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Abstract
1.	 Biologists aim to explain patterns of growth, reproduction and ageing that charac-

terize life histories, yet we are just beginning to understand the proximate mecha-
nisms that generate this diversity. Existing research in this area has focused on 
telomeres but has generally overlooked the telomere's most direct mediator, the 
shelterin protein complex. Shelterin proteins physically interact with the telomere 
to shape its shortening and repair. They also regulate metabolism and immune 
function, suggesting a potential role in life history variation in the wild. However, 
research on shelterin proteins is uncommon outside of biomolecular work.

2.	 Intraspecific analyses can play an important role in resolving these unknowns 
because they reveal subtle variation in life history within and among populations. 
Here, we assessed ecogeographic variation in shelterin protein abundance across 
eight populations of tree swallow (Tachycineta bicolor) with previously docu-
mented variation in environmental and life history traits. Using the blood gene 
expression of four shelterin proteins in 12-day-old nestlings, we tested the hy-
pothesis that shelterin protein gene expression varies latitudinally and in relation 
to both telomere length and life history.

3.	 Shelterin protein gene expression differed among populations and tracked non-
linear variation in latitude: nestlings from mid-latitudes expressed nearly double 
the shelterin mRNA on average than those at more northern and southern sites. 
However, telomere length was not significantly related to latitude.
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1  |  INTRODUC TION

Evolutionary biologists aim to explain diversity in patterns of 
growth, reproduction and ageing that characterize life histories 
(sensu Stearns, 1992). Life history traits often vary predictably with 
geography and ecology (Gaston et al., 2008). However, many eco-
geographic rules do not fully address the proximate mechanisms 
underlying variation in life history, despite repeated calls to inte-
grate physiological mechanisms into life history theory (Ricklefs & 
Wikelski, 2002).

Life history traits are often linked to telomeres (Monaghan, 2010), 
the chromosomal structures that preserve genomic integrity and 
shorten over time (Blackburn, 1991; Remot et al., 2021; Young, 2018), 
yet the telomere's protective shelterin proteins are often ignored. 
The shelterin complex includes six proteins (de Lange, 2018; Myler 
et al., 2021; Figure 1): TRF1 and TRF2 bind double-stranded telo-
meric repeats; RAP1 associates with TRF2; and TIN2 physically links 
TRF1 and TRF2 with TPP1, which recruits POT1. Together, this com-
plex forms a protective telomere cap that negatively regulates telo-
mere accessibility by telomerase, the enzyme that repairs telomere 
length (de Lange, 2018). Critically, telomere loss and other factors 
may free up shelterin proteins to act away from the telomere end 
(Mukherjee et  al.,  2018, 2019), where they may influence life his-
tory via transcriptional regulation of metabolic and immune function 
(Akincilar et  al.,  2021; Wolf & Shalev,  2023; Ye et  al.,  2014). This 
provides a putative mechanism by which stress-induced and ecogeo-
graphic variation in telomere loss (Chatelain et al., 2020; Karkkainen 
et al., 2022; Stier et al., 2016) may causally contribute to life history 
(e.g. survival, lifespan: Heidinger et al., 2012; Wilbourn et al., 2018).

Shelterin proteins could expand the causal links between telo-
mere biology and ecologically relevant phenotypes, but only a few 
recent studies have focused on shelterin in nature. For example, 
some shelterin proteins are more highly expressed in mamma-
lian species with longer lifespans (e.g. TIN2, TRF1; Ma et al., 2016; 
MacRae et al., 2015). At the intraspecific level, decreases in shelterin 

occur in response to natural stressors and are linked to survival 
(Rouan et  al.,  2021; Wolf et  al.,  2022), suggesting that low shel-
terin may be adaptive. In addition, Wolf et al.  (2022) showed that 
shelterin POT1 gene expression outperformed telomere length in 
predicting fitness-related traits within a population of wild birds. 
These intraspecific approaches are key to assessing subtle variation 
occurring among populations without confounding species effects. 
On the other hand, biomedical work suggests that increases in shel-
terin may provide temporarily heightened DNA protection during 
aerobic stress (sensu Ludlow et  al.,  2013). Extremely high or low 
shelterin can also promote senescence or immortalization of cancer 
cells (Akincilar et  al.,  2021). Together, these observations suggest 
that telomere length and, by extension, telomere regulation may be 
shaped by stabilizing selection. Altogether, it remains unclear how 

4.	 We next assessed whether telomere length and shelterin protein gene expression 
correlate with 12-day-old body mass and wing length, two proxies of nestling 
growth linked to future fecundity and survival. We found that body mass and 
wing length correlated more strongly (and significantly) with shelterin protein 
gene expression than with telomere length.

5.	 These results highlight telomere regulatory shelterin proteins as potential media-
tors of life history variation among populations. Together with existing research 
linking shelterin proteins and life history variation within populations, these eco-
geographic patterns underscore the need for continued integration of ecology, 
evolution and telomere biology, which together will advance understanding of 
the drivers of life history variation in nature.

K E Y W O R D S
bird, latitude, life history, POT1, shelterin proteins, telomere, TPP1, TRF2

F I G U R E  1  Schematic of the shelterin protein complex. (a) The 
six-subunit shelterin protein complex binds to double-stranded and 
single-stranded telomeric DNA (TTAGGG repeats). (b) Shelterin 
complexes bind repeatedly along the telomere's length. Co-factors 
are not shown.
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    |  3WOLF et al.

subtle natural variation in shelterin protein abundance contributes 
to life history.

The first step to integrating shelterin proteins into a life history 
framework is to quantify their standing variation in the wild and 
assess correlations with ecology and life history. In our study, we 
used free-living tree swallows (Tachycineta bicolor). Tree swallows 
migrate north each spring from the southernmost United States, 
Central America and Caribbean to breeding grounds ranging from 
Alaska to the mid-southern United States (Winkler et  al., 2020), 
although this range has been expanding south, for example, into 
South Carolina and Alabama in the last three decades (Shutler 
et  al.,  2012; Wright et  al.,  2019). Previous work shows life his-
tory variation among populations: birds breeding at higher lati-
tudes have shorter breeding seasons, slightly larger clutches and 
higher mortality rates (Ardia,  2005; Dunn et  al.,  2000; Winkler 
et al., 2020), which may be driven in part by migration routes and 
glucocorticoid levels (Gow et  al., 2019; Zimmer et  al., 2020; but 
see Siefferman et al., 2023). Critically, this range also varies in en-
vironmental factors, such as local food availability and nest tem-
peratures (Ardia, 2006; Zimmer et al., 2020).

We capitalized on this range to assess the spatial variation of 
shelterin protein abundance in nestling tree swallows across eight 
populations in the eastern United States. We expected that shelterin 
protein gene expression would vary latitudinally and in relation to 
proxies of life history. Based on findings that long-lived species have 
higher shelterin protein abundance (e.g. Ma et  al.,  2016; MacRae 
et  al.,  2015), one prediction is that more southerly populations, 
which have a slower life history strategy, will express more shelterin. 
Alternatively, populations with slower life histories may express 
less shelterin, if insights gained from within-population analyses 
(e.g. Wolf et al., 2022) apply across larger spatial scales. We also as-
sessed associations of shelterin proteins with telomere length and 
age-specific body size, an established proxy of nestling growth. We 
predicted that shelterin proteins would better predict nestling body 
size than telomere length, given that shelterin proteins regulate me-
tabolism. While little is known about the consequences of shelterin 

proteins at the organismal scale (but see above), they should nev-
ertheless vary with life history and the environment. Documenting 
intraspecific variation in shelterin levels and their covariation with 
fitness-related traits is foundational to future research on the prox-
imate and ultimate outcomes of shelterin protein expression, and 
may reveal a novel mechanism contributing to life history and ageing.

2  |  MATERIAL S AND METHODS

2.1  |  Study populations

Data were collected from eight populations in the eastern United 
States, spanning nearly 10 degrees of latitude (Table 1; Figure 2a): 
Ithaca, New York (42.28° N, 76.29° W); Amherst, Massachusetts 
(42.22° N, 72.31° W); Linesville, Pennsylvania (41.65° N, 80.43° W); 
Bloomington, Indiana (39.17° N, 86.53° W); Lexington, Kentucky 
(38.11° N, 84.49° W); Knoxville, Tennessee (35.90° N, 83.96° W); 
Davidson, North Carolina (35.53° N, 80.88° W); and Santee, South 
Carolina (33.49° N, 80.36° W). These populations do not represent 
the entire breeding range of this species and, in particular, do not 
extend to the northern edge in Canada and Alaska. All methods were 
approved by institutional IACUCs (Cornell University #2019-0023; 
Amherst College #201-4; Indiana University #18-004; University of 
Kentucky #2015-2003) and Master Bird Banding Permits #23968, 
#24118, #22183 and #24129.

2.2  |  Sampling of nestlings

Nest boxes were monitored for hatch dates, but in cases where hatch 
dates were missed (e.g. due to weather or COVID-related staffing 
shortages), hatch dates were estimated using existing growth curves 
(McCarty, 2001; Wolf et al., 2021) and accounted for in all statisti-
cal analyses. Data from multiple populations shows that the average 
peak of postnatal growth occurs around 6 days old (McCarty, 2001; 

TA B L E  1  Sample sizes by state for each model.

Year(s) Avg age (days ± SE)
Count 
female Count male Mass

Wing 
length

Telomere 
length Shelterin pc1

NY 2020 12.00 ± 0.00 15 17 32 32 32 0a

MA 2020 12.10 ± 0.06 24 14 38 39 39 19

PA 2020 12.10 ± 0.05 20 16 36 36 36 36

IN 2019, 2020b 12.00 ± 0.02 32 28 60 60 41 18

KY 2020 12.00 ± 0.00 16 9 25 0 25 0

TN 2020 12.00 ± 0.10 16 16 32 32 32 29

NC 2020 11.80 ± 0.09 22 11 33 33 33 33

SC 2020–2021 12.10 ± 0.09 11 12 23 23 23 33

Total count 156 123 279 255 261 168

Note: Multiple nestlings were measured per nest, but only one median-massed nestling was selected a priori for all analyses. For logistical reasons, 
not all samples were collected in the same year. Note that (a) NY RNA samples were excluded, and (b) shelterin pc1 and telomere length were 
measured using two separate cohorts of IN nestlings (2019, 2020, respectively).
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4  |    WOLF et al.

Wolf et al., 2021). Growth then slows and plateaus near adult size by 
12 days old, just as feather development accelerates. We targeted 
12-day-old nestlings because they have just completed the rapid 
period of postnatal growth. Many studies therefore use morpho-
logical data at this critical time period as a proxy of nestling growth 
(Gebhardt-Henrich & Richner,  1998; Haywood & Perrins,  1992; 

Magrath, 1991; Martin et al., 2018; McCarty, 2001). Population vari-
ation in growth rates occurs primarily after peak growth but does 
not map neatly onto latitude, at least not in the northern (histori-
cal) range where previous research has been focused (Ardia, 2006; 
McCarty, 2001).

We sampled nestlings at 12.03 ± 0.01 days old (hatch day = day 
1, range = 10–14 days). We sampled ~30 nests per population 
(Table  1), though logistical constraints prevented the collection of 
RNA in Kentucky. Upon arrival at each nest, we immediately col-
lected whole blood from the brachial vein of 2–3 nestlings per nest 
(≤200 μL, below the maximum suggested volume based on body 
mass; Gaunt et al., 1997), and we avoided obvious runts with atypi-
cal growth. We collected blood in separate tubes for DNA and RNA 
analyses. We banded nestlings with a USGS band and weighed them 
to the nearest 0.1 g. We also measured flattened wing length using 
a wing ruler. We stored blood on ice or dry ice in the field, and later 
stored it at −80°C.

Due to limited budgets, we made the decision a priori to con-
duct laboratory analyses for a single nestling per nest. When 
possible, we selected the nestling with the median mass. If the 
median-massed nestling was not bled or failed to produce a suf-
ficient blood sample, we selected the nestling with the closest 
mass to the median. In nests with even brood sizes, we randomly 
selected one of the two nestlings with median mass for telo-
mere and gene expression analyses. In all states except Indiana, 
telomere length and gene expression data come from the same 
individual.

2.3  |  qPCR for telomere length

We extracted DNA from whole blood (following Wolf et al., 2022) 
and used primers telc and telg (adapted from Cawthon, 2009) to 
quantify telomere length relative to the single-copy gene GAPDH. 
Samples were run in triplicate, and mean values were used to cal-
culate the T/S ratio of telomere repeat copy number (T) to our 
single gene copy number (S) using the formula: 2−∆∆Ct, where 
∆∆Ct = (Ct

telomere − Ct
GAPDH)reference − (Ct

telomere − Ct
GAPDH)sample. The 

intraclass correlation coefficient (ICC) for intraplate repeatability 
was 0.951 ± 0.03 (95% CI = 0.944, 0.957) for GAPDH Ct values and 
0.926 ± 0.09 (95% CI = 0.916, 0.935) for telomere Ct values. The 
ICCs for interplate repeatability were 0.96 ± 0.03 (95% CI = 0.87, 
0.98) for GAPDH Ct values, 0.89 ± 0.06 (95% CI = 0.73, 0.95) for 
telomere Ct values and 0.79 ± 0.10 (95% CI: 0.54–0.90) for the 
T/S ratio (based on 2−∆Ct values). Plates (n = 13) were balanced by 
population, sex, relative date of sampling within each population 
and brood size.

2.4  |  Nestling sexing protocol

Nestlings were molecularly sexed using DNA following established 
methods (Griffiths et al., 1998; Wolf et al., 2022).

F I G U R E  2  Latitudinal variation in telomere biology in the blood 
of nestling tree swallows (a) across a latitudinal gradient in the 
eastern US. (b) Model outputs for shelterin protein gene expression 
(condensed into PC1). One unit of PC1 equates to increases in gene 
expression of 50% for POT1 and 100% (or doubling) for TPP1, 
TRF2 and TRF2IP. (c) Model outputs for relative telomere length 
(T/S ratio). Points and grey circles represent average ± SE values per 
population and individual points, respectively. Shaded areas show 
95% confidence intervals.

(a)

(b)

(c)
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    |  5WOLF et al.

2.5  |  Shelterin protein primer design

Shelterin proteins are relatively conserved across taxa (de 
Lange, 2018; Myler et al., 2021), and earlier work has identified at 
least four shelterin proteins in the chicken (De Rycker et al., 2003; 
Konrad et al., 1999; Tan et al., 2003; Wei & Price, 2004). Our shel-
terin protein primer sets were developed using the tree swallow 
transcriptome (accession #GSE126210; Bentz et  al.,  2019). TRF2 
exhibits multiple variants in passerines, and a BLAST search con-
firmed that our primer set targets TRF2 in closely related barn swal-
lows (Hirundo rustico). TPP1 and POT1 each have a single transcript 
in adult tree swallows that is highly expressed across tissues, and 
BLAST searches confirmed that our primer sets targeted TPP1 and 
POT1 genes, respectively, in multiple bird species. We also designed 
primers for RAP1 based on tree swallow transcripts of TRF2IP 
(TRF2-interacting protein), a common alias for RAP1. However, this 
study omits TRF1 due to negligible expression in nestling blood and 
TIN2 because we could not confidently identify the passerine se-
quence for TIN2. Thus, we quantified gene expression for four key 
components of the shelterin complex: TRF2, RAP1, TPP1 and POT1 
(primer sequences in Table S1).

2.6  |  qPCR for Shelterin protein gene expression

We extracted RNA using a phenol-chloroform-based Trizol 
method (Invitrogen, Carlsbad, CA) with PhaseLock tubes (5PRIME, 
#2302830). We synthesized cDNA using 1 μg RNA and Superscript 
III reverse transcriptase (Invitrogen), treated with DNAase (Promega, 
Madison, WI) and RNase inhibitor (RNAsin N2111, Promega). For 
each gene of interest, we used the 2−∆∆Ct method of quantifica-
tion (Livak & Schmittgen, 2001), in which expression is normalized 
to the geometric mean Ct of two reference genes for each sample 
(Vandesompele et al., 2002) and relative to a calibrator sample on 
each plate. Reference genes correct for technical variation in cDNA 
quantity across samples and, as such, must (i) be highly expressed, 
(ii) exhibit low variability among samples and (iii) show no signifi-
cant variation among biological categories of interest. Our reference 
genes were PPIA (peptidylprolyl isomerase A; Virgin & Rosvall, 2018) 
and MRPS25 (Mitochondrial Ribosomal Protein S25; Woodruff 
et al., 2022). Preliminary work showed that New York samples exhib-
ited markedly higher gene expression of these and a third reference 
gene (GAPDH). This violates assumption (iii) of the 2−∆∆CT method, 
and we therefore had to omit New York gene expression data. The 
remaining six populations exhibited limited among-population varia-
tion in reference gene expression (non-significant state differences 
or ≤0.5 Ct of the study-wide average).

Samples were run in triplicate alongside No Template Controls 
(NTCs) using PerfeCta SYBR Green FastMix with low ROX (Quanta 
Biosciences, Gaithersburg MD) on 384-well plates using an ABI 
Quantstudio 5 machine with Quantstudio Design & Analysis soft-
ware (v1.4.3, Thermo Fisher Scientific, Foster City, CA). Each well 
included 3 μL of cDNA diluted 1:50 (or 3 μL water for NTCs) and 

primers diluted to 0.3 μM in a total volume of 10 μL. All reactions 
use the following thermal profile: 10 min at 95°, followed by 40 cy-
cles of 30 s at 95°, 1 min at 60° and 30 s at 70°, with a final dissoci-
ation phase (1 min at 95°, 30 s at 55° and 30 s at 95°) that confirmed 
single-product specificity for all samples. All samples fell within the 
bounds of the standard curve, and reaction efficiencies were within 
100 ± 15%. Each gene was run on 1.5 plates, balanced by population. 
Intraclass correlation coefficients for triplicates were 0.996 ± 0.01 
(95% CI = 0.995, 0.997) for PPIA Ct values, 0.994 ± 0.009 (95% 
CI = 0.993, 0.996) for MRPS25 Ct values, 0.975 ± 0.05 (95% CI = 0.967, 
0.982) for POT1 Ct values, 0.940 ± 0.05 (95% CI = 0.923, 0.954) for 
TRF2 Ct values, 0.975 ± 0.05 (95% CI = 0.968, 0.981) for TRF2IP Ct 
values and 0.996 ± 0.007 (95% CI = 0.995, 0.997) for TPP1 Ct values.

2.7  |  Statistical analyses

All analyses were performed in R (version 3.5.3, RStudio Team, 
2019). We fitted general linear mixed effects models using the nlme 
package (Pinheiro et al., 2017) to perform two main types of analy-
ses (below).

All four shelterin proteins were positively correlated (log(log2-
transformed gene expression), 0.21 < R < 0.61, Figure S1), so we used 
principal components analysis to reduce the dimensionality of these 
data. PC1 had an eigenvalue of 1.52, accounting for 58% of the total 
variance. PC1 positively loaded for all four shelterin proteins (TRF2: 
0.59, TRF2IP: 0.51, TPP1: 0.45 and POT1: 0.44). Based on these 
loadings and the fact that 1 unit of log2 space denotes a doubling of 
abundance, we can infer that 1 additional unit of PC1 equates to in-
creases in gene expression of 50% for POT1 and 100% (or doubling) 
for TPP1, TRF2 and TRF2IP.

To test for ecogeographic trait variation, we ran separate 
Gaussian models for body mass, wing length, log-transformed telo-
mere length and shelterin protein gene expression. While latitude 
was our main fixed effect, we also included latitude2 for several rea-
sons. First, populations closer to the range edge may have unique 
physiological traits that alter telomere dynamics and life history, in-
cluding immune function and growth (Chatelain et al., 2020; Martin 
et al., 2014; Myles-Gonzalez et al., 2015). This may be relevant to the 
South Carolina population, which is near the southward expansion 
edge of breeding range (Shutler et al., 2012; Wright et al., 2019). Such 
‘pioneers’ may have unique phenotypes (Siefferman et  al.,  2023). 
Even without individual variation driven by range expansions, non-
linear patterns with latitude can emerge from spatial contrast in se-
lection by abiotic and biotic factors (MacArthur, 1984; Paquette & 
Hargreaves, 2021). Each model included latitude, latitude2, sex, age 
at sampling and ageing method (i.e. known or estimated age) as fixed 
effects. Brood size was also included as a fixed effect, as it may in-
fluence traits of interest and exhibits subtle latitudinal variation in 
previous work (Dunn et al., 2000). We did not detect multicollinear-
ity among this group of fixed effects (variable inflation factors ≤2). 
Population was included as a random effect to account for multiple 
birds sampled at each site. In addition, models of telomere length 
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6  |    WOLF et al.

and shelterin gene expression included random effects of qPCR 
plate. Note that results for these models run with qPCR plate as 
a fixed effect are equivalent to those in which qPCR plate was in-
cluded as a random effect (Table S2). One outlier was removed (using 
Grubbs test) for models predicting body mass and PC1 for shelterin 
protein gene expression.

To evaluate whether shelterin protein gene expression or 
telomere length better predicts nestling morphology, we use an 
information-theoretic approach. For model comparisons predict-
ing body mass and wing length, we created a three-model set. The 
null model included known or likely predictors of body mass or 
size: latitude, latitude2, nestling age at sampling, ageing method, 
sex and brood size as fixed effects, with population as a random 
effect. The remaining two models additionally contained either 
shelterin protein gene expression or log-transformed telomere 
length, allowing us to evaluate the prediction that shelterin pro-
teins better predict morphology than telomere length. As above, 
we did not detect multicollinearity among fixed effects for any 
candidate model (variable inflation factors ≤2). We used Akaike in-
formation criterion (AICc to correct for small sample size) for model 
comparisons and present ∆AIC, where highly supported models 
have ∆AIC ≤2 compared to other models (Burnham et al., 2011). 
We also report AIC weights, which quantify the relative support 

for specific models and the terms within. Weights range from 0 to 
1. We then performed model averaging of these candidate models 
for each morphological trait. Only conditional model averages are 
reported because shelterin protein gene expression and telomere 
length were each a priori included in only one candidate model. 
Because different Indiana nestlings were used for telomere and 
shelterin protein analyses, Indiana nestlings were not included in 
this analysis.

3  |  RESULTS

Shelterin protein gene expression was significantly related to the 
latitude2 term, such that nestlings from mid-range sites expressed 
nearly double the shelterin protein mRNA relative to more northern 
and southern sites (Figure 2b). PC1 gene expression was unrelated 
to sex, exact age, ageing method or brood size (Table 2). In contrast 
with shelterin protein gene expression, relative telomere length 
(Figure 2b) and proxies of growth (Figure 3) were not significantly re-
lated to any latitude terms, though these traits still showed marked 
intraspecific variation (see Tables 2 and 3 for full details). Telomere 
length was not significantly correlated with gene expression of any 
shelterin protein (−0.1 < R < −0.02, Figure S1).

TA B L E  2  Linear mixed effects models assessing the relationship between latitude and covariates on relative telomere length and 
shelterin protein gene expression (PC1).

Shelterin protein gene expression, n = 168

β estimate ± SE df F-value p-value

Intercept (known, female)a 105.67 ± 22.65

Latitude −5.71 ± 1.21 1, 8 0.39 0.55

Latitude2 0.08 ± 0.02 1, 8 23.96 0.001

Nestling age 0.16 ± 0.15 1, 152 0.94 0.33

Ageing method (est.) −0.18 ± 0.23 1, 152 0.27 0.61

Sex (male) −0.16 ± 0.21 1, 152 0.53 0.47

Brood size 0.13 ± 0.09 1, 152 2.43 0.12

R2
m = 0.15; R2

c = 0.15

Relative telomere length, n = 261

β estimate ± SE df F-value p-value

Intercept (known, female)a 7.37 ± 6.04

Latitude −0.33 ± 0.31 1, 61 0.13 0.72

Latitude2 0.004 ± 0.004 1, 61 1.28 0.26

Nestling age −0.10 ± 0.07 1, 181 2.00 0.16

Ageing method (est.) 0.04 ± 0.06 1, 181 0.74 0.39

Sex (male) −0.02 ± 0.05 1, 181 0.21 0.65

Brood size 0.02 ± 0.02 1, 181 0.71 0.40

R2
m = 0.02; R2

c = 0.13

Note: All models included population and qPCR plate as random effects. Reference (intercept) levels for categorical variables are specified in 
parentheses. Marginal (R2

m) and conditional (R2
c) R-squared values represent the proportion of total variance explained by fixed, or fixed and random 

effects, respectively. Significant effects (p ≤ 0.05) are bolded.
aReference levels.
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PC1 gene expression outperformed telomere length in predicting 
nestling growth (Table 4). The top-ranking models for mass and wing 
length contained shelterin protein gene expression, each with a model 

weight ≥0.75, showing strong evidence that nestlings with lower shel-
terin protein gene expression were heavier and had longer wings at 
12 days old (Figure 4a). We found weaker evidence for a relationship 

F I G U R E  3  Morphological variation in age-matched nestlings across a latitudinal gradient in the eastern US: (a) body mass and (b) wing 
length. Points represent model outputs for average ± SE values per population, and grey circles are individual data points. Shaded areas show 
95% confidence intervals.

SC

NC
TN

KY

IN PA

MA

NY

12

16

20

24

34 36 38 40 42
Latitude

N
es

tli
ng

 B
od

y 
M

as
s 

(g
)

(a)

SC

NC

TN

IN

PA

MA
NY

30

40

50

60

34 36 38 40 42
Latitude

N
es

tli
ng

 W
in

g 
Le

ng
th

 (
m

m
)

(b)

TA B L E  3  Linear mixed effects models assessing the relationship between latitude and proxies of nestling growth.

Body mass (g), n = 279

β estimate ± SE df F-value p-value

Intercept (known, female)a 109.91 ± 84.33

Latitude −5.21 ± 4.42 1, 5 1.51 0.27

Latitude2 0.07 ± 0.06 1, 5. 0.98 0.37

Nestling age 0.67 ± 0.39 1, 267 2.29 0.13

Ageing method (est.) −0.19 ± 0.46 1, 267 0.81 0.37

Sex (male) 0.24 ± 0.26 1, 267 0.60 0.44

Brood size −0.63 ± 0.11 1, 267 31.09 <0.0001

R2
m = 0.16; R2

c = 0.35

Wing length (mm), n = 255

β estimate ± SE df F-value p-value

Intercept (known, female)a 198.35 ± 224.33

Latitude −11.55 ± 11.77 1, 4 4.48 0.10

Latitude2 0.16 ± 0.15 1, 4 1.13 0.35

Nestling age 5.50 ± 0.99 1, 244 22.45 <0.0001

Ageing method (est.) −4.43 ± 1.18 1, 244 15.05 0.0001

Sex (male) −0.14 ± 0.67 1, 244 0.07 0.80

Brood size −0.32 ± 0.29 1, 244 1.18 0.28

R2
m = 0.26; R2

c = 0.41

Note: All models included state as a random effect. Reference (intercept) levels for categorical variables are specified in parentheses. Marginal (R2
m) 

and conditional (R2
c) R-squared values represent the proportion of total variance explained by fixed, or fixed and random effects, respectively. 

Significant effects (p ≤ 0.05) are bolded.
aReference levels.
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8  |    WOLF et al.

between telomere length and proxies of nestling growth (Table  4; 
Figure 4b), as all models containing telomere length and not shelterin 
protein gene expression had a ∆AIC ≥5.15, with model weights ≤0.06. 
Both ‘null + shelterin’ models also had more support than the null model 
alone, which had a ∆AIC ≥3.06. Furthermore, model averaging revealed 
that shelterin protein gene expression, but not telomere length, signifi-
cantly predicted both nestling body mass and wing length (Table  5). 
Therefore, inclusion of shelterin protein gene expression in statistical 
models improved latitude- and age-based predictions of nestling growth 
and critically, outperformed models that included telomere length.

4  |  DISCUSSION

Telomeres have been connected to environmental and intraspecific 
variation in life history (Burraco et al., 2020; Karkkainen et al., 2022; 

Kirby et al., 2017; Tricola et al., 2018; Whittemore et al., 2019), and 
we hypothesized that shelterin proteins may be key underlying me-
diators. We used tree swallows, which vary across populations in a 
number of environmental and life history traits like body size and 
growth (Ardia,  2005, 2006; Dunn et  al.,  2000; McCarty,  2001), a 
result replicated here using nearly 10° of latitude and updated to in-
clude the expanding southern range edge. Across these populations, 
we found significant non-linear latitudinal patterns in shelterin pro-
tein gene expression. Specifically, nestlings from mid-latitude sites 
expressed on average nearly double the shelterin mRNA compared 
to more northern and southern sites, and individual variation was 
even more marked (up to 256×). Because the pleiotropic effects of 
shelterin proteins are likely related to telomere dynamics and may 
affect physiology, we expected to also find intraspecific variation in 
telomere length and body size measured at the end of the growth 
period, the latter of which is an established proxy of growth and 

TA B L E  4  Akaike's information criteria for general linear mixed effects models predicting nestling mass and wing length with either 
telomere length or shelterin protein gene expression (PC1).

k logLik ∆AIC Akaike weight

Nestling body mass (g), n = 150

Null + Shelterin PC1 10 −322.93 0 0.77

Null 9 −325.61 3.06 0.17

Null + Telomere length 10 −325.51 5.15 0.06

Nestling wing length (mm), n = 150

Null + Shelterin PC1 10 −453.00 0 0.99

Null 9 −460.40 12.49 0.002

Null + Telomere length 10 −459.29 12.58 0.002

Note: The base (or ‘null’) model includes latitude, latitude2, age at sampling, ageing method, sex and brood size, with population as a random effect.

F I G U R E  4  The relationship between body mass and (a) shelterin protein gene expression (PC1) or (b) relative telomere length (T/S ratio) 
among nestlings at 12 days old. One unit of PC1 equates to increases in gene expression of 50% for POT1 and 100% (or doubling) for TPP1, 
TRF2 and TRF2IP. Points represent individual nestlings. Shaded areas show 95% confidence intervals. Note that different Indiana nestlings 
were used for telomere and shelterin protein analyses, and so they could not be included here.
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    |  9WOLF et al.

predictor of future fecundity and survival (Haywood & Perrins, 1992; 
McCarty, 2001). While we did not find a relationship between tel-
omere length and nestling morphology, we did find that shelterin 
protein mRNA abundance better predicted intraspecific variation in 
nestling size than did telomere length, altogether encouraging con-
tinued research on shelterin proteins in life history.

We predicted that shelterin protein gene expression would 
co-vary with latitude, and we found lower shelterin mRNA 
abundance at the northern and southern ends of our sampling 
range. Quadratic relationships with latitude are not uncommon 
(Karkkainen et  al.,  2022; Lappalainen et  al.,  2008) and may be 
driven by factors that act differentially with latitude. For example, 
shelterin proteins respond to food limitation (Rouan et al., 2021; 
Wolf et  al.,  2022), a major driver of population dynamics at 
more northern latitudes (MacArthur,  1984). Other factors may 
dominate in the south. For example, the southernmost popu-
lation in this study (South Carolina) lies at the edge of an ongo-
ing southward range expansion (Siefferman et  al.,  2023; Wright 
et  al.,  2019). Expanding populations, including those of the tree 
swallow, often exhibit unique sets of phenotypes like boldness 
or aggression (Siefferman et  al., 2023), both energetically costly 
behaviours that may affect shelterin protein abundance (sensu 
Ludlow et al., 2013). Regardless of its cause, population averages 
differ by as much as twofold (a doubling) in their baseline gene 
expression. Among-individual variation within populations was 
even more marked, up to ~2.5 to 8 log2-fold, which translates to 6 
to 256-fold variation in gene expression among individuals. While 

shelterin mRNA abundance has already been linked to stress resil-
iency and survival in adults and nestlings of this species, respec-
tively (Wolf et al., 2022), we cannot yet determine the functional 
outcomes of this variation. At present, we have no evidence that 
this natural intraspecific variation compromises telomere func-
tionality. As speculated below, latitudinal variation in shelterin 
levels may lead to differential regulation of physiology (e.g. me-
tabolism and immune function) and the expression of life history 
traits across populations.

Telomere length, on the other hand, did not vary with latitude 
in 12-day-old nestlings. Our result is among others in asking how 
the environment drives spatial patterns of telomere length (re-
viewed in Burraco et  al.,  2021), for example long telomeres are 
found in low-latitude adult black bears (Ursus americanus) but mid-
latitude nestling and adult pied flycatchers (Ficedula hypoleuca; 
Karkkainen et al., 2022; Kirby et al., 2017). Latitudinal differences 
may be masked by variation in telomere length within populations 
that results from variability in natal conditions and population-
specific factors. Within-population variability may also shrink 
after the first year of life, at which point only 10%–20% of nest-
lings remain alive (Winkler et al., 2020). If so, latitudinal patterning 
may emerge among adults, though compensatory shifts in telo-
mere regulation may equalize length across the range. However, 
strong directional selection on telomere regulation or length may 
be unlikely if it promotes non-functional telomeres or cancers. 
Continued population and longitudinal analyses are key to disen-
tangling these alternatives.

TA B L E  5  Conditional model-averaged coefficients for models predicting nestling body mass and wing length with either shelterin protein 
gene expression or telomere length.

Body mass (g) (n = 150) β estimate ± SE F-value p-value

Intercept (known, female)a 188.33 ± 122.96 1.52 0.13

Shelterin protein gene expression −0.35 ± 0.12 2.78 0.005

Telomere length 0.03 ± 0.44 0.07 0.94

Latitude −9.62 ± 6.50 1.47 0.14

Latitude2 0.13 ± 0.09 1.50 0.13

Nestling age 1.03 ± 0.22 4.60 <0.0001

Ageing method (est.) 0.09 ± 0.45 0.20 0.84

Brood size −0.62 ± 0.14 4.30 <0.0001

Wing length (mm) (n = 150) β estimate ± SE F-value p-value

Intercept (known, female)a 280.12 ± 186.56 1.49 0.14

Shelterin protein gene expression −1.25 ± 0.31 3.97 <0.0001

Telomere length 0.39 ± 1.14 0.34 0.74

Latitude −15.99 ± 9.88 1.60 0.11

Latitude2 0.21 ± 0.13 1.62 0.10

Nestling age 5.68 ± 0.55 10.16 <0.0001

Ageing method (est.) −3.62 ± 1.08 3.32 0.0009

Brood size −0.15 ± 0.36 0.43 0.67

Note: Population was included as a random effect in all models. Significant effects (p ≤ 0.05) are bolded.
aReference levels.
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10  |    WOLF et al.

That shelterin protein gene expression did not co-vary with 
telomere length may not be intuitive, but there are several rea-
sons why this might be the case. The only major evidence of 
shelterin-telomere covariation comes from research on cancer (Fujii 
et al., 2008; Hu et al., 2010), a diseased state in which trait variation 
may far exceed that of putatively healthy wild animals. Shelterin-
telomere covariation may be masked, first, by other telomere reg-
ulators like glucocorticoids (Angelier et al., 2018) and antioxidants 
(Badas et al., 2015). Second, shelterin abundance may be more tem-
porally and environmentally plastic than telomere length (Belmaker 
et al., 2019; Chik et al., 2022), which may produce covariation only 
under specific conditions or windows of time. In addition, focusing 
sampling on median-massed, 12-day-old nestlings may limit varia-
tion in telomeric traits and, thereby, the probability of detecting rela-
tionships. Shelterin abundance may also be more strongly correlated 
with telomere length in tissues with greater telomerase activity 
than nucleated red blood cells (e.g. gonads; Haussmann et al., 2007). 
These findings underscore the need for a closer look at the dynamics 
of shelterin proteins and telomere length, and the relative role each 
plays in tracking versus contributing to life history.

Biomolecular work has begun to establish potential links be-
tween shelterin proteins and physiological traits that have ecologi-
cal relevance (Akincilar et al., 2021; de Lange, 2018; Ye et al., 2014). 
Consistent with this view, we found that shelterin protein gene 
expression co-varied with two key proxies of growth, namely, 
mass and wing length measured after a period of rapid postna-
tal growth. Furthermore, shelterin protein gene expression was 
a stronger predictor of morphology than telomere length and im-
proved upon our basic latitudinal model, suggesting that shelterin 
proteins may contribute to intraspecific variation in life history 
traits. The fact that shelterin is highly expressed in the blood of 
adult tree swallows despite negligible telomerase activity in the 
same tissue (Bentz et al., 2019) suggests that shelterin may act via 
telomere-independent functions. For example, high shelterin levels 
(e.g. RAP1, TIN2) are associated with metabolic dysfunction in cell 
culture (Chen et al., 2012; Teo et al., 2010). High shelterin gene ex-
pression was found in our smallest nestlings, whose slow postnatal 
growth is a robust predictor of lifespan (McCarty, 2001). Similarly, 
Wolf et al.  (2022) reported higher shelterin POT1 gene expression 
in adult birds with smaller body mass and a stronger weight-loss re-
sponse to sickness. Experimental manipulation of a shelterin gene 
(TRF1) also affects metabolism (Augereau et al., 2021). Continued 
efforts to characterize shelterin proteins in nature are vital to testing 
shelterin's effects on traits that vary within species and are visible 
to natural selection.

5  |  CONCLUSIONS

We hypothesized that shelterin proteins may contribute to di-
versity in life history because these proteins may functionally 
connect telomere dynamics to physiological outcomes and life 
history traits. This hypothesis differs from the prevailing idea 

that telomeres are passive correlates of life history traits and, to 
date, remains largely untested. However, our among-population 
analyses corroborate and extend a few recent and exciting within-
population analyses of shelterin proteins (Rouan et  al.,  2021; 
Wolf et al., 2022). In doing so, we underscore the need for fur-
ther study of the shelterin proteins in an ecological context (as 
discussed in Wolf & Shalev,  2023). By applying these ideas to 
variation within and among species, we will move closer to un-
derstanding the proximate mechanisms that generate patterns of 
diversity in nature.
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