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Protosequences in brain organoids model intrinsic brain states
Authors

Tjitse van der Molenl’z, Alex Spaeth3’4, Mattia Chinis, Sebastian Hernandez3’4, Gregory A.
Kaurala®®, Hunter E. Schweiger3’7, Cole Duncan’®, Sawyer McKenna’, J inghui Geng3’4, Max
Lim' ’2, Julian Bartramg, Aditya Dendukurig, Zongren Zhanglo, Jesus Gonzalez—Ferrer3’6,
Kiran Bhaskaran-Nair'' ,Lon]J. Blauvelt3, Cole R K. Harder’, Linda R. Petzoldg, Dowlette-
Mary Alam El Dinlz, Jason Lairdlz, Maren Schenkelz, Lena Smimova'z, Bradley M.
Colquitt3’7’13, Mohammed A. Mostajo—Radji3, Paul K. Hansma'"'*, Mircea Teodorescu®*,
Andreas Hierlemann®, Keith B. Hengen'', Tleana L. Hanganu—OpatzS, Kenneth S. Kosik'?,
Tal Sharf* %"

Affiliations

! Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA
93106, USA.

? Department of Molecular, Cellular and Developmental Biology, University of California
Santa Barbara, Santa Barbara, CA 93106, USA

JUC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA
95060, USA

! Department of Electrical and Computer Engineering, University of California Santa Cruz,
Santa Cruz, CA 95064, USA

> Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg
Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg,
Germany

0 Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz,
CA 95064, USA

" Department of Molecular, Cell and Developmental Biology, University of California, Santa
Cruz, CA 95064, USA

8Depanment of Biosystems Science and Engineering, ETH Ziirich, Klingelbergstrasse 48,
4056 Basel, Switzerland

? Department of Computer Science, University of California Santa Barbara, Santa Barbara,
CA 93106, USA

10 Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106
" Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA

!2 Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health
and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore,
MD 21205, USA

"3 Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz,
CA 95064, USA

*Correspondence: tsharf@ucsc.edu (T.S.)
Abstract

Neuronal firing sequences are thought to be the basic building blocks of neural coding and
information broadcasting within the brain. However, when sequences emerge during

neurodevelopment remains unknown. We demonstrate that structured firing sequences are
present in spontaneous activity of human and murine brain organoids and ex vivo neonatal
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brain slices from the murine somatosensory cortex. We observed a balance between
temporally rigid and flexible firing patterns that are emergent phenomena in human and
murine brain organoids and early postnatal murine somatosensory cortex, but not in primary
dissociated cortical cultures. Our findings suggest that temporal sequences do not arise in an
experience-dependent manner, but are rather constrained by an innate preconfigured
architecture established during neurogenesis. These findings highlight the potential for brain
organoids to further explore how exogenous inputs can be used to refine neuronal circuits and
enable new studies into the genetic mechanisms that govern assembly of functional circuitry
during early human brain development.

Introduction

In the last decades, a growing body of experimental evidence has begun to support the notion
that intrinsic activity plays a central role in brain function, challenging the traditional
Jamesian view that higher order function is an emergent product of sensory input'. More
recently, analysis of the mesoscale wiring of the cortex has revealed a connectome dominated
by recurrent cortical networks that follow lognormal scaling rules that are conserved across
species, where only a minor portion of those connections are devoted to direct transfer of
sensory inputH. Within cortical circuitry, both spatial and functional properties of neurons
follow lognormal distributions, which include synaptic strengths’, size of dendritic spines®,
diameter of axons’ and neuronal firing rates®, which together establish the functional
architecture of the large-scale brain connectome®'°. The skewed distribution of these
parameters is thought to serve as a substrate of neuronal assemblies'"'?, where groups of
strongly interconnected neurons can generate temporally structured spiking activity, which
organize into sequencesB_IS. Sequential activity patterns represent discrete and temporally
consolidated packets of neuronal activity proposed as the basic building blocks of neural
coding and information broadcasting within the brain'’. In mature brain circuits, spiking
sequences are predictive indicators for spatial navigation tasks'’ and memory formation
within the murine hippocampusls, and through a phenomena called ‘preplay’ are used to
encode novel experience through a pre-existing repertoire of sequence motifs'*>*. Such
sequences emerge prior to explicit experience-dependent navigational representations (e.g.
before exploration beyond the nest)**. Similarly, in the murine visual cortex, evoked
responses closely mirror spontaneous sequential patternszs. Similar phenomena have also
been reported in the human cortex, where the replay of sequences underlies episodic memory
formation and retrieval®. Moreover, spiking sequences in the human anterior temporal lobe
organize into a temporal backbone. This backbone consists of both rigid and flexible
sequence elements that are stable over time and cognitive states”’, support visual
categorization tasks in the human visual cortex and were shown to encode non-redundant
information beyond latency and rate encodingzg. Reliable activation of sequences are also
present in the reptilian cortex that share a common primordial ancestral origin with mammals,
which suggests a conserved function across phylogeny'*. However, the emergence of spiking
sequences during development is not yet well understood. During the third postnatal week,
the murine hippocampus generates spiking sequences that resemble those that will later be
produced during navigation in a linear environment>*. Importantly, these sequences emerge in
an experience-independent manner and do not improve upon additional experience in the
same postnatal week. Whether similar spiking sequences, potentially representing other forms
of experience, exist in other brain areas or at earlier developmental stages remains an open
question. The existence of such sequences would provide strong evidence in support of the
notion that the brain is in a preconfigured state, where spiking sequences are not experience-
dependent but are instead constrained by an innate architecture that is established during
neurogenesis™ . To address this open question, we investigated large scale single-unit activity
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datasets recorded from different models of brain development: (1) human-derived brain
organoids generated by two independent laboratories®~"', (2) murine-derived brain organoids
of dorsal forebrain identity grown from mouse embryonic stem cells (ESCs), (3) ex vivo
murine brain slices from the somatosensory cortex and, (4) dissociated two-dimensional
primary murine cortical cultures®> that lack developmental organization.

Brain organoids are three-dimensional human induced pluripotent stem cell (iPSC)
derived models of the human brain that recapitulate key facets of the anatomical organization
and cellular composition found in the developing brain®"’. Neurons within brain organoids
form functional synapses>® and establish spontaneous network activity” . These self-
organized neuronal systems contain cellular diversity and cytoarchitecture necessary to
sustain complex network dynamics®*'** as evidenced by expression of layer specific
excitatory pyramidal neurons and generation and incorporation of inhibitory GAB Aergic
interneurons***. Brain organoids also generate local field potential oscillations (LFP) that
mirror preterm EEG patterns*', and have been used to model network dynamics associated
with rare genetic disorders**. Brain organoids can be readily interfaced with state-of-the-art
high-resolution CMOS microelectrode arrays to record neuronal activity and LFP oscillations
across 26,400 recording sites™. Furthermore, brain organoids are not “connected” to any
sensory system, and thus represent an ideal model for studying the emergence of spiking
sequences as a truly experience-independent phenomenon.

The ex vivo rodent dataset consists of acute neonatal slice recordings from the murine
somatosensory cortex. At this developmental stage, the somatosensory cortex is characterized
by discontinuous activity, displaying an alternation of activity bursts with periods of
electrical quiescence45, and highly correlated activity between spike trains """, Both traits are
shared with several other cortical areas*®*. Importantly, at this stage, with the exception of
the olfaction that controls cognitive maturation™, sensory systems are still underdevelopedSI.
Accordingly, whisker-elicited sensory responses are mainly the result of passive stimulations
by the dam and the littermates in the first postnatal week, while active whisking only emerges
around P10-12°7*, Along the same lines, analogously to neural activity in brain organoids, a
large portion of neural activity in the developing brain is “spontaneous”, that is, internally
generated™ .

Here, we investigate the spontaneous firing patterns across these different
developmental brain models. In all four models, we observed bursting dynamics on the order
of 10* milliseconds. These bursts reflect the biophysical time constants for the integration of
inputs in neural circuits™®, which last longer than single-neuron refractoriness and burstiness
alone”’. We identified a subpopulation of neurons within organoids and neonatal brain slices
capable of generating and sustaining non-random sequential firing patterns, referred to as
backbone sequences27. In contrast, two-dimensional primary cultures did not exhibit
backbone sequences. Backbone sequence generating neurons populate the tails of right-
skewed, lognormal firing rate and functional connectivity distributions. We also reveal that,
at a population level, neural activity exhibits a distinct low and high-dimensional neuronal
subspace that establishes a partition between sequence generating units and their non-rigid
counterparts. In an in vivo setting, such firing patterning temporally segregate neuronal
populations into strongly correlated, ‘temporally rigid” components, obedient to population
dynamics that reside in a low-dimensional subspace, and weakly correlated, ‘temporally
flexible’, firing patterns that are less sensitive to population events™. Finally, for stable and
flexible computation, theory suggests that neural systems must exist at or near a regime
called criticality, which is characterized by scale-invariant dynamics across multiple
timescales® ', At criticality, complex patterns of activity emerge that neither decay rapidly
nor saturate the network, maximizing the system's computational capacity. Using temporal
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renormalization group theory®?, we quantified the distance of each preparation from criticality
(d2). This approach revealed that brain organoids, ex vivo brain slices, and two-dimensional
primary cultures can generate near-critical dynamics. A subset of each type of preparation
exhibited temporal correlations that spanned multiple timescales. In contrast, shuffled data
failed to capture scale free features of activity. Given that neuronal circuits within brain
organoids establish non-random, sequence generating dynamics that emerge in a truly
experience-independent manner and maintain near-critical dynamics, these findings have
important implications for understanding organizational principles that govern network
preconfiguration and activity patterns that support a neural code®.

Results

Neuronal firing patterns in human brain organoids generate repetitive and variable
burst sequences

We investigated the temporal dynamics of spontaneous neuronal activity generated by brain
organoids of prominent forebrain identity™ using high-density CMOS-based microelectrode
arrays. These arrays contain 26,400 recording sites (electrode pitch of 17.5 gm) of which
1,024 can be selected and recorded simultaneously®®. Single-unit spike events, visualized as a
raster plot (Fig. 1 A) reveal the temporal evolution of spontaneous spiking dynamics in an 8-
month old organoid slice positioned on the array. Population level burst events are
highlighted by sharp increases in the population rate (red line Fig. 1A, see Methods) and
persist for several hundred milliseconds, followed by longer periods of relative quiescence
lasting up to several seconds. Moreover, we observed that the distribution of single-unit firing
rates follows a heavy-tailed and right-skewed distribution, well described by a lognormal
function, a feature consistent across multiple brain organoids (n = 8 organoids, R* = 0.97 +
0.04, Supplementary Fig. 1A-C). This represents one facet of functional activity conserved
across brain regions and states in vivo''.

To investigate the temporal structure and dynamics of single-unit neuronal firing
patterns, we next calculated the instantaneous firing rate from single-unit spike times across
all units (Fig. 1B, see Methods for details). Reordering units in time, based on their peak
firing rate over the burst width, revealed the presence of sequential activation patterns during
individual burst events (Fig. 1B, bottom). Here, we observe bursts with consistent population
rate profiles within single organoids (Fig. 1C) and durations that span ~10* millisecond
timescales (Fig. 1D, Supplementary Fig. 2C), a feature consistent across multiple organoids.
Furthermore, we observe that a majority of the units display a firing rate peak that is in close
temporal proximity to the population rate peak (Fig. 1E). Similar bursting time frames are
generated by spontaneous and evoked sequences in vivo within the murine® and reptile'*
cortex, the murine hippocampus during sharp wave ripples®® and within the human cortex
during memory retrieval’®*’ . Interestingly, the neuronal response time of sensory cortices

typically peak with a similar time constant across brain regions and species67"70.
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Figure 1. Temporal structure of spontaneous single-unit neuronal firing patterns during

population bursts in human brain organoids. (A) Raster plot visualization of single-unit spiking
(black dots) measured across the surface of a 500 um thick human brain organoid slice, positioned on top of a
microelectrode array. The population firing rate is shown by the red solid line. Population bursts are marked by
sharp increases in the population rate. Burst peak events are denoted by local maxima that exceed 4x-RMS
fluctuations in the population rate. The shaded gray regions denote the burst duration window as defined by the
time interval in which the population rate remains above 10% of its peak value in the burst. (B) Top, the
instantaneous firing rate of single-unit activity from panel A. Bottom, zoomed in view of the trajectory of
neuronal firing during population bursts reveals temporal segregation and contiguous tiling of the peak firing
rate of single-unit activity. Here the subset of units that fire at least two times during the burst are shown, re-
ordered for each burst individually based on the time relative to the burst peak at which the unit has its
maximum firing rate during the burst period. (C) The population firing rate (gray lines) is plotted relative to the
burst peak for 46 burst events measured across a three-minute interval for the same organoid. The mean value is
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shown by the solid line and the dotted lines represent 1 STD. (D) Burst durations are plotted from four different
organoids. (E) The distribution of single-unit firing rate peak times relative to population burst peaks for the
same organoids as in D.

Next, we quantified the degree of stereotypy exhibited by single-unit firing patterns
during spontaneous bursts in organoids. First, single-units were separated into two
populations: backbone units were defined as units that spike at least twice in all bursts (Fig.
2A, above the dashed line); all other units were defined as non-rigid units (Fig. 2A, below the
dashed line). Note that the backbone units display high firing rates residing within the tail of
a lognormal distribution (Supplementary Fig. 1D). The relative temporal delays between
single-unit firing patterns remained consistent across multiple burst events when preserving
unit ordering (Fig. 2B) and was preserved when averaging the firing rate of each unit across
all burst events (Fig. 2C, see Supplementary Figs. 3A-D for visualizations and firing statistics
across organoids). When clustering bursts based on their pairwise correlation matrix’', the
consistent backbone activity patterns remained similar across all clusters, whereas non-rigid
units showed significantly larger variability across clusters, (P < 10™° for difference between
backbone and non-rigid, linear mixed-effects model; Supplementary Fig. 4). Interestingly, we
observed a general decrease in the relative abundance of backbone units compared to earlier
developmental time points. This trend was observed in 5 of 7 organoids where we tracked the
long term developmental trajectory of the murine and human brain organoids spanning 6 to 8
months/weeks in human and murine organoids respectively (Supplementary Fig. 5AB). In
vivo, network synchronization and subsequent maturation is marked by the incorporation of
interneurons within maturing excitatory networks*’, which are also present in our human
brain organoids (Supplemental Fig. 6, 7) and murine cortical organoids (Supplemental Fig. 8-
10) at these time points.

To further test the impact of inhibitory tone on backbone neurons, we next
administered gabazine (10 M) via bath application to block GAB A4 receptors
(Supplementary Fig. 11). This resulted in a significant increase in both the number of bursts
and the fraction of backbone neurons participating in burst events (Supplementary Fig.
11B,C). Additionally, the rank-order statistics of sequence generating neurons increased
compared to control conditions, a result consistently observed across 5 cortical organoids
(Supplementary Fig. 11D). Meanwhile, the bath application of NBQX (10L/xM) and R-CPP
(20MuM), which block AMPA and NMDA receptors and thereby inhibit the fast and slow
components of excitatory synaptic transmission, abolished bursting dynamics, as previously
reported30, and completely suppressed neuronal sequences (Supplementary Fig. 11B).
Together, these results highlight the importance of GAB Aergic signaling on spike timing and
its impact on temporal rigidity of neuronal sequences.

To quantify the consistency of neuronal firing within spontaneous population bursts,
we investigated the activity of single-units relative to the burst peak, similarly to the approach
previously used for in vivo spontaneous activity65 72 Certain units displayed a pronounced
peak in their firing rate and narrow temporal jitter when referenced to the burst peak (Fig. 2D,
left panel), whereas others displayed increased delays and temporal spread (Fig. 2D, middle
panel). A larger fraction of units, however, did not exhibit a clear preference in spike timing
relative to the population burst and had more random temporal dynamics (Fig. 2D, right
panel). The relative fraction of consistent firing backbone units constitutes 28% + 14% (mean
+ STD) of the total units (n = 8 organoids, Supplementary Fig. 2) and represents a
subpopulation with significantly higher burst-to-burst correlation scores (Fig. 2E, see
Methods). The consistency in the firing patterns of the backbone units was stable across
recording intervals that spanned multiple hours (Supplementary Fig. 12), and the enhanced
consistency of the backbone units were present at developmental time points that spanned
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multiple months, which include a significant increase in burst-to-burst-correlations for both
murine and human brain organoids (Supplementary Fig. 5C, P < 107, two-way ANOVA).
Moreover, differences in burst-to-burst correlations between backbone and non-rigid units
were significantly larger when compared to spike trains that were randomized using a method
that preserved both the population and single-unit mean firing rates (Supplementary Fig.
13A,B and Supplementary Fig. 14, see Methods)™”*. Further, this randomization destroyed
the preservation of sequences across burst events (Supplementary Fig. 13C,D, Supplementary
Fig. 15), similar to two-dimensional primary neuronal cultures with inherently randomized
network architecture that also did not show sequential firing patterns (Supplementary Fig. 16,
see section ‘Comparing sequences across neurodevelopmental models’)"*"®. In addition, we
observed that the variability of the firing rate peak time increased as a function of its average
peak time (Fig. 2F), a significant feature preserved across multiple organoids (Fig. 2G, P <
107, linear mixed-effects model for relation between relative firing rate peak and peak time
variance). Together these results suggest that brain organoids are capable of supporting
stereotypical sequential activation patterns with increasing variability that mirror the spread
of spontaneous activity through local cortical circuits in vivo' 142027,
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Figure 2. Recurring sequential activation patterns in human brain organoids generate a

stereotyped temporal backbone. (A) Consistent firing single-units form temporally distant sub-groups
(re-ordered from Fig. 1A) and exhibit temporally rigid and non-rigid firing patterns. The rigid backbone units
are plotted above the dashed line and are defined by spiking at least two times in every burst epoch. Units that
do not meet this criterion (non-rigid) are plotted below the dashed line. In each category, units are ordered based
on their median firing rate peak time relative to the burst peak considered over all bursts in the recording. (B)
Zoomed in view of the units from the upper dashed partition in A for the four bursts. The order of each unit is
the same for all four plots. Note the similarity in firing pattern for each single-unit over the four different bursts.
(C) The average burst peak centered firing rate measured across 46 burst events. The burst peak is indicated by
the dotted line. The unit order is the same as A,B. Note the progressive increase in the firing rate peak time
relative to the burst peak, as well as a spread in the active duration for units having their peak activity later in the
burst. The average firing rate is normalized per unit to aid in visual clarity. (D) Top left, spikes are plotted for a
regularly firing backbone unit over a fixed time window relative to population burst peaks. Each row represents
spike events in a unique burst event. The average burst peak centered firing rate of the unit is plotted as the red
solid line. Top middle, another regular firing backbone unit is plotted with a larger temporal delay and spread
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relative to the burst peak. Top right, firing patterns of a non-rigid unit, exhibiting poor temporal alignment
relative to the burst peak events. Bottom, heatmap visualizations showing the cross-correlation coefficients of
the burst peak centered firing rates of the unit shown in the top. The correlation is computed for each pair of
bursts, using a maximum lag of 10 ms. The average over all burst pairs is denoted in the top right of the
heatmap. (i-ii) highlight units with consistent firing patterns relative to the burst peak and have average
correlation scores of 0.98 and 0.81 respectively. They are part of the backbone units as marked in C. (iii)
illustrates an irregular firing neuron with an average correlation score of 0.51. This unit is not reliably recruited
to spike within the burst. The average correlation is computed only over pairs of bursts in which this unit fired at
least 2 times. (E) Reliably firing backbone units (colored blue) retain higher average burst-to-burst correlation
coefficients across all burst instantiations, while non-rigid units (colored yellow) have significantly lower
temporal correlation values. This trend is consistently observed across multiple organoids (P < 107", linear
mixed-effects model for average burst-to-burst correlation coefficients of backbone units compared to non-rigid
units). See Fig. 7B for the results of the statistical comparison of firing rate normalized data between different
model types. (F) Firing rate peak times relative to the burst peak for each backbone unit as shown and ordered in
C. The black dots indicate the relative firing rate peak times per burst and the red shading reflects the
probability distribution of the firing rate peak times where warming colors indicate higher probability. The
probabilities highlight the widening of the distribution towards the end of the sequence. (G) The variance of the
relative firing rate peak times for the backbone units in each of the 4 presented organoids. The units are ordered
based on their median firing rate peak time over all bursts to visualize the significant increase in variability of
the firing rate peak times of the units that fire later in the burst (P < 10°, linear mixed-effects model for relation
between relative firing rate peak and peak time variance).

Backbone units are a highly correlated ensemble

To further quantify the firing patterns that emerge during spontaneous burst events, we
investigated pairwise correlations between single-unit instantaneous firing rates. Stereotyped
activation patterns were reliably generated by backbone units and were preserved across burst
events (Fig. 3A). Our analysis of sequential co-activation of these units revealed the
preservation of firing rate onsets and peak activity times across all burst events with average
peak phase lags of =10 milliseconds (Fig. 3B, example units a to b = S5ms, example units b to
¢ = 7Tms) as well as phase lags crossing several hundred milliseconds among pairs of
backbone units that correlated over long durations thanks to the recurring sequential firing
patterns (Supplementary Fig. 17). Cross-correlation analysis between all single-unit pairs
reveals that units firing within the backbone sub-population form a highly correlated
ensemble with non-zero phase lags (Fig. 3C,D). Moreover, backbone units displayed
significantly higher correlation coefficients when compared to non-rigid units (Fig. 3E), and
occupied the tail of the overall distribution (Fig. 3F), which is well described by a lognormal
distribution (Supplementary Fig. 18C-E). Together, these results suggest that a minority
population of high firing rate neurons are strongly tuned to population dynamics and function
as a stop-watch in the backbone among the more rigid units of the population.
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Figure 3. Firing patterns between single backbone units within bursts are nonrandom.
(A) Spike times and computed firing rates for three representative units are shown for the first and last burst
event of the recording, respectively. (B) Burst peak centered average firing rates for the three units shown in A
are calculated over all burst events. The narrow lines indicate the firing rates for each individual burst event.
The thick lines (dotted black lines in inset) indicate the average over all bursts. (C) Pairwise cross correlation
coefficients computed between the instantaneous firing rates of all pairs of units with at least 30 spikes counted
over all burst events. A maximum lag time of 350 ms was used. The solid red lines separate the backbone units
and the non-rigid units. (D) lag times leading to the maximum cross correlation values presented in C. Values
are clipped at +150ms. (E) Pairwise cross-correlation scores are plotted between unit types. Correlations
between backbone units (blue) are significantly higher (P < 10", linear mixed effects model) than the cross-
correlations between pairs of backbone and non-rigid units (gray) and pairs of non-rigid units (yellow). See Fig.
7C for the results of the statistical comparison of firing rate normalized data between different model types. (F)
The histogram of all pairwise cross-correlations follows a skewed, lognormal distribution (x-axis is log scale).
The pairwise connections between pairs of backbone units populate the tail of this distribution for all organoids
as can be seen from the distribution means of the backbone-to-backbone distributions in E and marked on each
histogram (circles on line).

Population firing rate vectors preserve timing across burst epochs

In previous sections, we focused our analysis on discrete relationships between pairwise
single-unit activity. Next, we asked if single-unit firing rates were temporally structured in
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time during burst events at the population level. To perform this analysis, we calculated the
cosine similarity between instantaneous firing rates across bursts (see Methods). This analysis
revealed a peak in the cosine similarity coinciding with the firing rate increase of the
backbone units. Subsequently, after a brief plateau, cosine similarity decayed and bottomed
out after the burst ended (Fig. 4A-B). The variance of the similarity between bursts displayed
an almost opposite trend: it was high during non-bursting periods, rapidly decreased when the
similarity peaked, and remained low until burst termination (Fig. 4C).

To further dissect the composition of firing rate vectors and their contribution to
spontaneous burst patterns, we split the population into backbone and non-rigid units. Here,
we observed that the backbone ensembles exhibited significantly higher cosine similarity
scores (see Fig. 4D, blue line) compared to non-rigid units (yellow line), and shuffled data
(black line). To illustrate this trend, we showed that the top 20" percentile of units (based on
their average correlation from the matrix shown in Fig. 3C) are sufficient to generate a
significantly higher average burst similarity than when considering all units and this
difference gradually decreases when a larger percentile of the most correlated units are
included (Supplementary Fig. 19A,C). When comparing the lower 20™ percentile of units
(ranked by their average correlation), we observed a significant decrease of the average burst
similarity in the population firing rate vector. When a larger percentile of the least correlated
units is included, this difference gradually decreases (Supplementary Fig. 19B,C). Overall,
we observed an increase in average burst similarity during the onset of the backbone units
that subsequently plateaus for the remainder of their activation period across several
organoids (Fig. 4E and Supplementary Fig. 19D for results across n = 8 organoids). These
results further highlight that the activity of backbone units in organoids provide temporal
stability across bursts at the ensemble level.

To quantify the trajectory of firing patterns generated during spontaneous activity in
brain organoids we performed principal component analysis (PCA). We observed that the
trajectory firing patterns follow conserved trajectories in PC-space that preserve timing
relative to the burst peak (Fig. 4F, first two PCs are shown for organoid 1). When dividing
the populations into backbone and non-rigid groups (Fig. 4F middle and right panel
respectively), we observed that backbone units captured a larger variance for the first two
PCs (73%) when compared to the non-rigid sub-population (25%) (Fig. 4G, Supplementary
Figs. 20-21). These results highlight that a lower-dimensional subspace is occupied by
neurons that fire in backbone ensembles, whereas the non-rigid population exhibit more
irregular and, thus, higher-dimensional firing patterns and require more PCs to explain their
variance. Of note, the lower-dimensional space is abolished after data randomization
preserving both the mean neuron firing rate as well as the population firing rate
(Supplementary Fig. 13). This indicates that the trajectories, and non-zero temporal
correlation patterns are not a trivial result of the neuron’s mean firing rate.
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Figure 4. Backbone units provide a stable, low-dimensional reference frame for the

population bursts. (A) The population firing rate (gray lines) is plotted relative to the burst peak for 46
burst events measured across a three-minute interval for the same organoid. Mean and STD are denoted by the
solid black line and the dashed lines on either side of the solid black line, respectively (left axis). The average
burst similarity score is plotted in red (right axis, see Methods for more details). The blue box indicates the
period from the earliest average firing rate peak time of all backbone units until the last. (B) Left, burst
similarity for each pair of bursts at 50 ms before the burst peak (indicated by the left dashed line in A). Right,
burst similarity for each pair of bursts at 100 ms after the burst peak (indicated by the right vertical dashed line
in A). (C) Burst similarity relative to the burst peak for each pair of bursts. Each gray line reflects a burst pair
and the red line reflects the standard deviation per recording frame over all burst pairs. The blue box indicates
the period from the earliest average firing rate peak time of all backbone units until the last. (D) Average burst
similarity when only the backbone units or the non-rigid units are considered and for shuffled data. For each
frame relative to the burst peak, the difference between the distribution for the backbone units and the non-rigid
units was assessed using a paired sample, two-sided t-test which was significant throughout the backbone period
(P < 10™). (E) The average burst similarity throughout the backbone period follows a similar pattern across
different organoids, denoted by an increase following the start of the backbone period. (F) Left, population
activity projected onto its first two principal components. A PCA was performed on the firing rates per single-
unit for all units in the recording combined. Only spikes that occurred during bursts were included in the firing
rate computations. Each dot represents a recording frame and is colored by the time point relative to the closest
burst peak. Note the consistent circular trajectory reflecting the burst manifold. Middle, same as left but only
including the backbone units. Note the similarity in the low-dimensional manifold representations between the
middle and the left, indicating the strong contribution of the backbone units to the low-dimensional activity of
the whole population. Right, same as left but only including the non-rigid units. The low-dimensional manifold
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is not present anymore and the variance explained by the first to principal components is notably lower,
reflecting the higher dimensional activity of the non-rigid units. The inset shows the burst peak centered average
population rate colored in the same way as the PCA trajectories to indicate which parts of the burst correspond
to the different coloring. (G) The difference between the cumulative sum of the variance explained by the
selection of the first principal components of the manifold constructed based on only backbone units (blue) or
only non-rigid units (yellow) relative to the manifold constructed based on all units. For the comparison, the
cumulative sum of the explained variance is interpolated to account for the difference in the total number of
principal components possible between the manifold constructed of all units compared to the subsets. The
interpolated values are normalized to range from O (only first component) to 1 (all components). Positive values
indicate that the first principal components of the manifold constructed of the subset of units explains a higher
percentage of the variance than the comparable selection of principal components of the manifold constructed of
all units while negative values indicate a lower percentage of explained variance. Note that for all organoids,
indicated with different markers, the explained variance by the first principal components of the manifold
constructed from the backbone units explain a larger amount of the total variance than the manifold constructed
for all units while the opposite is true for the non-rigid. This reflects the low-dimensional backbone activity
related to their heightened correlations.

Uncovering temporal structure in population bursts with a hidden Markov model

We have previously shown that the distribution of functional connectivity in human brain
organoids is well described by a heavy-tailed shape30, mirroring scaling rules found in
cortical circuits such as the visual’ and somatosensory cortices’’. The prevalence of these
circuit motifs are widely believed to give rise to spontaneous activity patterns that spread
across most of the cortical mantle, mirroring sensory-evoked responses observed in vivo™. To
further investigate this rich repertoire of spontaneous neuronal firing patterns, we applied a
hidden Markov model (HMM).

We trained an HMM to cluster single-unit spiking activity, generated by each brain
organoid, into discrete states with shared firing patterns. The data was binned into 30
millisecond intervals (see Methods), reflecting timescales of fast electrophysiological
dynamics in the cortex that span ~10-50 milliseconds*®"”. We found varying the HMM time
bins over this range did not significantly impact the performance of the model
(Supplementary Fig. 22). The identified HMM states, shaded by different colors and
superimposed on spike raster plots (Fig. 5A), highlight their trajectories in relation to burst
peak events. Here, each colored state represents a distinct linear combination of single-unit
firing patterns that are coincident across the recorded ensemble. The first fifty firing rate
realizations (across all units for a given state) are plotted as heatmap visualizations (Fig. 5B,
left panels). Each representative state plot is accompanied by a histogram of the average
firing rate per unit (Fig. 5B, right panels). These visualizations reveal the presence of distinct
manifolds of firing patterns delineated by both differential gain and attenuation of single-unit
firing rates associated with each state (Fig. 5B, red lines). Here a model with 20 hidden states
was used for visualization purposes, but we observe similar-performing models across a
range of hidden state counts (Supplementary Fig. 23). To further validate that the transition
between states was not a result of trivial differences in the mean rate, we ran our HMM
analysis after data randomization, preserving both the neuron’s mean firing rate and
population rate®®", and observed that the log likelihood was significantly larger for real data
(Supplementary Fig. 24). These results demonstrate the presence of distinct combinations of
firing patterns, regularly activated during burst events, captured by the HMM. The average
change in firing rate (across all units) between the three states (Fig. 5B) further revealed that
these discrete transitions represent both increases and decreases in relative firing rate across
different sets of units and states. We next utilized the HMM to model transition probability
between observed states in our brain organoids. Lower probability states were observed prior
to the burst peak with a larger number of states sampled per unit time. However, during and
immediately following the burst peak we observed a narrowing of states available per unit
time (Fig. 5C). This narrowing effect might establish a sequential arrow of time in state
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space, where initial states preserve more precise timing relative to following states
(Supplementary Fig. 25)'°, Subsequently, as the burst fades, state observations return to a
lower probability. The number of realized states observed during burst events remains similar
over the variable range of hidden states (Supplementary Fig. 26), indicating the model's
robustness to discrete patterns of spiking activity and their evolution in time. Next, we show
that the more temporally rigid units that reside within backbone sequences also distribute
across a larger pool of HMM states compared to non-rigid units, which span a smaller range
of states (Fig. 5D), a result consistent across organoids (Supplementary Fig. 27). These
differences are further visualized by performing PCA on state vs. unit realizations (Fig. SE),
which suggests that backbone and nonrigid units may be linearly separable by hidden state
structure. We quantified this by training linear support vector machine (SVM) classifiers (see
Methods) to distinguish backbone units from non-rigid units by their state structure
representation (Fig. SF), and found an accuracy of 83.9% + 12.0%, significantly higher than
the 63.2% + 10.4% achieved when classifying by firing rate alone. Together these results
highlight spontaneous population burst events in brain organoids consisting of ensembles that
link together in time to establish neuronal manifolds, which exhibit more complex hidden
state dynamics in real than in shuffled data (Supplementary Fig. 28). These manifolds
represent a latent multidimensional space that is composed of a temporally rigid and flexible
subsets of units. These units form a subspace of states that follow probabilistic trajectories
that are Markovian in time, namely future states depend on the system’s current state. Recent
theoretical models and experimental observations have proposed that local pairwise
correlations are a dominant driver of irreversibility within noisy logical computations that
contribute to a local arrow of time, and generate an irreversible Markovian process
independent of sensory inputgo’gl.
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Figure 5. Hidden Markov Models (HMMs) explore stable trajectories and population

motifs. (A) Repeated sequence of discrete hidden states during three example bursts. The model assigns each
30 ms bin of the spiking data a hidden state, indicated here by the background color. Note the stereotyped
trajectory both in state space and in the population rate (red). Spiking events are displayed as a raster, with the
27 backbone units displayed above and the 104 non-rigid units displayed below a separator line. (B) Each state
represents a stochastic but repeated pattern of activity across all units. Example realizations of three hidden
states which occur during the burst trajectory are displayed as heatmaps. The differences between states are
highlighted in subpanels which show the overall firing rate of each unit, FR, corresponding to the highlighting
of part A. Also shown is the difference between these plots for adjacent states, AFR, in red. (C) The sequence of
hidden states follows a stereotyped trajectory across each burst. The probability of each hidden state as a
function of time relative to the burst peak is displayed as a heatmap. Note in particular that for the first 0.3
seconds from the burst peak, there is very little variation in the pattern of hidden states, whereas later in the
bursts (as well as before the burst begins), the variability is significantly higher. (D) Backbone units fire
consistently even outside of the burst peak states 11 and 12. The probability that each unit will fire in each of the
hidden states of an example HMM is displayed as a heatmap. The backbone units (left) are active in various
states. (E) Backbone and non-rigid units are almost linearly separable by consistency across states. First two
principal components of vectors representing each unit as the sequence of its consistency across states.
Backbone and non-rigid units are indicated with color. (F) Firing rate is not adequate to identify backbone and
non-rigid units. The linear separability of backbone/non-rigid units based on their vectors of consistency scores
is shown as a violin plot across all fitted HMMs for each brain organoid. Linear separability based only on the
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firing rate is marked by a diamond for comparison. In all cases, classification by state structure performs
significantly better (Student’s #-test, P < 0.0001).

Endogenous spiking sequences in early developing neonatal cortex

We next asked if spiking sequences also emerge in early developing cortical circuits. It has
been established that sequential patterns are crucial components for mature brain function'®
as well as early navigational tasks™, however, it is not known if such patterns are present in
early brain development before eye opening and exploration occur. To address this open
question, we investigated the emergence of sequential firing patterns in acute coronal slices
obtained from the developing murine somatosensory cortex. We performed acute
extracellular recordings using high-density CMOS MEAs (n = 6 slices). Discontinuous
single-unit spiking activity alternated with long periods of quiescence and abrupt transitions
to synchronized bursts (Fig. 6A and Supplementary Fig. 29 for plots from additional slices).
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Figure 6. Recurring sequential activation patterns in murine neonatal cortical slices
generate a stereotyped temporal backbone. (A) Raster plot visualization of single-unit spiking
measured across the surface of the somatosensory cortex of a murine neonatal cortical slice dissected at P13,
positioned on top of a microelectrode array. The population firing rate is shown by the red solid line. Population
bursts are marked by sharp increases in the population rate. Burst peak events are denoted by local maximas that
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exceed 4x-RMS fluctuations in the population rate. The shaded gray regions denote the burst duration window
as defined by the time interval in which the population rate remains above 10% of its peak value in the burst.
(B) The instantaneous firing rate of single-unit activity from panel A after reordering. Backbone units are
plotted above the dotted line and non-rigid units are plotted below the dotted line. In each category, units are
ordered based on their median firing rate peak time relative to the burst peak, considered over all bursts in the
recording. The backbone unit threshold for murine neonatal cortical slices was lowered to at least 2 spikes in at
least 70% of all bursts. (C) The average burst peak centered firing rate measured across all burst events. The
burst peak is indicated by the dotted line. The unit order is the same as B. Note the progressive increase in the
firing rate peak time relative to the burst peak, as well as a spread in the active duration for units having their
peak activity later in the burst. The average firing rate is normalized per unit to aid in visual clarity. (D) Top left,
spike events are plotted for a regularly firing backbone unit over a fixed time window relative to population
burst peaks. Each row represents spike events in a unique burst event. The average burst peak centered firing
rate of the unit is plotted as the red solid line. Top right, another regular firing backbone unit is plotted with a
larger temporal delay relative to the burst peak events. Bottom, heatmap visualizations showing the correlation
coefficients of the burst peak centered firing rates of the unit shown in the top. The correlation is computed for
each pair of bursts, using a maximum lag of 10 ms. The average over all burst pairs is denoted in the top right of
the heatmap. Both example backbone units are marked in C. (E) Pairwise cross correlation coefficients over the
instantaneous firing rates of all pairs of units with at least 30 spikes counted over all burst events. A maximum
lag time of 50 ms was used. The solid red lines separate the backbone units and the non-rigid units. (F) The
average burst-to-burst correlation per unit grouped in backbone and non-rigid categories for all murine neonatal
cortical slices. Burst-to-burst correlations are significantly higher for backbone units compared to non-rigid
units (P < 10, linear mixed-effects model). See Fig. 7B for the results of the statistical comparison of firing
rate normalized data between different model types. (G) The pairwise correlations between all unit pairs for all
murine neonatal cortical slices grouped into pairs that connect two backbone units (blue), pairs that connect a
backbone unit and a non-rigid unit (gray) and pairs that connect two non-rigid units (yellow). Correlations
between backbone units are significantly higher (P < 10, linear mixed-effects model) than the cross-
correlations between pairs of backbone and non-rigid units and pairs of non-rigid units. See Fig. 7C for the
results of the statistical comparison of firing rate normalized data between different model types.

Next, we quantified the consistency of firing patterns generated by coronal slices of
the somatosensory cortex. First, we split single units into backbone and non-rigid units based
on their firing recruitment within population bursts, similarly to the protocol used for brain
organoid data (Fig. 6B, Supplementary Fig. 2,29, see Methods). The temporal pattern of these
backbone units was apparent upon signal averaging of each unit’s instantaneous firing
relative to the burst peak events (Fig. 6C), which revealed a sequential firing structure within
the subset of units regularly recruited during spontaneous bursts events. Analysis of the
single-unit spike times further revealed preservation of spike timing relative to burst peak
events with consistent shifts between their peak firing rates in neonatal murine brain slices
(Fig. 6D). Analogously to what we observed in brain organoids, we found that backbone
units form a more strongly correlated core when compared to their non-rigid counterparts
(Fig. 6E-G, Supplementary Fig. 14,18), and that activity in murine neonatal cortical slices
generated temporal sequences that span =~ 10> millisecond time scales. Together, these results
highlight that slices of the developing murine somatosensory cortex generate firing patterns
composed of both rigid and flexible units that are capable of establishing sequential
activation patterns commonly observed in mature cortical circuits across a range of species
and brain regionsm.

Comparing sequences across neurodevelopmental models

To understand the potential role played by the three dimensionality of neurodevelopment, we
investigated the firing patterns generated by two-dimensional murine primary cultures of
neurons derived from the cortex, and compared them to what we observed in human brain
organoids, murine brain organoids and acute murine neonatal cortical slices (Supplementary
Fig. 16). Here, all four neuronal systems have characteristic population bursts with consistent
firing units that are recruited during burst epochs (Supplementary Fig. 2). These consistent
firing neurons have significantly higher average firing rates compared to the more irregular
non-rigid counterparts (Fig. 7A, P < 10 for organoid, murine slice and primary cultures,
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linear mixed-effects model, Supplementary Fig. 30 for results per recording). However, on
average the primary two-dimensional cultures tend to have higher average firing rate
distributions for both the backbone and non-rigid units (P < 10"° for comparisons across
organoid and murine neonatal cortical slices). Meanwhile, we observed that backbone units
for organoids and neonatal cortical slices have higher normalized burst-to-burst single-unit
firing rate correlation scores relative to two-dimensional primary cultures (Fig. 7B, see
Methods and Supplementary Fig. 14 for unnormalized and normalized results per recording).
Furthermore, after normalizing with the randomized data, the average burst-to-burst single-
unit firing rate correlations remain significantly larger for backbone units than for non-rigid
units in both organoids and neonatal slices (P < 107, P =7x107", respectively, linear mixed-
effects model, backbone unit distribution mean is larger than non-rigid), whereas this
difference is not significant for primary cultures (P = 0.06, linear mixed-effects model,
backbone unit distribution mean is smaller than non-rigid). Despite the strong variability that
can occur between organoids grown from different batches®, we found that the difference in
normalized burst-to-burst correlations between backbone units and non-rigid units were
consistent across human and murine organoids (Supplementary Fig. 3E, Supplementary Fig.
31, Supplementary Fig. 14, Supplementary Fig. 6, 7). These neurophysiological features were
conserved across whole and sliced organoid models measured in different laboratories
(Methods).
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Figure 7. Backbone units provide a stable reference frame in brain organoids and
murine neonatal cortical slices but not in murine primary cultures. (A) The log of the
average firing rate per unit grouped in backbone and non-rigid categories for organoid slices, murine neonatal
cortical slices and primary cultures. The human brain organoid group consists of 8 different organoids (4 whole
organoids, 4 sliced organoids) with a total of 1048 units, 275 backbone and 773 non-rigid, the murine organoid
group (dorsal forebrain identity) consists of 9 different whole organoid with a total of 1179 units, 603 backbone
and 576 non-rigid, the murine neonatal slice group consists of 6 different slices from a total of 3 animals (2
unique slices per animal) with a total of 786 units, 296 backbone and 490 non-rigid, the murine primary group
consists of 8 different cultures with a total of 1048 units, 277 backbone and 771 non-rigid. Statistical differences
between the different model types and between backbone and non-rigid units for the different model types are
computed using a linear mixed effects model. The model considers interactions between backbone and non-rigid
units and between different model types. The specific recordings within each model type are included as
grouping factors in the model. Each model is significantly different from each other (P < 10"'°) and within each
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model the backbone and non-rigid units are significantly different from each other (*** = P <0.001, ** = P <
0.01, * = P < 0.05). (B) The normalized average burst-to-burst correlation per unit grouped the same as in A.
Normalization was performed by subtracting the average burst-to-burst correlation per unit after shuffling from
the original value and the dividing the outcome by the sum of both values (Original-
Shuffled)/(Original+Shuffled). Similar to A, the statistical differences between the model types and between the
backbone and non-rigid units were computed using a linear mixed effects model. Each model is significantly
different from each other (P < 10™'%) and for the organoids and murine cortical slices the backbone and non-rigid
units are significantly different from each other (*** = P <0.001, ** = P < 001, * = P < 0.05). (C) The
normalized pairwise cross-correlation per unit pair is grouped into backbone-to-backbone (blue), backbone to
non-rigid (gray) and non-rigid to non-rigid (yellow) for each model type individually. Normalization was
performed by subtracting the average pairwise correlation per unit pair after shuffling from the original value
and then dividing the outcome by the sum of both values (Original-Shuffled)/(Original+Shuffled). A linear
mixed effects model was used to assess which of the distributions were significantly larger than O, indicating
above random correlation strengths (*** = P <0.001, ** = P < 001, * = P < 0.05). Note that even though all
three-unit pair types have a P value smaller than 10 for the organoids due to the large n, the effect size for
backbone-to-backbone unit pairs is notably higher compared to the other two categories. (D) The absolute lag
times that resulted in the optimal pairwise cross-correlations for pairs of backbone units shown in C. A linear
mixed-effects model was used to assess differences between model types, reflecting that the optimal lag times
are significantly larger for human and murine brain organoids compared to primary cultures (*** = P <0.001, **
=P <001,* = P<0.05). These long latency correlations result from consistent backbone sequences. (E) The
normalized fraction of the variance explained summed over the first three principal components for the PCA
manifolds per model type. To account for differences in the total number of principal components per category,
the summed explained variance for the first three principal components is divided by the summed explained
variance of the first X principal components, where X is the lowest number of total principal components from
the three categories, all units, backbone and non-rigid. This value is computed for the original data and the
shuffled data after which the shuffled result is subtracted from the original result to get the final value. The dots
within the violins represent each individual recording. A linear mixed-effects model was used to assess
differences between model types (*** = P <0.001, ** = P <001, * = P < 0.05). (F) Hidden Markov models
explore a higher-dimensional space for human and murine brain organoids than for primary cultures. For each
fitted HMM, the dimensionality of representation was estimated by counting the number of principal
components of the HMM observations that were required to explain at least 75% of variance. A linear-mixed
effects model was used to assess differences between model types (*** = P <0.001, ** = P <001, * = P <
0.05). No normalization with shuffled data was applied since shuffled models always required only 1 principal
component. See Supplementary Fig. 32 for the results of other percentage thresholds.

We next focused our analysis on pairwise cross correlations between single-unit firing
rates among the backbone and non-rigid units (Fig. 7C, Supplementary Fig. 18). We observed
significant increase in the pairwise correlations between backbone-to-backbone (blue) units
when referenced to randomized data preserving both population and mean single-unit firing
58,73 (see Methods) for both the organoid and murine neonatal slice recordings (P < 1071,
linear mixed-effects model), an effect not observed in two-dimensional murine primary
cortical cultures (P > 0.99, linear mixed-effects model). The differences in firing rate, burst-
to-burst correlation and pairwise correlation were present in organoids at all observed
developmental time points (Supplementary Fig. 5SB-D). Furthermore, we found that higher
normalized pairwise correlations between backbone unit pairs were consistently observed in
both whole and slice recordings from unguided human brain organoids. These organoids
were generated using different cell lines and different protocols in separate laboratories™"
(Supplementary Fig. 3F). This trend was also present in mouse brain organoids of dorsal
forebrain identity (Supplementary Fig. 8, 18). Interestingly, the temporal trajectory of
backbone units for the two-dimensional primary cultures exhibited synchronous activity
centered about the burst peak (Supplementary Fig. 16C), effectively abolishing sequential
structure, and were identical to randomized organoid data (Supplementary Fig. 13C). As a
result, both human and murine organoids showed significantly larger cross correlation lag
times among backbone unit pairs compared to primary cultures (Fig. 7D, P < 0.001 and P <
0.05 respectively), which highlights their ability to sustain correlated neuronal activity with
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time constants that span order 10> ms found in cortical and subcortical circuits with the
capacity to support sequential firing patterns'®%%7°,

Additionally, we performed principal component analysis (PCA) on the single-unit
firing rates to quantify further the variance explained by the backbone and non-rigid single-
units across these developmental models. The backbone units in the organoids explain a
significantly higher fraction of the total variance than the other model types and unit types, as
reflected by the percent variance explained by the first three principal components (Fig. 7E,
Supplementary Fig. 21, P < 0.001, linear mixed-effects model). Together these findings
highlight the finding that organoids generate sequential patterns that reside in a lower
dimensional subspace (explained by fewer PCs) that is embedded in a higher dimensional
background (requiring larger number PCs) of comparatively more irregular spiking patterns.
Interestingly, we observe that backbone units are present in neonatal slices from the
somatosensory cortex with the intrinsic capacity to generate se(}uences that span timescales
(order 10% milliseconds) observed in mature cortical circuits'>"'**°, and occur with less
stereotypy compared to organoids. Meanwhile, recurring sequential activation patterns of
backbone units are not sustained in two-dimensional primary cultures.

We next asked if our analysis using hidden Markov models (HMMs) would enable us
to quantify the firing patterns that are present in brain organoids, brain slices and two-
dimensional primary cultures. First of all, we noted that in all models, the non-rigid units are
predominantly Poisson, and backbone units are predominantly non-Poisson (Supplementary
Fig. 33). In an in vivo setting, it has been well established that Poisson randomness is not a
universal feature of spiking patterns in the cortex”’, where architectonically defined brain
regions generate homologous firing patterns that differ systematically across brain regions
and less across species, a feature consistent from mice to cats and monkeysg3. To further
quantify the complexity across the different neuronal model systems we calculated their
dimensionality, which we defined as the number of principal components of the HMM
observations required to explain a variable fraction, @, of the total variance. Here, the hidden
states range from 10-30 and @ spans the range from 0.5 to 1, (see Methods and
Supplementary Fig. 32). At § = 0.75, human organoids are separable from slice data (P =
0.04 according to a linear mixed-effects model with Poisson observations); however, two-
dimensional primary cultures exhibit substantially lower-dimensional HMM observations
than both human (P < 0.0001) and murine (P = 0.003) brain organoids (Fig. 7F), with similar
trends existing for a range of values of & (Supplementary Fig. 32). Importantly, we observed
that within organoids, hidden states correspond to clusters of population activity patterns
which are distinguished across multiple dimensions, whereas after randomization, the HMM
captures only a one-dimensional space which scales with the population rate (Supplementary
Fig. 28). Furthermore, the number of realized states does not strongly depend on the number
of hidden states (Supplementary Fig. 26). However, the rate at which states are traversed per
unit time differs significantly across models (Supplementary Fig. 34), with the three-
dimensional models exhibiting a lower state traversal rate than the two-dimensional primary
cultures.

Firing pattern stability

Despite the similarities in neuronal firing patterns and the establishment of stable sequences
observed in both organoids and neonatal slices, two-dimensional counterparts are dominated
by Poisson-like irregularity, which precludes the generation of sustained temporal patterns
and confines their state transitions, as defined by a HMM, to a lower-dimensional space (Fig.
7F). However, all models can generate complex neuronal firing patterns. Many complex
systems, including brains across phylogeny, show signs of criticality61. Criticality is a
dynamical state that comprises internally-generated multi-scale, marginally-stable dynamics
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that maximize general features of information processing, such as dynamic range,
information transmission, susceptibility, and robustness™". Criticality directly accounts for a
system’s capacity for complex function, and is a homeostatic endpoint in the brain® that is, in
the intact brain, maintained by sleepgs. While measurement of criticality traditionally requires
extended sampling of a system’s activity, recent progress solves this problem by applying
renormalization group theory®® - to the temporal features of neural data. We assessed each
system's proximity to criticality using temporal renormalization group theory to quantify how
close neural dynamics are to exhibiting perfect temporal scale-invariance®. At criticality,
general features beneficial to complex computation are simultaneously optimized, including
information transmission, information storage, dynamic range, entropy, and
susceptibility60’84. The distance metric d» measures how far a system's dynamics are from
criticality, with values between 0.0-0.1 indicating near-critical dynamics that span many
timescales without a characteristic scale, while larger values indicate deviation from
criticality. We found that a subset of each preparation type generated activity well-described
by the autoregressive model framework and exhibited near-critical dynamics (see
Supplemental Fig. 35 and Methods for additional details). Shuffling spike times consistently
abolished temporal criticality across all preparations, producing significantly larger d» values
(P<10"° compared to intact data). Murine organoid preparations showed particularly good
agreement between empirical measurements and model predictions. Taken together, these
data suggest that all preparations are capable of generating near-critical dynamics when
properly captured by the autoregressive framework. This indicates that the capacity for scale-
invariant dynamics may be a fundamental property of neural circuits that emerges during
development, independent of precise circuit architecture or environmental context.

Discussion

The advent of high-density extracellular recordings has facilitated the detection of non-
random firing patterns that assemble into temporally precise sequences that are believed to
form a basis for broadcasting and computing information in the brain'®. Whether such
sequences are emergent features, present during early brain development, a stage that is
dominated by spontaneous activity with the potential to encode informational content,
remains unclear. It has been hypothesized that sequences are ‘preconfigured’ and represent an
innate architecture independent of external experiencezg. However, experimental evidence in
support of this notion is still sparse, largely due to experimental inaccessibility“.

To address this open question, we leveraged state-of-the-art high density extracellular
recordings from three-dimensional stem cell derived models of the human brain, known as
brain organoids, which represent an intrinsically self-organized neuronal system that
recapitulates key facets of early brain development3 “37 and the establishment of functional
circuits®"4, Crucially, brain organoids are not exposed to sensory information, and are thus
an ideal model to study whether the emergence of sequences is truly experience-independent.
Here, our analysis of single-unit firing patterns within human and murine brain organoids
revealed the presence of a subset of high-firing rate neurons capable of generating firing
patterns that assemble into temporally precise spiking sequences. A larger subpopulation
conversely exhibits lower firing rates and less regular firing patterns (Fig. 2), where
temporally rigid sequences project back onto a minority of strong functional connections
(Fig. 3), which we previously reported are emergent properties of brain organoids30. Ina
seminal paper, Hopfield demonstrated that emergent computational properties from simple
properties of many cells, rather than complex circuits, are capable of generalization, time
sequence retention, error correction and time-evolution of the state of the system87.
Therefore, it’s not surprising that the temporal structure of spontaneous and evoked patterns
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of cortical circuits are similarsg’sg, since such representations are drawn from a functionally
connected neuronal pool with right-skewed, lognormal scaling rules’.

Units that fire within the recurrent neuronal firing sequences exhibit varying degrees
of temporal precision. The subpopulation of neurons that fire at the beginning of the
population bursts are the most constrained, whereas units firing later in the sequences are
more temporally flexible (Fig. 2F,G). An analogous organization of spiking activity is present
also in the somatosensory and auditory cortex of adult rats®, and in the three-layered turtle
cortex'*. In the hippocampus, experience-dependent replay has been shown to emerge from
spontaneous, experience-independent preconfigured sequences™. The balance between
temporally correlated and irregular spiking neuronal populations is an important feature of
information processing in the brain. For example, large-scale extracellular field recordings
from neurons in the mouse visual cortex and monkey brain have revealed a low-dimensional
subspace of neurons that are entrained to population firing dynamics and represent a fixed
attribute insensitive to external stimulus®®. Consistent with this observation, also in brain
organoids, we observe a low-dimensional subspace, consisting of backbone units, that resides
within a higher dimensional space spanned by more weakly correlated and irregularly firing
units (Fig. 4). Moreover, we show that the stochastic firing patterns of randomized organoid
data closely mirror the firing patterns of two-dimensional dissociated cortical cultures, which
exhibit culture-wide synchronization events that cannot sustain sequential activity patterns
(Supplementary Fig. 13,16). Such an effect is likely the result of highly redundant and
interconnected two-dimensional network configurations commonly observed in vitro™°,
Together, these findings highlight that the self-organized generative process of neurogenesis
and synaptogenesis within brain organoids may serve as a faithful in vitro model of the
human brain, and do not simply generate random networks. Our results support the
hypothesis that construction of complex networks capable of recapitulating in vivo neural
dynamics requires morphogenesis in three-dimensions. In fact, recent experiments have
demonstrated that functional circuits in human brain organoids, when interfaced with a
machine, can function as a reservoir for computing, capable of speech recognition and
nonlinear equation prediction™.

In an in vivo setting, a minority pool of strongly correlated neurons have been
proposed to serve as a fast-acting system that resides within a more weakly coupled
background, believed to function as a pre-configured and optimally tuned brain state''”'. The
delicate balance between rigid and flexible spiking components and the establishment of
sequential spiking patterns are an emergent feature of the three-dimensional cytoarchitecture,
which is further supported by our analysis of spontaneous activity from neonatal slices of the
mouse somatosensory cortex (Fig. 6). Recent work has further established that a
neurophysiological backbone is likely organized during neurogenesis where common
pyramidal neuronal progenitors establish high firing rate subnetworks, which are functionally
connected and co-activated across brain states™. The presented organoid data shows that
highly correlated backbone units increase in burst-to-burst correlation from earlier organoid
developmental time points relative to later time points (Supplementary Fig. 5), a feature
conserved across human and murine brain organoids. This transition also coincides with the
functional incorporation of inhibitory interneurons in our brain organoids™®?, and reflects an
excitatory-inhibitory balance shifting towards inhibition that is observed in in vivo cortical
circuits®, while preserving right-skewed functional organizational rules”. Further, we
demonstrate that the temporal rigidity of neuronal sequences is strongly modulated by
inhibition of GABAergic input (Supplementary Fig. 11), which leads to a sharp increase in
burst synchronization - an effect consistent with the inhibitory role of GABA. This finding
highlights the critical role of interneuron signaling in maintaining network homeostasis and
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microcircuit function observed in mature brain circuits’*”, suggesting that it may also play a
key role in shaping early neural dynamics prior to sensory input. While previous studies have
suggested that GABA exerts a paradoxical excitatory effect during early brain development,
with a transition to inhibition occurring after postnatal week two in the murine neocortex”™”’,
a growing body of evidence points to inhibitory effects of GABAergic signaling occurring
much earlier in development*?*'®_ Our findings align with this emerging perspective,
indicating that interneurons and their inhibitory effects are key contributors to the temporal
structure of neuronal sequences during the initial stages of brain development. The brain
organoid model thus provides a unique platform for future research to investigate how
interactions between brain regions and specific cell types drive the assembly of functional
microcircuits'®".

Brain organoids represent a self-organized neurodevelopmental system that operates
as a truly closed system devoid of external input, and yet is capable of generating a rich
repertoire of activity patterns that resemble the temporal dynamics of the early developing
brain. Embedded within these firing patterns we observed an overlap between the pool of
non-Poisson-like firing patterns generated by brain organoids and neonatal brain slices.
However, within primary cortical cultures, with an inherently randomized cytoarchitecture,
we observed a shift to lower dimensional state transitions as captured by a hidden Markov
model (Fig. 7F). In an in vivo setting, brain regions are defined by a balance between a
repertoire of firing patterns that span irregular Poisson dynamics to clock-like regularity,
which depend on local circuit architectures and are believed to be critical components
underlying higher order brain function®’. In fact, the ‘backbone’ of consistently firing
neurons, which form a minority pool within strongly connected networks, can predict as
much as 80% accuracy during motor control in humans'®*. Backbone units have been
proposed to function as an ‘ansatz’, or initial estimate for matching behavior to external
environmental inputs''. We posit that the highly correlated, non-Poisson neuronal
components may serve as basis for the emergence of temporal sequences in early brain
development. Early sequences might function as an internal reference frame for larger scale
population dynamics found in mature circuits'®, which will later be calibrated through
interplay between sensory input and motor output®. In fact, recent work in the postnatal
murine brain has revealed that preconfigured sequence motifs (spontaneously generated in
sleep and rest states) emerge before explicit sequential experience and are not improved by
sequential experience during the third postnatal week after navigational beyond the nest**.
We further demonstrate that neuronal firing patterns within brain organoids and neonatal
brain slices generate strong non-random pairwise correlations with varying degrees of
temporal jitter (relative to population events) with non-zero phase lags. These ensembles link
together to establish a manifold of trajectories that are identifiable using a hidden Markov
model, with a core of these probabilistic state transitions consisting of units with strong
pairwise interactions (Fig. 5C,D). These subsets of units may function as an ‘irreversible’ set
of ‘noisy logic elements’ that define a local arrow of time, which has recently shown to
emerge8 én retinal circuits, where neuronal activity remains irreversible even when their inputs
are not .

In summary, our analysis of spontaneous activity generated by stem cell derived
human and murine brain organoids, demonstrates that structured spiking sequences can
emerge when completely devoid of sensory experience and motor output, supporting the pre-
configured brain hypothesis. These results are in line with recent work showing how
pharmacologically abolishing all central nervous system activity during the development of
the larval zebrafish did not alter an oculomotor behavior'®, suggesting that complex sensory-
motor systems are hard-wired by activity-independent mechanisms. Our findings recall the
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philosophy of Immanuel Kant in Critigue of Pure Reason'"*, who posited an a priori
construction of a space-time map that in modern terms, could serve as a 'scaffold' to enable
the brain to interact with and make sense of the world. In conclusion, brain organoids provide
a heuristic platform for exploring how exogenous inputs refine self-organized neuronal
circuits imbued with the innate capacity to process information and computego, while also
facilitating new studies into the genetic mechanisms governing the assembly of functional
circuitry during early human brain developmentlos_m.

Methods
Human brain organoid slice recordings and pre-processing

The human brain organoids presented in Fig. 1-4 were grown and prepared for extracellular
field recordings as described in Sharf et al.”*. Organoids with less than 20 active units were
not considered as significant to reliably separate a backbone and non-rigid population.
Briefly, brain organoids were grown based on methods developed by Lancaster ez al.” and
were of predominant forebrain identity based on single cell RNA sequencing analysis’ . The
recordings were made using complementary metal-oxide-semiconductor (CMOS) micro-
electrode array (MEA) technology (MaxOne, Maxwell Biosystems, Zurich, Switzerland).
The arrays contain 26 400 recording electrodes of which a subset of 1,024 electrodes can be
selected for simultaneous recording64. With a diameter of 7.5 ym each and a 17.5 ym pitch,
the electrodes cover a total sensing area of 3.85 mm x 2.1 mm. The electrode selection was
made based on automatic activity scans (tiled blocks of 1,020 electrodes) to identify the
spatial distribution of electrical activity across the surface of the organoid. The 1,020 most
active electrodes were chosen with a minimum spacing distance of at least two electrodes (2
x 17.5 pm), providing sufficient electrode redundancy per neuron to enable accurate
identification of single units by spike sorting“o, while simultaneously sampling network
activity across the whole organoid surface interfacing the MEA. Measurements were made in
a culture incubator (5% CO, at 37 °C) with a sampling rate of 20 kHz for all recordings and
saved in HDF? file format. The raw extracellular recordings were band-pass filtered between
300-6000 Hz and subsequently spike sorted using the Kilosort2 algorithm''' through a
custom Python pipeline. The spike sorting output was then further curated by removing units
with an ISI violation threshold''> above 0.3, an average firing rate below 0.05 Hz and/or a
signal to noise ratio (SNR) below 5.

Whole human brain organoid recordings

Additional recordings were obtained from whole human brain organoids (Fig. 7), which were
grown from human iPSCs and differentiated into organoids based on a previously established
protocol1 B Briefly, the NIBSCS8 iPSC line was cultured in mTESR Plus medium on
vitronectin. Neural differentiation was induced with Neural Induction medium via SMAD
inhibition (Gibco) and organoids were differentiated under gyratory shaking (88 rpm, 50 mm
orbit) for up to 8 weeks in Neurobasal Plus medium supplemented with 1x B27-Plus, 10
ng/ml human recombinant GDNF (GeminiBio™ ), 10 ng/ml human recombinant BDNF
(GeminiBio™ ), 1% Pen/Strep/Glutamine (Gibco, Thermo Fisher Scientific). Half changes of
medium were performed 3-times a week.

Organoids electrophysiology data was sourced from Alam El Din et al ! which made use of
high-density MEAs integrated into 6-well configuration (MaxTwo, Maxwell Biosystems,
Zurich, Switzerland) with the same electrode configuration per well as the MaxOne system
described in the previous section. Briefly, whole organoids attached to MEAs at 9.5 weeks
old and grown for 32 days. Prior to plating, the HD-MEA chips were coated with 0.07%
Poly(ethyleneimine) solution (Sigma Aldrich) diluted in a 1x borate buffer (Thermofisher)
for 1 hour at 37°C and 5% CO,. Following three washes with water to remove the
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Poly(ethyleneimine) solution the chips were dried for an hour in the hood. 0.04 mg/ml Mouse
Laminin (Sigma Aldrich) was then added and incubated for 1 hour at 37°C and 5% CO..
After the incubation, the laminin was removed, and the organoids were plated on the MEA.
Recordings were performed using the same methods in the previous section.

Bulk RNA sequencing of brain organoids

Total RNA was isolated from 8-week old organoids via a Quick-RNA™ Microprep Kit
(Zymo Research). The RNA integrity was assessed using the Agilent TapeStation 4200
(Agilent Technologies). A total of 500 ng of RNA was employed to generate mRNA libraries
following the TruSeq Stranded mRNA Library Prep Kit (Illumina) protocol. This procedure
involved isolating Poly-A mRNA, fragmenting it, synthesizing the first and second cDNA
strands, adding adenylated 3’ ends, and ligating TruSeq RNA Combinatorial Dual Indexes
(Ilumina). The ligated fragments were then amplified for 15 cycles, purified, and quantified
using the Qubit 3.0 Fluorometer (Thermo Fisher Scientific). The size and quality of the
libraries were evaluated with the Agilent TapeStation 4200. Finally, the libraries were
normalized, pooled, and sequenced on the NovaSeq X Plus (Illumina) using 150 bp paired-
end reads, achieving approximately 100 million reads per sample.

Bulk RNA sequencing analysis

Raw FASTAQ files were processed using the nf-core RNA-seq pipeline which leverages
Nextflow workflows (version 23.10.1) (https://doi.org/10.5281/zenodo.1400710"'*). Adapters
and poor quality sequences were trimmed using “Trim-Galore ! Reads were aligned to
the GRCh38 genome using ENSEMBL gene annotations (release 111) using STAR and
transcripts were quantified with Salmon''“''®, Post processing of reads was accomplished
using SAMtools (sorting and indexing aliﬁgnments)ng, picard (duplicate identification)'*, and
BEDtools (genome coverage assessment) *! Read and mapping quality were assessed using
RSeQC'*?, Qualimapm, dupRadarm, and Preseqlzs. Gene length corrected and scaled counts
from Salmon were normalized using limma voom'*’. RNA-seq data from the four samples
are deposited in the NCBI Gene Expression Omnibus.

Immunohistochemistry and microscopy of human brain organoids.

Organoid samples were stained following methods described in Romero et al.'"” Briefly, after

fixation in 2% PFA, organoids were permeabilized with 0.1% Triton X and blocked with
100% BlockAid™. Organoids were stained with primary antibodies (Table below) at 4°C on
a shaker for 48 hours followed by staining with secondary antibodies for another 24 hours.
Nuclei were stained with Hoechst 33342 trihydrochloride (Invitrogen Molecular Probes) at a
concentration of 1:10,000. Organoids were imaged on a FV3000RS Olympus or a Zeiss
LSM800 confocal microscope.

Antibody Host Clone Company Cat # Dilution

Gephyrin Mouse Monoclonal | Synaptic 147 011 1:1000
Systems

MAP2 Chicken Polyclonal Invitrogen PA1-10005 | 1:5000

GFAP Rabbit Polyclonal Dako Z0334 1:400

04 mouse Monoclonal | R&D MAB1326 1:200

Mouse ESC maintenance
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Three mouse embryonic stem cell lines were used: C57BL/6, E14TG2a (129/0la), and KH2
(129/SvJ x C57BL/6 hybrid). Mycoplasma testing using MycoAlert (Lonza # LT07-318)
confirmed lack of contamination.

ESCs were maintained on recombinant human protein vitronectin (Thermo Fisher Scientific
A14700) coated plates using mESC maintenance media containing Glasgow Minimum
Essential Medium (Thermo Fisher Scientific 11710035), embryonic stem cell-qualified fetal
bovine serum (Thermo Fisher Scientific 10439001), 0.1 mM MEM nonessential amino acids
(Thermo Fisher Scientific 11140050), 1 mM sodium pyruvate (Millipore Sigma S8636), 2
mM glutamax supplement (Thermo Fisher Scientific 35050061), 0.1 mM 2-mercaptoethanol
(Millipore Sigma M3148), and 0.05 mg/ml primocin (Invitrogen ant-pm-05). mESC
maintenance media were supplemented with 1000 units/ml of recombinant mouse leukemia
inhibitory factor (Millipore Sigma ESG1107). Media was changed every day.

Vitronectin coating was incubated for 15 min at a concentration of 0.5 ng/ml dissolved in 1x
PBS pH 7.4 (Thermo Fisher Scientific 70011044). Dissociation and cell passages were done
using ReLeSR passaging reagent (Stem Cell Technologies 05872) according to the
manufacturer's instructions. Cell freezing was done in mFreSR cryopreservation medium
(Stem Cell Technologies 05855) according to the manufacturer's instructions.

Mouse embryonic stem cell derived cortical organoids

Organoids were generated from three distinct mouse embryonic stem cell lines: C57BL/6,
E14TG2a (129/0la), and KH2 (129/Sv] x C57BL/6 hybrid). Embryonic stem cells (ESCs)
were dissociated into single cells using TrypLE Express Enzyme (Thermo Fisher Scientific,
#12604021) for 5 minutes at 37°C. After dissociation, the cells were re-aggregated in
lipidure-coated 96-well V-bottom plates at a density of 3,000 cells per well in 150 uL of
mESC maintenance medium, supplemented with 10 M Rho Kinase Inhibitor (Y-27632,
Tocris #1254) and 1,000 units/mL Recombinant Mouse Leukemia Inhibitory Factor
(Millipore Sigma, #ESG1107). Following 24 hours of re-aggregation, the medium was
replaced with cortical differentiation medium, composed of DMEM/F12 with GlutaMAX
(Thermo Fisher Scientific, #10565018), 10% Knockout Serum Replacement (Thermo Fisher
Scientific, #10828028), 0.1 mM MEM Non-Essential Amino Acids (Thermo Fisher
Scientific, #11140050), 1 mM Sodium Pyruvate (Millipore Sigma, #S8636), 1X N-2
Supplement (Thermo Fisher Scientific, #17502048), 2X B-27 minus Vitamin A (Thermo
Fisher Scientific, #12587010), 0.1 mM 2-Mercaptoethanol (Millipore Sigma, #M3148), and
0.05 mg/mL Primocin (Invitrogen, #ant-pm-05). The medium was further supplemented with
10 #M Rho Kinase Inhibitor (Y-27632),5 uM WNT inhibitor (XAV939, StemCell
Technologies #100-1052), and 5 xM TGF- inhibitor (SB431542, Tocris #1614).

Daily medium changes were performed, with N-2 and B-27 supplements added post-filtration
to preserve their hydrophobic components. On Day 5, organoids were transferred to ultra-low
adhesion plates (Millipore Sigma, #CLS3471), where the medium was replaced with fresh
neuronal differentiation medium. The plates were then placed on an orbital shaker set to 68
rpm to prevent organoid fusion.

From Day 6 to Day 12, the neuronal differentiation medium consisted of Neurobasal-A
(Thermo Fisher Scientific, #10565018), BrainPhys Neuronal Medium (Stem Cell
Technologies, #05790), 1X B-27 Supplement without Vitamin A (Thermo Fisher Scientific,
#12587010), 1X N-2 Supplement (Thermo Fisher Scientific, #17502048), 0.1 mM MEM
Non-Essential Amino Acids (Thermo Fisher Scientific, #11140050), and 0.05 mg/mL
Primocin (Invitrogen, #ant-pm-05), with the fresh addition of 200 M Ascorbic Acid.
Organoids were cultured under 5% CO2, with medium changes performed every 2-3 days.
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From Day 15 onward, the organoids were maintained in a neural differentiation medium
containing BrainPhys Neuronal Medium, 1X B-27 Plus Supplement (Thermo Fisher
Scientific, #A3582801), 1X N-2 Supplement, 1X Chemically Defined Lipid Concentrate
(Thermo Fisher Scientific, #11905031), 5y g/mL Heparin (Sigma Aldrich, #H3149), and 0.05
mg/mL Primocin. Additionally, 200 M Ascorbic Acid was included until Day 25. The
medium was refreshed every 2-3 days, and the shaker speed was maintained at 68 rpm to
minimize organoid fusion. To ensure optimal growth conditions, 16 organoids per well were
consistently maintained.

Single-cell RNA sequencing of cortical organoids
PIPseq library preparation

Murine cortical organoid library prep was carried out following the methods described in
Clarke et al.'”’. Ten murine cortical organoids per cell line (3 cell lines defined above) were
pooled together and dissociated using Worthington Papain Dissociation System (Worthington
# LK003150) according to the manufacturer's instructions. Briefly, 20 units of papain per ml,
ImM L-cysteine and 0.5mM EDTA were resuspended in Earle's Balanced Salt Solution
(EBSS). The enzyme solution was activated by incubating for 30 minutes at 37° C. After
activation, we included 200 units of DNase I per ml. We transferred the tissue into the papain
and DNase I solution and incubated for 30 minutes at 37° C. Every 10 minutes the samples
were agitated by gently shaking the tube. The tissue was mechanically dissociated using
flamed glass Pasteur Pipets (Fisher Scientific # 13-678-6B). The tissue was centrifuged at
300 RCF for 3 minutes. The supernatant was removed and approximately 1mL of 1X PBS
containing 0.1% Bovine Serum Albumin (Millipore Sigma # A3311) was added and the cells
were resuspended, then put through a 40 ym cell strainer (Corning # 431750) into a 6 well
ultra low-adhesion plate (Millipore Sigma # CLS3471). Cells were then manually counted on
a hemocytometer and 3.3K cells from each of the three dissociated organoid cell lines were
pooled to make a total of 10K cells. These pooled cells were then combined into a single
sequencing reaction using the PiPseq T2 kit and carried out according to the manufacturer’s
instructions.

PIPseq data analysis

Samples were pooled and sequenced on the AVITI PE75 Flowcell ~900M reads at the
UCDavis Technologies Core. The sequencing data was then processed using the PIPseeker
pipeline (PIPseeker v3.3, Fluent BioSciences), using the mouse genome GRCm39
(GENCODE vM29 2022.04, Ensembl 106)'**. We used the default parameters to process the
FASTAQ files, perform mapping, transcript counting and cell calling.

Sensitivity 5 matrices were used for downstream analysis using R package Seurat (version
5.1.0)'®. Souporcell was used for genotype demultiplexing and doublet identification'™.
Doublets were also identified using the R package DoubletFinder v2.0.4"".

Cells were filtered based on doublet identification, with greater than 20% mitochondrial
genes, less than the 5th percentile unique genes detected, and greater than 50,000 total RNA
counts. The raw gene count matrices were normalized with SCTransform function while
regressing out mitochondrial genes identified the top 3,000 highly variable genes. Principal
component analysis was performed and clusters were identified by the FindNeighbors
function using 40 principal components (chosen based on visual inspection of the elbow
plot). The function FindClusters was run with resolutions of 2, 1, and 0.5 with leiden
clustering. The clusters were then embedded and visualized with Uniform Manifold
Approximation and Projection (UMAP)"** and the resolution of 0.5 was chosen based on
visual inspection of marker genes to represent the best approximal cell type. Annotation of
the dataset was performed by marker gene expression from the FindMarkers function by the
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Wilcoxon Rank Sum test and reference to canonical marker genes from the Allen Brain Atlas

Whole Cortex and Hippocampus]33 visualized using the UCSC Cell Browser'**.

Immunohistochemistry and microscopy

Organoids were collected and fixed in room temperature 4% Paraformaldehyde (PFA)
(Thermo Fisher Scientific # 28908) and cryopreserved in 30% Sucrose (Millipore Sigma #
S8501). They were then embedded in a solution containing 50% of Tissue-Tek O.C.T.
Compound (Sakura # 4583) and 50% of 30% sucrose dissolved in 1X Phosphate-buffered
saline (PBS) pH 7.4 (Thermo Fisher Scientific # 70011044). Organoids were then sectioned
to 20 um using a cryostat (Leica Biosystems # CM3050) directly onto glass slides. After 2
washes of 5 minutes in 1X PBS the sections and 1 wash in deionized water (Chem world
#CW-DW-2QG) sections were incubated in blocking solution 5% v/v donkey serum (Millipore
Sigma # D9663), and 0.1% Triton X-100 (Millipore Sigma # X100) for 1 hour. The sections
were then incubated in primary antibodies overnight at 4° C. They were then washed 3 times
for 10 minutes in PBS and incubated in secondary antibodies diluted in blocking solution for
90 minutes at room temperature. They were then washed 3 times for 10 minutes in PBS and
coverslipped with Fluoromount-G Mounting Medium ( Thermo Fisher Scientific # 00-4958-
02). Additional histology was performed on sections on fixed tissue that were not
cryopreserved (Supplementary Fig. 10). Organoid samples were fixed in 4%
paraformaldehyde (Thermo Fisher Scientific # 28908) overnight at 4T °C. After rinsing,
samples were embedded in 4% low melting point agarose (invitrogen # 16520-050) in PBS
and sectioned (50 xm) using a VT1000s vibratome (Leica, Lumberton, NJ). Sections were
then incubated in an initial blocking solution consisting of 5% v/v donkey serum (Millipore
Sigma # D9663), BSA 1% (Millipore Sigma # A7906), and 0.5% Triton X-100 (Millipore
Sigma # X100) for 1 hour in 4°C. The initial blocking solution was then carefully removed,
and sections were then placed in an antibody blocking solution with primary antibodies
composed of 2% v/v donkey serum (Millipore Sigma # D9663), and 0.1% Triton X-100
(Millipore Sigma # X100) overnight. Sections were removed from the antibody blocking
solution and were washed four times in 1X PBS for 15 minutes at room temperature. Sections
were then placed with secondary antibodies diluted in antibody blocking solution, as
previously described, at room temperature for 30 minutes. Another wash in 1X PBS was
performed, followed by Hoechst 33342 nucleic acid counterstain for 15 minutes at room
temperature. Three final washes were conducted and sections were mounted on glass slides
using Fluoromount-G Mounting Medium (Fisher Scientific OB100-01).

Primary antibodies used were: rabbit anti-Map2 (Proteintech # 17490-1-AP, 1:2000); mouse
anti-Pax6 (BD Biosciences # 561462, 1:100); rabbit anti-Nkx2.1 (Abcam # ab76013, 1:400);
rat anti-Ctip2 (Abcam # ab18465, 1:250); rabbit anti-Brn2 (Thermofisher # PA530124,
1:400); anti-Gaba (Thermo Fisher Scientific # PA5-32241, 1:375). Secondary antibodies
were of the Alexa series (Thermo Fisher Scientific), used at a concentration of 1:750. Nuclear
counterstain was performed using 1.0 xg/ml Hoechst 33342 (Thermofisher # H1399).

Imaging was done using an inverted confocal microscope (Zeiss 880) and Zen Blue software
(Zeiss). Images were processed using Zen Black (Zeiss) and ImagelJ software (NIH).

Synaptic Blocker experiments

Preparation of stock solutions to block components of slow and fast synaptic transmission:
the AMPA receptor blocker NBQX (Abcam) was solubilized in DMSO, the NMDA receptor
blocker R-CPP (Abcam) and the GABA receptor blocker Gabazine (Abcam) were prepared
in ultrapure distilled water (Life Tech) at 1000x the desired working concentration. The
working concentrations were 10, 20 and 10CuM for NBQX, R-CPP and Gabazine
respectively. Recordings were made from murine brain organoids with gabazene 15 minutes
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after addition of the compound. Subsequent recordings were performed after the addition of
NBQX and R-CPP. Data was spike sorted and analyzed following the methods described
above.

Neonatal murine brain-slice preparation

All experiments involving murine neonatal acute slice recordings were approved by the
Basel-Stadt veterinary office according to Swiss federal laws on animal welfare. Briefly,
mouse pups (P12-14; both sexes; C57BL/6JR] from Janvier Labs) were decapitated under
isoflurane anesthesia, followed by brain dissection in ice-cold artificial CSF (aCSF) bubbled
with carbogen gas (95% O, 5% CO,). To promote self-sustained cortical activity13 > the
following aCSF recipe was used (in mM): 126 NaCl, 3.5 KClI, 1.25 NaH,PO,, 1 MgSQOy, 2
CaCl,, 26 NaHCOs, and 10 glucose, at approximately pH 7.3 when bubbled with carbogen.
Coronal brain slices (370 Jum) were prepared using a vibratome (VT1200S, Leica, Wetzlar,
Germany). Slices were subsequently transferred to a chamber submerged in carbogenated
aCSF and stored at room temperature until use.

Acute recordings from neonatal murine brain slices

For recordings, a brain slice containing somatosensory cortex was transferred from the
storage chamber onto the sensing area of the CMOS MEA and fixated with a customized
MaxOne Tissue Holder (MaxWell Biosystems, Zurich, Switzerland). The slice was perfused
with heated aCSF (32-34 °C). Sparse, rectangular electrode configurations were selected to
find active regions of the somatosensory cortex, with a sparsity of two or three to allow for a
good spike-sorting performance.

Primary planar culture preparation

The presented primary neuronal recordings (Pr) were performed and spike sorted as described
in Yuan et al.** for Pr1-4 and as described in Bartram et al.>* for Pr5-10. Briefly, neuronal
cultures according to Yuan et al. were prepared from embryonic day 18 Wistar rat cortices
and plated at a density of 3,000 cells/mm” onto high-density CMOS MEAs (MaxOne,
Maxwell Biosystems) and maintained in a cell culture incubator (5% CO, at 37 °C). The
recordings were made at 20 days in vitro. The recordings can be obtained here:

https://www research-collection.ethz.ch/handle/20.500.11850/431730.

Comparing data from different sources

The recording durations of all recordings coming from the same source were kept consistent.
The recording durations per data source were selected so that each recording contained
around 40 bursts (38 + 4 bursts, mean + SE), using the first x minutes of the recording to get
to this value.

Single-unit firing rate and CV2 calculations scores

All of the following analyses were performed using custom MATLAB scripts. MATLAB
version R2018b was used. The firing rate of each individual spike-sorted unit with at least 30
detected spikes in the recording was computed by obtaining the inter spike interval between
each spike event and applying a Gaussian smoothing with a 50 ms kernel to its inverse. A
lognormal distribution was fitted to the distribution of firing rates averaged over the whole
recording period for each unit. The goodness of the fit was assessed using the R* metric. In
addition, for the same selection of units, the CV2 score of the spiking activity was computed
per unit as described by Holt et al 1% as a measure of spiking variability. The same CV2
computations were performed on 100 different shuffled the spike matrices and the results
from the original spike matrices were z-score normalized using the mean and standard
deviation over all shuffled datasets.
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Population rate calculations

The population firing rate was computed by summing spikes over all units per frame
followed by smoothing with a 20 ms sliding square window and a subsequent 100 ms sliding
Gaussian kernel. For the detection of the burst start, end and peak, population activity bursts
were defined when the population-averaged spike rate exceeded 4x its RMS value (using the
built in MATLAB function findpeaks with min_dist = 700 ms. For recordings with long
duration bursts, min_dist was increased up to 2000 ms in order to prevent peaks in the tail of
the burst from being detected as separate burst instances). The burst start and end times were
determined to be the first time points where the multi-unit activity fell below 10% of the
detected peak value, before and after the burst peaks respectively. The actual burst peak time
was then obtained by recomputing the population firing rate using a 5 ms square window and
a 5 ms Gaussian kernel and finding the frame with the highest value between the burst start
and end time. For murine primary planar cultures, a 20 ms square window, a 50 ms Gaussian
kernel and a 3 x RMS threshold were used for population peak detection and a 20% threshold
for the burst start and end time detection. These values were chosen to account for stronger
jitteriness of the population activity and more abundant inter-burst activity.

Firing rate sequences and burst backbones

For each individual unit, the firing rate centered by the burst peak was averaged from -250

ms to 500 ms relative to the burst peak. In addition, the time relative to the population burst
peak at which this unit had a peak in its firing rate within the burst start and end window was
selected. The median and variance of the firing rate peak times was computed per unit over
all bursts in which this unit fired at least two action potentials. The median values were used
for reordering the units for different plotting purposes and the variance was used to fit a linear
mixed-effects model to study the relationship between the effect of the relative position of the
peak (from O to 1) on the variance of the peak.

Units that fired at least two action potentials in all the bursts in a recording were
defined as backbone units. For murine organoids and cortical slices, a threshold of 80% and
90% of bursts was used respectively since only a small fraction of units had at least two
action potentials in all bursts (Supplementary Fig. 2A). A Backbone unit sequence was
defined by ordering all backbone units based on their median firing rate peak time. For each
sample, the burst backbone period was defined as the average firing rate peak time of the
earliest backbone unit until the average firing rate peak time of the latest backbone unit in the
sequence. For different plotting purposes, the backbone period was rescaled from O to 1 and
data per organoid were overlaid and averaged over the rescaled backbone period for
comparison.

Firing rate peak rank order correlations

For each burst, the firing rate peak time of all backbone units was taken and a rank was
assigned to each unit. Next a Spearman rank order correlation was computed between every
pair of bursts to assess the similarity in the firing rate peak sequences of the backbone units
(using the built in MATLAB function corr with “Type” = “Spearman”). The same
computations were performed on 100 different shuffled the spike matrices and the results
from the original spike matrices were normalized using the (A-B)/(A+B) strategy, where A is
the measured value and B is the averaged value computed over the 100 shuffled datasets.

Burst-to-burst firing rate correlations

For each unit, the firing rate was recomputed after removing all spikes that fell outside of the
burst windows. Next, this firing rate was selected from -250 ms to 500 ms relative to each
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individual burst peak and a cross correlation was computed for the unit firing rate between
each pair of bursts for each individual unit (using the built in MATLAB function xcorr with
maxlag = 10ms and normalization = “coeff”). Only bursts with at least 2 detected action
potentials and units with at least 2 spikes in at least 30% of all bursts were considered for this
analysis. Afterwards the average over the maximum correlations for all the burst pairs with at
least 2 detected action potentials was computed per unit, yielding the burst-to-burst
correlation. The same computations were performed on 100 different shuffled spike matrices
and the results from the original spike matrices were normalized using the (A-B)/(A+B)
strategy, where A is the measured value and B is the averaged value computed over the 100
shuffled datasets.

In a separate analysis, burst-to-burst correlations were computed between bursts from
two recordings from the same organoid slice at four-hour intervals. Average burst-to-burst
correlations were computed for pairs of bursts within each of the two same recordings, as
well as for pairs of bursts where one burst came from the recording at zero hours and the
other burst from the recording at four hours.

Pairwise firing rate correlations

Using the same firing rates computed after removing spikes outside burst windows, cross-
correlations were computed between each pair of units (using the built in MATLAB function
xcorr with maxlag = 350ms and normalization = “coeff”, a maxlag of 350ms was chosen
since the median backbone period over all samples except the murine primary cultures was
348ms). The rate for the whole recording was used. The maximum correlation values for each
unit pair were compared between pairs of backbone units, pairs of one backbone and one
non-rigid unit and pairs of non-rigid units. The same computations were performed on 100
different shuffled spike matrices and the results from the original spike matrices were
normalized using the (A-B)/(A+B) strategy, where A is the measured value and B is the
averaged value computed over the 100 shuffled datasets. In addition, for all pairs of backbone
units, the lag time corresponding to the maximum correlation value was compared to the
average absolute lag time over all shuffled datasets for the same unit pair.

Burst clustering

For all the detected bursts, the firing rate per unit was selected for a window of -250 ms until
500 ms relative to the burst peak. Similar to Segev er al.”', the pairwise correlations in the
firing rates were computed for all unit pairs, using the firing rates for this single burst
window. Subsequently, the bursts were clustered by performing a k-means++ clustering on
the pairwise correlation matrices. The optimal number of clusters was selected using the
elbow method. The clustering results were assessed by projecting the pairwise correlation
matrices per burst onto the first two principal components, labeled by their cluster and cluster
separability was confirmed. Next, to assess variability in the firing of a unit between different
burst clusters, the average firing rate per unit was computed for each burst cluster and the CV
score (STD/mean) was computed to quantify the firing rate differences between burst clusters
per unit. This difference was compared between backbone units and non-rigid units using the
statistical analysis as described in Methods: statistical analyses for model comparisons.

Burst similarity score

At every frame relative to the burst peak, a vector containing the firing rates for each unit was
obtained. For every pair of bursts, the cosine similarity was computed between the vectors
from the two different bursts. This yielded a matrix with pairwise burst similarity values at
every frame relative to the burst peak. The average of this matrix was defined to be the burst
similarity score for that relative frame. This score was computed for every frame in the period
from the earliest burst start time - relative to the burst peak over all bursts - until the latest
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burst end time - relative to the burst peak over all bursts. The same computations were
performed on the spike matrices after shuffling.

Besides computing the burst similarity score over all units, burst similarity scores
were also computed for only a subset of units. In the first case, these subsets consisted of all
backbone units and all non-rigid units respectively. Subsequently, at each frame the burst
similarity score distribution for all burst pairs was compared using a paired sample, two-sided
t-test (using the built in MATLAB function t-test). In the second case, these subsets consisted
of units with an average correlation value (Methods: Pairwise firing rate correlations) in the
top/bottom i percentile where i ranged from 20 to 95. Subsequently, the difference between
the top and bottom i™ percentile was quantified for this range as the sum of the burst
similarity score over all frames in the backbone period. This was done to assess the burst
similarity based only on highly/lowly correlated units. Similarly, the burst similarity score
distribution for all burst pairs was compared between the top/bottom 20 percent of units and
all units using a paired sample, two-sided t-test.

PCA manifold analysis

The spike rate matrix of an organoid with # units can be interpreted as a set of points in n
dimensional space, where each axis holds the spike-rate trajectory of a specific unit. The
principal components (PC) of this system are the directions in this space that capture the
majority of the dataset’s variance. A dimensionality reduction is achieved by linearly
projecting the dataset onto these PCs. This transformation collapses the n dimensional system
to p dimensions where p < n, while preserving the dominant patterns exhibited by the system.
For this analysis, the PCs are computed by the Eigen-decomposition of the covariance matrix
computed as follows:

Prior to the dimensionality reduction step, the firing rate data was normalized for each
unit individually using the z-score method, which centers the data around zero mean and unit
standard deviation. The dimensionality reduction was performed on three separate selections
of units: all units, backbone units only and non-rigid units only.

The cumulative sum of the variance explained per PC was computed for the PCs
ordered from high variance to low. For each recording, the results for all units were
subtracted from the results for backbone units only and non-rigid units only. Negative values
mean that the cumulative sum of the variance explained by all units is larger than for the
subset of units and positive values mean that the cumulative sum of the variance explained by
all units is smaller.

Furthermore, the sum of the variance explained by the first three PCs was computed
and divided by the summed explained variance of the first X principal components, where X
is the lowest number of total PCs from the three selections, all units, backbone and non-rigid.
This was done to account for differences in the total number of PCs per selection. This value
was computed for the original data and for 100 different shuffled spike matrices and the
results from the original spike matrices were normalized using the (A-B)/(A+B) strategy,
where A is the measured value and B is the averaged value computed over the 100 shuffled
datasets. These scores were compared between the three selections and between the different
model types as described in Methods: statistical analyses for model comparisons.

Randomized recording

Randomization of single-unit spike times were performed based on the methods of Okun et
al > to preserve each neuron’s mean firing rate as well as the population averaged firing
rate distribution. This is necessary to avoid trivial differences that would arise simply by
changes in the mean firing rate of a neuron. Briefly, whenever analyses were performed on a
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randomized recording, the randomization was done as follows (unless stated otherwise): Two
separate units, A and B, were selected and two separate frames, 1 and 2, were selected where
A but not B fired in frame 1 and B but not A fires in frame 2. Next, the spikes from unit A
and B were switched between frames 1 and 2. The resulting spike matrix still has an equal
number of spikes per unit (same average firing rate) and an equal number of spikes per frame
(same population rate). This shuffling procedure was performed 5x as many times as there
were spikes in the spike matrix, resulting in each spike getting shuffled 10x on average. This
method was applied to produce 100 different shuffled spike matrices per original recording.

Statistical analyses for model comparisons

Statistical modeling was carried out in the R environment. Nested data were analyzed with
linear mixed-effects models (/mer function of the Ime4 R package]37) with “organoid” or
“unit ID” as random effect. Non-nested data were analyzed with linear models (/m function).
Right-skewed and heavy-tailed data were log-transformed and analyzed with a linear model.
Statistical significance for linear mixed-effects models was computed with the ImerTest R
package'*® and the summary (type IIT sums of squares) R function. Statistical significance for
linear models was computed with the summary R function. When possible, model selection
was performed according to experimental design. When this was not possible, models were
compared using the compare_performance function of the performance R package'’, and
model choice was based on a holistic comparison of AIC, BIC, RMSE and R2. Model output
was plotted with the plot_model (type="pred’) function of the sjPlot R package'*’. 95%
confidence intervals were computed using the confint R function. Post hoc analysis was
carried out using the emmeans and emtrends functions of the emmeans R package.

Hidden Markov model analysis

Hidden Markov models (HMMs) have been widely used in computational biology, ranging
from protein modeling'*' to determining evolutionarily conserved genomic elements across
species'**. More recently, this approach has been utilized to characterize the firing patterns of
neuronal ensembles of specific brain states during motor function'*, deciphering neural
codes of sleep144 and uncovering temporal structure in hippocampal outputs145.

A hidden Markov model is a statistical characterization of a discrete-time random
process in terms of a discrete “hidden” state, which cannot be directly observed, but which
changes the probability distribution of the observations. At each time step, the value of the
hidden state depends only on the previous hidden state. The observation distribution and
transition probabilities together make up the parametrization of the HMM. These parameters
are fitted using the Expectation-Maximization (EM) algorithm to assign the parameters of the
observation distribution and transition probabilities in order to co-optimize the posterior
likelihood of the observations and the sequence of hidden states.

For neuronal spiking data, HMMs are typically applied to time-binned spike matrices,
where at each time step, the observation is a population activity vector consisting of the
number of spikes produced by each unit within that time bin. If the bin size is significantly
larger than the refractory period of the neuron, the resulting observation distribution is per-
neuron independent Poisson with a parameter A, such that the probability that the unit fires n
times in a given time bin is given by p(n) = Ve™/k! Our analysis is carried out in the Python
programming language, version 3.11, using the implementation of an HMM with Poisson
observations provided by the package SSM.

We validated that HMMs capture information from the spiking data via 5-fold cross-
validation by comparing the posterior log likelihood of a held-out validation set to that of the
randomized surrogate data for the held-out region'*’. Each “fold” consists of fitting the model
parameters to a random 80% subset of the data and evaluating the fitted model on the
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remaining 20%. Log likelihood is always greater for the real than the surrogate data
(Supplementary Fig. 24), indicating that the HMM is modeling transitions using information
present in the real data but not the surrogate.

Hidden Markov Model Hyperparameters

Although the parameters of the observation and state transition distributions are selected by
EM, there are two hyperparameters as well: the bin size 7 for converting spiking data into a
discrete-time observation vector, and the number of states K for the HMM itself. Both must
be chosen independently of the EM fitting process, so we treat them as hyperparameters and
evaluate performance for a range of values using the 5-fold cross-validation method
described above. We performed this validation across all 8 human brain organoid recordings.
We first chose a default bin size of 30 ms based on the characteristic time scale of bursts.
Under this condition, fit performance is insensitive to the number of hidden states above 10
(Supplementary Fig. 23), so all further analysis is conducted across models with the number
of hidden states ranging from 10 to 30. We next evaluated performance across bin sizes of 10,
20, 30, 50, 70, and 100 ms, for numbers of hidden states ranging from 10 to 50
(Supplementary Fig 22). Performance is also relatively insensitive to bin size near 30 ms, but
significantly larger or smaller bin sizes do exhibit somewhat worse performance. The
analysis reported on in the main paper uses a fixed bin size of 30 ms, but the number of
hidden states ranges from 10 to 30.

Hidden State Trajectories

The ability of a HMM to capture the stereotyped dynamics of bursts in human brain
organoids is explored in Figure SA-C. Given a fitted HMM, we estimate the most probable
sequence of hidden states for a given time-binned spike matrix using the forward-backward
algorithm, a standard technique for maximum likelihood estimation of hidden state. Then,
this sequence of hidden states is registered relative to the peaks of all the bursts in the
recording, and trimmed into fixed-length subsequences corresponding to a fixed time window
surrounding each peak. For visualization purposes, the parameters were set to 300 ms before
and 600 ms after. We then computed the empirical probability distribution over hidden states
as a function of time relative to the burst peak by counting how many times each state
appears at each position across all subsequences, divided by the total number of
subsequences. Results are shown for one representative HMM (with 20 hidden states) in the
first organoid we analyzed (with 30ms time bins).

We also measured the rate of hidden state traversal during the burst backbone time
period (Methods: firing rate sequences and burst backbones). We split the maximum-
likelihood state sequence into subsequences corresponding to one backbone period around
each burst peak, and calculated the total number of hidden states divided by the duration of
the burst backbone period. The distribution of these state traversal rates was significantly
different for all three biological models (Supplementary Fig. 34), but much more similar
between murine slices and human brain organoids than between either model and murine
primary cultures.

Consistency of units within a Hidden State

We refer to each time bin of the spike matrix in which a given hidden state is most probable
as a “realization” of that state. We then computed the consistency of each unit in each hidden
state as the fraction of realizations of that hidden state in which the unit fires at least once.
This procedure yielded an array of consistency scores with one row for each of the model’s K
hidden states, and one column for each unit (Fig. 5D, Supplementary Fig. 27).
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We view the columns of this array as vectors in a K-dimensional space; Figure SE
visualizes a concrete example of this space, using PCA dimensionality reduction to
demonstrate that backbone and non-rigid units are almost linearly separable. We measured
the degree of this approximate linear separability by determining an optimal decision
boundary within the original space using a linear support vector machine (SVM).

Linear separability was quantified as the accuracy of the linear classifier according to
leave-one-out cross-validation: for each unit, the model was fitted to all other units, and its
accuracy was evaluated on the single held out unit. The single-unit accuracy (always either 0
or 1) was then averaged across all units. Then, as a null hypothesis to control for the fact that
backbone units fire more overall than non-rigid units, we calculated the linear separability of
backbone and non-rigid units based solely on their overall firing rate. This does not depend
on the fitted HMM, so the null hypothesis has only one score per organoid (the linear
separability across all units), rather than the distribution across models produced by the
SVM-based linear separability metric.

Dimensionality of a Fitted HMM

To evaluate the ability of HMMs to represent non-trivial activity manifolds beyond simple
variations in population firing rate, we estimated the dimensionality of the observation model
in each fitted HMM. The population observation matrix is an array of shape [number of
hidden states] x [number of units], where each entry represents the parameter A of the Poisson
distribution estimated for the firing of that unit in that state. We performed a singular value
decomposition (SVD) on this matrix so that a principal component analysis with any desired
number of dimensions d could be acquired by projecting only the first d components of the
SVD. Furthermore, this same transformation can be applied to the time-binned spike matrix
itself in order to yield a dimension-reduced version for visualization purposes
(Supplementary Fig. 28).

We defined the “dimensionality” of the trained HMM for a given dataset to be the
number of principal components required to meet a given threshold @ in the percent explained
variance on the HMM states themselves. The statistical significance of this finding was
calculated using a generalized linear mixed-effects model (glmer from the Ime4 R package)
with Poisson-family observations and a logarithmic linkage function. This differs from other
results using a standard linear mixed-effects model due to the dimension being a discrete
quantity, which cannot reasonably be approximated as Gaussian. For the same reason,
normalization against the randomized baseline was not performed in this analysis; the
original integer dimensionality values were modeled.

Non-Poisson Units

Under the null hypothesis, which was originally assumed in fitting HMMs to our data in the
first place, each unit produces Poisson firing at a rate which depends on the hidden state. For
a Poisson unit, for each hidden state of each fitted HMM, the number of firings of the unit in
each realization of the hidden state should follow a Poisson distribution. This distribution has
mean and variance both equal to its single parameter A, so we calculated the mean number of
firings of a unit across all realizations of a hidden state, and performed a one-sided chi-square
test to identify whether the variance in firings for that unit was less than under the Poisson
null hypothesis at the P = 1% significance level. This value was then averaged across all
hidden states (weighted by the number of realizations of each state) to yield an overall
measurement of the conditional deviation from Poisson statistics given the hidden state
information (Supplementary Fig. 33D).

d, calculation
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To assess temporal scale-invariance in network dynamics, we calculated the distance metric
d, following methods developed by Sooter et al . For each recording, we first created a
population activity time series by counting all spikes across all neurons in 30 ms time bins.
This time series was z-scored (mean subtracted and normalized by standard deviation). We
then fit an order-20 autoregressive (AR) model to the z-scored time series using the Yule-
Walker method. The AR model describes how current activity depends on past activity
through a history kernel that spans 20 time steps, capturing temporal correlations across
multiple timescales. For time-shuffled controls, we randomly shuffled the spike times of each
neuron independently while maintaining their firing rates, then performed the same binning,
z-scoring, and AR model fitting procedures.

The AR model coefficients were used to calculate d,, which quantifies the Euclidean distance
from the model parameters to the =2 critical fixed point in the temporal renormalization
group framework. This fixed point represents a type of criticality characterized by power-law
temporal correlations with exponent B=2. Values of d; near zero indicate dynamics close to
criticality, characterized by scale-invariant temporal fluctuations that persist across a broad
range of timescales. In contrast, larger values of d, indicate deviation from criticality,
reflecting dynamics dominated by a characteristic timescale or lacking long-range temporal
correlations. Time-shuftled controls, which destroy temporal correlations while preserving
basic firing statistics, typically yield d> values greater than 0.2. The geometric interpretation
of d is the minimum distance between the AR model coefficients and a hyperplane in
coefficient space that contains all models that flow to the =2 fixed point under the temporal
renormalization group transformation.

Not all neural activity patterns are well-described by autoregressive models. For example,
highly bursty dynamics with long silent periods punctuated by brief population-wide
activation can violate the AR model's assumptions about temporal continuity. Therefore,
before calculating d,, we assessed the quality of the AR model fit for each preparation. We
compared the avalanche size distributions, avalanche duration distributions, and power
spectra of the original data with those generated by simulating the best-fit AR model.
Preparations were excluded from d» analysis if the AR model failed to capture these key
statistical features of the empirical data, specifically if the model-generated distributions
deviated from the empirical distributions by more than one order of magnitude. This
approach excluded 5/8 human organoid preparations, 2/9 mouse organoid preparations, 2/6
acute slice preparations, and 0/7 2D culture preparations from d, analysis, ensuring that our
assessment of criticality was based only on preparations whose temporal structure was
accurately captured by the AR framework.

Data Availability: The data supporting the findings of this study are available within the
article and its supplementary information. Raw and curated electrophysiology recordings can
be found here https://dandiarchive.org/dandiset/000732

Code Availability: Spike sorting was performed in Python 3.6 using Spikelnterface 0.13.0
and previously published' ' which can be found at
https://github.com/Spikelnterface/spikeinterface. Custom code for electrophysiology analysis
is available at https://github.com/braingeneers/Protosequences

References

1. Llinds, R. R. & Paré, D. Of dreaming and wakefulness. Neuroscience 44, 521-535 (1991).
2. Markov, N. T. et al. A Weighted and Directed Interareal Connectivity Matrix for Macaque
Cerebral Cortex. Cerebral Cortex 24, 17-36 (2014).

38


https://doi.org/10.1101/2023.12.29.573646
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.29.573646; this version posted January 8, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3. Oh,S.W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207-214 (2014).

4. Richiardi, J. et al. Correlated gene expression supports synchronous activity in brain networks.
Science 348, 1241-1244 (2015).

5. Song, S., Sjostrom, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly Nonrandom Features of
Synaptic Connectivity in Local Cortical Circuits. PLoS Biology 3, €68 (2005).

6. Loewenstein, Y., Kuras, A. & Rumpel, S. Multiplicative Dynamics Underlie the Emergence of the
Log-Normal Distribution of Spine Sizes in the Neocortex In Vivo. J. Neurosci. 31, 9481-9488
(2011).

7. Wang, S. S.-H. et al. Functional Trade-Offs in White Matter Axonal Scaling. J. Neurosci. 28,
4047-4056 (2008).

8. Mizuseki, K. & Buzsdki, G. Preconfigured, Skewed Distribution of Firing Rates in the
Hippocampus and Entorhinal Cortex. Cell Reports 4, 1010-1021 (2013).

9.  Turk, E. et al. Functional Connectome of the Fetal Brain. The Journal of Neuroscience 39, 9716—
9724 (2019).

10. vanden Heuvel, M. P. et al. The Neonatal Connectome During Preterm Brain Development.
Cerebral Cortex 25, 3000—3013 (2015).

11. Buzsdki, G. & Mizuseki, K. The log-dynamic brain: how skewed distributions affect network
operations. Nature Reviews Neuroscience 15, 264-278 (2014).

12. lkegaya, Y. et al. Interpyramid Spike Transmission Stabilizes the Sparseness of Recurrent
Network Activity. Cerebral Cortex 23, 293-304 (2013).

13. Luczak, A., Barthé, P., Marguet, S. L., Buzsdki, G. & Harris, K. D. Sequential structure of
neocortical spontaneous activity in vivo. Proceedings of the National Academy of Sciences 104,
347-352 (2007).

14. Hemberger, M., Shein-ldelson, M., Pammer, L. & Laurent, G. Reliable Sequential Activation of
Neural Assemblies by Single Pyramidal Cells in a Three-Layered Cortex. Neuron 104, 353-369.e5
(2019).

15. Riquelme, J. L., Hemberger, M., Laurent, G. & Gjorgjieva, J. Single spikes drive sequential
propagation and routing of activity in a cortical network. eLife 12, 1-27 (2023).

16. Luczak, A., McNaughton, B. L. & Harris, K. D. Packet-based communication in the cortex.
Nature Reviews Neuroscience 16, 745—755 (2015).

17. Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsaki, G. Internally Generated Cell Assembly
Sequences in the Rat Hippocampus. Science 321, 1322-1327 (2008).

18. Modi, M. N., Dhawale, A. K. & Bhalla, U. S. CA1 cell activity sequences emerge after
reorganization of network correlation structure during associative learning. eLife 3, 1-25
(2014).

19. Dragoi, G. & Tonegawa, S. Preplay of future place cell sequences by hippocampal cellular
assemblies. Nature 469, 397-401 (2011).

20. Dragoi, G. Internal operations in the hippocampus: single cell and ensemble temporal coding.
Front. Syst. Neurosci. 7, (2013).

21. Liu, K, Sibille, J. & Dragoi, G. Nested compressed co-representations of multiple sequential
experiences during sleep. Nat Neurosci 27, 1816-1828 (2024).

22. Grosmark, A. D. & Buzsaki, G. Diversity in neural firing dynamics supports both rigid and
learned hippocampal sequences. Science 351, 1440-1443 (2016).

23. Olafsdéttir, H. F., Barry, C., Saleem, A. B., Hassabis, D. & Spiers, H. J. Hippocampal place cells
construct reward related sequences through unexplored space. elLife 4, e06063 (2015).

24. Farooq, U. & Dragoi, G. Emergence of preconfigured and plastic time-compressed sequences in
early postnatal development. Science 363, 168—173 (2019).

25. Carrillo-Reid, L., Miller, J. -e. K., Hamm, J. P, Jackson, J. & Yuste, R. Endogenous Sequential
Cortical Activity Evoked by Visual Stimuli. Journal of Neuroscience 35, 8813—8828 (2015).

26. Vaz, A.P., Wittig, J. H., Inati, S. K. & Zaghloul, K. A. Replay of cortical spiking sequences during
human memory retrieval. Science 367, 1131-1134 (2020).

39


https://doi.org/10.1101/2023.12.29.573646
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.29.573646; this version posted January 8, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

27. Vaz, A.P., Wittig, J. H., Inati, S. K. & Zaghloul, K. A. Backbone spiking sequence as a basis for
preplay, replay, and default states in human cortex. Nature Communications 14, 4723 (2023).

28. Xie, W. et al. Neuronal sequences in population bursts encode information in human cortex.
Nature 635, 935942 (2024).

29. Huszar, R, Zhang, Y., Blockus, H. & Buzsaki, G. Preconfigured dynamics in the hippocampus are
guided by embryonic birthdate and rate of neurogenesis. Nature Neuroscience 25, 1201-1212
(2022).

30. Sharf, T. et al. Functional neuronal circuitry and oscillatory dynamics in human brain organoids.
Nature Communications 13, 4403 (2022).

31. Din, D.-M. A. E. et al. Human Neural Organoid Microphysiological Systems Show the Building
Blocks Necessary for Basic Learning and Memory. 2024.09.17.613333 Preprint at
https://doi.org/10.1101/2024.09.17.613333 (2024).

32. Yuan, X. et al. Versatile live-cell activity analysis platform for characterization of neuronal
dynamics at single-cell and network level. Nature Communications 11, 4854 (2020).

33. Bartram, J. et al. Parallel reconstruction of the excitatory and inhibitory inputs received by
single neurons reveals the synaptic basis of recurrent spiking. eLife 12, (2024).

34. Eiraku, M. et al. Self-Organized Formation of Polarized Cortical Tissues from ESCs and Its Active
Manipulation by Extrinsic Signals. Cell Stem Cell 3, 519-532 (2008).

35. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly.
Nature 501, 373-379 (2013).

36. Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54—
59 (2017).

37. Gordon, A. et al. Long-term maturation of human cortical organoids matches key early
postnatal transitions. Nature Neuroscience 24, 331-342 (2021).

38. Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain
organoids. Nature 545, 48-53 (2017).

39. Giandomenico, S. L. et al. Cerebral organoids at the air-liquid interface generate diverse nerve
tracts with functional output. Nature Neuroscience 22, 669-679 (2019).

40. Fair, S. R. et al. Electrophysiological Maturation of Cerebral Organoids Correlates with Dynamic
Morphological and Cellular Development. Stem Cell Reports 15, 855-868 (2020).

41. Trujillo, C. A. et al. Complex Oscillatory Waves Emerging from Cortical Organoids Model Early
Human Brain Network Development. Cell Stem Cell 25, 558-569.e7 (2019).

42. Samarasinghe, R. A. et al. Identification of neural oscillations and epileptiform changes in
human brain organoids. Nat Neurosci 24, 1488-1500 (2021).

43. Qian, X. et al. Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation.
Cell Stem Cell 26, 766-781.e9 (2020).

44. Wang, Y. et al. Modeling human telencephalic development and autism-associated SHANK3
deficiency using organoids generated from single neural rosettes. Nature Communications 13,
5688 (2022).

45. Khazipov, R. et al. Early motor activity drives spindle bursts in the developing somatosensory
cortex. Nature 432, 758-761 (2004).

46. Modol, L. et al. Assemblies of Perisomatic GABAergic Neurons in the Developing Barrel Cortex.
Neuron 105, 93-105.e4 (2020).

47. Golshani, P. et al. Internally Mediated Developmental Desynchronization of Neocortical
Network Activity. The Journal of Neuroscience 29, 10890—10899 (2009).

48. Chini, M. & Hanganu-Opatz, I. L. Prefrontal Cortex Development in Health and Disease: Lessons
from Rodents and Humans. Trends in Neurosciences 44, 227-240 (2021).

49. Chini, M., Pfeffer, T. & Hanganu-Opatz, I. An increase of inhibition drives the developmental
decorrelation of neural activity. eLife 11, 1-28 (2022).

40


https://doi.org/10.1101/2023.12.29.573646
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.29.573646; this version posted January 8, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

50. Chen, Y.-N., Kostka, J. K., Bitzenhofer, S. H. & Hanganu-Opatz, I. L. Olfactory bulb activity
shapes the development of entorhinal-hippocampal coupling and associated cognitive abilities.
Current Biology 33, 4353-4366.e5 (2023).

51. Kostka, J. K. & Bitzenhofer, S. H. How the sense of smell influences cognition throughout life.
Neuroforum 28, 177-185 (2022).

52. Arakawa, H. & Erzurumlu, R. S. Role of whiskers in sensorimotor development of C57BL/6 mice.
Behavioural Brain Research 287, 146—155 (2015).

53. Akhmetshina, D., Nasretdinov, A., Zakharov, A., Valeeva, G. & Khazipov, R. The Nature of the
Sensory Input to the Neonatal Rat Barrel Cortex. The Journal of Neuroscience 36, 9922-9932
(2016).

54. Yang, J.-W. et al. Development of the whisker-to-barrel cortex system. Current Opinion in
Neurobiology 53, 29—-34 (2018).

55. Avitan, L. & Stringer, C. Not so spontaneous: Multi-dimensional representations of behaviors
and context in sensory areas. Neuron 110, 3064-3075 (2022).

56. Koch, C., Rapp, M. & Segev, I. A Brief History of Time (Constants). Cerebral Cortex 6, 93—-101
(1996).

57. Maimon, G. & Assad, J. A. Beyond Poisson: Increased Spike-Time Regularity across Primate
Parietal Cortex. Neuron 62, 426—440 (2009).

58. Okun, M. et al. Diverse coupling of neurons to populations in sensory cortex. Nature 521, 511—
515 (2015).

59. Wilting, J. & Priesemann, V. Inferring collective dynamical states from widely unobserved
systems. Nature Communications 9, 2325 (2018).

60. Ma, Z., Turrigiano, G. G., Wessel, R. & Hengen, K. B. Cortical Circuit Dynamics Are
Homeostatically Tuned to Criticality In Vivo. Neuron 104, 655-664.e4 (2019).

61. Hengen, K. B. & Shew, W. L. Is criticality a unified set-point of brain function?
2024.09.02.610815 Preprint at https://doi.org/10.1101/2024.09.02.610815 (2024).

62. Sooter, J.S., Fontenele, A. J,, Ly, C., Barreiro, A. K. & Shew, W. L. Cortex deviates from criticality
during action and deep sleep: a temporal renormalization group approach. 2024.05.29.596499
Preprint at https://doi.org/10.1101/2024.05.29.596499 (2024).

63. Dragoi, G. The generative grammar of the brain: a critique of internally generated
representations. Nature Reviews Neuroscience (2023) doi:10.1038/s41583-023-00763-0.

64. Ballini, M. et al. A 1024-Channel CMOS Microelectrode Array With 26,400 Electrodes for
Recording and Stimulation of Electrogenic Cells In Vitro. IEEE Journal of Solid-State Circuits 49,
2705-2719 (2014).

65. Luczak, A., Bartho, P. & Harris, K. D. Spontaneous Events Outline the Realm of Possible Sensory
Responses in Neocortical Populations. Neuron 62, 413—425 (2009).

66. Diba, K. & Buzsdki, G. Forward and reverse hippocampal place-cell sequences during ripples.
Nature Neuroscience 10, 1241-1242 (2007).

67. Super, H., Spekreijse, H. & Lamme, V. A. F. Two distinct modes of sensory processing observed
in monkey primary visual cortex (V1). Nature Neuroscience 4, 304—310 (2001).

68. Evarts, E. V. & Tanji, J. Reflex and intended responses in motor cortex pyramidal tract neurons
of monkey. Journal of Neurophysiology 39, 1069-1080 (1976).

69. Derdikman, D., Hildesheim, R., Ahissar, E., Arieli, A. & Grinvald, A. Imaging Spatiotemporal
Dynamics of Surround Inhibition in the Barrels Somatosensory Cortex. The Journal of
Neuroscience 23, 3100-3105 (2003).

70. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nature
Neuroscience 17, 1661-1663 (2014).

71. Segev, R., Baruchi, I., Hulata, E. & Ben-Jacob, E. Hidden Neuronal Correlations in Cultured
Networks. Physical Review Letters 92, 118102 (2004).

72. Luczak, A., Bartho, P. & Harris, K. D. Gating of Sensory Input by Spontaneous Cortical Activity.
The Journal of Neuroscience 33, 1684—1695 (2013).

41


https://doi.org/10.1101/2023.12.29.573646
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.29.573646; this version posted January 8, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

73. Okun, M. et al. Population Rate Dynamics and Multineuron Firing Patterns in Sensory Cortex.
The Journal of Neuroscience 32, 17108-17119 (2012).

74. Eytan, D. & Marom, S. Dynamics and Effective Topology Underlying Synchronization in
Networks of Cortical Neurons. The Journal of Neuroscience 26, 8465-8476 (2006).

75. Rolston, J. D., Wagenaar, D. A. & Potter, S. M. Precisely timed spatiotemporal patterns of
neural activity in dissociated cortical cultures. Neuroscience 148, 294-303 (2007).

76. Schroeter, M. S., Charlesworth, P., Kitzbichler, M. G., Paulsen, O. & Bullmore, E. T. Emergence
of Rich-Club Topology and Coordinated Dynamics in Development of Hippocampal Functional
Networks In Vitro. The Journal of Neuroscience 35, 5459-5470 (2015).

77. Lefort, S., Tomm, C., Floyd Sarria, J.-C. & Petersen, C. C. H. The Excitatory Neuronal Network of
the C2 Barrel Column in Mouse Primary Somatosensory Cortex. Neuron 61, 301-316 (2009).

78. Mohajerani, M. H. et al. Spontaneous cortical activity alternates between motifs defined by
regional axonal projections. Nature Neuroscience 16, 1426—1435 (2013).

79. Gao, R,, van den Brink, R. L., Pfeffer, T. & Voytek, B. Neuronal timescales are functionally
dynamic and shaped by cortical microarchitecture. eLife 9, 1-44 (2020).

80. Lynn,C.W.,, Holmes, C. M., Bialek, W. & Schwab, D. J. Decomposing the Local Arrow of Time in
Interacting Systems. Physical Review Letters 129, 118101 (2022).

81. Roudi, Y. & Hertz, J. Decomposing the Local Arrow of Time in the Brain. Physics 15, 133 (2022).

82. Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human
cerebral cortex. Nature 570, 523-527 (2019).

83. Mochizuki, Y. et al. Similarity in Neuronal Firing Regimes across Mammalian Species. The
Journal of Neuroscience 36, 57365747 (2016).

84. O’Byrne, ). & Jerbi, K. How critical is brain criticality? Trends in Neurosciences 45, 820-837
(2022).

85. Xu, Y., Schneider, A., Wessel, R. & Hengen, K. B. Sleep restores an optimal computational
regime in cortical networks. Nat Neurosci 27, 328—-338 (2024).

86. Wilson, K. G. Renormalization group methods. Advances in Mathematics 16, 170—186 (1975).

87. Hopfield, J. ). Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences 79, 2554—2558 (1982).

88. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. Spontaneously emerging cortical
representations of visual attributes. Nature 425, 954-956 (2003).

89. Han, F., Caporale, N. & Dan, Y. Reverberation of Recent Visual Experience in Spontaneous
Cortical Waves. Neuron 60, 321-327 (2008).

90. Cai, H. et al. Brain organoid reservoir computing for artificial intelligence. Nature Electronics
(2023) d0i:10.1038/s41928-023-01069-w.

91. Dragoi, G., Harris, K. D. & Buzsdki, G. Place Representation within Hippocampal Networks Is
Modified by Long-Term Potentiation. Neuron 39, 843-853 (2003).

92. Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain
development. Nature 574, 418—-422 (2019).

93. Chini, M., Hnida, M., Kostka, J. K., Chen, Y.-N. & Hanganu-Opatz, I. L. Preconfigured
architecture of the developing mouse brain. Cell Reports 43, 114267 (2024).

94. Sohal, V.S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms
enhance cortical circuit performance. Nature 459, 698—702 (2009).

95. Hu, H., Gan, J. & Jonas, P. Fast-spiking, parvalbumin + GABAergic interneurons: From cellular
design to microcircuit function. Science 345, 1255263-1255263 (2014).

96. Kalemaki, K. et al. The developmental changes in intrinsic and synaptic properties of prefrontal
neurons enhance local network activity from the second to the third postnatal weeks in mice.
Cerebral Cortex 32, 3633-3650 (2022).

97. Ben-Ari, Y. Excitatory actions of gaba during development: the nature of the nurture. 3, 728-
739 (2002).

42


https://doi.org/10.1101/2023.12.29.573646
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.29.573646; this version posted January 8, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

98. Murata, Y. & Colonnese, M. T. GABAergic interneurons excite neonatal hippocampus in vivo.
Science Advances 6, eabal430 (2020).

99. Che, A. et al. Layer | Interneurons Sharpen Sensory Maps during Neonatal Development.
Neuron 99, 98-116.e7 (2018).

100. Kirmse, K. et al. GABA depolarizes immature neurons and inhibits network activity in the
neonatal neocortex in vivo. Nat Commun 6, 7750 (2015).

101. Roth, J. G. et al. Spatially controlled construction of assembloids using bioprinting. Nature
Communications 14, 4346 (2023).

102. Carmena, J. M. et al. Learning to Control a Brain—Machine Interface for Reaching and Grasping
by Primates. PLoS Biology 1, e42 (2003).

103. Barabasi, D. L., Schuhknecht, G. F. P. & Engert, F. Functional neuronal circuits emerge in the
absence of developmental activity. Nat Commun 15, 364 (2024).

104. Kant, I. Critique of Pure Reason. (Cambridge University Press, Cambridge, 1998).
doi:10.1017/CB09780511804649.

105. Birtele, M. et al. Non-synaptic function of the autism spectrum disorder-associated gene
SYNGAP1 in cortical neurogenesis. Nat Neurosci 26, 2090-2103 (2023).

106. Birtele, M., Lancaster, M. & Quadrato, G. Modelling human brain development and disease
with organoids. Nat Rev Mol Cell Biol 1-24 (2024) d0i:10.1038/s41580-024-00804-1.

107. Pollen, A. A. et al. Establishing Cerebral Organoids as Models of Human-Specific Brain
Evolution. Cell 176, 743-756.e17 (2019).

108. Fiddes, I. T. et al. Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical
Neurogenesis. Cell 173, 1356-1369.e22 (2018).

109. Benito-Kwiecinski, S. et al. An early cell shape transition drives evolutionary expansion of the
human forebrain. Cell 184, 2084-2102.e19 (2021).

110. Buccino, A. P. et al. Spikelnterface, a unified framework for spike sorting. eLife 9, 1-24 (2020).

111. Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M. & Harris, K. Fast and accurate spike
sorting of high-channel count probes with KiloSort. Advances in Neural Information Processing
Systems 4455—-4463 (2016).

112. Hill, D. N., Mehta, S. B. & Kleinfeld, D. Quality Metrics to Accompany Spike Sorting of
Extracellular Signals. Journal of Neuroscience 31, 8699-8705 (2011).

113. Romero, J. C. et al. Oligodendrogenesis and myelination tracing in a CRISPR/Cas9-engineered
brain microphysiological system. Front. Cell. Neurosci. 16, (2023).

114. Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat Biotechnol
35, 316319 (2017).

115. Krueger, F. et al. FelixKrueger/TrimGalore: v0.6.10 - add default decompression path. Zenodo
https://doi.org/10.5281/zenod0.7598955 (2023).

116. Martin, F.J. et al. Ensembl 2023. Nucleic Acids Research 51, D933-D941 (2023).

117. Patro, R., Duggal, G., Love, M. L., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-
aware quantification of transcript expression. Nat Methods 14, 417419 (2017).

118. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).

119. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079
(2009).

120. Picard Tools - By Broad Institute. https://broadinstitute.github.io/picard/.

121. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.
Bioinformatics 26, 841-842 (2010).

122. Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28,
2184-2185 (2012).

123. Garcia-Alcalde, F. et a/. Qualimap: evaluating next-generation sequencing alignment data.
Bioinformatics 28, 2678—2679 (2012).

124. Sayols, S., Scherzinger, D. & Klein, H. dupRadar: a Bioconductor package for the assessment of
PCR artifacts in RNA-Seq data. BMC Bioinformatics 17, 428 (2016).

43


https://doi.org/10.1101/2023.12.29.573646
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.29.573646; this version posted January 8, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

125. Preseq | The Smith Lab. https://smithlabresearch.org/software/preseq/.

126. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Research 43, e47 (2015).

127. Clark, 1. C. et al. Microfluidics-free single-cell genomics with templated emulsification. Nat
Biotechnol 41, 1557-1566 (2023).

128. https://ftp.ensembl.org/pub/release-106/fasta/mus_musculus/.

129. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis.
Nat Biotechnol 42, 293-304 (2024).

130. Heaton, H. et al. Souporcell: robust clustering of single-cell RNA-seq data by genotype without
reference genotypes. Nat Methods 17, 615-620 (2020).

131. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet Detection in Single-Cell
RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Systems 8, 329-337.e4 (2019).

132. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat
Biotechnol 37, 38—44 (2019).

133. Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal
formation. Cell 184, 3222-3241.e26 (2021).

134. Speir, M. L. et al. UCSC Cell Browser: visualize your single-cell data. Bioinformatics 37, 4578—
4580 (2021).

135. Bartram, J. et al. Cortical Up states induce the selective weakening of subthreshold synaptic
inputs. Nature Communications 8, 665 (2017).

136. Holt, G. R., Softky, W. R., Koch, C. & Douglas, R. J. Comparison of discharge variability in vitro
and in vivo in cat visual cortex neurons. Journal of Neurophysiology 75, 1806—1814 (1996).

137. Bates, D., Machler, M., Zurich, E., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects
models using Ime4. arXiv 1-28 (2014) doi:10.48550/arXiv.1406.5823.

138. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. ImerTest Package: Tests in Linear Mixed
Effects Models. Journal of Statistical Software 82, (2017).

139. Ludecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. performance: An R
Package for Assessment, Comparison and Testing of Statistical Models. Journal of Open Source
Software 6, 3139 (2021).

140. Lidecke, D. et al. sjPlot: Data Visualization for Statistics in Social Science. (2024).

141. Krogh, A., Brown, M., Mian, 1. S., Sjélander, K. & Haussler, D. Hidden Markov Models in
Computational Biology. Journal of Molecular Biology 235, 1501-1531 (1994).

142. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
genomes. Genome Research 15, 1034-1050 (2005).

143. Kemere, C. et al. Detecting Neural-State Transitions Using Hidden Markov Models for Motor
Cortical Prostheses. Journal of Neurophysiology 100, 2441-2452 (2008).

144. Chen, Z. & Wilson, M. A. Deciphering Neural Codes of Memory during Sleep. Trends in
Neurosciences 40, 260—275 (2017).

145. Maboudi, K. et al. Uncovering temporal structure in hippocampal output patterns. elife 7, 1-24
(2018).

Acknowledgments: The authors would like to thank members of the Braingeneers
consortium for helpful discussions and David Haussler for insightful comments. We would
also like to thank members of the UC Santa Cruz Genomics Institute for help with computing
resources, in particular David Parks for assistance with archiving the neurophysiology data.
This study was funded by the National Science Foundation (NSF) awards CNS-1730158,
ACI-1540112, ACI-1541349, OAC-1826967, OAC-2112167, CNS-2100237, CNS-2120019,
the University of California Office of the President, and the University of California San
Diego's California Institute for Telecommunications and Information Technology/Qualcomm
Institute, Schmidt Futures Foundation SF857 (M.T.), German Research Foundation FOR5159
TP1 (437610067) (I.L.H.-O.), European Research Council (ERC) Advanced Grant 694829

44


https://doi.org/10.1101/2023.12.29.573646
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.29.573646; this version posted January 8, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

‘neuroXscales’(A.H.), Swiss National Science Foundation project 205320_188910/1 (A.H.),
NIH T32 ES007141 and International Foundation for Ethical REsearch (D.M.A.E.D.),
Hopkins Discovery and Johns Hopkins SURPASS (L.S.), John Douglas French Alzheimer’s
Foundation (K.S.K.), NIH BRAIN Initiative ROINS118442 (K.B.H.).

Author contributions: T.S. designed, conceived and supervised the study; M.C.,I.L. H.-O.,
K.B.H., and K.S K. offered numerous suggestions and comments; T.V.D.M., A.S. and M.C.
performed computational analysis and statistics on electrophysiology recordings; J.B.
performed extracellular recordings on acute brain slices under the supervision of A.H.; S H.,
G.AK., HE.S.,C.D. and S.M. cultured murine brain organoids and performed
electrophysiology measurements under supervision of T.S. and M. A.M-R.; S. H.,, G.AK.,
H.E.S. performed single-cell RNA sequencing and immunohistochemistry of murine
organoids under the supervision of M.A.M-R., BM.C. and T.S.; C.R.K.H. performed
additional immunohistochemistry and fluorescence microscopy under supervision of T.S. ; S.
H.,H.E.S. and J.G-F. performed analysis on single cell RNA sequencing data from murine
organoids under the supervision of M.A.M-R. and BM.C.; D-M.A.D.,J.L, M.S. performed
electrophysiology measurements and bulk RNA sequencing of additional human brain
organoids under the supervision of L.S.; A.D. and Z.Z. performed additional
electrophysiology analysis under the supervision of T.V.D.M., LR.P. and P.K.H.; K.B-N.
performed computational analysis under the supervision of K.B.H.; L.J.B. archived
neurophysiology data sets; T.S. wrote the first draft of the manuscript, M.C., .LL.H.-O.,
K.B.H., T.V.D.M. and K.S K. provided valuable edits to subsequent drafts, and all authors
discussed the results and commented on the manuscript.

Competing interests: All authors declare no competing interests.

45


https://doi.org/10.1101/2023.12.29.573646
http://creativecommons.org/licenses/by-nc-nd/4.0/

