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INTRODUCTION

Artificial Intelligence (AI) and citizen science (CS) are two approaches to tackling data challenges
related to scale and complexity. CS by its very definition relies on the joint effort of typically a
distributed group of non-expert people to solve problems in a manner that relies on human
intelligence. As Al capabilities increasingly augment or complement human intelligence, if not
replicate it, there is a growing effort to understand the role that Al can play in CS and vice versa.
With this growing interest as context, this special collection, The Future of Al and Citizen Science,
illustrates the many ways that CS practitioners are integrating Al into their efforts, as well as
identifies current limitations. In this spirit, our editorial briefly introduces the special collection
papers to demonstrate and assess some uses of Al in CS; then, we contextualize these uses in
terms of key challenges; and conclude with future directions that use Al with CS in both innovative
and ethical ways.

To start, it is worth summarizing the data ecosystem presented in Figure 1 in which the
integration of Al and CSis occurring. Data collection, data processing, and data analysis (McClure
et al 2020) are the main activities undertaken by people participating in CS projects. These
activities are typically initiated either in response to the need for widely distributed yet fine-
grained spatiotemporal monitoring (Cooper, Shirk, and Zuckerberg 2014), or the ever-increasing
demands to process and analyze “big data” (Trouille, Lintott, and Fortson 2019). Figure 1 thus
sketches the flow of data from data collection (by machines or humans) to data processing or
analysis, and shows how human-in-the-loop (HITL) and machine-in-the-loop (MITL) strategies
can be deployed across a wide range of data domains and research disciplines. At the heart of
this special collection then, is the idea that Al has the potential to significantly advance the
fleld of CS by accelerating the pace and breadth of data processing, expanding the temporal
and geographical reach of projects, enhancing the quality of collected and processed data,
harnessing novel data sources, facilitating learning interactions between humans and machines,
and broadening the spectrum of engagement opportunities for citizens (Lotfian, Ingensand, and
Brovelli 2021; Ceccaroni et al. 2023).
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Figure 1 Data flow showing how the combination of citizen science and machine learning is used in both the data collection and analysis of
data. Examples of Human-in-the-loop and Machine-in-the-loop actions are listed. Note that artificial intelligence can provide general support
as well to the researchers and volunteers who recruit, engage, and sustain a volunteer community within a citizen science ecosystem.

EXPLORING THE CONTRIBUTIONS TO
THE SPECIAL COLLECTION

We first give a brief overview of the papers in the Special
Collection (see Figure 2 for detailed summaries of the
collection contributions). Most employ Al to identify or
locate specific classes of objects in images. Pennington
et al. seek to identify viruses in cellular biology images;
Nelson et al. and Chan et al. wish to better identify harmful
mosquitoes and snails respectively; Sharma et al. would
like to improve the accuracy in identifying bees in the UK;
similarly, Huebner et al. seek to improve the identification
of rare animal species in the Serengeti; and Meisner et al.
would like to accelerate the identification of brown dwarfs,
a difficult-to-detect astronomical object.

Other papers use a particular science objective as a
means to study new ways to integrate AI with citizen
science (CS). @sterlund et al. use a gravitational wave
project to study how machines and humans can best learn
from each other; Sankar et al. use a project identifying
cloud types on Jupiter to learn whether Al can use lack of
consensus in volunteer responses to learn something about
novel relationships within the dataset; and Mantha et al.
use a galaxy morphology project to study how combining
human and machine anomaly detection strategies can
efficiently find scientifically interesting objects in vast
datasets. Nelson et al., Chan et al., and Sharma et al. also
describe the development of custom apps that integrate
Al to help improve data collection and analysis steps taken
by citizen scientists. Pankiv et al. explores the use of Al in
another custom app to investigate how the use of machine

learning (ML) classification models affects the learning of
novice birders, directly exploring the potential role of Al in
participant learning. Duerinckx et al. describes a holistic
approach to engaging citizens in learning about Al while
co-creating potential projects that use Al to solve issues
relevant to the public.

DEPLOYING ARTIFICIAL INTELLIGENCE
TECHNOLOGY IN CITIZEN SCIENCE

To better understand the work presented in this collection,
some background in the technology is helpful. The concepts
of Al and ML were first introduced in the 1950s and tend
to be used interchangeably, but there are significant
differences. Briefly, Al is a more general term that describes
computers that can emulate human thought, resulting in
actions taking place in the real world. ML is a subset or a
building block of Al referring specifically to the algorithmic
tools and technologies that learn from existing data to
solve tasks such as pattern recognition or decision-making.
Unless we are referring to specific ML techniques, we use
the term Al in the context of this collection to refer to the
broader range of techniques and applications, such as
image classification, anomaly detection, feature extraction,
and text summarization.

CS projects have deployed a diversity of Al techniques.
The primary technology applied in the papers in this
collection is deep learning, a subset of ML involving
architectures that incorporate multiple layers of processing.
Convolutional neural networks (CNNs) in particular are
highly effective at extracting patterns directly from pixel
data, providing revolutionary capabilities for handling large
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creation of issues that then deploy
Al solutions.

goals; prioritize and test projects.

Authors Goal Human task Machine task ML architecture and training
Chan et al. Identify occurrence of disease Image collection of target species. Object detection Transfer learning from COCO data set onto five
transmitting snail species in remote YOLOvV4 object detection models (CNN-based)
regions of Africa. that were trained within the Google Colab Pro
virtual environment.
Duerinckx et al.  |Educate citizens on Al through co- |Design research questions and project Various Various

Huebner et al.

Improve the classification accuracy
on rare species by judiciously
combining Al and humans.

Validate machine predictions with high
confidence scores requiring only minimal
votes; classify species in images with low
machine confidence.

Predict whether image has an animal or not;
predict whether an animal in an image is one
of 56 possible species classes.

CNN model trained using ResNet-18
architecture and Tensorflow.

Observer citizen science data
ecosystem in ways which can both
complement and support the citizen
scientists.

species (plants, animals); validate a

projects.

Mantha et al. Investigate the combination of Pick images of galaxies that look odd or  |Provide list of objects ranked by anomaly A generative CNN comprising a Wasserstein
human and machine proposed interesting; comment on interesting score as determined by machine. GAN with gradient penalty (WGAN-GP)
anomalies in large astronomical images with hashtags. produces anomaly scores, followed by an
data sets to most efficiently find encoder to produce the feature space on which
novel objects of scientific interest. anomaly scores were evaluated.

Meisner et al. Accelerate identification of rare Identify true brown dwarf candidates from |Classify brown dwarf candidates in a large  |A custom Recurrent Neural Network
astronomical object (brown dwarfs) |a set of those proposed by Al. astronomical data set. architecture using 3-dimensional convolutional
in large data set by using Al to layers and 2-dimensional convolutional Long
preselect images shown to Short-Term Memory layers. Note that this ML
volunteers. model was developed by a project citizen

scientist.

Nelson et al. Incorporate Al into the GLOBE Collect and upload images of target Database ingest including Al Amazon Rekognition which uses a combination

machine curated dataset; ideation of new

photoscreening; data extraction including Al
classification of uploaded images; provision
to volunteers of Al-driven feedback and
GeoAl data enrichment.

of a pre-trained CNN and a region proposal
network along with a classification algorithm
(Fastest-RCNN) for detecting objects in an
image.

Dsterlund et al.  |Investigating dynamic human and
machine co-learning in CS projects
by allowing humans to augment
machine learning, and Al to
augment human learning.

that could represent glitches in the

examples of unknown classes to and
purify results from a similarity search.

Identify specific patterns in spectrograms

detectors of gravitational waves; provide

Score the likelihood that a glitch belongs to
individual known classes.

CNN with fusion and label smoothing; semi-
supervised clustering (similarity search).

Pankiv et al. Compare the learning of novice
birders with and without the use of
machine learning classification

models.

Identify bird species with or without Al
assistance.

Identify bird species. CNN

Accelerate annotation and
segmentation of volumetric bio-
images.

Pennington et al.
data.

Locate and classify viruses in bio-imaging

Segment viruses on images followed by
class-wise counts.

3D CNN, specifically a 3D attention U-Net for
segmentation.

recognition as a ‘dialogic Al partner’ |without Al assistance.
in citizen science projects
developed for identifying bee

species in the UK.

Sankar et al. Apply Al to discern the difference Classify specific cloud structures based on |Learn and map information between image- |A convolutional variational auto-encoder (VAE)
between intrinsic variability of a data |attributes such as color or shape. level features in the dataset and conditioned with a classifier trained on labels
set and the uncertainty in the corresponding classification labels to identify |provided by volunteers; followed by application
response of citizen scientists to and diagnose class-wise confusion. of an attention technique using scorecam to
annotating images of cloud visually locate features within an image.
structures on Jupiter.

Sharma et al. Explore the integration of image Identify bumble bee species, with or Identify bumble bee species, with or without |1. CNN Inception V3 model trained on the

human assistance. inaturalist dataset, and then used transfer
learning to optimise for the task of bee species
classification. 2. A Bayesian method to combine

human and machine classifications.

Figure 2 This table presents a summary of the ways in which each paper in the special collection uses machine learning along with the

task(s) asked of the citizen scientists and the overall goal of the work.

volumes of images. In Supplemental File 1, we provide a
more detailed overview of the key concepts in modern
deep learning using examples drawn from this collection.
Therein, we discuss specific Al techniques in the context of
deployment strategies in CS projects.

STRATEGIES IN COMBINING ARTIFICIAL
INTELLIGENCE AND CITIZEN SCIENCE

Figure 3 provides an overview of the roles that humans
can take in a project versus the roles that machines can
play, and it also includes the supporting technologies
needed to combine Al and CS. As shown at the bottom
right of Figure 3, an ML model can be trained in a
supervised manner (typically with human-provided
labels), an unsupervised manner (with no labels provided,
the machine learns patterns in the data often through
clustering on features inherent in the dataset), or a
semi-supervised manner (using labeled data to infer
label information for unlabeled data in the dataset).
A model can also be trained using transfer learning
from a pre-trained model potentially from a completely
different domain. Training must balance improved model

performance against the need for large sets of training
data and the difficulty of obtaining labels for supervised
learning, while avoiding biases or gaps in the training data
that will propagate to the model output. Furthermore, it
is important to recognize that a machine model is just
part of a system. Additional work is needed to preprocess
images or other inputs for training and to connect a
deployed model to input data and to use its output.
Many of the contributed papers describe custom ML
architectures (represented in Figure 3, top right) based on
“off-the-shelf” AI technologies (published papers with
public code available). A few describe the use of cloud-based
Al technologies and services such as Amazon’s Rekognition
package or Google’s Colab. Authors used a range of tools to
carry out the CS element (corresponding to Figure 3, bottom
left). These tools can play a distinct role in what choices
are available for project managers to incorporate Al into
their projects, and which tools are used depends on which
CS activities are paramount to the project. For example,
the GLOBE Observer project (Nelson et al.) focuses on the
collection and analysis of Earth system and environmental
data, and has taken a holistic approach to integrating Al
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Figure 3 Interconnections between tasks that citizen scientists (humans) and machines each can carry out as well as the technology
support ecosystem for these processes to take place. Different research goals will necessitate different combinations of tasks and human-
machine interactions as well as different machine learning (ML) architectures which in turn require different machine training strategies.
Note that one could also start with a specific ML strategy such as transfer learning, which would dictate a subset of useful architectures
for a given ML task. This would then define the human-machine interaction needed to initiate the required human task. Supplemental File

1 provides brief descriptions of the ML side of the figure.

and CS by building out AI components in all three modes of
their platform: data collection, data processing, and data
analysis. One of the largest and longest-running CS efforts,
the eBird project, has integrated Al into their Merlin mobile
app, and is explored by Pankiv et al. Six papers (representing
biomedicine, ecology, and astrophysics) used the Zooniverse
platform, the largest general-purpose data analysis CS
platform, which has facilitated the integration of ML into
CS projects (Fortson 2021; Trouille, Lintott, and Fortson
2019). Other examples of large CS platforms that integrate
ML are iNaturalist (Van Horn et al. 2018) and SciStarter
(Zaken et al. 2021). Although these larger platforms provide
common tools and services for CS projects, teams may
want to develop their own project infrastructure integrating
Al based on, for example, funding, specificity of need, or
control of project content and goals.

SCIENTIFIC DOMAINS AND ARTIFICIAL
INTELLIGENCE

Scientifically, the papers in this collection are concentrated
in ecology and biodiversity (five papers), astronomy and
astrophysics (four papers), and biomedicine (one paper),
with one paper not specifying a domain. The characteristics
of each domain and its data affect the possibility to use
AL In cellular biology or neuroimaging, the critical issue
is that the biomedical field suffers from vast amounts of

complex data; it is particularly difficult to obtain sufficient
labels to train Al The Pennington et al. contribution seeks
to accelerate label gathering by combining two CS tasks —
classification as well as localization of viruses—to train a
model to count the viral load in cell images.

In conservation ecology and wildlife research, there
has been real progress in adopting Al into CS. Al has
been used to determine whether an animal is present
in an image, help classify species by contributing a vote
weighted on the ML confidence in the classification, and
count animals (Willi et al. 2019; Green et al. 2020; Torney
et al. 2019). A common challenge in these areas is an
initial lack of training data due to monitoring locations
with limited resources or class imbalance in the training
set due to underlying differences in the prevalence of
species. However, when ML models produce inaccurate
classifications or encounter unfamiliar scenarios, human-
in-the-loop (HITL) strategies can enhance the quality of
datasets used for automation. This also serves to validate
and refine initial ML outputs. In this context, the Huebner
et al. contribution shows that HITL processes are critical
to obtaining highly accurate classifications for rare or
visually similar species that pose a challenge for AL
Because these projects often ask volunteers to collect
data submitted through mobile apps, there is an interest
in deploying Al within the app to assist the citizen scientist



Fortson et al. Citizen Science: Theory and Practice DOI: 10.5334/cstp.812

with species identification. The Sharma et al. contribution
uses the BeeWatch app to investigate a more complex
“dialogic” process that enables real-time dialog between
the humans and AL, leading to improved identification
accuracy of bumble bee species in the United Kingdom.

The fields of astronomy and astrophysics have also
been incubators for exploring how best to combine the
strengths of humans and machines (Fortson 2021).
For instance, the Meisner et al. contribution deploys
a sophisticated Al model to find objects that show
movement between stacks of astronomical images.
Importantly, the Al model used was developed by one
of the project citizen scientists (Caselden et al. 2020).
The critical issue in recent and upcoming astronomical
surveys is the absolutely vast amount of data that will be
produced by next-generation telescopes: billions of galaxy
images versus the one million processed by volunteers
in the original Galaxy Zoo (Lintott et al. 2008). While
recent work (Walmsley et al. 2023) deploys an Al model
that learns in near-real-time which images need human
intervention, the sheer volume of data raises concerns
about limiting opportunities for serendipitous discoveries,
a hallmark of human involvement in these projects (e.g.,
Green Peas in Cardamone et al. 2009). The Mantha et al.
contribution combines an Al anomaly detection technique
trained on Galaxy Zoo images with the ability of citizen
scientists to notice odd things in images to optimize the
probability of finding scientifically interesting anomalies
in large astrophysical data sets. In a similar vein, the
Sankar et al. contribution uses the complexity inherent in
images of Jupiter’s clouds to explore a novel combination
of humans and machines to determine whether there
are undiscovered, scientifically interesting correlations
between cloud features.

While the distribution of domains in this collection
echoes the findings outlined in a recent literature
review (Ponti and Seredko 2022), we note an increasing
number of other domains integrating Al into CS, such as
archaeology (e.g., Heritage Quest - Verschoof-van der
Vaart et al 2020), seismology (e.g., MyShake app - Kong
et al. 2018) and emergency awareness or disaster relief
(e.g., Citizen Science Solution Toolkit - Bono et al. 2023;
and the Planetary Response Network - Simmons et al.
2022). New Al technologies have led to a sizeable increase
in Digital Humanities projects. For example, the Lives of
Literary Characters recently used large language models
(LLMs) along with “citizen readers” to learn how fictional
social systems inform real-world social growth (Piper et
al. 2024). And optical character recognition (OCR) trained
on data curated by volunteers has been used to convert
imaged labels from natural history collections into digital
text (Guralnick et al. 2024).

GEOGRAPHICAL CONSIDERATIONS FOR
ARTIFICIAL INTELLIGENCE AND CITIZEN
SCIENCE

CS projects are concentrated in Europe, North America,
and Australia, and the projects included in this collection
are no exception. Yet, particularly in countries where data
collection resources are limited, CS can be an important
source of indigenous and traditional forms of knowledge
for promoting sustainable development and addressing
climate change on a national and regional level (Masselot
et al. 2023; Reyes-Garcia et al. 2022; Eicken et al. 2021).
Furthermore, in developing economies, the lack of
connectivity, storage, and processing infrastructure, as well
as prerequisite human labor and expertise, often hinder the
availability of data for Al (e.g., so-called “data deserts”).
However, there is growing attention to both CS and Al in the
Global South, including Africa, India, Southeast Asia, Latin
American, and the Caribbean. There are now opportunities
to integrate Al with CS within these regions, even though
early development has primarily been concentrated in the
North. Excellent examples of this trend are represented in
this collection. First, the Chan et al. contribution explores
the minimum data requirements, in terms of both quantity
and quality, that local residents need to meet to train an
acceptable model for identification of disease-bearing
snails in Sub-Saharan Africa (SSA). Taking into consideration
technical limitations for these countries, such as the high
computational power required by the ML, the choice was
made to deploy the model as a web-based application
hosted in Belgium. This allows for residents to upload
their images and receive prompt feedback on whether
they have detected a target snail species. The Nelson et
al. contribution describes how to facilitate CS in the Global
South through the GLOBE Observer project. This project
uses a trained ML model to identify mosquito species
uploaded by citizen scientists, helping local communities in
Africa monitor these dangerous malaria vectors.

CHALLENGES OF COMBINING HUMANS
AND MACHINES

Looking across the papers, we identify a common set
of challenges in applying Al for CS. A first challenge is
identifying which technologies are appropriate. The
choice of ML tasks that fit the problem dictates the
machine training strategy, which in turn dictates the
most appropriate ML architecture to use and the data
needed (refer back to Figure 3). At the same time, the
ML task may call for human input, for example, if the ML
training strategy requires supervision or reinforcement,
or if an unsupervised strategy requires evaluation. How
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volunteers interact with the machine is dictated by the
form in which the machine information is provided. For
example, projects that need volunteers to provide image
labels for ML training will have a different task structure
than one in which images already have a machine
proposal that may need correcting.

A related challenge is that Al technology is developing
extraordinarily quickly. Constraints such as limited
resources, expertise, and infrastructure can make
employing cutting-edge technology impractical. However,
since CS facilitates human validation of ML, the most
sophisticated models may be unnecessary, which can be
particularly advantageous for groups lacking computational
resources. Using smaller or older models may also be more
environmentally friendly.

The next challenge is to design tasks that are enjoyable
for volunteers to complete while still enhancing the results
of automated approaches (Guralnick et al. 2024). Finding
roles that citizen scientists can play meaningfully alongside
experts and Al technologies is essential. Concerns have
been raised over the potential of Al to disengage citizen
scientists. Forinstance, the use of Al can reduce the range of
possible volunteer contributions or make their tasks either
too simple or too complex (Trouille, Lintott, and Fortson
2019). Delegating interactions to Al might be efficient for
science teams but distancing for volunteers.

Balancing efficiency and speed with other goals, such
as volunteer engagement, learning, and development, is
crucial and depends significantly on the overarching goal
of the research team (Fortson 20271; Pankiv et al. in this
collection). This balance becomes especially important
when addressing long-standing challenges in CS, such as
diversity and inclusion (Cooper et al. 2021). For instance,
while the integration of Al in CS enables speedier data
processing and improves efficiency, it can also create a
valuable learning opportunity for participants—or reduce
learning. The point is disputed and likely depends on the
design of the project. The concept of ML supporting human
learning is central to the co-learning process presented by
@sterlund et al. in this collection. In the Gravity Spy project,
the AI model plays an active role in guiding volunteers
through progressively complex tasks that align with their
evolving Zone of Proximal Development (the sweet spot
between what a learner can do on their own and what they
can achieve with guidance from a more knowledgeable
person). Staying in the zone allows volunteers to gradually
expand their knowledge and skills by tackling challenges
that are neither too easy nor too difficult. At the same time,
the humans are finding new classes of objects that can in
turn improve the machine learning. In contrast, the Pankiv
et al. paper shows that use of the Merlin Al assistant for
eBird resulted in less domain learning by novice birders.

Understanding these different outcomes is an important
task for future research.

Progress in understanding how to introduce AI has
been made with a study by Gal et al. (2022), which found
that, when given a choice, Galaxy Zoo volunteers preferred
by a wide margin to work alongside machines and that
specific motivational statements were important to this
engagement. The Meisner et al. contribution draws similar
conclusions from their survey, though underscores the
ethical tightrope that needs to be walked in terms of
how much a project must divulge about the use of Al or
not in recruitment materials; too much and you may risk
losing participants, not enough and the project isn’t being
transparent about the use of Al

The Duerinckx et al. contribution speaks to a major
challenge for the use of Al in CS, which is the lack of
understanding of Al models among the general population.
By including the public in the co-creation step of defining
which citizen science projects with integrated Al should
be developed, the study demonstrates an example of
democratization of Al innovation, empowering citizens to
understand the potential uses of CS coupled with AL

CONCLUSION: ARTIFICIAL
INTELLIGENCE AND THE FUTURE OF
CITIZEN SCIENCE

With the 2024 Nobel Prize in Physics being given to key
architects of modern ML (John Hopfield and Geoffrey
Hinton), the field of AI has clearly made its mark on
society. But what does the future bring for Al and grand
challenges in science, and thus CS? There are at least four
areas where large amounts of effort by researchers in Al
(including those at most of the major tech companies)
will likely have an impact on CS: anomaly detection,
LLMs, foundation models, and trustworthy, ethical, and
explainable AL

As discussed previously, anomaly detection is relevant
for HITL strategies to detect scientifically interesting or
rare objects; further research in this area is needed to
best integrate with CS. LLMs can support research teams
or volunteers with leadership roles for actions such as
project recruitment, communication, and retention. Fertile
research areas include the impact of in-project messaging
on retention or learning, or how LLMs can be harnessed as
one element of the task structure. Further, LLMs might be
deployed to provide answers to frequent questions of the
community of volunteers, explain key underlying concepts
or principles, give feedback on individual and collective
progress, or share summaries of scientific papers and
findings. Al support may thus alleviate time-consuming
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CHALLENGE DESCRIPTION

Al opacity Al models can be complex, making it difficult to understand their decision-making
and identify potential biases.

Public trust People need to understand how Al is used to build trust and encourage participation.

Citizen science without (meaningful tasks for) citizens

Fear that AI systems could reduce engagement due to task simplification, or replace

humans in performing certain tasks.

Data reliability

Volunteer collected data may be inaccurate. Al can help to ensure high-quality data

necessary for accurate results but trust needs to be built.

Data ownership

Al requires data for training. Multiple parties may have ownership claims to the data.

Clear agreements are needed to prevent conflicts and ensure ethical data handling.

Risk of exclusion

Some countries/institutions/communities might be unable to apply Al in CS due to

lack of internet connectivity or appropriate devices.

Limited resources

Projects with limited resources may lack both the ability to implement and maintain

Al systems effectively, as well as the expertise in using Al ethically.

Environmental impact

Training sophisticated Al models demands huge computational power with significant

energy consumption and greenhouse gas emissions, as well as often environmentally
damaging extraction of rare-earth metals for training hardware (e.g., Graphical
Processing Units [GPUs]).

Table 1 Key ethical considerations for using artificial intelligence (AI) in citizen science (CS) projects.

communication tasks and allow scientists to focus on the
most significant interactions with the volunteers.

LLMs are just one example of so-called foundation
models, which use extraordinarily large amounts of
diverse data to train, with the intention that this generic
model can then be readily transferred to highly specific
cases. The provision of open access foundation models
for a range of domains important to CS (e.g., astronomy,
ecology, environment, health) could reduce barriers to
the inclusion of Al in CS projects. At the same time, it is
imperative that the provenance of the large amounts
of data used in the development of foundation models
complies with open data practices, especially if those data
(including annotations) are produced via CS methods.
This leads not only to research in Al, but necessitates
formulation of policy surrounding the development of
Al that includes the voices of those impacted by it—the
citizens.

We close then with the point that CS projects should
strive to use Al in a transparent, democratic, and
trustworthy manner promoting ethical (“moral AI”) for the
public good. Table 1 lists several challenges for volunteer
participants and CS project organizers in achieving this
goal. Particular attention is needed for the Global South
due to the disadvantaged positions of these countries
in the race for Al development along with the threats of
“data colonialism” (Baezner and Robin 2018). We need
more empirical studies to explore how Al can be effectively
and equitably implemented. Research should focus on

tailoring Al to local contexts, involving local communities
in decision-making, and ensuring long-term sustainability
and local innovation.

While the future of artificial intelligence and citizen
science is bright, it is critical that all practitioners address
the inherent challenges through clear communication, open
processes, and public education to ensure that Al in citizen
science is used ethically and effectively for the public good.

SUPPLEMENTARY FILE

The Supplementary file for this article can be found as
follows:

+ Supplemental File 1. Overview of deep-learning
technology with example use-cases from the special
collection. DOL: https://doi.org/10.5334/cstp.812.s1
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