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THE BIGGER PICTURE

The sun being our greatest source

of renewable energy, scientific

developments focus on tactically

storing the sunlight and

purposefully using it in the right

energy form. Over time, many

organic photoswitches have

emerged as molecular solar

thermal (MOST) energy storage

materials to harness the photon

energy of sunlight and release

thermal energy on demand.

However, many photoswitches

demand large molecular motions

for isomerization, which is highly

obstructed in a solid phase,
SUMMARY

We introduce donor-acceptor substituted anthracenes as effective
molecular solar thermal energy storage compounds that operate
exclusively in the solid state. The donor-acceptor anthracenes un-
dergo a visible light-induced [4+4] cycloaddition reaction, produc-
ing metastable cycloadducts—dianthracenes with quaternary car-
bons—and storing photon energy. The triggered cycloreversion of
dianthracenes to anthracenes discharges the stored energy as
heat in the order of 100 kJ/mol (200 J/g). The series of compounds
displays remarkable self-heating, or cascading heat release, upon
the initial triggering. Such self-activated energy release is enabled
by the large energy storage in dianthracenes, low activation energy
for their thermal reversion, and effective heat transfer to unreacted
molecules in the solid state. This process mirroring the self-ignition
of fossil fuels opens up opportunities to use dianthracenes as effec-
tive and renewable solid-state fuels that can release energy rapidly
and completely upon initial activation.
limiting practical applications. We

demonstrate a set of donor-

acceptor functionalized

anthracene derivatives that

undergo photocycloaddition to

dianthracenes and subsequently

release heat during their

cycloreversion, all in the solid

state. The heat release is self-

activating, which solves one of the

biggest challenges in the effective

utilization of MOST compounds,

i.e., the difficulty in extracting the

stored energy. The new

compounds are anticipated to

serve as rechargeable and easy-

to-use solid-state fuels.
INTRODUCTION

The concept of molecular solar thermal (MOST) energy storage has been largely

demonstrated with molecular photoswitches including norbornadienes,1,2 azo(he-

tero)arenes,3–6 hydrazones,7 dihydroazulenes,8,9 and fulvalene diruthenium10,11 de-

rivatives that store photon energy in their metastable photoisomers. Although many

of these systems and potential candidates have been primarily investigated in solu-

tion state12–18 and in confined spaces,19–25 enabling energy storage and release

processes in condensed liquid or solid phases has been actively pursued to achieve

MOST systems with maximized gravimetric energy densities. In this effort, various

azo(hetero)arenes26–29 and hydrazone7 derivatives were designed to undergo

photo-induced structural changes in solids and transform into liquids, harnessing

the additional energy storage from the phase transition. Recently, another class of

MOST compounds has emerged, which stores photon energy via crystalline-state

photochemical reactions,30–34 showcased by the intermolecular [2+2] photocy-

cloaddition among styrylpyryliums.35 The strong donor-acceptor design of styryl-

pyrylium (STP) structures allowed for the favorable head-to-tail stacking of molecules

in crystals and the facile [2+2] cycloaddition upon the absorption of a broad range of

visible light as well as the natural solar spectrum. Also, both UV-induced and ther-

mally activated cycloreversion of cyclobutanes to styrylpyryliums were successful,

releasing the stored energy as heat (DHstorage).
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Although this demonstration highlighted the opportunities to use solid-state inter-

molecular photochemical reactions for MOST energy storage, there were significant

limitations of the styrylpyrylium-based systems. First, the maximum energy storage

density of 42 kJ/mol per cyclobutane and gravimetric energy density of 51 J/g35

were suboptimal compared with the conventional MOST systems such as azo(he-

tero)arenes36,37 and norbornadienes38–40 that offer energy storage densities over

100 kJ/mol and 300 J/g. Second, the activation energy (DGz) of 121–122 kJ/mol

for the thermally activated cycloreversion process is far greater than the released

energy of 42 kJ/mol, which necessitates the continuous heating of the metastable

cyclobutanes at temperatures above 131�C for complete cycloreversion and heat

release.35 Therefore, the energy release could be monitored only on a few-milligram

scale using differential scanning calorimetry (DSC), while it was challenging to detect

any sizable temperature increase of the solid MOST compounds outside the ther-

mally insulated environment of DSC. The small amount of energy released from

the solids quickly dissipates to the air and substrates, leading to negligible temper-

ature changes of the compounds that are in thermal equilibrium with the heat

source.

For any potent fuels, the ability to self-heat upon initial triggering is essential, which

limits the external energy supply to a short-term initiation and maximizes the effi-

ciency of energy release. For example, the self-ignition of hydrocarbons enables

the complete and spontaneous combustion of the fuels after the initial compres-

sion41- or electrical discharge-induced triggering of the exothermic reactions.42,43

Frontal polymerizations have also leveraged exothermic reactions to self-propagate

the polymer growth.44–47 These irreversible self-activating reactions generate prod-

ucts such as carbon dioxide, water, and polymers.41–47 To the best of our knowl-

edge, any significant self-activated energy release from MOST systems has not

been observed for several reasons. In solution state, heat dissipation to the large vol-

ume of solvent is prominent and restricts effective heat transfer to the unreacted

metastable isomers. Even in the solid state, thin films or powders have large surface

areas where the released heat quickly dissipates to the surroundings, limiting the

heat transfer between molecules.48,49 Lastly, the DGz for thermal reversion is gener-

ally much greater than the released energy per molecule, which fundamentally pre-

vents a cascade of exothermic reactions.35,50,51

Thus, we aim to design scalable MOST systems that operate in solvent-free condi-

tions, store a large quantity of energy (DGstorage), comparable to or greater than

the DGz of reversion, and self-activate the heat release and propagation. In order

to improve the DGstorage, we selected a small and neutral aromatic molecule, anthra-

cene, as a scaffold for MOST energy storage compounds. The molecular weight

of anthracene (178 g/mol) is significantly smaller than that of styrylpyryliums

(412–474 g/mol) bearing two tBu groups and heavy counter-anions ranging from

BF4
� and ClO4

� to CF3SO3
�.35 The solid-state photodimerization of anthracenes

has been largely studied for their photomechanical responses in crystals,52 particu-

larly with those bearing a Me53–56 or a COOH57–60 group on the 9-position of anthra-

cene. Anthracenes have also been incorporated into the building blocks of covalent

organic frameworks61–63 and metal organic frameworks,64,65 displaying reversible

dimerization in solid state. The potential of anthracene derivatives for MOST energy

storage has been studied only at a fundamental level66–70; anthracenes bearing a

functional group (CHO, CH2OH, Me, and longer alkyls) on the 9-position71–75 or

two groups (OMe and COOR) on 2,6-positions76 were photodimerized in solutions,

and their thermal reversion was monitored either in solutions or in molten liquid

states, recording small energy storage values of 20–30 kJ/mol.
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Figure 1. Energy storage and release via reversible cycloaddition of anthracenes

(A) Schematic illustration of photon energy storage in dianthracenes and triggered release of energy during their cycloreversion to anthracenes.

(B) Reversible [4+4] cycloaddition of anthracene derivatives 1–4.

(C) Solid-state UV-vis absorption spectra of 3-A and 3-D obtained from irradiation and thermal reversion.

(D) Solution-state UV-vis absorption spectra of 3-A and 3-D in dichloromethane. 3-A is obtained from the thermal reversion of 3-D in solution.
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However, a report in 1972 by Donati et al. illustrated rare exceptions; the dimers of

9-CN-anthracene and 9-CN, 10-AcO-anthracene were revealed to undergo solid-

state thermal cycloreversion to anthracenes, releasing 74 and 82 kJ/mol, respec-

tively.77 The temperatures of thermal reversion were lower than the melting points

of the corresponding anthracenes, enabling the measurement of the enthalpy

associated with the solid-to-solid transition. Building upon this observation, we hy-

pothesized that 9-CN-anthracene derivatives could be good candidates for MOST

energy storage, upon the functionalization of the 10-position, which fine-tunes the

relative scale of DGz of thermal reversion and DGstorage. The successful elucidation

of the structure-property relationships would enable the self-activated energy

release from dianthracenes in solid state.
RESULTS AND DISCUSSION

To understand the significance of substituents on anthracenes for energy storage,

we initially performed a theoretical investigation of DGstorage among the anthracene

derivatives bearing various electron-donating and -withdrawing functional groups

(Me, MeO, Br, CN, and NO2) on the 9-position. Our density functional theory

(DFT) calculation results suggest that there is a large gap between the DGstorage of

9-CN-anthracene (106 kJ/mol) and the rest of anthracene derivatives (51–65 kJ/

mol) (Table S1). Additionally, varying the functional group position on anthracene re-

sults in a larger DGstorage value for 9-CN than 1-CN and 2-CN (54 and 42 kJ/mol,

respectively) (Figures S1–S3). Based on these results, we postulate that the 9-CN

functionalization significantly stabilizes the anthracene structure via effective elec-

tron delocalization, relative to the dearomatized dianthracene counterpart with

considerably less electron delocalization, increasing the energy gap between the

two states. Thus, we designed and investigated anthracene derivatives with

donor-acceptor structures, which would further enhance the electron delocalization

over the anthracene structures and potentially increase DGstorage.

Functionalized anthracenes undergo [4+4] photodimerization in the solid state

(Figure 1A) when the distance between two neighboring, cofacial reactive units is

within 4.2 Å, according to Schmidt’s principle.78 The resulting dianthracenes are
Chem 10, 3309–3322, November 14, 2024 3311



Figure 2. Solid-state characterizations

(A) Solid-state 13C NMR spectra of 3-A and 3-D and the corresponding chemical structures.

(B) DSC thermograms of 3-A and 3-D measured during the first heating (black) and cooling (blue) cycle.

(C) DSC thermographs of 1-D, 2-D, and 4-D, measured during the first heating cycle. Red highlighted areas represent the exotherms of cycloreversion

(DHstorage). Tm-A, melting point of anthracene; Tc-A, crystallization point of anthracene; Trev, peak temperature of thermal reversion; Tonset, onset

temperature of thermal reversion.
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metastable, storing the energy equivalent to the difference between the thermody-

namically stable anthracene pairs and dianthracenes (DGstorage). Upon thermal or

photochemical triggering, the cycloreversion to anthracenes occurs, releasing the

DHstorage. DSC allows for the measurement of DHstorage, which can be a good

approximation for DGstorage, for solid-state cycloadditions that undergo minimal

structural and volume changes compared with solution- or gas-phase reactions.

We investigated 9-CN-anthracene derivatives by functionalizing the 10-position

with H (1), Me (2), MeO (3), and AcO (4) (Figure 1B). In addition to increasing the elec-

tron delocalization over anthracenes, the donor-acceptor structures are expected to

facilitate a head-to-tail stacking of the monomers in the crystals, which increases the

chance of dimerization and yielding a single isomer of the photodimer. We prepared

photodimers of compounds 1–3 via irradiation with a 405 nm LED in the solid state;

the anthracenes were mixed and stirred with small stainless-steel balls in a stainless-

steel jar, assisted by magnetic stirring (Video S1). The ball-mixed solid-state photo-

dimerization was quantitative and more effective than the photoconversion of static

or solvent suspended powder samples (Figures S4–S7; Table S2). Compound 4 was

able to photodimerize only in ether suspension, indicating the less favorable packing

of anthracenes and limited conformational freedom in crystals. The UV-vis absorp-

tion spectra of compounds 1–3 were recorded in thin films (Figures 1C and S8–

S11) that showed reversible dimerization upon photoirradiation and thermal activa-

tion. For compound 4, diffuse reflectance spectra were acquired instead, due to the

difficulty of obtaining uniform films for the dianthracene (Figure S8). In solutions, the

dianthracenes rapidly revert to anthracenes even at room temperature (Figure 1D),

and the photocycloaddition of anthracenes in solution was not performed because it

could produce amixture of head-to-head and head-to-tail dimers. All UV-vis absorp-

tion spectra of solution-state compounds are illustrated in Figure S12.

The formation of dianthracenes in high yield was confirmed by solid-state nuclear

magnetic resonance ( NMR) spectroscopy (Figure 2A). Since dianthracenes readily
3312 Chem 10, 3309–3322, November 14, 2024



Figure 3. Simulated crystal structures of 3-A and 3-D

(A) Simulated and refined crystal structures of 3-A and 3-D, showing head-to-tail stacking of anthracenes and the shortened distance between reactive

carbons upon bond formation. Simulated and refined packing structures of (B) 3-A and (C) 3-D, displaying crystal-to-crystal transformation and 0.3%

volume increase upon dimerization.
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revert to the monomer anthracenes upon dissolution in organic solvents, it is difficult

to identify the chemical composition of the as-synthesized dianthracenes using so-

lution-state NMR (Figures S13–S25). The solid-state 13C NMR spectra of all dianthra-

cenes show >97% dimer content with negligible monomer residue, and the different

chemical shifts of the reactive carbon atoms before and after dimerization are clearly

monitored (Figures S26–S29). Thermal properties of anthracenes and dianthracenes

were investigated using DSC in the range from�90�C to around 200 �C, below their

decomposition temperatures (Figure S30). The anthracenes exhibit clear melting

and crystallization, and the dianthracenes undergo exothermic thermal cyclorever-

sion to generate corresponding anthracenes, allowing for the measurement of

DHstorage that serves as an approximation for DGstorage (Figures 2B and S31). The

heating curves of all dianthracenes are illustrated in Figures 2B and 2C, showing

multiple exothermic events occurring simultaneously. Typical energy release from

metastable MOST compounds such as azo(hetero)arenes,37 hydrazones,7 Lewis

acid-coordinated azo compounds,29 and styrylpyryliums,35 appears as a broad exo-

therm resembling a Gaussian curve. The presence of sharp peaks in addition to the

broad exotherm indicates that additional exothermic process(es) accompanies the

thermal cycloreversion. We hypothesize that crystal-to-crystal phase transition oc-

curs during the cycloreversion, which contributes to the large DGstorage values of

9-CN-anthracene derivatives.

Crystal structures were analyzed using the combination of single-crystal X-ray

diffraction (XRD) (1-A, 1-D, and 2-A) and structure simulation from powder XRD

(PXRD) data, refined by Pawley method (2-D, 3-A, 3-D, 4-A, and 4-D) (Tables S3

and S4; Figures S32 and S33). Figure 3A shows the head-to-tail stacked 3-A pairs dis-

playing distances between the reactive carbon atoms below 4.2 Å, fulfilling

Schmidt’s principle. The photoirradiation of 3-A crystals generates head-to-tail

dimer 3-D, while inducing small changes in molecular packing. Figures 3B and 3C

show the overall crystal structure changes between 3-A and 3-D, with about 0.3%

of unit cell volume increase upon dimerization. The crystal structures of all mono-

mers and dimers of compounds 2–4 are illustrated in Figures S34–S41, documenting
Chem 10, 3309–3322, November 14, 2024 3313



Table 1. Thermal parameters for cycloreversion process

D/A Tm-A (�C) Tonset (�C) DGstorage (kJ/mol) DGstorage (J/g) DGz (kJ/mol) t1/2 (days)

1 179 140 82 201 129 69,543

2 207 68 96 221 107 5.7

3 176 75 96 205 104 6.3

4 197 59 102 195 101 1

STP 250 132 42 51 122 2,045

Tm-A, melting point of anthracene monomer; Tonset, onset temperature of cycloreversion; DGstorage, en-

ergy storage density; DGz, activation energy for thermal cycloreversion in solid state; t1/2, thermal half-

life of dianthracene at room temperature in solid state.
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unit cell volume changes of 4% (2) and 3% (4) upon dimerization. Compound 1 un-

dergoes the most significant structural changes from 1-A (head-to-head paired) to

1-D (head-to-tail dimer) and a space group change, indicating the rotation of anthra-

cenes under photoirradiation during the dimerization process.79 Based on the

changes of the molecular packing for compounds 1–4 upon dimerization, we recog-

nize the contribution of the solid-state phase transition enthalpies to the overall en-

ergy storage densities of these MOST systems.

Table 1 summarizes the important thermal parameters relevant to the cycloreversion

process of compounds1–4 and a styrylpyrylium that exhibited thegreatest energy stor-

age for the [2+2] cycloaddition-based MOST system. First, we compare the melting

points of anthracenes (Tm-A) and the onset temperature for thermal cycloreversion

(Tonset) recordedbyDSC. For all compounds,Tm-A is higher thanTonset, which is critically

important for achievinganet exothermicprocessof cycloreversion. IfTm-A is similar toor

lower than Tonset, the released heat is reabsorbed during the melting process of the

generated anthracenes, significantly reducing the overall energy release. We notice

that Tonset values of donor-acceptor structures 2–4 are substantially lower than that of

9-CN-anthracene (1), which favorably increases the temperature gap between Tonset
andTm-Aandprevents the reabsorptionof thermal energyby themeltingof anthracene.

The lower Tonset values also indicate the smaller DGz of cycloreversion for compounds

2–4, achieved by the functionalization at the 10-position (vide infra).

All compounds 1–4 display substantial energy storage densities (DGstorage), both per

molecule and permass, comparable to those of norbornadienes39,40 and phase-tran-

sition MOST compounds based on azo(hetero)arenes (Figure S42).26,37 These values

of up to 102 kJ/mol or 221 J/g, significantly larger than those of styrylpyryliums (max.

42 kJ/mol or 51 J/g),35 are attributed to the intrinsically weaker and longer C–C

bonds of dianthracenes (1.61 Å for STP dimer,35 1.63–1.65 Å for 1-D80) and the addi-

tional exothermic events associated with solid-state phase transitions. We also

measured the Gibbs free energy of activation (DGz) and half-lives for the thermal cy-

cloreversion of dianthracenes using DSC (Figures S43–S46; Table S5). Notably, the

DGz and DGstorage values of dianthracenes were nearly identical for 4-D and similar

for 2-D and 3-D (Table 1), in contrast to styrylpyryliums that exhibit much greater

DGz than DGstorage (�3 times). We have compiled DGz and DGstorage values of re-

ported MOST energy storage systems (Figure S42) to find that the majority of such

systems display much greater DGz than DGstorage. Thus, we hypothesize that this

modest difference between DGz and DGstorage would allow for the self-activated

cycloreversion upon the initial triggering of dianthracenes, as long as the released

heat is effectively transferred to the neighboring unreacted dianthracenes.

To verify this hypothesis, we performed local Thermal-triggering experiments

on compact solid pellets of compounds (Figure 4A). The temperature profiles of
3314 Chem 10, 3309–3322, November 14, 2024



Figure 4. Thermal activation of 3-A and 3-D in pellets

(A) Schematic of the experimental setup composed of a heating block and a solid pellet of compound. Temperature profiles of a solid pellet measured

over time at five positions (a–e) for (B) 3-A and (C) 3-D, and the corresponding images showing the color and temperature change of a pellet over time

for (D) 3-A and (E) 3-D that reverts to 3-A.
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monomeric anthracenes (exemplified with 3-A in Figure 4B) represent the slow and

stagnating heat conduction through the solid organic compounds (Video S2). By

contrast, the pellet of dimeric 3-D undergoes a rapid temperature increase within

2 min of local thermal triggering at position a, and the released heat is quickly trans-

ferred to positions b–e, resulting in a sharp increase in temperature throughout the

whole pellet and reaching a maximum temperature of 165�C (Video S3). After the

heat release process, the pellet spontaneously cooled down to the baseline temper-

ature via heat dissipation to the surroundings, consistent with the temperature of

3-A. The abrupt increase in temperature for the pellet of 3-D, far exceeding the base-

line temperature, is attributed to the exothermic process of [4+4] cycloreversion of di-

anthracenes. To the best of our knowledge, this is the first experimental observation of

such a cascade of thermally triggered exothermic processes throughout MOST com-

pounds. A prior report on a solid-state MOST system, consisting of an azobenzene

polymer, illustrated the Thermal-triggering experiment for a polymer pellet, which

required heating the entire pellet to 150�C using an external heat source.49 The

released heat from the polymer yielded relatively small temperature differences

(max. 10�C) from the baseline, due to the small DGstorage (less than 100 J/g) and fast

thermal equilibrium with the heat source set at the high temperature. Most impor-

tantly, no heat cascade has been observed, which makes the donor-acceptor 9-CN-

anthracene derivatives a unique class of MOST compounds that can self-activate the

heat release from the entire solid materials upon the initial triggering. The optical

and infrared radiation (IR) images of pellets of 3-A and 3-D are shown in Figures 4D

and 4E, corresponding to the temperature profiles in Figures 4B and 4C.
Chem 10, 3309–3322, November 14, 2024 3315



Figure 5. Thermal and IR-laser triggering of 3-D and unsuccessful cascade of cycloreversion for 1-D

(A) Optical and IR images showing the color and temperature change of a pellet of 3-D during heat propagation.

(B) Net temperature increases of the pellet over time (positions a–e are consistent to those in Figure 4A).

(C) Kinetics of spatial heat propagation. Dd (x–a) is the distance between a position on the pellet (b–e) and the position a.

(D) IR-laser triggered cycloreversion and heat cascade for a pellet of 3-D.

(E) Optical and IR images showing the melting process of a pellet of 1-D upon cycloreversion.

(F and G) Temperature profiles of a solid pellet measured over time at five positions (a–e) for (F) 1-A and (G) 1-D.
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To investigate the rapid heat cascade process, we analyzed the propagation of heat

front through the pellet (Figure 5A). The bottom of the pellet (position a) starts to

release heat at 100 s, and the heat transfer to the top of the pellet (position e) is

completed within 10 s (Figure 5B). The net temperature change of the pellet,

achieved by the exothermic cycloreversion, is shown as DT (D–A) and is as large as

120�C, underlining the enormous potential of the MOST system as a renewable

heating material for a thermal battery application. The rate of spatial heat propaga-

tion (vprop) through the solid pellet is measured to be 0.7 mm/s for compound 3 (Fig-

ure 5C), and the successful observation of self-activated heat release for compounds

2–4 is summarized in Table 2 and illustrated in detail in Figures S47–S51. Videos S4,

S5, S6, and S7 show the heating experiments of compounds 2-A, 2-D, 4-A, and 4-D,

respectively. The induction period for thermal triggering (tind) is even shorter, and

vprop is higher for compound 4, due to its lower DGz value for cycloreversion and

more facile heat release compared with 3. For compound 2, its low Tonset and large

DGstorage enable a rapid cascade of reversion throughout the pellet, despite its high

DGz value. The maximum temperature detected on each pellet (Tmax) is also higher

for compounds 2 and 4 than compound 3, highlighting the tunability of the temper-

ature profile and heat release kinetics by molecular design. Since there are signifi-

cant gaps between the thermal reversion temperature (Trev) and Tm-A for compounds
3316 Chem 10, 3309–3322, November 14, 2024



Table 2. Thermal parameters for the self-activated heat cascade process

D/A Trev (�C) Ttrig (�C) tind (s) vprop (mm/s) Tmax (�C) Tm-A (�C) DGstorage (J/g)

1 156 155 n/a n/a 166 179 201

2 95 90 83 1.2 185 207 221

3 95 90 96 0.7 165 176 205

4 82 80 76 1.3 174 197 195

Trev, peak temperature of cycloreversion; Ttrig, triggering temperature set for the heat source; tind, induc-

tion period for thermal triggering; vprop, rate of spatial heat propagation; Tmax, maximum temperature

detected on each pellet; Tm-A, melting point of anthracene monomer; DGstorage, energy storage density.
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2–4, the released heat from cycloreversion is not reabsorbed by the melting process

of the resulting anthracenes. We note that the pellets of compounds 2 and 4 un-

dergo noticeable shape changes to vertical ovals upon the self-activated heat

release (Figures S47 and S48), which is attributed to the larger volume change of

compounds 2 and 4 (4% and 3%, respectively) than compound 3 (0.3%) during the

cycloreversion. The compounds were tested for the repeated photodimerization

and self-activated heat release processes, revealing no degradation by the NMR

analysis. The exceptional stability of the compounds under photoirradiation is attrib-

uted to the solid-state reaction conditions that limit any side reactions such as the

oxidations. The precisely arranged anthracene pairs in crystals undergo facile dimer-

ization, and the exposure to oxygen in crystals is significantly lower than that for dis-

solved molecules in solutions.

We also designed IR-laser-triggering experiments on pellets of 3-D (Figure 5D) to

confirm that short-term triggering of a smaller area on the pellets can lead to heat

propagation. An IR-laser (l of 1,200 nm, power of 630 mW, and approximate spot

size of 29 mm) was used to trigger an off-center position of the pellet of 3-D for 6–

8 s, which resulted in the radial propagation of a heat front and the completion of

heat release within 20 s (Video S8; laser irradiation on 3-A can be seen in Video

S9). The similarity in the heat propagation kinetics triggered by the transient laser

irradiation and by the heat conduction from a localized heat source indicate that

only localized and short-term thermal triggering is necessary to convert a small

portion of the MOST materials above a threshold, which is followed by the self-

cascading heat transfer and complete conversion. We also designed an experiment

where the heated pellet is in contact with a steel plate, a thermally conductive ma-

terial (Figure S52; Video S10). Due to the rapid heat transfer to the steel plate, the

self-activated heat release within the pellet was suppressed. When the steel plate

was removed, the cascade of reversion was resumed, which confirms the hypothesis

that a threshold has to be reached to initiate the propagation of reaction. Another

experiment where the self-activated pellet is submerged in water also stopped

the cascade (Figure S52; Video S11), evident from the partially converted pellet,

due to the rapid heat dissipation to water.

We note that compound 1, unlike compounds 2–4, fails to undergo self-activated

heat release, due to the small gap between Trev and Tm-A (Table 2), which leads to

the melting of anthracenes by the released heat (Figure 5E; Video S12). The temper-

ature profiles of the pellet of 1-D do not display any peaks or heat propagation fea-

tures, similar to those of 1-A (Figure 5F; Video S13), as a result of the reabsorption of

heat bymelting of anthracene (Figure 5G). Based on the contrast between the unsuc-

cessful (1) and successful (2–4) heat release experiments, we conclude that the tem-

perature gap between Trev and Tm-A should be at least 80�C to prevent the undesir-

able melting of anthracenes for the size of pellets we tested (300 mg, 1 cm in

diameter).
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Figure 6. DFT calculation of [4+4] cycloaddition process

(A) DFT calculation results on [4+4] cycloaddition and reversion of anthracene derivatives, showing

energy level changes surveyed as the distance between two cofacial anthracenes was varied,

calculated at the B3LYP-D3/6-31+G(d,p) level of theory.

(B) Table summarizing the calculation results. DGcalc, calculated energy storage density; DGz
calc,

calculated activation energy; d (C9–C10*)D, distance between a 9-position of an anthracene and a

10-position of the counterpart in a dimer; and d (C9–C10*)TS, distance between a 9-position of an

anthracene and a 10-position of the counterpart in a transition state.
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Lastly, we performed a theoretical investigation of the energetic changes during the

cycloreversion of dianthracenes. We first defined d (C9–C10*) as the distance be-

tween a 9-position of an anthracene and a 10-position of the counterpart in a dimer

or monomer pair. While changing the d (C9–C10*) by 0.1 Å in the range from 1.5 to

3.4 Å, we performed the structural optimization of the paired molecules (Figure 6A).

The most energetically stable structure within this range was obtained at d (C9–

C10*) of 3.4 Å for each compound, so the energy of this structure was used as a refer-

ence point. Compounds 1–4 display themaximum relative energy when d (C9–C10*)

equals 2.4 Å, and we assigned the corresponding structures to the approximated

transition states.81 The results suggest that the introduction of 9-CN and electron-

donating groups on the 10-position increases DGstorage and decreases the DGz of
thermal cycloreversion, corroborating the experimental observations (Figure 6B).

Consistent with our observation of the relative DGstorage among 1-CN, 2-CN, and

9-CN anthracenes (Figures S1–S3), compounds 2–4 that undergo a large reduction

in the effective conjugation upon dimerization display larger DGstorage compared

with anthracene and compound 1. We hypothesize that the relatively destabilized

dimers 2–4 would undergo facile thermal cycloreversion, exhibiting lower DGz

values.

Conclusions

The design of donor-acceptor substituted anthracenes is revealed to be an effective

strategy for enhancing the energy storage in dianthracenes upon photocycloaddi-

tion. The cycloreversion of dianthracenes releases substantial energy, which is attrib-

uted to both the significant change in the conjugation of molecules and their phase

transition during the solid-state reaction. The released energy is comparable to the

DGz of thermal reversion, facilitating the self-activation of further cycloreversion
3318 Chem 10, 3309–3322, November 14, 2024
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upon initial triggering. Although being similar to conventional fossil fuels that un-

dergo self-ignition and spontaneous combustion, the dianthracenes release heat

by self-activation and are recharged by irradiation. The solid-state MOST energy

storage system that requires minimal energy input for triggering significantly en-

hances the efficiency of heat release, and we anticipate further development of

diverse condensed-phase MOST energy storage systems that are fine-tuned to

achieve such self-activated energy release.
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