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INTRODUCTION

Artificial Intelligence (AI) and citizen science (CS) are two approaches to tackling data challenges 

related to scale and complexity. CS by its very definition relies on the joint effort of typically a 

distributed group of non-expert people to solve problems in a manner that relies on human 

intelligence. As AI capabilities increasingly augment or complement human intelligence, if not 

replicate it, there is a growing effort to understand the role that AI can play in CS and vice versa. 

With this growing interest as context, this special collection, The Future of AI and Citizen Science, 

illustrates the many ways that CS practitioners are integrating AI into their efforts, as well as 

identifies current limitations. In this spirit, our editorial briefly introduces the special collection 

papers to demonstrate and assess some uses of AI in CS; then, we contextualize these uses in 

terms of key challenges; and conclude with future directions that use AI with CS in both innovative 

and ethical ways.

To start, it is worth summarizing the data ecosystem presented in Figure 1 in which the 

integration of AI and CS is occurring. Data collection, data processing, and data analysis (McClure 

et al 2020) are the main activities undertaken by people participating in CS projects. These 

activities are typically initiated either in response to the need for widely distributed yet fine-

grained spatiotemporal monitoring (Cooper, Shirk, and Zuckerberg 2014), or the ever-increasing 

demands to process and analyze “big data” (Trouille, Lintott, and Fortson 2019). Figure 1 thus 

sketches the flow of data from data collection (by machines or humans) to data processing or 

analysis, and shows how human-in-the-loop (HITL) and machine-in-the-loop (MITL) strategies 

can be deployed across a wide range of data domains and research disciplines. At the heart of 

this special collection then, is the idea that AI has the potential to significantly advance the 

field of CS by accelerating the pace and breadth of data processing, expanding the temporal 

and geographical reach of projects, enhancing the quality of collected and processed data, 

harnessing novel data sources, facilitating learning interactions between humans and machines, 

and broadening the spectrum of engagement opportunities for citizens (Lotfian, Ingensand, and 

Brovelli 2021; Ceccaroni et al. 2023).
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EXPLORING THE CONTRIBUTIONS TO 
THE SPECIAL COLLECTION

We first give a brief overview of the papers in the Special 

Collection (see Figure 2 for detailed summaries of the 

collection contributions). Most employ AI to identify or 

locate specific classes of objects in images. Pennington 

et al. seek to identify viruses in cellular biology images; 

Nelson et al. and Chan et al. wish to better identify harmful 

mosquitoes and snails respectively; Sharma et al. would 

like to improve the accuracy in identifying bees in the UK; 

similarly, Huebner et al. seek to improve the identification 

of rare animal species in the Serengeti; and Meisner et al. 

would like to accelerate the identification of brown dwarfs, 

a difficult-to-detect astronomical object.

Other papers use a particular science objective as a 

means to study new ways to integrate AI with citizen 

science (CS). Østerlund et al. use a gravitational wave 

project to study how machines and humans can best learn 

from each other; Sankar et al. use a project identifying 

cloud types on Jupiter to learn whether AI can use lack of 

consensus in volunteer responses to learn something about 

novel relationships within the dataset; and Mantha et al. 

use a galaxy morphology project to study how combining 

human and machine anomaly detection strategies can 

efficiently find scientifically interesting objects in vast 

datasets. Nelson et al., Chan et al., and Sharma et al. also 

describe the development of custom apps that integrate 

AI to help improve data collection and analysis steps taken 

by citizen scientists. Pankiv et al. explores the use of AI in 

another custom app to investigate how the use of machine 

learning (ML) classification models affects the learning of 

novice birders, directly exploring the potential role of AI in 

participant learning. Duerinckx et al. describes a holistic 

approach to engaging citizens in learning about AI while 

co-creating potential projects that use AI to solve issues 

relevant to the public.

DEPLOYING ARTIFICIAL INTELLIGENCE 
TECHNOLOGY IN CITIZEN SCIENCE
To better understand the work presented in this collection, 

some background in the technology is helpful. The concepts 

of AI and ML were first introduced in the 1950s and tend 

to be used interchangeably, but there are significant 

differences. Briefly, AI is a more general term that describes 

computers that can emulate human thought, resulting in 

actions taking place in the real world. ML is a subset or a 

building block of AI, referring specifically to the algorithmic 

tools and technologies that learn from existing data to 

solve tasks such as pattern recognition or decision-making. 

Unless we are referring to specific ML techniques, we use 

the term AI in the context of this collection to refer to the 

broader range of techniques and applications, such as 

image classification, anomaly detection, feature extraction, 

and text summarization.

CS projects have deployed a diversity of AI techniques. 

The primary technology applied in the papers in this 

collection is deep learning, a subset of ML involving 

architectures that incorporate multiple layers of processing. 

Convolutional neural networks (CNNs) in particular are 

highly effective at extracting patterns directly from pixel 

data, providing revolutionary capabilities for handling large 

Figure 1 Data flow showing how the combination of citizen science and machine learning is used in both the data collection and analysis of 

data. Examples of Human-in-the-loop and Machine-in-the-loop actions are listed. Note that artificial intelligence can provide general support 

as well to the researchers and volunteers who recruit, engage, and sustain a volunteer community within a citizen science ecosystem.
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volumes of images. In Supplemental File 1, we provide a 

more detailed overview of the key concepts in modern 

deep learning using examples drawn from this collection. 

Therein, we discuss specific AI techniques in the context of 

deployment strategies in CS projects.

STRATEGIES IN COMBINING ARTIFICIAL 
INTELLIGENCE AND CITIZEN SCIENCE
Figure 3 provides an overview of the roles that humans 

can take in a project versus the roles that machines can 

play, and it also includes the supporting technologies 

needed to combine AI and CS. As shown at the bottom 

right of Figure  3, an ML model can be trained in a 

supervised manner (typically with human-provided 

labels), an unsupervised manner (with no labels provided, 

the machine learns patterns in the data often through 

clustering on features inherent in the dataset), or a 

semi-supervised manner (using labeled data to infer 

label information for unlabeled data in the dataset). 

A model can also be trained using transfer learning 

from a pre-trained model potentially from a completely 

different domain. Training must balance improved model 

performance against the need for large sets of training 

data and the difficulty of obtaining labels for supervised 

learning, while avoiding biases or gaps in the training data 

that will propagate to the model output. Furthermore, it 

is important to recognize that a machine model is just 

part of a system. Additional work is needed to preprocess 

images or other inputs for training and to connect a 

deployed model to input data and to use its output.

Many of the contributed papers describe custom ML 

architectures (represented in Figure 3, top right) based on 

“off-the-shelf” AI technologies (published papers with 

public code available). A few describe the use of cloud-based 

AI technologies and services such as Amazon’s Rekognition 

package or Google’s Colab. Authors used a range of tools to 

carry out the CS element (corresponding to Figure 3, bottom 

left). These tools can play a distinct role in what choices 

are available for project managers to incorporate AI into 

their projects, and which tools are used depends on which 

CS activities are paramount to the project. For example, 

the GLOBE Observer project (Nelson et al.) focuses on the 

collection and analysis of Earth system and environmental 

data, and has taken a holistic approach to integrating AI 

Figure 2 This table presents a summary of the ways in which each paper in the special collection uses machine learning along with the 

task(s) asked of the citizen scientists and the overall goal of the work.
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and CS by building out AI components in all three modes of 

their platform: data collection, data processing, and data 

analysis. One of the largest and longest-running CS efforts, 

the eBird project, has integrated AI into their Merlin mobile 

app, and is explored by Pankiv et al. Six papers (representing 

biomedicine, ecology, and astrophysics) used the Zooniverse 

platform, the largest general-purpose data analysis CS 

platform, which has facilitated the integration of ML into 

CS projects (Fortson 2021; Trouille, Lintott, and Fortson 

2019). Other examples of large CS platforms that integrate 

ML are iNaturalist (Van Horn et al. 2018) and SciStarter 

(Zaken et al. 2021). Although these larger platforms provide 

common tools and services for CS projects, teams may 

want to develop their own project infrastructure integrating 

AI based on, for example, funding, specificity of need, or 

control of project content and goals.

SCIENTIFIC DOMAINS AND ARTIFICIAL 
INTELLIGENCE
Scientifically, the papers in this collection are concentrated 

in ecology and biodiversity (five papers), astronomy and 

astrophysics (four papers), and biomedicine (one paper), 

with one paper not specifying a domain. The characteristics 

of each domain and its data affect the possibility to use 

AI. In cellular biology or neuroimaging, the critical issue 

is that the biomedical field suffers from vast amounts of 

complex data; it is particularly difficult to obtain sufficient 

labels to train AI. The Pennington et al. contribution seeks 

to accelerate label gathering by combining two CS tasks —

classification as well as localization of viruses—to train a 

model to count the viral load in cell images.

In conservation ecology and wildlife research, there 

has been real progress in adopting AI into CS. AI has 

been used to determine whether an animal is present 

in an image, help classify species by contributing a vote 

weighted on the ML confidence in the classification, and 

count animals (Willi et al. 2019; Green et al. 2020; Torney 

et al. 2019). A common challenge in these areas is an 

initial lack of training data due to monitoring locations 

with limited resources or class imbalance in the training 

set due to underlying differences in the prevalence of 

species. However, when ML models produce inaccurate 

classifications or encounter unfamiliar scenarios, human-

in-the-loop (HITL) strategies can enhance the quality of 

datasets used for automation. This also serves to validate 

and refine initial ML outputs. In this context, the Huebner 

et al. contribution shows that HITL processes are critical 

to obtaining highly accurate classifications for rare or 

visually similar species that pose a challenge for AI. 

Because these projects often ask volunteers to collect 

data submitted through mobile apps, there is an interest 

in deploying AI within the app to assist the citizen scientist 

Figure 3 Interconnections between tasks that citizen scientists (humans) and machines each can carry out as well as the technology 

support ecosystem for these processes to take place. Different research goals will necessitate different combinations of tasks and human-

machine interactions as well as different machine learning (ML) architectures which in turn require different machine training strategies. 

Note that one could also start with a specific ML strategy such as transfer learning, which would dictate a subset of useful architectures 

for a given ML task. This would then define the human-machine interaction needed to initiate the required human task. Supplemental File 

1 provides brief descriptions of the ML side of the figure.
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with species identification. The Sharma et al. contribution 

uses the BeeWatch app to investigate a more complex 

“dialogic” process that enables real-time dialog between 

the humans and AI, leading to improved identification 

accuracy of bumble bee species in the United Kingdom.

The fields of astronomy and astrophysics have also 

been incubators for exploring how best to combine the 

strengths of humans and machines (Fortson 2021). 

For instance, the Meisner et al. contribution deploys 

a sophisticated AI model to find objects that show 

movement between stacks of astronomical images. 

Importantly, the AI model used was developed by one 

of the project citizen scientists (Caselden et al. 2020). 

The critical issue in recent and upcoming astronomical 

surveys is the absolutely vast amount of data that will be 

produced by next-generation telescopes: billions of galaxy 

images versus the one million processed by volunteers 

in the original Galaxy Zoo (Lintott et al. 2008). While 

recent work (Walmsley et al. 2023) deploys an AI model 

that learns in near-real-time which images need human 

intervention, the sheer volume of data raises concerns 

about limiting opportunities for serendipitous discoveries, 

a hallmark of human involvement in these projects (e.g., 

Green Peas in Cardamone et al. 2009). The Mantha et al. 

contribution combines an AI anomaly detection technique 

trained on Galaxy Zoo images with the ability of citizen 

scientists to notice odd things in images to optimize the 

probability of finding scientifically interesting anomalies 

in large astrophysical data sets. In a similar vein, the 

Sankar et al. contribution uses the complexity inherent in 

images of Jupiter’s clouds to explore a novel combination 

of humans and machines to determine whether there 

are undiscovered, scientifically interesting correlations 

between cloud features.

While the distribution of domains in this collection 

echoes the findings outlined in a recent literature 

review (Ponti and Seredko 2022), we note an increasing 

number of other domains integrating AI into CS, such as 

archaeology (e.g., Heritage Quest – Verschoof-van der 

Vaart et al 2020), seismology (e.g., MyShake app – Kong 

et al. 2018) and emergency awareness or disaster relief 

(e.g., Citizen Science Solution Toolkit – Bono et al. 2023; 

and the Planetary Response Network – Simmons et al. 

2022). New AI technologies have led to a sizeable increase 

in Digital Humanities projects. For example, the Lives of 

Literary Characters recently used large language models 

(LLMs) along with “citizen readers” to learn how fictional 

social systems inform real-world social growth (Piper et 

al. 2024). And optical character recognition (OCR) trained 

on data curated by volunteers has been used to convert 

imaged labels from natural history collections into digital 

text (Guralnick et al. 2024).

GEOGRAPHICAL CONSIDERATIONS FOR 
ARTIFICIAL INTELLIGENCE AND CITIZEN 
SCIENCE
CS projects are concentrated in Europe, North America, 

and Australia, and the projects included in this collection 

are no exception. Yet, particularly in countries where data 

collection resources are limited, CS can be an important 

source of indigenous and traditional forms of knowledge 

for promoting sustainable development and addressing 

climate change on a national and regional level (Masselot 

et al. 2023; Reyes-García et al. 2022; Eicken et al. 2021). 

Furthermore, in developing economies, the lack of 

connectivity, storage, and processing infrastructure, as well 

as prerequisite human labor and expertise, often hinder the 

availability of data for AI (e.g., so-called “data deserts”). 

However, there is growing attention to both CS and AI in the 

Global South, including Africa, India, Southeast Asia, Latin 

American, and the Caribbean. There are now opportunities 

to integrate AI with CS within these regions, even though 

early development has primarily been concentrated in the 

North. Excellent examples of this trend are represented in 

this collection. First, the Chan et al. contribution explores 

the minimum data requirements, in terms of both quantity 

and quality, that local residents need to meet to train an 

acceptable model for identification of disease-bearing 

snails in Sub-Saharan Africa (SSA). Taking into consideration 

technical limitations for these countries, such as the high 

computational power required by the ML, the choice was 

made to deploy the model as a web-based application 

hosted in Belgium. This allows for residents to upload 

their images and receive prompt feedback on whether 

they have detected a target snail species. The Nelson et 

al. contribution describes how to facilitate CS in the Global 

South through the GLOBE Observer project. This project 

uses a trained ML model to identify mosquito species 

uploaded by citizen scientists, helping local communities in 

Africa monitor these dangerous malaria vectors.

CHALLENGES OF COMBINING HUMANS 
AND MACHINES

Looking across the papers, we identify a common set 

of challenges in applying AI for CS. A first challenge is 

identifying which technologies are appropriate. The 

choice of ML tasks that fit the problem dictates the 

machine training strategy, which in turn dictates the 

most appropriate ML architecture to use and the data 

needed (refer back to Figure 3). At the same time, the 

ML task may call for human input, for example, if the ML 

training strategy requires supervision or reinforcement, 

or if an unsupervised strategy requires evaluation. How 
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volunteers interact with the machine is dictated by the 

form in which the machine information is provided. For 

example, projects that need volunteers to provide image 

labels for ML training will have a different task structure 

than one in which images already have a machine 

proposal that may need correcting.

A related challenge is that AI technology is developing 

extraordinarily quickly. Constraints such as limited 

resources, expertise, and infrastructure can make 

employing cutting-edge technology impractical. However, 

since CS facilitates human validation of ML, the most 

sophisticated models may be unnecessary, which can be 

particularly advantageous for groups lacking computational 

resources. Using smaller or older models may also be more 

environmentally friendly.

The next challenge is to design tasks that are enjoyable 

for volunteers to complete while still enhancing the results 

of automated approaches (Guralnick et al. 2024). Finding 

roles that citizen scientists can play meaningfully alongside 

experts and AI technologies is essential. Concerns have 

been raised over the potential of AI to disengage citizen 

scientists. For instance, the use of AI can reduce the range of 

possible volunteer contributions or make their tasks either 

too simple or too complex (Trouille, Lintott, and Fortson 

2019). Delegating interactions to AI might be efficient for 

science teams but distancing for volunteers.

Balancing efficiency and speed with other goals, such 

as volunteer engagement, learning, and development, is 

crucial and depends significantly on the overarching goal 

of the research team (Fortson 2021; Pankiv et al. in this 

collection). This balance becomes especially important 

when addressing long-standing challenges in CS, such as 

diversity and inclusion (Cooper et al. 2021). For instance, 

while the integration of AI in CS enables speedier data 

processing and improves efficiency, it can also create a 

valuable learning opportunity for participants—or reduce 

learning. The point is disputed and likely depends on the 

design of the project. The concept of ML supporting human 

learning is central to the co-learning process presented by 

Østerlund et al. in this collection. In the Gravity Spy project, 

the AI model plays an active role in guiding volunteers 

through progressively complex tasks that align with their 

evolving Zone of Proximal Development (the sweet spot 

between what a learner can do on their own and what they 

can achieve with guidance from a more knowledgeable 

person). Staying in the zone allows volunteers to gradually 

expand their knowledge and skills by tackling challenges 

that are neither too easy nor too difficult. At the same time, 

the humans are finding new classes of objects that can in 

turn improve the machine learning. In contrast, the Pankiv 

et al. paper shows that use of the Merlin AI assistant for 

eBird resulted in less domain learning by novice birders. 

Understanding these different outcomes is an important 

task for future research.

Progress in understanding how to introduce AI has 

been made with a study by Gal et al. (2022), which found 

that, when given a choice, Galaxy Zoo volunteers preferred 

by a wide margin to work alongside machines and that 

specific motivational statements were important to this 

engagement. The Meisner et al. contribution draws similar 

conclusions from their survey, though underscores the 

ethical tightrope that needs to be walked in terms of 

how much a project must divulge about the use of AI or 

not in recruitment materials; too much and you may risk 

losing participants, not enough and the project isn’t being 

transparent about the use of AI.

The Duerinckx et al. contribution speaks to a major 

challenge for the use of AI in CS, which is the lack of 

understanding of AI models among the general population. 

By including the public in the co-creation step of defining 

which citizen science projects with integrated AI should 

be developed, the study demonstrates an example of 

democratization of AI innovation, empowering citizens to 

understand the potential uses of CS coupled with AI.

CONCLUSION: ARTIFICIAL 
INTELLIGENCE AND THE FUTURE OF 
CITIZEN SCIENCE

With the 2024 Nobel Prize in Physics being given to key 

architects of modern ML (John Hopfield and Geoffrey 

Hinton), the field of AI has clearly made its mark on 

society. But what does the future bring for AI and grand 

challenges in science, and thus CS? There are at least four 

areas where large amounts of effort by researchers in AI 

(including those at most of the major tech companies) 

will likely have an impact on CS: anomaly detection, 

LLMs, foundation models, and trustworthy, ethical, and 

explainable AI.

As discussed previously, anomaly detection is relevant 

for HITL strategies to detect scientifically interesting or 

rare objects; further research in this area is needed to 

best integrate with CS. LLMs can support research teams 

or volunteers with leadership roles for actions such as 

project recruitment, communication, and retention. Fertile 

research areas include the impact of in-project messaging 

on retention or learning, or how LLMs can be harnessed as 

one element of the task structure. Further, LLMs might be 

deployed to provide answers to frequent questions of the 

community of volunteers, explain key underlying concepts 

or principles, give feedback on individual and collective 

progress, or share summaries of scientific papers and 

findings. AI support may thus alleviate time-consuming 
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communication tasks and allow scientists to focus on the 

most significant interactions with the volunteers.

LLMs are just one example of so-called foundation 

models, which use extraordinarily large amounts of 

diverse data to train, with the intention that this generic 

model can then be readily transferred to highly specific 

cases. The provision of open access foundation models 

for a range of domains important to CS (e.g., astronomy, 

ecology, environment, health) could reduce barriers to 

the inclusion of AI in CS projects. At the same time, it is 

imperative that the provenance of the large amounts 

of data used in the development of foundation models 

complies with open data practices, especially if those data 

(including annotations) are produced via CS methods. 

This leads not only to research in AI, but necessitates 

formulation of policy surrounding the development of 

AI that includes the voices of those impacted by it—the 

citizens.

We close then with the point that CS projects should 

strive to use AI in a transparent, democratic, and 

trustworthy manner promoting ethical (“moral AI”) for the 

public good. Table 1 lists several challenges for volunteer 

participants and CS project organizers in achieving this 

goal. Particular attention is needed for the Global South 

due to the disadvantaged positions of these countries 

in the race for AI development along with the threats of 

“data colonialism” (Baezner and Robin 2018). We need 

more empirical studies to explore how AI can be effectively 

and equitably implemented. Research should focus on 

tailoring AI to local contexts, involving local communities 

in decision-making, and ensuring long-term sustainability 

and local innovation.

While the future of artificial intelligence and citizen 

science is bright, it is critical that all practitioners address 

the inherent challenges through clear communication, open 

processes, and public education to ensure that AI in citizen 

science is used ethically and effectively for the public good.

SUPPLEMENTARY FILE

The Supplementary file for this article can be found as 

follows:

•	 Supplemental File 1. Overview of deep-learning 

technology with example use-cases from the special 

collection. DOI: https://doi.org/10.5334/cstp.812.s1
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