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ABSTRACT

Citizen science has become a valuable and reliable method for interpreting and processing 

big datasets, and is vital in the era of ever-growing data volumes. However, there are 

inherent difficulties in the generating labels from citizen scientists, due to the inherent 

variability between the members of the crowd, leading to variability in the results. 

Sometimes, this is useful — such as with serendipitous discoveries, which corresponds to 

rare/unknown classes in the data — but it might also be due to ambiguity between classes. 

The primary issue is then to distinguish between the intrinsic variability in the dataset 

and the uncertainty in the citizen scientists’ responses, and leveraging that to extract 

scientifically useful relationships. In this paper, we explore using a neural network to 

interpret volunteer confusion across the dataset, to increase the purity of the downstream 

analysis. We focus on the use of learned features from the network to disentangle feature 

similarity across the classes, and the ability of the machines’ “attention” in identifying 

features that lead to confusion. We use data from Jovian Vortex Hunter, a citizen science 

project to study vortices in Jupiter’s atmosphere, and find that the latent space from 

the model helps effectively identify different sources of image-level features that lead 

to low volunteer consensus. Furthermore, the machine’s attention highlights features 

corresponding to specific classes. This provides meaningful image-level feature-class 

relationships, which is useful in our analysis for identifying vortex-specific features to 

better understand vortex evolution mechanisms. Finally, we discuss the applicability of 

this method to other citizen science projects.
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INTRODUCTION

Across various scientific fields, such as astrophysics, 

improvements in data collection methods (including 

robotic telescopes, planetary missions, etc.) have led to a 

growing need to quickly and accurately process the data, 

and reduce information from raw (usually imagery) to 

more useful data products (e.g., labels for the dataset, 

or annotations of specific features) (Lintott et al. 2008; 

Fortson 2021; Zou et al. 2024). As computing tools such 

as machine and deep learning pipelines have risen at a 

commensurate rate, many studies have turned to using 

AI to process a large chunk of the data (Zou et al. 2024), 

reducing the overhead on doing scientific research. 

However, these tools are only as good as the data that 

they are trained on, and struggle to effectively process 

data that is dissimilar to the training dataset (Walmsley 

and Scaife 2023). This is a problem for researchers, 

since the advancement of scientific knowledge requires 

the accurate detection and processing of the new and 

unknown. Particularly, while methods are emerging to 

detect these new and unknown data (i.e., anomalies) 

in large datasets (Ishida et al. 2021; Lochner and 

Basset 2021), understanding why they are interesting 

and comparing them with known labels is challenging. 

Unsupervised deep learning methods have attempted 

to tackle this problem, but more often than not, these 

architectures have difficulty in differentiating between 

known image artifacts or noise, and new, scientifically 

significant data (Mantha et al. 2024; this collection), and 

have struggled even more in providing interpretation 

to the model-filtered data. To tackle the ever-growing 

volume of data, and to improve the scientific returns of 

these datasets, we require models that are efficiently 

able to identify and characterize anomalies that provide 

scientific value to the dataset and provide some measure 

of interpretability (i.e., relation between the features 

in the data and associated class labels). Our efforts in 

this work are to tackle the latter problem, specifically 

to provide characterization and interpretability of the 

dataset using machine models.

One potential option for help is through enlisting the 

general public to crowdsource anomaly detection and 

characterization in large data sets, commonly known as 

citizen science or participatory science. However, despite the 

rise in popularity of the citizen science methodology, there 

are inherent difficulties in the label generation process: For 

example, since the processed information is crowd sourced, 

there is an issue of variability between the members of the 

crowd, leading to large variability in the processed results, 

necessitating either sophisticated algorithms to detect 

and correct mislabeled data (Krivosheev et al. 2020) or 

restricting complicated labeling to experienced volunteers 

(Kosmala et al. 2016; Zevin et al. 2024). In some cases, this 

“confusion” (which we define as variability in the labels 

between different volunteers for the same data, or low 

confidence from the machine model) is useful (e.g., high 

confusion could lead to serendipitous discoveries, since it 

likely corresponds to rare or unknown classes in the data; 

Cardamone et al. 2009), but at other times, it might be due 

to lack of training samples for the citizen science volunteers 

or ambiguity between classes (Zevin et al. 2024). Therefore, 

a primary concern is discerning between the intrinsic 

variability in the dataset and the uncertainty in the citizen 

scientists’ responses (Hunter et al. 2012; Li et al. 2020).

To be clear, both machines and humans are susceptible 

to confusion arising from the variability in the data set 

or the ambiguity between classes. However, because we 

can quantify the machine response in a more statistically 

meaningful manner, we can leverage this strength of the 

machine to deconstruct what may be confusing features 

for humans, whereas humans are good at finding the 

odd relationships between features because they can 

quickly learn and retain context (e.g., Cardamone et al 

2009). Processing such data with contextual information 

can provide interpretation and meaning to the intrinsic 

variability within a dataset. Our motivation here is to 

provide a mechanism using the combined strengths of 

humans (in their capturing of context) and machines (in 

their quantification of the feature relationships) to identify 

scientifically interesting feature relationships by using 

the information in spurious labeling coming from human 

uncertainty.

Work to date has shown that deep neural network–

based mechanisms have vastly reduced volunteer efforts 

by quickly labeling “easy” data, while distributing the 

more complicated data to volunteers (Richards et al. 

2011; Willi et al. 2018; Walmsley et al. 2019; Sankar et 

al. 2023). Although these techniques have improved the 

labeling efficiency and scientific throughput of citizen 

science projects, they do not offer much information about 

why specific subsets of the data are more complicated, 

or why they confuse the machine models. Indeed, while 

machine models (specifically deep neural networks, due 

to their black-box natures) produce good results for their 

training data, they tend to fail spectacularly on new 

datasets, necessitating complicated metrics and training 

regimens to improve generalizability (Liao et al. 2021; 

Mantha et al. 2022). Simultaneously, deep neural networks 

have shown effectiveness in their ability to automatically 

extract features for classification and clustering (Syarif 

et al. 2012), which are useful for drawing meaningful 

relationships from large datasets (e.g., Storey-Fisher et al. 

2021; Etsebeth et al. 2024). These dataset features provide 
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basic context between the downstream task that the 

machine model is trained on (e.g., classification) and what 

information the model used for their respective tasks. As 

such, these techniques enable us to provide a measure of 

interpretability to models, allowing for more sophisticated 

understanding and control over the machine performance.

Motivated by these advancements, we use deep neural 

networks in a citizen science project to tackle the problem 

from both sides: 1) to augment citizen science data, especially 

those with high volunteer confusion, using a machine model 

to characterize the feature-class relationships, and 2) to 

increase trustworthiness of machine models applied to 

scientific datasets by providing a measure of interpretability 

to the machine’s prediction, specifically when it pertains 

to anomalous or confusing data. Fundamentally, our 

overarching goal is to improve the purity of the downstream 

scientific outputs by having a better characterization of 

the human confusion and the machine-derived, feature-

class relationship. We organize herein by first describing the 

dataset shown to the citizen scientists, as well as the classes 

and the labeling strategy. We then describe the results from 

our machine model and how we use it to infer and interpret 

scientifically interesting feature relationships. Finally, we 

discuss the relevance to other citizen science projects, and 

the generalization of the methodology used here, and 

discuss the nuances of this work.

Summarily, we use a variational auto-encoder (VAE) 

with convolutional layers to learn spatial morphologies 

from our dataset, which consists of images of Jupiter’s 

atmospheric features from the JunoCam instrument on 

board the Juno spacecraft (Hansen et al. 2014). This VAE 

is combined with a classification layer (which we refer to 

as a cVAE) and trained on the labels provided by citizen 

science volunteers from the Jovian Vortex Hunter (JVH) 

citizen science project on the Zooniverse platform (Sankar 

et al. 2024). Zooniverse is a web-based citizen science 

platform where research teams can upload their data and 

create simple interfaces for citizen scientists to interact 

with, for classification, annotation, or other tasks. The 

volunteers were shown the dataset and asked to label the 

atmospheric features within. The combination of the VAE 

architecture and the machine classification layer results in 

a “semi-supervised” framework that can be used to map 

and relate class confusion from the volunteer annotations 

with the morphological characteristics in the images. 

Beyond the initial task of simply improving the reliability of 

the characterization of machine and volunteer confusion, 

we further use the learned feature representation and 

network architecture to simplify the confusion space in the 

dataset to quickly extract meaningful scientific insights 

from the labeled dataset.

DATA

JOVIAN VORTEX HUNTER CITIZEN SCIENCE 

PROJECT

The Jovian Vortex Hunter (JVH) is a citizen science project 

hosted on Zooniverse.org (Sankar et al. 2024). The goal of 

the project is to identify atmospheric vortices on Jupiter 

in images taken by the JunoCam instrument (Hansen 

et al. 2014) on board the Juno spacecraft, in order to 

better understand the jovian atmospheric structure and 

dynamics. JunoCam is itself a citizen science project where 

the raw data are processed mainly by amateurs, and has 

led to amazing results (see https://www.missionjuno.

swri.edu/junocam/processing?source=public). The JVH 

project launched in June 2022, and after more than a 

million classifications, successfully completed its first 

round of data in December 2023. We presented 68,322 

image crops from 23 orbits of the Juno spacecraft (13 

through 36). Specifically, we stack and mosaic the 

individual JunoCam images onto a global map. We then 

make random crops, using an equal-area projection, such 

that each crop measures 7000 km × 7000 km, and is at 

least 1500 km from a neighboring crop. In this way, the 

same atmospheric feature can be seen across multiple 

crops, ensuring that we are accurately sampling the 

region around a feature of interest. The project consisted 

of two workflows:

1. Is there a vortex?: In this first workflow, volunteers 

were shown an image from JunoCam and asked 

to identify the features in the image from a list of: 

vortex; turbulent features (or folded filamentary region 

[FFR]); cloud bands; pixelated; or blurry. The first three 

correspond to atmospheric classes of features, whereas 

the last two correspond to (poor) quality of the image. 

The volunteers could select multiple options per image 

since features can coexist in the same image (i.e., a 

vortex within a cloud band). We required at least 10 

classifications from independent classifiers before 

retiring the image from the data pool.

2. Circle the vortex: this workflow was seeded by images 

that had high confidence of “vortex” from the first 

workflow. Here, we asked volunteers to circle the 

vortices in the image based on their color. The color 

represents unique chemistry and cloud microphysics 

within that region and presents an opportunity to 

understand the link between the fluid dynamics and 

the cloud chemistry (a currently poorly understood 

facet of the jovian atmosphere). Here, we required at 

least 12 independent annotations per image before 

retiring the image from the subject pool.
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For this study, we primarily focus on the data from the first 

workflow because that gives us a better understanding of 

class confusion. Particularly, we are interested in seeing 

whether machine learning techniques can be used to 

augment the data provided by the volunteers with a 

generative model that can also learn the intrinsic features 

within the image. Ideally, we would like to determine 

whether specific correlations exist between the confusion 

derived from volunteer votes for a given class and type of 

image-level features (for example, is it harder to identify 

vortices if the images have a certain color, or have a high 

fraction of turbulence?). Examples of the workflow and 

the dataset are shown in Supplemental File 1: Model 

Description and Additional Results.

DATA CLASSES AND DETERMINING CONSENSUS

The dataset primarily consists of three main classes that are 

used in downstream analyses: vortex, FFR, and cloud bands. 

An example of each class is shown in Figure 1. The vortices are 

characterized by circular features, with radial color gradients 

(Ingersoll et al. 2007). They come in a wide spectrum of sizes 

from between 100–200 km (about 5–10 pixels) to a few 

thousand kilometers (covering nearly the full image). Vortices 

on Jupiter are driven primarily by shear instability in the fluid, 

and the colors of the clouds within the vortex are dictated 

both by the local temperature structure and by chemistry. 

Vorticity dynamics is a very useful proxy to understand the 

local fluid dynamics, which is inherently difficult to achieve 

without local sounding data or in-situ probe data.

FFRs share some similarity with vortices, since they also 

contain circular structures (Orton et al. 2017). However, as 

their name suggests, they are primarily filamentary features, 

which are characteristic of local turbulent mixing in the 

atmosphere. The folded filamentary structures sometimes 

contain small vortices, but these are mostly short-lived. 

Owing to the lack of high-resolution observations of these 

features, very little is understood about their dynamics and 

longevity (Orton et al. 2017; Hueso et al. 2022).

Cloud bands are much more prominent and well known 

in the jovian atmosphere. They are long-lived features, 

mostly near the equatorial regions, where sharp transitions 

in the east-west jet streams result in temperature variations 

in the atmosphere and lead to different cloud chemistry 

and color variations. While observations of the global cloud 

bands have existed for a long time, perturbations and 

formation of instabilities are poorly characterized (Hueso 

et al. 2022), but are likely vital for global energy balance on 

Jupiter (Ingersoll et al. 2000). As such, while the locations 

of the cloud bands are well known, characterizing the 

variability in cloud band–like features is vital in determining 

and characterizing turbulent eddy formation in the jovian 

atmosphere.

For these three classes in the dataset, we define volunteer 

consensus as the ratio of the number of volunteers who 

selected the classes to the number of volunteers who 

saw the image. Since each volunteer can select multiple 

classes per image (as each image could contain one or 

more classes, such as a vortex within a cloud band), the 

consensus for each class within an image is independently 

determined (e.g., the vortex consensus for an image is 

the number of volunteers who selected the vortex class, 

divided by the total number of volunteers who classified 

that image).

One of the primary issues with this classification task 

is that images might contain features that reside in the 

boundary between classes or share common features 

across one or more classes (for example, vortices and FFRs 

both feature sharp color gradients and turbulent patterns, 

making it difficult to distinguish the two features). In these 

scenarios, it is very difficult to disentangle and consistently 

Figure 1 Examples of each class in the dataset: Vortex, Folded Filamentary Region (FFR) and cloud bands. These represent images which 

contain stereotypical features corresponding to each class.
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bin datasets into separate classes, which share feature 

similarity. As such, we define volunteer confusion as a 

circumstance in which the volunteer consensus is not at 

the extremes (i.e., either one or zero), but somewhere in 

between. Our work involves disentangling two ways to 

obtain low consensus (volunteer confusion): The first is 

image-level features that do not conform to representatives 

of a class; the second is feature-class confusion, where 

there may be strong similarities between the features of 

two separate classes. For example, Figure 2 shows images 

with confusion (i.e., low volunteer consensus) in the vortex 

class, but with varying confusion across the other two 

classes, showing how the features in each image can be 

specifically tied to individual classes or confused between 

classes. In the far left, we get examples of image-level 

confusion for a given class (i.e., the features in the image 

do not necessarily define vortices well, but there are no 

signatures of the other two classes). In the far right, we 

get images that clearly represent FFRs or cloud bands but 

they also contain some signatures of vortices (e.g., FFR 

spirals can be easily mistaken for vortices), resulting in low 

consensus for the vortex class. This is an example of the 

second type of confusion illustrated above, showing that 

for a given image, the features that represent vortices may 

be shared by other classes (e.g., vortices and FFRs both 

contain bright white swirls). Alternatively, features in the 

same image may be characterized with high confidence, 

for example, cloud bands might not share much feature 

confusion with the other classes, and so are easier to 

classify, but there are still features pertaining to vortices 

within that image. In each of these cases, the characteristic 

features within the image are markedly different, which 

makes it difficult to interpret why the consensus was low 

or interpret the diversity of features that lead to confusion. 

Therefore, because we can generate independent per-class 

consensus for each image, we can use that information 

with machine learning to obtain a better understanding 

of which feature combinations for a given class lead to 

stronger image-level confusion or signify strong feature 

similarity between classes.

Through this case study on the JVH data, we aim to 

enable future research teams using citizen science data to 

better identify feature-class confusion, as well as image-

level features that lead to volunteer confusion. By using 

a machine model to better identify the source of the 

volunteer confusion, we believe that this will ultimately 

accelerate the process by which research teams explore 

the dataset in search of those objects with high scientific 

value.

RESULTS

Once the volunteer labels were obtained through JVH, we 

trained our machine model (cVAE) on the JVH dataset. The 

details of the model, training process, and classification 

performance are provided in the Supplemental File 1: Model 

Description and Additional Results.

USING THE cVAE DATA TO IDENTIFY FEATURE-

CLASS RELATIONSHIP

The cVAE model learns and maps information between the 

image-level features in the dataset and the corresponding 

classification labels. Specifically, we can use the information 

mapped by the cVAE to better understand what features in 

the image correspond to specific classes. More importantly, 

the network implicitly learns how these features share 

similarities between classes, driving the ability to understand 

feature confusion. We have two modalities of information 

from the cVAE: firstly, the latent space, which maps 

feature similarity, and secondly, the feature-classification 

relationship. We detail both components below.

Figure 2 From left to right, we increase the Folded Filamentary Region (FFR, top row) and cloud band (bottom row) consensus showing 

images where volunteers were confused about vortices (consensus between 0.3–0.7), while varying in their confidence of the other two 

classes in the image. Note that from left to right we get clearer signatures of the other two classes (e.g., more swirls for FFRs and clear 

north-south color gradients for cloud bands).
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Model latent space

Figure 3 shows the latent space from the model, compressed 

to 2 dimensions using the uniform manifold approximation 

and projection (UMAP). Each point corresponds to an image 

and is colored with the model-predicted class probability 

on the top and the volunteer consensus on the bottom. 

The variation in the latent space is directly related to the 

intrinsic classes within the image (since the latent vectors 

contain information about the spatial distribution and 

morphologies of the atmospheric features in the image). 

Certain locations are tied to images that contain only one 

class (e.g., vortex or cloud band), other locations contain a 

mixture of the classes (e.g., vortices in cloud bands, etc.). 

Therefore, the latent space is vital to understanding how 

image-level features can contribute to feature confusion 

(i.e., class overlap in the latent space signifies feature 

overlap between the classes), and it provides a method to 

identify common features for a given class (i.e., regions in 

the latent space containing only high consensus of cloud 

bands contain features corresponding only to cloud bands). 

A description of the feature variation within the latent space 

with relation to the classes is provided in the Supplemental 

File 1: Model Description and Additional Results.

Feature localization

The cVAE also has the ability to identify defining charac 

teristics in the image that lead to specific classification. 

Several techniques exist for defining this “attention,” 

including, for example, GradCAM and GradCAM++(Selvaraju 

et al. 2016; Chattopadhyay et al. 2017), which rely on the 

propagation of the neural network’s gradient from the 

classification layer back through the input layer. In this 

study, we instead use the implementation of ScoreCAM 

(Wang et al. 2019), which removes the dependence on 

the gradients by modifying the activations of individual 

layers and inferring the corresponding effect on the 

classification. In this way, ScoreCAM provides a more robust 

representation of the individual morphological features in 

the input image that led to a given classification.

We use ScoreCAM to identify local features within the 

image that lead to class confusion by virtue of being 

common to multiple classes. Simply, the model consensus 

and the volunteer confusion provide a method to subset 

images where feature confusion could exist, while 

ScoreCAM is used to identify the features used in the image 

for making these classifications. Overlap in the feature 

“attention” (i.e., the model using those image-level features 

for the classification of the corresponding label) between 

different classes for confusing images indicates that the 

feature is commonly shared between these classes. For 

example, Figure 4 shows several input images, along with 

their corresponding attention map, showing the locations 

of the features most directly related to the vortex and the 

FFR classes. Here, we can see how the network attends 

Figure 3 Latent space from the conditional variational autoencoder (cVAE) encoding colored using the model class probability (top row) 

and volunteer consensus (bottom row). Each point corresponds to an image, where two images that share similar characteristics are close 

together while those that are markedly different are farther apart. Note how the location on the latent space is strongly correlated with 

the class, showing that there is a strong relationship between the feature morphology and the corresponding class.
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to features that have circular signatures for making the 

vortex prediction, and specifically looks at locations where 

the color gradient is high. These activations change for 

different classification targets where, for example, for FFRs, 

the network attends to bright regions within the image.

We leverage these attention maps to identify and 

diagnose class-wise confusion in our dataset. Figure 5 

shows the attention maps for vortex, FFR, and cloud bands 

for a selection of images that have low vortex consensus. 

Here, we see that the attention maps between the vortex 

and other classes have significant overlap, showing 

that these features share similarities across classes. 

Furthermore, the attention points to locations within the 

image where the network has learned to look for vortices. 

Therefore, it is likely that within the features attended to by 

the network, there are other images in the dataset where 

vortices exist. For the images shown in Figure 5, we can 

sample the 5 closest images in the latent space (which 

would have similar morphological characteristics) that 

have high vortex consensus from volunteers, as shown in 

Figure 6. Here, observe that the features corresponding to 

where attention is high in the reference image have vortices 

Figure 4 There are four sets of example images with each set having at left the original image used in model training, followed by the 

model’s attention for the vortex and Folded Filamentary Region (FFR) classification, middle and right, respectively. Lighter colors denote 

higher attention by the model to those features, while darker regions are attended to less. Notice how the network attends to the vortex 

itself, or regions of color gradients, which are characteristic of either vortices themselves, or locations where vortices exist, to make the 

vortex prediction, but attends to different features for the FFR classification. In the bottom two panels, the regions attended to by the 

network contains signatures of both vortices (i.e., sharp color gradients and circular features) and FFRs (i.e., bright white, turbulence).

Figure 5 Example of images with vortex confusion with their attention for each of the three classes. Each row represents two sets of 

images with each set of three images corresponding to the three classes (Vortex, Folded Filamentary Region, and cloud bands). Notice 

how the attention for the vortex shifts to other classes based on their morphologies.
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in the sampled images. This is particularly true within FFRs 

(row 2) and high shear between cloud bands (rows 4 and 

5). However, surprisingly, this is also true of locations where 

the color gradient is relatively flat (row 3).

Therefore, the ScoreCAM-based attention maps highlight 

important information that relates the image-level features 

with the classification labels. These are particularly useful 

when discerning between feature similarity for multiple 

classes (thereby helping us understand the class confusion).

INTERPRETING CONFUSION FROM VAE-ADDED 

DATA

The cVAE, therefore, provides a multi-dimensional view 

into the dataset, using the latent space to identify feature 

similarity and the attention to highlight feature importance 

towards a specific class. These two modalities are used to 

understand feature relationship in the dataset and possibly 

disentangle class confusion due to feature similarity. 

Given the large volume of data (>68,000 images), it is 

important to identify methods to simplify the process of 

characterizing confusing samples. Specifically, we highlight 

the use of these two modalities as a method to quantify 

and explore the diversity in the confusion, which simplifies 

the process of characterizing the source of confusion in the 

data and their downstream scientific value. Here, we use 

the latent space as a method to subset data and identify 

feature similarity, and the ScoreCAM attention to identify 

class-feature relationships. Both are vital for understanding 

class confusion in the dataset and contain key scientific 

value, as detailed below.

Feature diversity for confusing targets

The latent space generated by the cVAE is useful for 

disentangling different subclasses of confusing features. 

Figure 6 Examples of images with high vortex consensus based on their closeness to the reference image (see Figure 5 for reference 

image attention). Each row corresponds to a different image in Figure 5, and columns 2–6 correspond to different neighboring images in 

the model latent space with high vortex confusion. Vortices in the image form in features that the model attends to (i.e., bright values in 

the attention overlay) in Figure 5.
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For instance, Figure 7 shows the distribution of the latent 

space for confusing vortices (volunteer consensus for 

vortices between 0.3 and 0.7) along with the corresponding 

consensus for the other classes. This allows us to distinguish 

between images that show poor vortex characteristics as a 

function of the morphological features within the image. 

Since the latent space encodes the morphological features, 

we can investigate the latent space for the confusing 

features to investigate qualitative correlations between the 

vortex features and other classes.

Figure 8 shows the filtered latent space from various 

samples overlaid. We see that the latent space shows a 

distribution of morphological characteristics in the image. 

As stated above, the use of the latent space simplifies 

the exploration of the diversity of confusing samples in 

the dataset, which makes it easier for us to characterize 

the different sources of confusion. Here, we find that 

the confusion in the dataset (specifically for vortices as 

highlighted in Figure 8), appears to be from the diversity of 

features that correspond to vortices. For example, the images 

Figure 7 Distribution of the latent space for the confusing vortex sample, colored by Folded Filamentary Region (FFR) and cloud band 

consensus. Note how there are separate regimes of features that contain high/low consensus and are located in different latent space 

locations.

Figure 8 Latent space distribution for the confusing vortex sample but with images overlaid showing the types of phenomenon in each 

image. Note how specific regions seem to show vortical phenomena while others do not.
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with the Great Red Spot (GRS; top left) show poor consensus, 

particularly when the core of the storm is not visible. This is 

likely due to the fact that the GRS was easily confused either 

with a similar (but significantly smaller storm) which was 

also red, or with cloud bands (Figure 4 shows an increase in 

cloud band consensus near this cluster).

In other areas, for example, on the far left, FFRs were 

much more prominent, and volunteers struggled to 

accurately differentiate between swirls in the FFRs and 

vortices. Indeed, here the definition of the vortex breaks 

down without having access to data that showcases the 

temporal evolution of these features. FFRs are known to 

have small-scale short-lived vortices (Hueso et al. 2022), 

but drawing a clear decision boundary between the inner 

cores of an FFR and vortices is difficult, even for domain 

experts. Reconciling the feature overlap between these 

classes is a fundamentally important avenue of research 

for understanding how vortices form and evolve, and large-

number statistics of such features that reside in between 

these two classes is important for understanding how (or 

if) vortices transition to FFRs, or vice versa (Iñurrigarro et 

al. 2022). The use of the latent space to disentangle these 

classes is vital in providing the samples necessary to study 

this phenomenon.

Elsewhere, closer to the main cluster, volunteers 

struggled with identifying small vortices (only 10–15 pixels 

across in these images). These small vortices, usually 

embedded in either FFRs (which are in the left half of the 

latent space) or in the middle of cloud bands (right half 

of the latent space), are useful for better understanding 

localized hydrodynamical instabilities in the jovian 

atmosphere, which is the scientific goal of the JVH project.

Therefore, the use of the latent space, in combination 

with the filters provided by class consensus by the citizen 

scientists, allows us to segregate different sub-classes 

of atmospheric features and study them in isolation. 

Particularly, it is significantly easier to navigate the 

confusion space primarily through the use of morphological 

feature separability afforded by the latent space and 

simplify the process of identifying scientifically relevant 

sources of confusion. For instance, the smaller vortices are 

much more vital for jovian atmospheric studies compared 

with the Great Red Spot since they are much harder to 

detect, and therefore, the use of the latent space simplifies 

their identification. Summarily, by slicing the latent space 

using class consensus, we can map feature variation and 

understand the relationship between the features in the 

image and how they are common across different classes.

Confusion and scientific value

Given that the fundamental goal of the project is to 

understand and correlate the dynamics of the atmosphere 

with the resulting features, let us briefly investigate the 

ability of the cVAE in improving the scientific return of the 

JVH dataset. With these tools, we are able to significantly 

reduce the overhead of disentangling the source of 

confusion for objects in the dataset. For instance, by just 

looking at the confusing vortex subset (vortex consensus 

between 0.3 and 0.7), we filter out about 58,672 images 

from the dataset (~85%). This still leaves 9,650 images to 

manually characterize, but we can subset this based on 

different subclasses. Out of these 9,650, 3,962 correspond 

to images that feature high consensus on FFRs and only 

612 correspond to images that feature high consensus 

on cloud bands. While it is understandable that FFR-like 

features have a high rate of confusion with vortices, it is 

less clear why cloud bands share feature similarity.

Figure 9 shows the latent space distribution for the 

612 images that have a high consensus on cloud bands 

(volunteer agreement >0.7) for confusing vortices 

(volunteer agreement between 0.3 and 0.7). Note how 

these images have a wide diversity of background features 

where the lower right region represents very low gradients 

in color, and the upper left features very sharp color 

gradients. These variations correspond to wind shear (or 

background vorticity) in the atmosphere at these regions, 

since steep wind shear results in a strong temperature 

gradient, which results in sharp gradients in cloud type and 

cloud chemistry; whereas low shear generally results in 

the opposite, with smooth color variations. Therefore, we 

have a gradient of potential vortices forming in low-shear 

environments (lower right) and high-shear environments 

(upper left). This is particularly important, since vortices 

forming across this spectrum of wind shear produce 

markedly different features, and present insights into the 

patterns of fluid dynamical instabilities (which are poorly 

known on Jupiter). A deeper discussion on these features 

is in the Supplemental File 1: Model Description and 

Additional Results, which details the scientific significance 

of the cVAE in finding arbitrary relationships between the 

jovian atmospheric dynamics and the learned features.

GENERALIZATION TO CITIZEN SCIENCE 
PROJECTS

The results presented here are specific to a case study 

on the Jovian Vortex Hunter project, but our analysis 

methodology can be easily generalized to other image-

classification projects. We present the lessons learned from 

our analysis:

Firstly, we find the combination of the traditional VAE 

architecture with the classification head provides additional 

information using gradient backpropagation about the 
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types of features associated with each class in the image. 

In this way, images with poor volunteer consensus can 

provide further context about the features in the image that 

cause confusion. This is significant because obtaining such 

interpretative information from volunteers is challenging, 

and even if such information is requested, it would result in 

a large increase in the volume of volunteer data to process 

(e.g., through forum boards) (see Cardamone et al. 2009; 

Oesterlund et al. 2014, etc.).

Secondly, we find that the use of the latent space helps 

separate the different image-level features that correspond 

to different sub-classes. Traditional unsupervised methods 

have produced good clustering performance (e.g., Syarif et 

al. 2012), but combining the latent space with volunteer 

consensus offers efficient ways to subsample data and 

identify interesting ways to relate classes and underlying 

scientific value. For example, we efficiently determined 

vortex-like signatures that exist in high-shear versus low-

shear environments on Jupiter. In the latent space, these 

were separable because the wind shear results in different 

color gradients in the image. If there is a strong correlation 

between the classes and the image-level features, then it 

is easy to disentangle different sub-classes of features that 

result in volunteer confusion, and study each sub-class 

individually.

Finally, we have shown that our cVAE does not 

strongly overfit the training data and has instead learned 

generalizable image-level features across the dataset. 

As such, it is possible to use this framework to predict 

consensus on future datasets, and quickly process images 

that show clear class distinction. In this way, we can 

choose to show volunteers only those data that show large 

feature confusion, which would greatly reduce their effort 

(Walmsley et al. 2019).

CONCLUSIONS AND FUTURE WORK

In conclusion, we have shown that the use of semi-

supervised machine learning techniques can add great 

value to the citizen science–labeled dataset. Using the 

additional information provided by the distribution of the 

learned latent variables and the use of layer attention, we 

can autonomously sub-classify features within the dataset. 

This is particularly useful when interpreting confusion, 

where confusion in a classification label can be due to a 

multitude of factors. Intrinsically, most confusion is due 

to feature similarity with other classes, and the use of the 

cVAE helps us disentangle confusion due to the different 

classes. In particular, in our dataset, we found that we are 

able to successfully separate confusing vortices between 

vortex-like structures forming alongside the cloud bands 

and those within FFRs, and correlate them with fluid 

dynamical properties. Using these relationships and the 

latent space distribution, it was easier to disentangle true 

positive vortex classifications in the confusing sample.

The model presented here features a simple CNN-based 

cVAE. Current improvements in deep neural networks offer 

Figure 9 Distribution of latent space for samples with vortex confusion but high consensus on cloud bands, with several images overlaid at 

their latent space location.
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much more sophisticated methods to learn attention, 

such as using the Transformer architectures (Vaswani et al. 

2017; Dosovitskiy et al. 2020), which provide better learned 

representations of the latent space and much better 

explainability. Transformers also offer methods to learn 

features more efficiently across spatial scales (Dosovitskiy 

et al. 2020), which will improve our model performance on 

the smaller vortices. We will investigate the improvements 

offered by these models in a future study.

Additionally, while the model has learned characteristics 

of the volunteer consensus distribution, it has not provided 

a way to autonomously binarize the distribution (i.e., learn 

better representations of the data in order to remove the 

volunteer confusion). While the confusing sample identified 

from the volunteer agreement scores has proven valuable, 

there are still implicit variables not related to the features in 

the image that cause confusion, such as volunteer skill and 

prior knowledge. Leveraging the network to disentangle 

these implicit volunteer variability parameters with true 

data variability is a much more difficult problem for the 

network but possibly an avenue of future study. In this 

fashion, the network can become much more autonomous 

in flagging and identifying confusing subjects within the 

dataset, which will alleviate significant burden from the 

research teams.

Finally, due to the simplicity of the model and the 

fact that no other information is needed apart from the 

volunteer labels and input image, this method essentially 

offers “free information” for citizen science projects where 

confusion is a significant burden. The use of the neural 

network to simplify the intrinsic data variability and relate 

the image-level features to the volunteer agreement 

provides a great benefit at very little overhead.
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