tape). The LED panel is approximately 5 mm behind the conical tubes.

The LED matrix was set to display a color gradient to best contrast fluid contents
inside the conical tube, particularly in the cone-shaped lower area of the conical tube,
which is thinner and appears lighter in color. The red color component of each LED
matrix pixel was set based on its row position within the matrix, beginning with an
initial red value of 221 out of 255. The red color intensity was reduced by two units
for each row upwards, creating a gradient effect. Thus, the final color of each pixel was
a combination of this dynamically adjusted red value and fixed green and blue values
of 140 and 180, respectively. Furthermore, the LED panel’s brightness was set to 50%
to prevent overexposure in the captured images.

Assembled devices and custom 3D-printed components

All custom accessories were 3D printed (Form 3B+, Formlabs) with Biomed Clear
V1 material (RS-F2-BMCL-01, Formlabs), except for the collection tube and camera
stand in the refrigerator printed in BioMed Black V1 (RS-F2-BMBL-01, Formlabs).
The parts were printed flat on the build plate to reduce support material. Alignment
grooves between the insert and lid described in the Microfluidic culture chamber form
a hole which also facilitates 3D printing by removing the formation of suction cups to
the resin tank.

Microfluidic culture chamber

The microfluidic culture chamber assembly allows media to be exchanged inside the
HD-MEA well. The chamber assembly consists of a microfluidic module, glass rod lid,
and catch tray (Figure 1b,f,g).

The microfluidic module is placed inside the HD-MEA well, creating a media
chamber and fluid path into and out of the chamber. Media from outside the incu-
bator travels to the fluidic insert along 0.030” ID and 0.090” OD Tygon tubing
(AADO02119-CP, Cole Parmer); the length of the tubing is approximately 100 cm. The
tubing attaches to the fluidic insert using PEEK fittings (EW-02014-97, Cole Parmer)
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wrapped (counter-clockwise) in PTFE thread seal tape around twice the fitting’s cir-
cumference. The inlet and outlet are raised inside the fluidic insert to create a pool
following a geometry published in previous work (30).

The fluidic insert, glass rod lid, and catch tray use silicone O-rings (5233T543,
5233T479, 5233T297, and 5233T585, McMaster) to provide seals against contami-
nations and leakage. O-rings were rubbed with a minimal quantity of canola oil for
lubrication to facilitate installation and enhance sealing performance. The canola
oil can be autoclave-sterilized, but it is unnecessary if the O-rings are sterilized
post-lubrication (see section, Sterilization and assembly).

Membrane lid

The membrane lid used for experimental control conditions follows established designs
(49), with adjusted dimensions to improve grip, matching material to the microfluidic
culture chamber, and high-temperature silicone O-rings instead of rubber. The outer
O-ring (5233T683, McMaster) holds the breathable FEP film (23-1FEP-2-50, CS Hyde
Company) stretched over the top of the lid. The inner O-ring (5233T585, McMaster)
seals the lid and well. The inner O-ring is also rubbed with a minimal quantity of
canola oil as described in the Microfluidic culture chamber section.

In-incubator imaging alignment holders

The custom alignment holders, designed for two configurations, center a digital micro-
scope over the biological sample on the HD-MEA. Components are screw mounted
(91292A134, McMaster) to optical breadboards (SAB10X15-M, SAB15X15-M, Base
Lab Tools Inc.) to ensure stability and maintain accurate spacing.

HD-MEA off the recording unit

The microscope is held over a single HD-MEA by a post and clamp (MS08B, Dino-
Lite) mounted with a setscrew and base (SS6MS10, TH15/M, Thorlabs). The custom
HD-MEA holder centers it for imaging. Throughout the experiment, HD-MEAs were
left resting on each holder. The holder has cut-outs for handling the chip and also
avoids the chip’s contact pads to decrease scratching and avoid moist surfaces. The
holder also has indicators for the chip’s proper rotation with respect to the microscope.

HD-MEA on the recording recording unit

The custom holder on a post assembly (SS6MS10, TH15/M, TR250/M-JP, Thorlabs)
mounts the microscope over the chip on the recording unit. The custom holder centers
both the recording unit with its attached chip to the microscope.

Sterilization and assembly

Before use in tissue culture, components were placed in autoclavable bags (RIT-3565,
PlastCare USA) and steam-sterilized at 134°C for 20 minutes or 121°C for 30 minutes
based on Formlabs material datasheet specifications. Components were autoclaved,
disassembled, and then assembled in a sterile tissue culture hood to avoid deformation
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or cracking during temperature cycling. Components were transported in an enclosed
petri dish (small items) or a sterile autoclaved bag (large items) before being released
into the incubator. Components that could not be autoclaved (such as electronics, i.e.,
recording unit, microscope) have their enclosures sterilized with hydrogen peroxide
disinfecting wipes (100850922, Diversey) before entering the incubator.

Measuring neural activity
Activity scans

Activity scans were performed daily in the MaxLab Live Scope (Version 22.2.22,
MaxWell Biosystems) to identify where the organoid’s electrical activity is spatially
distributed across the HD-MEA. The activity scan sequentially records from different
configurations of up to 1020 electrodes, thereby sampling the microelectrode array
for action potentials. We used the checkerboard assay consisting of 14 configurations,
with 30 seconds of recording per configuration. The resulting activity heatmap (see
Activity heatmaps) for each chip is shown in Figure 5b. Based on the assay results,
1020 most active electrodes were selected for simultaneous activity recordings.

Recordings

Each recording lasted 10 minutes. Initial recording configurations were created on the
first day, and configurations were updated on the second day to match shifting activity.
Afterward, we chose to keep the configurations constant across the final 5 days since
the activity did not shift dramatically, and keeping the same configuration allowed for
more consistent monitoring of the same region.

Smartplugs

A smartplug was connected to the recording system to automatically manage the
duration of the recording system running. The smartplug (S31, SONOFF) running
Tasmota 13.2.0 was connected to the MQTT broker (see MQTT) and received MQTT
commands over WiFi to turn on and off.

The smartplug facilitated the automated recordings every hour: on the computer
connected to the MEA recording system, a script running in Python (3.10) triggered
the smartplug via MQTT to turn on the recording system, performed a recording using
MaxLab Python API (MaxWell Biosystems), and afterward triggered the smartplug
to turn off the recording system.

Spike sorting and curation

To process the electrophysiology data, each MaxWell recording was spike sorted into
single unit activity using Kilosort2 [39]. Using a template-matching algorithm, Kilo-
sort2 clustered neurons based on waveform shape. Spike sorting parameters included
a bandpass filter of 300 to 6000 Hz for the raw data and voltage threshold of 6 RMS
above baseline.

The sorting output was curated by an automatic algorithm that quality checks
signal-to-noise ratio (SNR), firing rate, interspike interval (ISI) violation, and spike
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footprint for each putative neuronal unit. As a result, units that had SNR above
3, firing rate above 0.1 Hz, ISI violation below 0.5 and footprint on more than one
channel were kept for analysis [52]. Units were labeled redundant using spikeinterface
“remove_redundant” module and processed through manual curation for consolidation.

Spike sorting was performed on the National Research Platform (NRP) computing
cluster with an NVIDIA A10 GPU.

Activity heatmaps

Activity heatmaps in Figure 5a depict the spatial distribution of significant voltage
events. MaxWell software provides thresholded event identification based on moving
root-mean-square (rms) value for each electrode, identifying events exceeding 5 times
an electrode’s rms value. We created a 2D grid of spike counts per second and applied
a 2D Gaussian blur for visual smoothness, normalizing each grid point by dividing it
by 2712 to re-scale back to the original Hz values. These values were then plotted as
the activity heat maps. The heatmaps use warmer colors for higher firing frequency
and darker colors for lower activity.

MQTT

MQTT messages serve as the standard unit of communication (Figure 3b, orange).
MQTT allows devices and services to communicate without direct dependencies
between each other by using a common publish/subscribe medium. MQTT clients
are the devices or software entities that connect to the broker to send (publish) or
receive (subscribe to) messages. Devices and services send messages on MQTT topics,
which are hierarchical strings that allow listeners to capture a wide or narrow scope
of information. Messages contain a payload with a list of key-value pairs to struc-
ture information. For example, a message requesting a microelectrode array to record
has a key for recording duration with a value in minutes. Examples of MQTT topic
structure and message JSON payloads are summarized in Supplementary Table 1; see
GitHub for more information'.

The MQTT broker is the central communication facilitator in the network and
coordinates messages between clients. The MQTT broker receives all messages from
the clients, filters these messages based on their topics, and then distributes them
accordingly to other clients who have subscribed to those specific topics. This setup
enables efficient message routing and ensures that messages reach the intended
recipients without the senders needing to know the specific details of the recipients.

Clients can be sensors, actuators, applications, and services (like Uls or analysis), or
any other devices capable of network communication. The organization is future-proof
because MQTT allows the creation of new services and devices and uses information
available without changing any services (logging, UI, dashboards, analysis of traffic,
etc.). Furthermore, message bridges can be employed to convert MQTT messages to
other messaging APIs such as text messaging, email, or work chat applications like
Slack (see Messaging bridge).

1 https://github.com/braingeneers/integrated-system-vl-paper
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IoT device-class

The primary function of a device-class involves listening for job requests, executing
them, and saving the resulting data to the cloud. This data includes measurements
(e.g., images, voltage recordings) and log entries detailing device actions (e.g., cell cul-
ture feeding events). By consolidating features, the device-class framework simplifies
the creation of new devices and enables easy control, updating, and interoperability.
The Python device-class provides standard features across all IoT devices:

® a state machine defining standard behavior (i.e., experiment workflow)

e structured framework for processing incoming request messages

autonomous task scheduling, timing, and execution; the internal scheduler manages
time

conflicts of tasks or autonomously recurring jobs

multi-tasking and responsiveness to user requests via threading

built-in database operations (i.e., updating device state (shadow))
communication via MQTT messaging (including alerts via Slack bridge)
background data upload/download mechanisms, managing queueing and retry
error handling mechanisms

communicate and work with other devices in a fleet

A child of the parent device-class will inherit all basic functionality, and may add
additional features. For instance, a camera device-class child performs all actions that
a device-class can, plus it knows how to handle a request to take a picture.

Having a common parent class consolidates similar features for different devices
and allows for easier updates because all devices use the same core code library. The
device-class code is available within the Braingeneerspy Python package on GitHub?.
For state machine states and request commands see Supplementary Tables 1 and 1.

Devices can work in a fleet. As each device has the same core software with comple-
mentary behaviors, they integrate seamlessly, similar to how uniform building blocks
can easily snap together. Devices can ask each other to yield while they perform sen-
sitive actions (Figure 3d). Similarly, devices can perform services for each other in
a coordinated manner. For example, midway through a recording, a microelectrode
array device could ask the pump to deliver a drug. Devices can perform rudimentary
decision-making to simplify overarching management. Devices post status and infor-
mation to an open MQTT topic, allowing services and devices to build on and interface
with those devices without altering existing devices and services. Devices can use each
other to make sure the experiment is on track across multiple modes of sensing, for
example the pump using the eyes of the camera to ensure pumping succeeded.

Pre-experiment workflow

Figure 3a illustrates the state transitions of a generic device during operation. It begins
in the SHUTDOWN state, moving to IDLE, where it waits for user setup verification.
Post-setup, it transitions to PRIMED, ready for experimental involvement. In the
READY state, the device listens for experiment-specific MQTT messages, ignoring

Zhttps://github.com/braingeneers/braingeneerspy
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external recruitment until released with an END message. Devices can communicate
collectively via MQTT topics for coordinated actions. Transitioning to WAITING
occurs upon receiving a pause command, halting job execution. The device moves
to EXEC when starting a job, returning to READY upon completion. Data uploads
are managed independently of state changes, ensuring continuity even during outages.
Devices can exit an experiment at any stage, reverting to IDLE or SHUTDOWN, with
data upload tasks resuming upon restart. Figure 3a describes a generic device (e.g.
a scientific instrument) and how it transitions between states during operation. On
device start, the device transitions from SHUTDOWN state to IDLE. In the IDLE
state, the device is waiting for a user to verify or install physical prerequisites. The
IDLE state ensures the user performs the necessary setup of their device to maintain
safety and usability. For example, a pump may wait in IDLE state until a user checks
and confirms that the pump is clean and proper reagent bottles are connected. On
the other hand, a camera may not have any prerequisites and would immediately
transition to the next state, PRIMED. In the PRIMED state, the device has all the
prerequisites to perform its job and waits to be called into an experiment. Devices
listen on their default device MQTT topic. Once it receives a correctly formatted ‘start’
MQTT message (see ‘START’ message in Supplementary Table 1), it can transition
to READY.

Experimental workflow

When the device transitions to READY state, when it listens to an MQTT topic for
the experiment. It will refuse requests to be recruited to other experiments until it
is released from the current experiment by an END message (see END message in
Table 1). This ensures other users don’t accidentally disturb or recruit an occupied
device into a parallel experiment. Switching MQTT topics also ensures exclusivity
in incoming messages. The experiment topic structure (see MQTT) allows devices to
send a group message addressing all devices. For example, a device or user could send
a message to roll-call all devices on the topic (see PING message in Table 1) or pause
all devices while it performs a sensitive action (see PAUSE message in Table 1). Upon
receiving a message to pause, the device transitions to WAITING state, where it does
not perform any jobs.

Once a device returns to READY state, it can transition into EXEC state if it
receives a job request or has a job request from its schedule. If the device is in WAIT-
ING or EXEC while receiving a job request, it will put the request on the schedule to
be executed as soon as possible. During EXEC state, the device is actively executing
a job request. Once the job finishes or is stopped (see STOP message in Table 1), the
device transitions back to READY state. Any data produced is queued for upload,
protected from internet outages by upload retries with exponential backoff. Uploads
occur in the background, independent of device state. A device can begin EXEC on a
new job immediately after queueing the previous data for upload. From any state, a
device can be terminated from an experiment and return to the IDLE state. At any
point in the experiment, if a device is gracefully requested to turn off, it performs a
final transition to SHUTDOWN state before halting the program. The device keeps
the upload queue saved on disk and will continue unfinished uploads upon restart.
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Data uploading

Data is saved to a ‘diskcache’ in memory. Once a file is produced, it is put on the
upload queue. The upload queue contains references to files within diskcahe. Typical
devices have at least 32 GB of disk memory, far larger than a single file. The queue is
restricted to grow up to 80% of the device’s memory. Once the memory of the device
fills up, older files that were uploaded can become overwritten.

Messaging bridge

The messaging bridge serves as an intermediary for communication between different
platforms. It is a service that listens to MQTT messages in the IoT environment and
translates them into other APIs like Slack.

The Slack bridge allows IoT devices to send notifications to individuals in desig-
nated Slack channels. The messaging bridge uses the message broker API and Slack
APT [53]. The Slack API requires an API key to be registered with Slack and an API
bot to be added to the Slack channels of interest. The message bridge listens to an
MQTT channel dedicated to Slack messages. When devices want to post a message
to Slack, they publish a message on the dedicated Slack MQTT topic with a JSON
payload containing the message. The payload can include text and image data. To
support images, a link to an S3 object can be passed in the message, and the messag-
ing bridge will then download and attach it to the Slack message. An image can also
be sent directly inside the MQTT message, this requires modifying the message bro-
ker service’s configuration to increase the MQTT message buffer size to accommodate
larger KB-sized files. The Slack bridge is a relatively simple service that decouples
devices from dependencies on a specific API by communicating using the common
message format MQTT.

Website

The website’s front end is developed using React, a JavaScript library for building
dynamic and responsive user interfaces. For the backend, Flask, a lightweight Python
web framework, is employed. Flask’s simplicity and flexibility make it ideal for our
web services. It handles server-side operations, data processing, and interaction with
databases.

The system’s structure incorporates a message broker API, which is established
on the backend side of the architecture. This message broker is responsible for the
asynchronous communication and management of all IoT devices connected to the
cloud. Additionally, Flask’s compatibility with Python enables seamless integration
with Python APIs, including the braingeneerspy MQTT message broker.

Through the front end, users can issue commands to the devices, and the mes-
sage broker API in the backend efficiently manages these requests. The user interface
encompasses three main components: the initialization page for entering initial exper-
iment data, the control page for managing devices and monitoring their status, and
the visualization page for analyzing experimental data through various graphs. All
three pages require a specified experiment UUID (see Figure 3).
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Both frontend and backend components are containerized using Docker, ensur-
ing consistency and isolation in different environments. Integration of Cross-Origin
Resource Sharing (CORS) is crucial for allowing the React frontend to securely interact
with the Flask backend hosted on a different domain.

Initialization page: On the initialization page, users can enter metadata con-
taining experiment and biological sample details, which are compiled into a JSON file
and uploaded to cloud storage, serving as a centralized repository for all experimental
data.

Control page: On the control page, users can access all the devices involved in
the experiment associated with a specific UUID. For each device, users can request
the execution of all the commands listed in Table 1, such as starting, stopping, and
pausing the device, as well as scheduling tasks. Additionally, on the control page, users
can monitor the real-time status of the device, as outlined in Table 1.

Visualization page: On the visualization page, users can load data related to the
volume estimator from current or previous experiments of a specific UUID. It is also
possible to download images on a specific timestamp, allowing for manual monitoring
of reservoir tubes.

Outer lid overflow

Inner lid overflow

| Max operating

| Target higher operating
| Target lower operating
I’ Minto wetglass

Displaced

Min operating
volume

Catch tray

Supplementary Fig. 1 Diagram of operating ranges of the microfluidic culture chamber.
Shaded pink areas represent volumes where media is collected. Shaded blue areas mark displaced
volumes (where there is no media stored). The numerical volumes for each operating range are listed
in Supplementary Table 1.
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Feature Delta (pL) | Running Total (nL)
Min operating 172.2 172.2
Min to wet glass 94.0 266.2
Target lower operating 88.1 354.3
Target higher operating 204.9 559.2
Max operating 204.9 764.1
Total operating capacity: 764.1
Inner lid overflow 345.1 1109.2
Outer lid overflow 464.1 1573.3
Total chip capacity: 1573.3
Catch tray 1539.5 3112.8
Total overflowed capacity: 3112.8

Supplementary Table. 1 Numerical operating volume ranges based on
the microfluidic culture chamber’s 3D model (CAD) measurements.
Illustrations of operating ranges are shown in Supplementary Figure 1.
The Feature column lists critical points in the microfluidic culture
chamber. The Delta column is the volume space between each feature, and
the Running Total column is the volume from the floor to the feature.

State Description

SHUTDOWN | The device has been turned off gracefully and won’t respond until it’s
turned back on.

IDLE The device is not assigned to any experiments and not doing anything
at the moment, and is missing physical prerequisites (i.e., a reagent or
piece of hardware) to be able to perform its job.

PRIMED The device is not assigned to any experiments and not doing anything
at the moment, but it has all the physical prerequisites to perform its
job.

READY The device is assigned to an experiment and is ready to execute a
command.

WAITING The device has received a command to PAUSE and is waiting until a
given time to resume performing jobs.

EXEC The device is actively executing a job command.

Supplementary Table. 1 Device states. The device-class is structured as a finite-state
machine, with a defined set of states (SHUTDOWN, IDLE, PRIMED, READY, PAUSED,
EXEC) that describe its status. The finite-state machine reads a set of inputs and changes
to a different state based on those inputs. The inputs can be user physical interactions (i.e.,
button press, linkage of consumables, etc.), MQTT messages containing job requests, or
scheduled events.
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Supplementary Fig. 2 Webpage user interface screenshots. (a) Initialization page: Users
can input details about the experiment and the biological samples. (b) Control page: Users can
access and control every device involved in the experiment. (c) Visualization page: It includes three
graph types. (1) Expected versus Estimated Volume Graph: compare volumes determined by the
computer vision algorithm with volume according to pump metrics, highlighting any discrepancies
and mismatching data. (2) Expected minus Estimated Graph: It shows the difference between the
pump metrics and computer vision estimates for each device. They are designed to quickly identify
alignment or discrepancies between these two methods, where values close to zero suggest good
alignment, and deviations indicate measurement inaccuracies. (3) Collected Volume According to
Computer Vision and Pump Graph: This graph contrasts the volume of media collected as reported
by the pump system with that detected by the Computer Vision algorithm, which is crucial for
assessing feeding accuracy. For example, if the pump indicates a feed of 300 pL, but the Computer
Vision only detects 150 nL, this discrepancy is highlighted.
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Supplementary Fig. 3 3D printed breathable membrane lid used for Controls modeled
after designs by Potter [54]. (a) Picture of the membrane lid and HD-MEA. The chamber is
comprised of biocompatible 3D-printed parts, sealed by O-rings to the HD-MEA, and imaged through
the FEP membrane stretched over the top with an O-ring. (b) Cross-sectional rendering depicting
the fluid path and position of the sample.
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Supplementary Fig. 4 Organoid boundary segmentation process.
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Command Description

START* Initiates an experiment process on a specified device. The device must not be
engaged in another experiment and should be in a PRIMED state. If successful,
the device acknowledges the request and changes its state to READY.

ENDT Ends an ongoing experiment on a device or all devices associated with an exper-
iment UUID. The device(s) will drop current tasks and reset to the IDLE state.

STATUST Retrieves the current status, state, associated experiment UUID, teammates, and
job schedule. Works in any device state.

PAUSET Temporarily halts the device’s ability to start working on new commands for a

specified duration. If the device is already paused or not part of an experiment,
it will return an error. Otherwise, the device will successfully change its state to
WAITING.

RESUMET Requests the device to continue execution after a pause. Only the device that
initiated the pause can send a resume command. The PAUSED device will suc-
cessfully change its state to WAITING.

SCHEDULET Adds, clears, or retrieves scheduled tasks for the device. The device will execute
the specified task payload at the specified time every X hours or minutes (unless
it’s WAITING, then it will do backlogged tasks at the easiest convenience). Works
in any state.

STOPT Requests the cancellation of a running task. If there is no task running, an error
message is returned.

PINGT Requests the device to respond with a ping message. This is used to check if the
device is online and listening to a given topic. Works in any state.

SLACK? Posts a message to Slack. The message can contain text and/or an image.

Supplementary Table. 1 Generic commands. The parent device-class responds to a generic set
of commands. Commands are sent on hierarchical MQTT topics that allow widening and narrowing
of scope. We used each experiment’s Universal Unique Identifier (UUID) and each device’s name as
part of the topic. If a device is not part of an experiment, the default UUID is NONE.

* Use MQTT topic: NONE/device because no experiment assigned yet

T Use MQTT topic: UUID/device or just UUID to address all

¥ Use MQTT topic: TOSLACK

Command Device Description

RECORD HD-MEA Performs an electrophysiology recording for a defined
period of time.

PICTURE Cameraf(s) Takes a picture from the camera.

FEED Pump Performs a cycle of aspirating spent and dispensing fresh
media of the pre-configured volume.

ASPIRATE Pump Aspirates a specified volume of liquid (mL) from the
culture chamber.

DISPENSE Pump Dispenses a specified volume of liquid (mL) to the cul-
ture chamber.

PULL Pump A rapid, full-syringe aspiration to assist pulling media
through high resistance or clogs.

SPIKESORT Spike sorting Spike sorts a specified dataset stored in S3 using the
analysis pipeline.

ESTIMATE Estimator Estimates the amount (mL) of media in a collection
reservoir by applying computer vision analysis to a spec-
ified image of the collection reservoir stored in S3.

Supplementary Table. 1 Application-specific commands. The child device-classes extend
the top level device-class, respond to all genetic commands as well as their instrument-specific
commands. New commands can be easily defined and implemented for a specific experimental
application by extending device-class child. For all commands above, use MQTT topic:
UUID/device_name.
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