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Abstract

In the past two decades brain connectomics has evolved into a major concept in neuroscience.
However, the current perspective on brain connectivity and how it underpins brain function relies
mainly on the hemodynamic signal of functional magnetic resonance imaging (MRI). Molecular
imaging provides unique information inaccessible to MRI-based and electrophysiological
techniques. Thus, positron emission tomography (PET) has been successfully applied to measure
neural activity, neurotransmission, and proteinopathies in normal and pathological cognition. Here,
we position molecular imaging within the brain connectivity framework from the perspective of
timeliness, validity, reproducibility, and resolution. We encourage the neuroscientific community
to take an integrative approach whereby MRI-based, electrophysiological techniques, and
molecular imaging contribute to our understanding of the brain connectome.

Imaging of brain connectivity

The powerful idea of the brain as a network has gradually gained traction over the past 20
years and has evolved into a major concept in neuroscience. According to this perspective,
brain functions in general, and cognitive functions in particular, depend on interactions
between distributed brain regions operating in large-scale networks [1]. Accordingly,
dysfunction of these networks, or brain disconnectivity, has been observed in numerous
cognitive disorders [2]. Brain networks (see Glossary) can be captured at the macroscale
using electrophysiological and neuroimaging techniques. Electroencephalography (EEG)
was applied first [3], followed by PET [4-6]. In fact, the first formal framework

of functional connectivity was proposed based on perfusion PET studies [6]. Only

later was the repertoire of techniques expanded to functional MRI (fMRI) [7,8],
magnetoencephalography (MEG) [9,10], and, more recently, to functional near-infrared
spectroscopy (fNIRS) [11].

The approach of molecular imaging is based on the detection of radioactivity emitted
following a small amount of a radiotracer injected into a peripheral vein. Established
radiotracers bind to molecular targets at a nano- to picomolar level with high affinity and
selectivity [12]. In a broad sense, the term molecular connectivity refers to a statistical
dependence between regional measures of molecular imaging [13]. Thus, this term echoes
the definition of functional connectivity used by Karl Friston — “as statistical dependencies
among remote neurophysiological events’ [14]. Although molecular imaging encompasses
several techniques such as PET and single-photon emission tomography [15] in vivo, as well
as autoradiography ex vivo [16], we explicitly focus here on PET as the most popular in
vivo technique used in research settings. In the following, molecular imaging and PET are
therefore used as synonyms.

Currently, blood oxygenation level-dependent (BOLD) fMRI is by far the most popular
method to study functional connectivity. Compared to PET, fMRI is widely available, cheap,
has a higher temporal resolution, and is devoid of ionizing radiation exposure. Even though
PET studies on brain connectivity are increasing in absolute terms, their proportion is still
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very limited: according to a comprehensive PubMed search, fMRI studies make up more
than 2/3 of the literature on functional brain connectivity, following a trend of exponential
increase over the past 30 years. Thus, the current perspective on how brain connectivity

and networks underpin cognitive functions disproportionately relies on the hemodynamic
signal of fMRI. Because brain activity emerges from a complex interplay of biochemical
and electrical signaling, one method cannot completely characterize the diversity of the
inter-regional communication. Thus, there is an increasing need for a multimodal, integrative
perspective of the brain connectome. Molecular imaging provides unique information
inaccessible to the common MRI-based techniques and electrophysiological tools. This
article aims to position molecular imaging within the framework of brain connectivity.

Value of molecular connectivity

Validity

In the following we argue that PET represents a valuable imaging tool for brain connectivity
research from the perspective of validity, reproducibility, and resolution. Whereas validity
and reproducibility are key criteria for any scientific method in the context of good scientific
practice [17], resolution is a common crucial characteristic of neuroscientific techniques,
from optical microscopy to EEG [18]. By definition, validity, also referred to as accuracy,
indicates how close a measurement of the method is to the true biological process of interest,
amid other processes and noise. Reproducibility, also referred to as reliability or precision,
indicates how close repeated measurements of the method are to each other. In the absence
of a ground-truth reference, knowledge of the reproducibility of connectivity measures
cannot be overvalued. Replicability, a special case of reproducibility, refers to the ability to
obtain the same results in another dataset. Spatial and temporal resolution are measures of
the minimum object that can be resolved by the method. These characteristics are important
for understanding the scale of inference at which the different forms of brain connectivity
operate.

In the following section we focus on PET with '8F-FDG as the most popular and established
radiotracer. Where appropriate, we compare 8F-FDG PET-based molecular connectivity to
fMRI-based functional connectivity, which is the most popular neuroimaging tool in the
field of connectomics. If not noted otherwise, estimates of molecular connectivity are based
on intersubject modeling of static PET images (Box 1 for details).

Historically, the concept of functional connectivity is rooted in the idea that communication
between brain regions can be traced by electrical signaling [6]. However, neural
communication also possesses a biochemical component: chemical synapses convey
information, where neurons continually convert electrical to chemical signals and then
convert chemical to electrical signals [19]. The biochemical transmitters detected by the
postsynaptic machinery induce transduction of an electrical signal in the postsynaptic

cell; the latter then induces packets (quanta) of biochemical transmitters to be released
again in the presynaptic terminal [19]. Because the recording of electrical signaling or its
proxies has long been considered to be a reasonable strategy to investigate functional links
between brain regions, chemical signaling or its proxies should represent an alternative,
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equally reasonable means to access patterns of neuronal communication. In fact, because
chemical synapses represent by far the predominant mode of signal transduction in the
human brain [20], neural communication may be more accurately reflected by biochemical
than by electrical signaling. PET with 18F-FDG, a glucose analog, indexes the activity of

a glycolytic enzyme called hexokinase [21]. The coupling between glucose metabolism
and neural activity via hexokinase is known as neurometabolic coupling [22] (see section
on Neural activity for details). By contrast, f/MRI measures neural activity via the amount
of oxygen in the blood vessels supplied to a given brain region [23]. The neurovascular
coupling behind the hemodynamic fMRI response is based on a complex interplay between
local cerebral blood flow, volume, and cerebral metabolic rate of oxygen [24]. Thus,
I8F_FDG PET and BOLD fMRI record partially different processes operating in parallel.
Even though the BOLD signal is dependent upon cerebral blood flow (CBF) and metabolic
responses [25], for reasons that are not well understood, neural activity elicits stronger
responses in glucose metabolism than in oxygen consumption, with a 10-to-1 proportion of
relative increase [26]. The difference in the nature of the two signals is also reflected in brain
connectivity, where resting state networks (RSNs) estimated from intersubject 3F-FDG
PET and conventional BOLD fMRI data show only moderate spatial similarity [27-29]. A
recent fMRI connectivity simulation study found that aberrant connectivity characterizing
brain neurovascular disorders not only reflects aberrant neural activity but also brain vessels
and hemodynamic/metabolic pathophysiology [30]. Thus, 8F-FDG PET approaches neural
activity in a more direct way.

Reproducibility

Whereas structural connectivity estimated with diffusion weighted MRI (dMRI) aims to
estimate actual anatomical connectivity, the neural substrates of other putative indices of
brain connectivity, which are based on a statistical dependence, are unknown. In this context,
we propose the term ‘proxy’ estimates of brain connectivity. Because a gold standard, or
ground-truth reference, is missing, the reproducibility of such proxy estimates is of crucial
value. The rationale behind this is that a reproducible measure is more likely to reflect a
true signal than a spurious one. In fact, test-retest reproducibility is the ‘starting’ condition
for the generalizability of any method [31]. PET measures of regional glucose consumption
were shown to possess excellent test—retest reproducibility, with an intraclass correlation
coefficient (ICC) of ~0.90 [32]. ICC for regional intensity of the BOLD signal, expressed
as the average amplitude of low frequency fluctuations (ALFF), was found to be 0.53

[33]. Good reproducibility has also been found for molecular connectivity estimates of
neurotransmission [34]. Test—retest reproducibility of fMRI connectivity was shown to be
poor [35]. Data on a direct comparison between !8F-FDG PET and BOLD fMRI networks
are yet missing.

Replicability of results is related to the amount of variance in the neuroimaging data
associated with a cognitive variable of interest. Higher variance concentration enables

the construction of such patterns with fewer independent neuroimaging variables, such

as principal or independent components. Smaller sets of independent variables generally
translate into less statistical noise and better out-of-sample replication [36]. In the extreme
case of pure noise (i.e., in the absence of any spatially correlated activity in the data), the
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number of necessary components will approach the data rank, and, similarly to ordinary
regression, there will be over-fitting with no robustness of pattern loadings or imaging—
cognition associations. In a real scenario where 8F-FDG PET and fMRI data were
simultaneously acquired in the same set of participants, we found a noticeably higher
variance concentration in the 3F-FDG PET data [37]. Thus, relative to fMRI, static !8F-
FDG PET data apparently suffer from less statistical noise.

Spatial and temporal resolution

Parcellation of the brain in general, and mapping of brain connectivity in particular,

depend on the spatial and temporal resolution of the acquired data (e.g., fMRI images

or EEG recordings). How does molecular imaging compare to other neuroimaging

and electrophysiological tools? Spatial resolution is dependent both on the intrinsic
characteristics of a technique and on data post-processing. Assuming a typical resolution

of clinical PET scanners of 4.3 mm [38] (Figure 1A) and an average neuronal density of

30 000 neurons per mm? [39], the minimal spatial ‘unit’ resolved by PET corresponds to

2 385 210 neurons (Figure 1B). These are only threefold more neurons than those within
the minimal spatial unit of conventional BOLD fMRI. However, the spatial resolution

of each method varies across the brain: by the application of attenuation correction to
compensate for signal deterioration around deep brain structures, PET can accurately resolve
signals throughout the whole brain. This is not true for most of the other neuroimaging and
neurophysiological techniques (Figure 1C,D). As it stands, modern electrophysiological and
functional neuroimaging techniques in humans including PET are 5-8 orders of magnitude
away from the single neuron. In addition, the spatial resolution of BOLD fMRI and !8F-
FDG PET is inherently capped by their spatial specificity [40]. For the former, spatial
specificity is limited by, among other things, downstream draining vein effects [40]. A
higher spatial specificity of '8F-FDG PET can be achieved using the well-established
framework of compartmental modeling that allows researchers to disentangle the metabolic
and vascular components of the signal [41].

Temporal resolution is also dependent on characteristics of the technique itself, acquisition
parameters, and post-processing options applied by the user, such as reconstruction
parameters, temporal filtering, and smoothing. In the field of !3F-FDG PET, several
acquisition and reconstruction protocols have been used so far that provide estimates of
molecular connectivity with a sampling rate of minutes to seconds [27,42]. Obviously,
even the highest sampling rate in PET studies is several orders of magnitude away from
the timescale of neural activity in terms of an action potential (~1 ms), as is the case

for fMRI (Figure 1E). Of note, the temporal resolution of these techniques is inherently
capped by the underlying transfer functions, namely neurovascular coupling for perfusion
PET, hemodynamic response for fMRI and fNIRS, and neurometabolic coupling for !8F-
FDG PET [23,43]. These functions have slow dynamics, unfolding over tens of seconds
[43,44]. Thus, indefinitely increasing the temporal resolution over inherently relatively slow
processes will not necessarily result in additional information on the underlying neural
activity [44].
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Despite the gap between the spatial and temporal scale of neural activity and sampled
measurements of neuroimaging or electrophysiology, functional connectivity seems to be
distributed over different spatial scales and temporal frequencies such that no scale is per
se uninformative [6,45]. In fact, functional connectivity conveys distinct information at
different spatial and temporal scales. In the latter case, longer timescales capture stationary
and less-dynamic interactions within the connectome, as determined by for example trophic
effects, genetics, and environment [46], whereas shorter timescales are more reflective

of the dynamic, instantaneous neural activity [47,48]. Accordingly, at slow timescales
(minutes), functional coupling was shown to be a good indicator of an underlying structural
link; at intermediate timescales (seconds, closer to the sampling rate of fMRI) correlated
fluctuations in time emerged across regions, and these were coordinated in a manner that
reveals the existence of anticorrelated clusters; at fast timescales (milliseconds), intermittent
synchronization and desynchronizations were observed between regions, producing a large
set of metastable states [49]. Similarly, PET measurements obtained at different timescales
(16 s vs 60 min) provide distinct patterns of molecular connectivity [27]. Thus, even within
the same imaging method, different timescales capture different aspects of inter-regional
communication [50]. Whereas it is unclear how events at different timescales interact with
each other (or whether they are independent), and whether covariation in mean ‘pooled’
activity at lower timescales influences the emergence of dynamic correlations at faster
timescales [6] or vice versa [51], different approaches seem to be equally meaningful

and allow different, complementary aspects of brain organization and cognition to be
accessed. For example, ‘slow’ temporal scales might be more appropriate for capturing
learning-induced neural plasticity [52].

Forms of molecular connectivity

Brain connectivity can be estimated from PET data in different ways. Although a few

PET studies have estimated brain connectivity from time series, either in the form of
multiple scanning sessions [53] or time-frames [27,47], the majority of studies (>85%,
Table S1 in the supplemental information online) have relied on so-called subject series

in which a single image per subject is available for analyses. The rationale behind inter-

and intrasubject estimation of molecular connectivity is explained in Box 1. Regarding
biological targets, molecular imaging is able to target various processes in the living human
brain, such as neural activity, neurotransmission, and proteinopathies, resulting in different
forms of molecular connectivity. Figure 2 summarizes neurobiological targets that have been
and can potentially be approached by using molecular imaging and other neurophysiological
techniques. In this section we discuss the neurobiological basis of the different forms of
molecular connectivity.

Neural function

Glucose is the obligatory energy substrate for neurons, with synapses representing the major
energy consumers [54]. Transferred from blood to the brain via glucose transporters, 8F-
FDG is metabolized by hexokinase to FDG-6-phosphate which is then trapped in the cell.
Of note, hexokinase represents a ‘gatekeeper’ in glycolysis, regulating the rate at which all
subsequent reactions occur [55]. Thus, there is time-dependent accumulation of 18F-FDG in
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the brain, which is proportional to glucose metabolism [21]. Glucose metabolism is directly
coupled to excitatory neural activity mediated via the release and transport of glutamate,
the most abundant excitatory neurotransmitter in the brain [54]. Networks of neural activity
based on '8F-FDG PET data, so-called metabolic connectivity, have been associated with
normal [56-58] and pathological [59] cognition.

The high energy demand of the brain is sustained by continuous CBF which is facilitated by
coupling between neuronal activity, CBF, and metabolism. The mechanisms and mediators
(e.g., nitric oxide, ion channels, and astrocytes) that regulate CBF—metabolism coupling
have been extensively studied ([60] for review). Upon neuronal activation, CBF demand
increases to supply glucose and oxygen to the brain parenchyma, thus allowing sustained
neuronal activation. CBF is therefore indirectly coupled to neural activity. In the past,

CBF PET studies with 1°0-H,0 as radiotracer have made an essential contribution to

the establishment of macro-scale brain connectivity as a discipline of neurosciences [61],
together with its substantial role in cognitive neuroscience (Table S1).

Neurotransmission

Neurotransmission is the backbone of signal propagation in the human brain, and
underlies all cognitive processes [62]. It can be studied with PET radiotracers that

target components of the synaptic function, such as receptors, vesicles, and transporters,
or substrates of enzyme activity. Neuronal projections of the major neurotransmission
systems (e.g., dopaminergic, serotonergic, and opioidergic) align well with structural and
functional connectivity [63]. Thus, mapping the brain-wide distribution of a radiotracer
might indirectly provide information on the connectivity within a given neurotransmission
system [13,34]. As a practical example, consider the main components of serotonergic
transmission — the serotonin transporter and serotonin 1A autoreceptor [64] — that regulate
the reuptake and release of serotonin, respectively. Increases in serotonin transporter in the
raphe nucleus, the main source of serotonergic projections to the forebrain, result in lower
availability of serotonin in the presynaptic terminal, leading to lower activity of the serotonin
1A autoreceptors and, consequently, increased firing rate of the raphe nucleus toward its
projections. As a result, more serotonin is available at the raphe projections, which in turn
leads to increased expression of serotonin transporter and decreased expression of serotonin
1A autoreceptors at the projection sites. Hence, serotonin transporter expression, as well
as serotonin 1A autoreceptor expression, are interdependent (connected) across regions
[64]. Thus, spatial patterns of correlations between striatal and extrastriatal dopaminergic
D2 receptors were found to be consistent with the known biochemical architecture of the
dopaminergic system [65]. Further studies have extended the investigation of molecular
connectivity to the serotoninergic [64,66—68] and p-opioid [66] systems, in relation to
cognition [69] and emotions [70]. Recently, replicable networks of synaptic density have
been identified in the PET data using the '1C-UCB-J tracer [71].

Proteinopathies

Many neurodegenerative disorders are associated with the aggregation of abnormal
misfolded proteins such as TAR DNA-binding protein 43 in frontotemporal dementia,
a-synuclein in Parkinson’s disease, and amyloid-f (AB) and tau in Alzheimer’s disease.
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Increasing evidence indicates that the proteinopathies may progress through intercellular
transmission trans-synaptically [72]. For example, injection of tau seeds into the mouse
brain induced local tau hyperphosphorylation and spread to connected regions through
neuronal endocytosis, ampli-fication, transport, and further release of new tau seeds [73].
Thus, multimodal imaging studies have reported the spreading of tau along anatomical
connections in humans [74]. If the spread of pathological proteins occurs through connected
brain areas, mapping the misfolded proteins with molecular connectivity might provide
insights into disease progression in terms of local vulnerability and paths of protein
spreading. In the former case, molecular connectivity allows the identi-fication of regions
with an elevated number of pathological ‘connections’; these represent pathological hubs

in which pathology has a stronger local effect that could then easily propagate to the rest

of the network ([75] for a recent example in tau pathology). Regarding protein spreading,
molecular connectivity allows the identification of paths of protein propagation, where
regions with a covarying amount of pathology can be considered to be stations on the same
pathological path. For example, recent PET studies reported that AP and tau spread through
distinct brain networks [76—78]. The AP network was characterized by a spatial pattern

that largely overlapped with the default mode network [76,77], whereas the tau networks
resembled a wider range of functional networks, in line with the known relationship between
this proteinopathy and cognitive deficits [77,78]. Furthermore, AP and tau deposits were
found to accumulate in cognitively normal individuals across distinct pathways, and the
degree of propagation along the tau pathways correlated with general cognitive performance
and memory [79]. Instead of relying on connectomes derived exclusively from dMRI

[80] and fMRI [81] data, future studies should further explore the possibility of defining
networks of tau propagation using molecular connectivity approaches [79].

Connectome mapping

How might connectivity estimates from neurophysiological data in general, and from PET
data in particular, contribute to our understanding of brain organization? We introduce

here the concept of connectome maps. This concept can be viewed as a special case

of interoperable atlases [82] that are specific for brain connectivity. Consider the brain
connectome to be a meta-state. Although there is a structural core composed of major
neural fibers, units of the connectome continuously interact in space and time at a functional
level. The structural skeleton can be captured with dMRI, whereas a functional connectome
can be captured with MRI techniques, electrophysiological tools, and molecular imaging.
A portion of brain connectivity, both structural and functional, is shared between the
majority of healthy individuals. Herewith, functional connectivity is presumed to vary more
strongly between individuals than structural connectivity. The so-called invariant part of
the connectome is characteristic of a given species and can be referred to as a map. The
invariant part, as outlined using for example fMRI, may be referred to as the fMRI map of
the (human) connectome. Each technique is presumed to outline a particular aspect of the
brain connectome (Figure 3A). To this end, we consider group-level data, both inter- and
intrasubject, to be suitable for characterizing the invariant, population-based portion of the
connectome (Figure 3A). In our opinion, the integration of the different maps (Figure 3B;
Box 2) is the way to advance our understanding of brain organization.
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Although the foundations of molecular connectivity are already in place, several
methodological and conceptual issues remain to be addressed. We subdivide this path into
two major chronological stages — the stage of validation and the stage of application.

First, validation: (i) consensus agreement on a nomenclature to designate molecular
connectivity results and avoid the use of inconsistent terminology across the literature
[27,83]. (ii) Definition of best methodological practices that include systematic investigation
of the reproducibility of molecular connectivity estimates under varying experimental
conditions (sample size, sample heterogeneity, scanner type, and acquisition, reconstruction,
and processing pipelines), in comparison to more established MRI-based connectivity
estimates; as well as simulation experiments to study how changes in regional intensity
impact on patterns of molecular connectivity.

Second, application: (i) developing an atlas of molecular imaging maps of the human
connectome based on data with established PET radiotracers; (ii) integration of molecular
connectivity into the framework of causal models [84] to enable causal inferences about
brain function; and (iii) derivation and validation of molecular connectivity indices at the
individual level for clinical applications that are already initiated [85-88] but need further
development and replication.

Last but not least, open science practices, including data and code sharing, will hopefully
prompt neuroscientists beyond the molecular neuroimaging community to approach the
field of molecular connectivity. To facilitate this, we summarized codes and toolboxes for
connectivity analyses of PET data (Table S2) as well as readily accessible PET datasets
(Table S3). These datasets include PET data of more than 31 000 human subjects. The lists
(Tables S1-S3) will soon be available at www.molecularconnectivity.com. We encourage
researchers to update these databases.

Concluding remarks

Given that chemical synapses represent the predominant mode of signal transduction in

the human brain, targeting the molecular level of neural communication represents a
necessary step for advancing brain connectomics. At the macroscale, this can be achieved
using molecular imaging. We argue here that molecular imaging represents a useful
approach to characterize the brain connectome by providing unique information inaccessible
to MRI-based and electrophysiological techniques. Preliminary evidence indicates that
molecular imaging may deliver valid and reproducible estimates of brain connectivity

with reasonable spatial and temporal resolution. Herewith, both static and functional

PET protocols are of value. Weencourage the neuroscientific community to take an
integrative perspective on the brain connectome where various methods including MRI-
based techniques, electrophysiological tools, and molecular imaging contribute to our
understanding of brain organization. To this end, multidisciplinary efforts and rigorous
pipelines of data analyses are essential. The road ahead is long (see Outstanding questions),
but the path is becoming clearer.
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the physical linkage between different elements of the brain, such as synaptic connections
between sets of neurons or axon bundles between different gray matter regions.

Brain network
a set of structurally or functionally interconnected brain regions with a particular function.

Connectome
the generic sum of all connections in the brain.

Default mode network
a large-scale brain network that is most active at rest.

Functional connectivity

statistical dependence between regional measures of neural activity interpreted as inter-
regional communication. This umbrella term refers to brain connectivity estimated

based on direct measures of neural activity (provided by electroencephalography, EEG;

or magnetencephalography, MEG) or proxies of neural activity, such as the ratio of
deoxygenated-to-oxygenated hemoglobin (fMRI) or (historically)perfusion PET or glucose
metabolism PET.

Functional PET

dynamic positron emission tomography (PET) combined with constant tracer infusion
within the same imaging session, either alone or in combination with an initial bolus
injection, where regional fluctuations are quantified along a time—activity curve.

Interoperable atlases

a collection of brain maps that are organized in such a way that information included in one
map can be used in conjunction with the others. Interoperability requires brain maps to be
represented in the same reference space.

Molecular imaging
visualization and quantification of molecules of interest using imaging techniques.

Neurotransmission

the process by which signaling molecules (neurotransmitters) are released from the
presynaptic terminal of a neuron and bind to receptors on the postsynaptic terminal of
another neuron, typically with excitatory or inhibitory effects.

Proteinopathies
conditions characterized by aggregation of abnormal misfolded proteins, such as amyloid-p,
tau, and a-synuclein, leading to neurodegeneration.

Radiotracer

a chemical compound linked to a radioactive isotope whose decay allows its distribution in
the living being to be traced. It allows quantification(i.e., tracing) of a specific biological
process of interest without altering it.

Static PET
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the acquisition of a short emission scan during equilibrium of the radiotracer; such data are

reconstructed as a single PET image that can be analyzed via simplified methods.

Subject series

concatenation of neurophysiological data of individual subjects to form a vector in which

one subject contributes only one value within the vector. Subject series are the basis of

intersubject estimation of brain connectivity.

Synapse

the site where an action potential is transmitted from one neural cell to another. A synapse
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Highlights

The number of molecular imaging studies in the field of brain connectivity is
steadily increasing.

Molecular imaging is not yet widely used by the MRI-predominant neuroimaging
community as tool of choice for studying brain connectomics.

Because chemical synapses are essential to signal transduction, targeting the
molecular level of brain communication is indispensable for our understanding
of the brain connectome.

PET as major molecular imaging tool provides various established markers of
neural activity, neurotransmitter systems, and proteinopathies.

Integration of connectomes produced with different neurophysiological methods,
including molecular imaging, might be key for advancing the field of
neuroscience.
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Outstanding questions

What is the test—retest reproducibility of molecular connectivity estimates
compared to more established MR-based connectivity estimates?

What is the impact of different methodological choices (acquisition,
quantification, preprocessing, analysis) on estimates of molecular connectivity?

How similar are the connectomes produced using different (e.g., absolute and
relative) measures of the same PET method?

How can statistical thresholds be set to isolate molecular connectivity from noise?

How can researchers integrate estimates of brain connectivity obtained at different
spatial and temporal scales?

What proportion of molecular connectivity is shared between individuals, and
what proportion is unique?

How reproducible and replicable are molecular connectivity estimates at the
individual level?
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Box 1.
Inter- and intrasubject estimation of molecular connectivity

In the case of intersubject estimation, connectivity is estimated from covariation in
measures across subjects, where only one image per subject is available. Although time
is commonly used to infer brain connectivity from fMRI and electrophysiological data,
it is not mandatory. First, the presence of a temporal correlation does not guarantee that
two regions are connected because the temporal dependence might be direct, indirect,
or spurious [89]. Second, a full time-series is not necessary to estimate functional
connectivity: only a small fraction of frames with the strongest cofluctuation can explain
a significant proportion of variance in functional connectivity [90]. Third, as is true for
fMRI functional connectivity [91], structural connectivity via white matter fiber tracts
is a relevant substrate of intersubject covariance of regional FDG uptake [92]. Finally,
the patterns of connectivity in intersubject resting-state !8F-FDG PET and conventional
BOLD fMRI data show similar features, such as known RSNs [29] and a stronger
homotopic versus heterotopic interhemispheric connectivity [4,92]. Several statistical
approaches have been successfully applied to estimate molecular connectivity from
intersubject PET data [37,93], similarly to sMRI [94] and fMRI [46,95,96] data. The
assumption behind this is that regions with covarying signal intensity across subjects
belong to the same network [97]. Of note, fMRI time series and subject series produce
similar spatial patterns of functional connectivity [46,95,96,98]. This approach also
shares similarities with meta-analytical connectivity mapping [99].

In the case of intrasubject estimation, connectivity is estimated from dynamic PET
protocols with a temporal resolution approaching that of fMRI — so-called functional
PET [100,101]. Connectivity here is estimated from covariation of measures over time.
Functional PET studies apply a constant radiotracer infusion within the same imaging
session [100,101]. Hence, resting-state '3F-FDG PET with 1 minute frame durations
yielded group-level networks that were similar to those estimated in simultaneously
acquired BOLD data, including the default mode network and visual networks [102].
However, functional !8F-FDG PET yielded several unique networks that were not
evident in the BOLD data, and vice versa. More recently, molecular connectivity was
estimated with a sampling rate of 16 s [27]. A major challenge of functional PET is

the inherently low signal-to-noise ratio in comparison to static PET, which hampers
meaningful connectivity estimation at the single-subject level. This issue can be partly
addressed by longer scan time [101], spatiotemporal filtering [27], and bolus infusion
protocols [42]. In the latter case, by providing a portion of the total dose as a bolus,
immediately followed by constant infusion, plasma radioactivity shows an early peak that
stabilizes during infusion [103].
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Box 2.
Integration of molecular connectivity

The brain connectome is presumed to provide the scaffold for cognition [104]. So

far, MRI and electrophysiological techniques have been widely used to capture the
structural and functional connectivity of the brain. Integration of molecular connectivity
into a broad framework of brain connectivity would improve the characterization of the
connectome in general and as the substrate of cognition in particular. The integration can
be achieved in a few generic ways (Figure 3B), depending on the research goal.

i Robustness: adding information about the certainty of the estimates of
structural and functional connectivity via PET measurements of neural
activity; that is, concordant estimates are more likely to be true and not
spurious at a given temporal scale.

ii. Biochemical substrate: adding information about the neurotransmitter systems
behind the estimates of structural and functional connectivity via PET
measurements of specific classes of receptors and transporters.

iii.  Causality: adding information about the direction of structural and functional
connectivity via PET measurements of excitatory and inhibitory inputs,
pre- and postsynaptic signaling, or regional gradients, for example in
proteinopathies.

Methodologically, integration of connectivity information from the different techniques
can be achieved using different approaches such as those below.

i Joint or parallel independent component analyses [105] to quantify
correlations (linkage) across brain networks estimated from different
techniques.

ii. Multilayer approaches [106] to quantify correlations across brain regions and

across different techniques (layers).

iii.  Multifactorial brain models [107,108] to model the contribution of different
techniques (factors) in generating particular brain states.
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Figure 1. Spatial and temporal resolution of common neurophysiological techniques.
(A) Simulation of how a sample random object is resolved by each method. Spatial

resolution is defined for sMRI, dMRI, and fMRI by voxel size, for PET and fNIRS

by full width at half maximum (FWHM) [38,109], for EEG and MEG from [110].

For EEG and MEG the reported estimates are likely to be optimistic for functional
connectivity studies [111]. Note that the values serve as a rough approximation. (B)

The minimal spatial unit — expressed as the number of neurons — that each method

can resolve, assuming 30 000 neurons/mm?. (C) Representation of the overall proportion
of brain mapped by each method; lack of whole brain coverage by sMRI and fMRI is
dependent on the distance factor, here assumed to be 20%.(D) Representation of different
portions of the brain where signal is measured accurately (pink side, eye icon), is not
measured (gray side, crossed eye icon), or is measured but with a lower resolution and/or
susceptibility artifacts (gray side, glasses icon). This part of the figure was created in part
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with BioRender.com.(E) Average sampling rate of each method, based on an adjusted
logarithmic scale centered around an fMRI sampling rate of 2.5 s. The timescale of

PET is shown under the case of static PET and functional PET. Note that the values

serve as a rough approximation. Action potentials with an assumed duration of 1 ms are
reported for reference. Abbreviations: dMRI, diffusion magnetic resonance imaging; EEG,
electroencephalography; fNIRS, near-infrared spectroscopy; fMRI, functional magnetic
resonance imaging; MEG, magnetoencephalography; PET, positron emission tomography;
sMRI, structural magnetic resonance imaging.
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Figure 2. Targets and connectivity estimates of common neurophysiological techniques.
Schematic representation of the main neurobiological targets measured by each

neurophysiological technique, and their localization in the brain parenchyma (astrocytes,

neurons) or blood vessels. Neurobiological targets found only in pathological conditions

are also shown (red panel, top right). The type of connectivity estimate obtained for

each neurobiological target is noted, and is color-coded for each technique. Connectivity

estimates are considered to be available if at least one study has been published in a

peer-reviewed scientific journal, and to be possible if there are no studies but an appropriate

positron emission tomography (PET) radiotracer is available; radiopharmaceutical advances

are needed if an appropriate PET radiotracer remains under development. This figure was

created in part with BioRender.com.
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Figure 3. Brain connectomes as estimated with common neurophysiological techniques and
scenarios of their integration.

(A) All connectomes refer to group-level maps, with the exception of the EEG and MEG
connectomes that are estimated at the single-subject level. All connectomes are based

on data from healthy subjects. In each connectome, nodes correspond to brain regions,
with the exception of the fNIRS connectome in which nodes correspond to channels on
the scalp. The PET pathology render represents an outline of a prototype connectome
for any pathological target. (B) Scenarios of integration across connectomes. Integration
of molecular connectivity can increase the robustness of connectivity estimates (Left),
specify the biochemical determinants underlying a given connection (middle), or clarify
the directionality and, eventually, the type of action exerted along each connection (red,
blue arrows) (Right). All renders were created using BrainNet [112]. Abbreviations:
Ach, acetylcholine; DA, dopamine; 5-HT, serotonin; dMRI, diffusion magnetic resonance
imaging; EEG, electroencephalography; fMRI, functional magnetic resonance imaging;
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fNIRS, near-infrared spectroscopy; MEG, magnetoencephalography; PET, positron emission
tomography; sMRI, structural magnetic resonance imaging.
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