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ABSTRACT

Citizen science has become a valuable and reliable method for interpreting and processing
big datasets, and is vital in the era of ever-growing data volumes. However, there are
inherent difficulties in the generating labels from citizen scientists, due to the inherent
variability between the members of the crowd, leading to variability in the results.
Sometimes, this is useful — such as with serendipitous discoveries, which corresponds to
rare/unknown classes in the data — but it might also be due to ambiguity between classes.
The primary issue is then to distinguish between the intrinsic variability in the dataset
and the uncertainty in the citizen scientists’ responses, and leveraging that to extract
scientifically useful relationships. In this paper, we explore using a neural network to
interpret volunteer confusion across the dataset, to increase the purity of the downstream
analysis. We focus on the use of learned features from the network to disentangle feature
similarity across the classes, and the ability of the machines’ “attention” in identifying
features that lead to confusion. We use data from Jovian Vortex Hunter, a citizen science
project to study vortices in Jupiter’s atmosphere, and find that the latent space from
the model helps effectively identify different sources of image-level features that lead
to low volunteer consensus. Furthermore, the machine’s attention highlights features
corresponding to specific classes. This provides meaningful image-level feature-class
relationships, which is useful in our analysis for identifying vortex-specific features to
better understand vortex evolution mechanisms. Finally, we discuss the applicability of
this method to other citizen science projects.
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INTRODUCTION

Across various scientific fields, such as astrophysics,
improvements in data collection methods (including
robotic telescopes, planetary missions, etc.) have led to a
growing need to quickly and accurately process the data,
and reduce information from raw (usually imagery) to
more useful data products (e.g., labels for the dataset,
or annotations of specific features) (Lintott et al. 2008;
Fortson 2021; Zou et al. 2024). As computing tools such
as machine and deep learning pipelines have risen at a
commensurate rate, many studies have turned to using
Al to process a large chunk of the data (Zou et al. 2024),
reducing the overhead on doing scientific research.
However, these tools are only as good as the data that
they are trained on, and struggle to effectively process
data that is dissimilar to the training dataset (Walmsley
and Scaife 2023). This is a problem for researchers,
since the advancement of scientific knowledge requires
the accurate detection and processing of the new and
unknown. Particularly, while methods are emerging to
detect these new and unknown data (i.e., anomalies)
in large datasets (Ishida et al. 2021; Lochner and
Basset 2021), understanding why they are interesting
and comparing them with known labels is challenging.
Unsupervised deep learning methods have attempted
to tackle this problem, but more often than not, these
architectures have difficulty in differentiating between
known image artifacts or noise, and new, scientifically
significant data (Mantha et al. 2024; this collection), and
have struggled even more in providing interpretation
to the model-filtered data. To tackle the ever-growing
volume of data, and to improve the scientific returns of
these datasets, we require models that are efficiently
able to identify and characterize anomalies that provide
scientific value to the dataset and provide some measure
of interpretability (i.e., relation between the features
in the data and associated class labels). Our efforts in
this work are to tackle the latter problem, specifically
to provide characterization and interpretability of the
dataset using machine models.

One potential option for help is through enlisting the
general public to crowdsource anomaly detection and
characterization in large data sets, commonly known as
citizen science or participatory science. However, despite the
rise in popularity of the citizen science methodology, there
are inherent difficulties in the label generation process: For
example, since the processed information is crowd sourced,
there is an issue of variability between the members of the
crowd, leading to large variability in the processed results,
necessitating either sophisticated algorithms to detect
and correct mislabeled data (Krivosheev et al. 2020) or

restricting complicated labeling to experienced volunteers
(Kosmala et al. 2016; Zevin et al. 2024). In some cases, this
“confusion” (which we define as variability in the labels
between different volunteers for the same data, or low
confidence from the machine model) is useful (e.g., high
confusion could lead to serendipitous discoveries, since it
likely corresponds to rare or unknown classes in the data;
Cardamone et al. 2009), but at other times, it might be due
to lack of training samples for the citizen science volunteers
or ambiguity between classes (Zevin et al. 2024). Therefore,
a primary concern is discerning between the intrinsic
variability in the dataset and the uncertainty in the citizen
scientists’ responses (Hunter et al. 2012; Li et al. 2020).

To be clear, both machines and humans are susceptible
to confusion arising from the variability in the data set
or the ambiguity between classes. However, because we
can quantify the machine response in a more statistically
meaningful manner, we can leverage this strength of the
machine to deconstruct what may be confusing features
for humans, whereas humans are good at finding the
odd relationships between features because they can
quickly learn and retain context (e.g., Cardamone et al
2009). Processing such data with contextual information
can provide interpretation and meaning to the intrinsic
variability within a dataset. Our motivation here is to
provide a mechanism using the combined strengths of
humans (in their capturing of context) and machines (in
their quantification of the feature relationships) to identify
scientifically interesting feature relationships by using
the information in spurious labeling coming from human
uncertainty.

Work to date has shown that deep neural network-
based mechanisms have vastly reduced volunteer efforts
by quickly labeling “easy” data, while distributing the
more complicated data to volunteers (Richards et al.
2011; Willi et al. 2018; Walmsley et al. 2019; Sankar et
al. 2023). Although these techniques have improved the
labeling efficiency and scientific throughput of citizen
science projects, they do not offer much information about
why specific subsets of the data are more complicated,
or why they confuse the machine models. Indeed, while
machine models (specifically deep neural networks, due
to their black-box natures) produce good results for their
training data, they tend to fail spectacularly on new
datasets, necessitating complicated metrics and training
regimens to improve generalizability (Lico et al. 2021,
Mantha et al. 2022). Simultaneously, deep neural networks
have shown effectiveness in their ability to automatically
extract features for classification and clustering (Syarif
et al. 2012), which are useful for drawing meaningful
relationships from large datasets (e.q., Storey-Fisher et al.
2021; Etsebeth et al. 2024). These dataset features provide
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basic context between the downstream task that the
machine model is trained on (e.g., classification) and what
information the model used for their respective tasks. As
such, these techniques enable us to provide a measure of
interpretability to models, allowing for more sophisticated
understanding and control over the machine performance.

Motivated by these advancements, we use deep neural
networks in a citizen science project to tackle the problem
frombothssides: 1) toaugment citizen science data, especially
those with high volunteer confusion, using a machine model
to characterize the feature-class relationships, and 2) to
increase trustworthiness of machine models applied to
scientific datasets by providing a measure of interpretability
to the machine’s prediction, specifically when it pertains
to anomalous or confusing data. Fundamentally, our
overarching goal is to improve the purity of the downstream
scientific outputs by having a better characterization of
the human confusion and the machine-derived, feature-
class relationship. We organize herein by first describing the
dataset shown to the citizen scientists, as well as the classes
and the labeling strategy. We then describe the results from
our machine model and how we use it to infer and interpret
scientifically interesting feature relationships. Finally, we
discuss the relevance to other citizen science projects, and
the generalization of the methodology used here, and
discuss the nuances of this work.

Summarily, we use a variational auto-encoder (VAE)
with convolutional layers to learn spatial morphologies
from our dataset, which consists of images of Jupiter’s
atmospheric features from the JunoCam instrument on
board the Juno spacecraft (Hansen et al. 2014). This VAE
is combined with a classification layer (which we refer to
as a cVAE) and trained on the labels provided by citizen
science volunteers from the Jovian Vortex Hunter (JVH)
citizen science project on the Zooniverse platform (Sankar
et al. 2024). Zooniverse is a web-based citizen science
platform where research teams can upload their data and
create simple interfaces for citizen scientists to interact
with, for classification, annotation, or other tasks. The
volunteers were shown the dataset and asked to label the
atmospheric features within. The combination of the VAE
architecture and the machine classification layer results in
a “semi-supervised” framework that can be used to map
and relate class confusion from the volunteer annotations
with the morphological characteristics in the images.
Beyond the initial task of simply improving the reliability of
the characterization of machine and volunteer confusion,
we further use the learned feature representation and
network architecture to simplify the confusion space in the
dataset to quickly extract meaningful scientific insights
from the labeled dataset.

DATA

JOVIAN VORTEX HUNTER CITIZEN SCIENCE
PROJECT

The Jovian Vortex Hunter (JVH) is a citizen science project
hosted on Zooniverse.org (Sankar et al. 2024). The goal of
the project is to identify atmospheric vortices on Jupiter
in images taken by the JunoCam instrument (Hansen
et al. 2014) on board the Juno spacecraft, in order to
better understand the jovian atmospheric structure and
dynamics. JunoCamisitself acitizen science project where
the raw data are processed mainly by amateurs, and has
led to amazing results (see https://www.missionjuno.
swri.edu/junocam/processing?source=public). The JVH
project launched in June 2022, and after more than a
million classifications, successfully completed its first
round of data in December 2023. We presented 68,322
image crops from 23 orbits of the Juno spacecraft (13
through 36). Specifically, we stack and mosaic the
individual JunoCam images onto a global map. We then
make random crops, using an equal-area projection, such
that each crop measures 7000 km x 7000 km, and is at
least 1500 km from a neighboring crop. In this way, the
same atmospheric feature can be seen across multiple
crops, ensuring that we are accurately sampling the
region around a feature of interest. The project consisted
of two workflows:

1. Is there a vortex?: In this first workflow, volunteers
were shown an image from JunoCam and asked
to identify the features in the image from a list of:
vortex; turbulent features (or folded filamentary region
[FFR]); cloud bands; pixelated; or blurry. The first three
correspond to atmospheric classes of features, whereas
the last two correspond to (poor) quality of the image.
The volunteers could select multiple options per image
since features can coexist in the same image (i.e., a
vortex within a cloud band). We required at least 10
classifications from independent classifiers before
retiring the image from the data pool.

2. Circle the vortex: this workflow was seeded by images
that had high confidence of “vortex” from the first
workflow. Here, we asked volunteers to circle the
vortices in the image based on their color. The color
represents unique chemistry and cloud microphysics
within that region and presents an opportunity to
understand the link between the fluid dynamics and
the cloud chemistry (a currently poorly understood
facet of the jovian atmosphere). Here, we required at
least 12 independent annotations per image before
retiring the image from the subject pool.
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For this study, we primarily focus on the data from the first
workflow because that gives us a better understanding of
class confusion. Particularly, we are interested in seeing
whether machine learning techniques can be used to
augment the data provided by the volunteers with a
generative model that can also learn the intrinsic features
within the image. Ideally, we would like to determine
whether specific correlations exist between the confusion
derived from volunteer votes for a given class and type of
image-level features (for example, is it harder to identify
vortices if the images have a certain color, or have a high
fraction of turbulence?). Examples of the workflow and
the dataset are shown in Supplemental File 1: Model
Description and Additional Results.

DATA CLASSES AND DETERMINING CONSENSUS
The dataset primarily consists of three main classes that are
used in downstream analyses: vortex, FFR, and cloud bands.
An example of each classis shown in Figure 1. The vortices are
characterized by circular features, with radial color gradients
(Ingersoll et al. 2007). They come in a wide spectrum of sizes
from between 100-200 km (about 5-10 pixels) to a few
thousand kilometers (covering nearly the fullimage). Vortices
on Jupiter are driven primarily by shear instability in the fluid,
and the colors of the clouds within the vortex are dictated
both by the local temperature structure and by chemistry.
Vorticity dynamics is a very useful proxy to understand the
local fluid dynamics, which is inherently difficult to achieve
without local sounding data or in-situ probe data.

FFRs share some similarity with vortices, since they also
contain circular structures (Orton et al. 2017). However, as
theirname suggests, they are primarily filamentary features,
which are characteristic of local turbulent mixing in the
atmosphere. The folded filamentary structures sometimes
contain small vortices, but these are mostly short-lived.

Owing to the lack of high-resolution observations of these
features, very little is understood about their dynamics and
longevity (Orton et al. 2017; Hueso et al. 2022).

Cloud bands are much more prominent and well known
in the jovian atmosphere. They are long-lived features,
mostly near the equatorial regions, where sharp transitions
in the east-west jet streams result in temperature variations
in the atmosphere and lead to different cloud chemistry
and color variations. While observations of the global cloud
bands have existed for a long time, perturbations and
formation of instabilities are poorly characterized (Hueso
etal.2022), but are likely vital for global energy balance on
Jupiter (Ingersoll et al. 2000). As such, while the locations
of the cloud bands are well known, characterizing the
variability in cloud band-like features is vital in determining
and characterizing turbulent eddy formation in the jovian
atmosphere.

Forthesethreeclassesinthe dataset, we define volunteer
consensus as the ratio of the number of volunteers who
selected the classes to the number of volunteers who
saw the image. Since each volunteer can select multiple
classes per image (as each image could contain one or
more classes, such as a vortex within a cloud band), the
consensus for each class within an image is independently
determined (e.g., the vortex consensus for an image is
the number of volunteers who selected the vortex class,
divided by the total number of volunteers who classified
that image).

One of the primary issues with this classification task
is that images might contain features that reside in the
boundary between classes or share common features
across one or more classes (for example, vortices and FFRs
both feature sharp color gradients and turbulent patterns,
making it difficult to distinguish the two features). In these
scenarios, it is very difficult to disentangle and consistently

Vortex

Cloud band

e

Figure 1 Examples of each class in the dataset: Vortex, Folded Filamentary Region (FFR) and cloud bands. These represent images which

contain stereotypical features corresponding to each class.
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bin datasets into separate classes, which share feature
similarity. As such, we define volunteer confusion as a
circumstance in which the volunteer consensus is not at
the extremes (i.e., either one or zero), but somewhere in
between. Our work involves disentangling two ways to
obtain low consensus (volunteer confusion): The first is
image-level features that do not conform to representatives
of a class; the second is feature-class confusion, where
there may be strong similarities between the features of
two separate classes. For example, Figure 2 shows images
with confusion (i.e., low volunteer consensus) in the vortex
class, but with varying confusion across the other two
classes, showing how the features in each image can be
specifically tied to individual classes or confused between
classes. In the far left, we get examples of image-level
confusion for a given class (i.e., the features in the image
do not necessarily define vortices well, but there are no
signatures of the other two classes). In the far right, we
get images that clearly represent FFRs or cloud bands but
they also contain some signatures of vortices (e.g., FFR
spirals can be easily mistaken for vortices), resulting in low
consensus for the vortex class. This is an example of the
second type of confusion illustrated above, showing that
for a given image, the features that represent vortices may
be shared by other classes (e.g., vortices and FFRs both
contain bright white swirls). Alternatively, features in the
same image may be characterized with high confidence,
for example, cloud bands might not share much feature
confusion with the other classes, and so are easier to
classify, but there are still features pertaining to vortices
within that image. In each of these cases, the characteristic
features within the image are markedly different, which
makes it difficult to interpret why the consensus was low
or interpret the diversity of features that lead to confusion.
Therefore, because we can generate independent per-class
consensus for each image, we can use that information

with machine learning to obtain a better understanding
of which feature combinations for a given class lead to
stronger image-level confusion or signify strong feature
similarity between classes.

Through this case study on the JVH data, we aim to
enable future research teams using citizen science data to
better identify feature-class confusion, as well as image-
level features that lead to volunteer confusion. By using
a machine model to better identify the source of the
volunteer confusion, we believe that this will ultimately
accelerate the process by which research teams explore
the dataset in search of those objects with high scientific
value.

RESULTS

Once the volunteer labels were obtained through JVH, we
trained our machine model (cVAE) on the JVH dataset. The
details of the model, training process, and classification
performance are provided in the Supplemental File 1: Model
Description and Additional Results.

USING THE cVAE DATA TO IDENTIFY FEATURE-
CLASS RELATIONSHIP

The cVAE model learns and maps information between the
image-level features in the dataset and the corresponding
classification labels. Specifically, we can use the information
mapped by the cVAE to better understand what features in
the image correspond to specific classes. More importantly,
the network implicitly learns how these features share
similarities between classes, driving the ability to understand
feature confusion. We have two modalities of information
from the cVAE: firstly, the latent space, which maps
feature similarity, and secondly, the feature-classification
relationship. We detail both components below.

Consensus: 0.50

Consensus: 0.50

o &
ke -
e N ‘-:
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Consensus: 0.50 Consensus: 0.30
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Figure 2 From left to right, we increase the Folded Filamentary Region (FFR, top row) and cloud band (bottom row) consensus showing
images where volunteers were confused about vortices (consensus between 0.3-0.7), while varying in their confidence of the other two
classes in the image. Note that from left to right we get clearer signatures of the other two classes (e.g., more swirls for FFRs and clear

north-south color gradients for cloud bands).
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Model latent space

Figure 3 showsthelatent space from the model, compressed
to 2 dimensions using the uniform manifold approximation
and projection (UMAP). Each point corresponds to animage
and is colored with the model-predicted class probability
on the top and the volunteer consensus on the bottom.
The variation in the latent space is directly related to the
intrinsic classes within the image (since the latent vectors
contain information about the spatial distribution and
morphologies of the atmospheric features in the image).
Certain locations are tied to images that contain only one
class (e.g., vortex or cloud band), other locations contain a
mixture of the classes (e.g., vortices in cloud bands, etc.).
Therefore, the latent space is vital to understanding how
image-level features can contribute to feature confusion
(i.e., class overlap in the latent space signifies feature
overlap between the classes), and it provides a method to
identify common features for a given class (i.e., regions in
the latent space containing only high consensus of cloud
bands contain features corresponding only to cloud bands).
Adescription of the feature variation within the latent space
with relation to the classes is provided in the Supplemental
File 1: Model Description and Additional Results.

Feature localization
The cVAE also has the ability to identify defining charac
teristics in the image that lead to specific classification.

Several techniques exist for defining this “attention,”
including, for example, GradCAM and GradCAM++(Selvaraju
et al. 2016; Chattopadhyay et al. 2017), which rely on the
propagation of the neural network’s gradient from the
classification layer back through the input layer. In this
study, we instead use the implementation of ScoreCAM
(Wang et al. 2019), which removes the dependence on
the gradients by modifying the activations of individual
layers and inferring the corresponding effect on the
classification. In this way, ScoreCAM provides a more robust
representation of the individual morphological features in
the input image that led to a given classification.

We use ScoreCAM to identify local features within the
image that lead to class confusion by virtue of being
common to multiple classes. Simply, the model consensus
and the volunteer confusion provide a method to subset
images where feature confusion could exist, while
ScoreCAM is used to identify the features used in the image
for making these classifications. Overlap in the feature
“attention” (i.e., the model using those image-level features
for the classification of the corresponding label) between
different classes for confusing images indicates that the
feature is commonly shared between these classes. For
example, Figure 4 shows several input images, along with
their corresponding attention map, showing the locations
of the features most directly related to the vortex and the
FFR classes. Here, we can see how the network attends

Vortex

Cloud bands

UMAP 2

K

Model prediction

UMAP 2

Volunteer consensus

UMAP 1

UMAP 1

UMAP 1

Figure 3 Latent space from the conditional variational autoencoder (cVAE) encoding colored using the model class probability (top row)
and volunteer consensus (bottom row). Each point corresponds to an image, where two images that share similar characteristics are close
together while those that are markedly different are farther apart. Note how the location on the latent space is strongly correlated with
the class, showing that there is a strong relationship between the feature morphology and the corresponding class.
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to features that have circular signatures for making the
vortex prediction, and specifically looks at locations where
the color gradient is high. These activations change for
different classification targets where, for example, for FFRs,
the network attends to bright regions within the image.
We leverage these attention maps to identify and
diagnose class-wise confusion in our dataset. Figure 5
shows the attention maps for vortex, FFR, and cloud bands
for a selection of images that have low vortex consensus.
Here, we see that the attention maps between the vortex
and other classes have significant overlap, showing

that these features share similarities across classes.
Furthermore, the attention points to locations within the
image where the network has learned to look for vortices.
Therefore, it is likely that within the features attended to by
the network, there are other images in the dataset where
vortices exist. For the images shown in Figure 5, we can
sample the 5 closest images in the latent space (which
would have similar morphological characteristics) that
have high vortex consensus from volunteers, as shown in
Figure 6. Here, observe that the features corresponding to
where attention is high in the reference image have vortices

Vortex FFR

Image Vortex

e
&

Figure & There are four sets of example images with each set having at left the original image used in model training, followed by the
model’s attention for the vortex and Folded Filamentary Region (FFR) classification, middle and right, respectively. Lighter colors denote
higher attention by the model to those features, while darker regions are attended to less. Notice how the network attends to the vortex
itself, or regions of color gradients, which are characteristic of either vortices themselves, or locations where vortices exist, to make the
vortex prediction, but attends to different features for the FFR classification. In the bottom two panels, the regions attended to by the
network contains signatures of both vortices (i.e., sharp color gradients and circular features) and FFRs (i.e., bright white, turbulence).

Vortex Cloud bands

HENES
e L
N
Qo) ] ]

Vortex FFR Cloud bands

Figure 5 Example of images with vortex confusion with their attention for each of the three classes. Each row represents two sets of
images with each set of three images corresponding to the three classes (Vortex, Folded Filamentary Region, and cloud bands). Notice
how the attention for the vortex shifts to other classes based on their morphologies.



Sankar et al. Citizen Science: Theory and Practice DOI: 10.5334/cstp.731

Selection 0 Selection 1

Reference

Selection 2 Selection 3 Selection 4

Figure 6 Examples of images with high vortex consensus based on their closeness to the reference image (see Figure 5 for reference
image attention). Each row corresponds to a different image in Figure 5, and columns 2-6 correspond to different neighboring images in
the model latent space with high vortex confusion. Vortices in the image form in features that the model attends to (i.e., bright values in

the attention overlay) in Figure 5.

in the sampled images. This is particularly true within FFRs
(row 2) and high shear between cloud bands (rows 4 and
5). However, surprisingly, this is also true of locations where
the color gradient is relatively flat (row 3).

Therefore, the ScoreCAM-based attention maps highlight
important information that relates the image-level features
with the classification labels. These are particularly useful
when discerning between feature similarity for multiple
classes (thereby helping us understand the class confusion).

INTERPRETING CONFUSION FROM VAE-ADDED
DATA

The cVAE, therefore, provides a multi-dimensional view
into the dataset, using the latent space to identify feature
similarity and the attention to highlight feature importance
towards a specific class. These two modalities are used to
understand feature relationship in the dataset and possibly

disentangle class confusion due to feature similarity.
Given the large volume of data (>68,000 images), it is
important to identify methods to simplify the process of
characterizing confusing samples. Specifically, we highlight
the use of these two modalities as a method to quantify
and explore the diversity in the confusion, which simplifies
the process of characterizing the source of confusion in the
data and their downstream scientific value. Here, we use
the latent space as a method to subset data and identify
feature similarity, and the ScoreCAM attention to identify
class-feature relationships. Both are vital for understanding
class confusion in the dataset and contain key scientific
value, as detailed below.

Feature diversity for confusing targets
The latent space generated by the cVAE is useful for
disentangling different subclasses of confusing features.



Sankar et al. Citizen Science: Theory and Practice DOI: 10.5334/cstp.731 9

For instance, Figure 7 shows the distribution of the latent
space for confusing vortices (volunteer consensus for
vortices between 0.3 and 0.7) along with the corresponding
consensus for the other classes. This allows us to distinguish
between images that show poor vortex characteristics as a
function of the morphological features within the image.
Since the latent space encodes the morphological features,
we can investigate the latent space for the confusing
features to investigate qualitative correlations between the
vortex features and other classes.

Figure 8 shows the filtered latent space from various
samples overlaid. We see that the latent space shows a
distribution of morphological characteristics in the image.
As stated above, the use of the latent space simplifies
the exploration of the diversity of confusing samples in
the dataset, which makes it easier for us to characterize
the different sources of confusion. Here, we find that
the confusion in the dataset (specifically for vortices as
highlighted in Figure 8), appears to be from the diversity of
features that correspond to vortices. For example, the images

FFR consensus Cloud bands consensus 1o
FaEN 08
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3074 ‘;d:&'g\'g
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048
0.2
UMAP 1 UMAP 1 0.0

Figure 7 Distribution of the latent space for the confusing vortex sample, colored by Folded Filamentary Region (FFR) and cloud band
consensus. Note how there are separate regimes of features that contain high/low consensus and are located in different latent space

locations.

UMAP 2

UMAP 1

Figure 8 Latent space distribution for the confusing vortex sample but with images overlaid showing the types of phenomenon in each
image. Note how specific regions seem to show vortical phenomena while others do not.
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with the Great Red Spot (GRS; top left) show poor consensus,
particularly when the core of the storm is not visible. This is
likely due to the fact that the GRS was easily confused either
with a similar (but significantly smaller storm) which was
also red, or with cloud bands (Figure 4 shows an increase in
cloud band consensus near this cluster).

In other areas, for example, on the far left, FFRs were
much more prominent, and volunteers struggled to
accurately differentiate between swirls in the FFRs and
vortices. Indeed, here the definition of the vortex breaks
down without having access to data that showcases the
temporal evolution of these features. FFRs are known to
have small-scale short-lived vortices (Hueso et al. 2022),
but drawing a clear decision boundary between the inner
cores of an FFR and vortices is difficult, even for domain
experts. Reconciling the feature overlap between these
classes is a fundamentally important avenue of research
for understanding how vortices form and evolve, and large-
number statistics of such features that reside in between
these two classes is important for understanding how (or
if) vortices transition to FFRs, or vice versa (IAurrigarro et
al. 2022). The use of the latent space to disentangle these
classes is vital in providing the samples necessary to study
this phenomenon.

Elsewhere, closer to the main cluster, volunteers
struggled with identifying small vortices (only 10-15 pixels
across in these images). These small vortices, usually
embedded in either FFRs (which are in the left half of the
latent space) or in the middle of cloud bands (right half
of the latent space), are useful for better understanding
localized hydrodynamical instabilities in the jovian
atmosphere, which is the scientific goal of the JVH project.

Therefore, the use of the latent space, in combination
with the filters provided by class consensus by the citizen
scientists, allows us to segregate different sub-classes
of atmospheric features and study them in isolation.
Particularly, it is significantly easier to navigate the
confusion space primarily through the use of morphological
feature separability afforded by the latent space and
simplify the process of identifying scientifically relevant
sources of confusion. For instance, the smaller vortices are
much more vital for jovian atmospheric studies compared
with the Great Red Spot since they are much harder to
detect, and therefore, the use of the latent space simplifies
their identification. Summarily, by slicing the latent space
using class consensus, we can map feature variation and
understand the relationship between the features in the
image and how they are common across different classes.

Confusion and scientific value
Given that the fundamental goal of the project is to
understand and correlate the dynamics of the atmosphere

10

with the resulting features, let us briefly investigate the
ability of the cVAE in improving the scientific return of the
JVH dataset. With these tools, we are able to significantly
reduce the overhead of disentangling the source of
confusion for objects in the dataset. For instance, by just
looking at the confusing vortex subset (vortex consensus
between 0.3 and 0.7), we filter out about 58,672 images
from the dataset (~85%). This still leaves 9,650 images to
manually characterize, but we can subset this based on
different subclasses. Out of these 9,650, 3,962 correspond
to images that feature high consensus on FFRs and only
612 correspond to images that feature high consensus
on cloud bands. While it is understandable that FFR-like
features have a high rate of confusion with vortices, it is
less clear why cloud bands share feature similarity.

Figure 9 shows the latent space distribution for the
612 images that have a high consensus on cloud bands
(volunteer agreement >0.7) for confusing vortices
(volunteer agreement between 0.3 and 0.7). Note how
these images have a wide diversity of background features
where the lower right region represents very low gradients
in color, and the upper left features very sharp color
gradients. These variations correspond to wind shear (or
background vorticity) in the atmosphere at these regions,
since steep wind shear results in a strong temperature
gradient, which results in sharp gradients in cloud type and
cloud chemistry; whereas low shear generally results in
the opposite, with smooth color variations. Therefore, we
have a gradient of potential vortices forming in low-shear
environments (lower right) and high-shear environments
(upper left). This is particularly important, since vortices
forming across this spectrum of wind shear produce
markedly different features, and present insights into the
patterns of fluid dynamical instabilities (which are poorly
known on Jupiter). A deeper discussion on these features
is in the Supplemental File 1: Model Description and
Additional Results, which details the scientific significance
of the cVAE in finding arbitrary relationships between the
jovian atmospheric dynamics and the learned features.

GENERALIZATION TO CITIZEN SCIENCE
PROJECTS

The results presented here are specific to a case study
on the Jovian Vortex Hunter project, but our analysis
methodology can be easily generalized to other image-
classification projects. We present the lessons learned from
our analysis:

Firstly, we find the combination of the traditional VAE
architecture with the classification head provides additional
information using gradient backpropagation about the
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UMAP 2

UMAP 1

Figure 9 Distribution of latent space for samples with vortex confusion but high consensus on cloud bands, with several images overlaid at

their latent space location.

types of features associated with each class in the image.
In this way, images with poor volunteer consensus can
provide further context about the features in the image that
cause confusion. This is significant because obtaining such
interpretative information from volunteers is challenging,
and even if such information is requested, it would result in
a large increase in the volume of volunteer data to process
(e.g., through forum boards) (see Cardamone et al. 2009;
Oesterlund et al. 2014, etc.).

Secondly, we find that the use of the latent space helps
separate the different image-level features that correspond
to different sub-classes. Traditional unsupervised methods
have produced good clustering performance (e.g., Syarif et
al. 2012), but combining the latent space with volunteer
consensus offers efficient ways to subsample data and
identify interesting ways to relate classes and underlying
scientific value. For example, we efficiently determined
vortex-like signatures that exist in high-shear versus low-
shear environments on Jupiter. In the latent space, these
were separable because the wind shear results in different
color gradients in the image. If there is a strong correlation
between the classes and the image-level features, then it
is easy to disentangle different sub-classes of features that
result in volunteer confusion, and study each sub-class
individually.

Finally, we have shown that our cVAE does not
strongly overfit the training data and has instead learned
generalizable image-level features across the dataset.
As such, it is possible to use this framework to predict

consensus on future datasets, and quickly process images
that show clear class distinction. In this way, we can
choose to show volunteers only those data that show large
feature confusion, which would greatly reduce their effort
(Walmsley et al. 2019).

CONCLUSIONS AND FUTURE WORK

In conclusion, we have shown that the use of semi-
supervised machine learning techniques can add great
value to the citizen science-labeled dataset. Using the
additional information provided by the distribution of the
learned latent variables and the use of layer attention, we
can autonomously sub-classify features within the dataset.
This is particularly useful when interpreting confusion,
where confusion in a classification label can be due to a
multitude of factors. Intrinsically, most confusion is due
to feature similarity with other classes, and the use of the
cVAE helps us disentangle confusion due to the different
classes. In particular, in our dataset, we found that we are
able to successfully separate confusing vortices between
vortex-like structures forming alongside the cloud bands
and those within FFRs, and correlate them with fluid
dynamical properties. Using these relationships and the
latent space distribution, it was easier to disentangle true
positive vortex classifications in the confusing sample.

The model presented here features a simple CNN-based
cVAE. Current improvements in deep neural networks offer
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much more sophisticated methods to learn attention,
such as using the Transformer architectures (Vaswani et al.
2017; Dosovitskiy et al. 2020), which provide better learned
representations of the latent space and much better
explainability. Transformers also offer methods to learn
features more efficiently across spatial scales (Dosovitskiy
et al. 2020), which will improve our model performance on
the smaller vortices. We will investigate the improvements
offered by these models in a future study.

Additionally, while the model has learned characteristics
of the volunteer consensus distribution, it has not provided
a way to autonomously binarize the distribution (i.e., learn
better representations of the data in order to remove the
volunteer confusion). While the confusing sample identified
from the volunteer agreement scores has proven valuable,
there are still implicit variables not related to the features in
the image that cause confusion, such as volunteer skill and
prior knowledge. Leveraging the network to disentangle
these implicit volunteer variability parameters with true
data variability is a much more difficult problem for the
network but possibly an avenue of future study. In this
fashion, the network can become much more autonomous
in flagging and identifying confusing subjects within the
dataset, which will alleviate significant burden from the
research teams.

Finally, due to the simplicity of the model and the
fact that no other information is needed apart from the
volunteer labels and input image, this method essentially
offers “free information” for citizen science projects where
confusion is a significant burden. The use of the neural
network to simplify the intrinsic data variability and relate
the image-level features to the volunteer agreement
provides a great benefit at very little overhead.

DATA ACCESSIBILITY STATEMENT

The classification data is available on Zenodo at https://
doi.org/10.5281/zenodo.11659728 and imaging data used
for this work will be shared on reasonable request to the
author. The machine model and training script is available
at https://github.com/ramanakumars/cvae.

SUPPLEMENTAL FILE

The supplemental file for this article can be found as
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+ Supplemental File 1. Model Description and Additional
Results. DOI: https://doi.org/10.5334/cstp.731.51
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