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ABSTRACT

Using public support to extract information from vast datasets has become a popular 

method for accurately labeling wildlife data in camera trap (CT) images. However, the 

increasing demand for volunteer effort lengthens the time interval between data collection 

and our ability to draw ecological inferences or perform data-driven conservation actions. 

Artificial intelligence (AI) approaches are currently highly effective for species detection 

(i.e., whether an image contains animals or not) and labeling common species; however, 

it performs poorly on species rarely captured in images and those that are highly visually 

similar to one another. To capitalize on the best of human and AI classifying methods, 

we developed an integrated CT data pipeline in which AI provides an initial pass on 

labeling images, but is supervised and validated by humans (i.e., a “human-in-the-loop” 

approach). To assess classification accuracy gains, we compare the precision of species 

labels produced by AI and HITL protocols to a “gold standard” (GS) dataset annotated 

by wildlife experts. The accuracy of the AI method was species-dependent and positively 

correlated with the number of training images. The combined efforts of HITL led to error 

rates of less than 10% for 73% of the dataset and lowered the error rates for an additional 

23%. For two visually similar species, human input resulted in higher error rates than AI. 

While integrating humans in the loop increases classification times relative to AI alone, the 

gains in accuracy suggest that this method is highly valuable for high-volume CT surveys.
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INTRODUCTION

The cumulative impacts of human activities are creating 

rapid changes in the natural world, necessitating frequent 

measurements and updates to conservation management 

strategies (Pacifici et al. 2015; Bonebrake et al. 2018; 

Schlaepfer and Lawler 2023). To understand and mitigate 

these challenges on effective timescales, ecologists and 

conservation practitioners require timely access to large 

amounts of data on wildlife populations. Remote sensors are 

increasingly deployed to evaluate how habitats and species 

respond to global or local changes and management or 

conservation interventions (Anderson et al., 2016; Davis 

et al., 2023; Kays et al., 2010; Palmer et al., 2022). Among 

these sensors, motion-activated wildlife cameras or 

“camera traps” are widely used due to their ability to collect 

detailed data on animal presence, behavior, health, and 

population structure with minimal disturbance. Since 2010, 

the number of ecologists using camera traps has grown 

exponentially due to the hardware’s relatively low cost, ease 

of use, and commercial availability, accelerating the pace 

and volume of ecological data collection and aggregation 

(Burton et al. 2015; Steenweg et al. 2017). This work has laid 

the foundations for novel modeling approaches and large-

scale inference; however, the power and accuracy of these 

insights rely on the classification accuracy of raw camera 

trap (CT) image data (Burton et al. 2015; Caravaggi et al. 

2020; Farley et al. 2018; Hofmeester et al. 2020; Wevers et 

al. 2021; Laporte-Devylder et al. 2023).

Surveys composed of dozens to hundreds of CTs 

may produce tens of thousands of images over several 

months, which must subsequently be labeled with the 

observed species, counts of individual animals, and other 

variables pertinent to the research or conservation action 

in question. In the gathered datasets, many “empty” 

images triggered, for example, by windblown plants or 

overheated electronics, must be labeled as such and set 

aside. Even the resulting “animals only” dataset may 

contain numerous species that are not the focal species 

relevant to the research or conservation question at hand. 

This scenario is becoming commonplace as long-term 

ecological monitoring is adopted to track and combat the 

current extinction crisis (Ceballos et al. 2017).

Managing such volumes of data can rapidly exceed the 

capacity of most CT practitioners, leading many to request 

volunteer help (i.e., citizen or participatory science) via 

online platforms, such as Zooniverse.org, that facilitate 

public participation in scientific research (Gadsden et al., 

2021; Hsing et al., 2018; Islam and Valles, 2020; Jones 

et al., 2018). The Zooniverse is the world’s largest citizen 

science platform, with greater than 2.7 million registered 

users who assist projects across multiple scientific 

disciplines, including ecology, astronomy, and biomedical 

research (Simpson et al., 2014; Trouille et al., 2019). The 

first wildlife image–based project to launch on Zooniverse 

was Snapshot Serengeti, a survey of 225 CTs running 

continuously since 2010 in Serengeti National Park, 

Tanzania (Swanson et al. 2015; Palmer et al. 2021). Using 

a suite of tools to narrow the potential species options by 

body shape, horns, pelage, color, and patterns, and other 

distinguishing characteristics, citizen scientists were asked 

to categorize the species observable in each picture along 

with the number of individuals and basic behaviors and 

demographics. Separate details were collected about every 

species in an image when multiple species were visible. 

Each image was classified by up to 20 volunteers whose 

responses were aggregated. The species receiving the most 

votes was accepted as the final label.

When the public-facing webpage launched in 2013, 

the project had a backlog of 1.2 million observations that 

were processed by volunteers in three days (Swanson et al., 

2015). In the subsequent decade, more than 120 similar 

CT projects have joined Zooniverse, including 24 additional 

project pages for the expanded Snapshot Safari network 

launched in 2018, in which Serengeti is the flagship survey 

(Pardo et al. 2021). Snapshot Safari is the largest use case 

on Zooniverse, with 50+ CT surveys in six African countries 

collecting data using the same protocols. (Surveys with < 10 

CTs and data from temporary CT sites are folded into fewer 

project pages on Zooniverse to facilitate data processing pre- 

and post-classification.) It is also popular with volunteers, 

with > 200,000 users from 77 countries logging on regularly 

to assist with wildlife image classification. Still, increased 

competition for a finite number of willing volunteers extends 

the interval necessary to obtain fully and accurately labeled 

image datasets and return the information they contain to 

researchers and conservation managers.

Increasingly, improvements in computational power 

and the lengthening time required to obtain image labels 

through citizen science have motivated researchers to 

develop artificial intelligence (AI) models for quicker data 

classification (Norouzzadeh et al. 2017; Borowiec et al. 2022; 

Vélez et al. 2023). This presents its own set of challenges, 

as training a highly accurate species-classifying algorithm 

(hereafter, “classifier”) has traditionally demanded large 

volumes of labeled data, on the order of thousands of 

images per species category (“class”). This process therefore 

requires millions of labeled images (i.e., a “many shot” 

approach) for highly diverse ecosystems like the African 

savanna (Pantazis et al., 2024). A typical CT survey produces 

data with a long-tailed distribution, in which a few classes 

contain the vast majority of images while most classes 

contain relatively few (Miao et al. 2021). Thus, AI models 

often perform better at identifying highly abundant or visible 

species than rare and cryptic species that are captured less 

frequently or threatened species with low population sizes.
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METHODS

The Snapshot Safari network first deployed AI in 2018, 

using labeled image data from the Serengeti CT grid and 

eight other African CT surveys to create a custom classifier 

for processing the high volumes of data produced by 

continuous long-term monitoring (Willi et al., 2019). These 

models are available on GitHub for open access use (See 

Data Availability Statement 1). Due to Snapshot Serengeti’s 

early entry into the field, many existing classifiers for 

African wildlife (including transfer learning techniques 

and broader extensions of CT data) have been built using 

the training data labeled by volunteers (Battu and Reddy 

Lakshmi, 2023; Liu et al., 2024; Norouzzadeh et al., 2021; 

Villa et al., 2017). All publicly available data is posted to 

the Labeled Image Library of Alexandria for Biology and 

Conservation (see Data Availability Statement 2). Although 

rigorously assessed in an academic context, the specialized 

Snapshot Safari classifier was largely untested in practice. 

As such, we opted for a “humans-in-the-loop” (HITL) 

approach when integrating the AI model into our pipeline 

to ensure the accuracy of labels prior to use for research 

and conservation purposes.

Prior to incorporating AI, all image labels were generated 

by Zooniverse citizen scientists. Capture events consisting 

of one to three images (three taken in rapid succession 

during the day and one at night) were evaluated by up to 

20 volunteers before retirement (removal from circulation), 

and a consensus algorithm was run to determine the 

species with the highest number of votes, which became 

the ultimate label (Swanson et al. 2015). All images 

within a capture event were kept together throughout 

the classification process as they constitute a single 

observation, and more data may be gleaned from a series 

of photos than one.

Though the urgent necessity of returning processed data 

quickly has made it no longer possible to rely on citizen 

science alone, AI-generated labels are known to be fallible, 

and many researchers recommend carefully evaluating 

these predictions to assess accuracy across time, space, 

and species (Clarfeld et al., 2023; Whytock et al., 2021). AI 

accuracy varies for many reasons, including low numbers 

of training images, differing background vegetation, 

difficult-to-interpret images (Westworth et al., 2022), 

and/or model drift, that is, the tendency of algorithms 

to become outdated and lose accuracy over time, which 

may necessitate additional transfer learning and training 

(Ackerman et al., 2021). Prior work has documented that 

volunteers are accurate 96.6% of the time across Serengeti 

species classes (Swanson et al., 2016), demonstrating that 

humans effectively identify species even when they have 

never or rarely viewed them. Therefore, we developed 

a hybrid approach to classifying images in which human 

volunteers supervised the classifier’s labels, that is, a HITL 

strategy. Here, we compare labels produced by AI and 

HITL against a newly created gold standard (GS) dataset 

annotated by professional ecologists to evaluate the 

impact of human guidance on final precision and accuracy.

GOLD STANDARD DATA

To evaluate the accuracy of both classification methods, 

experienced wildlife researchers (+3 years of experience 

identifying African animals) classified the species in 

captures sampled from data collected from early 2015 

to mid 2017. This is an update to the original Snapshot 

Serengeti GS dataset published in 2016 (see Data Availability 

Statement 3). We selected 6,000 capture events across 

species classes by including all available records of rare 

species during that timeframe and evenly distributing the 

remainder across commonly observed species, resulting in 

44 species classes. When the expert classified a capture 

as “unresolvable” (cannot be classified because the image 

is too dark, there is too much motion blur, an animal was 

occluded by vegetation, etc.), we removed it from this 

analysis since it is impossible that either AI or HITL would 

converge on the correct answer if the expert could not. 

This excluded 216 captures or 3.6% of the newly created 

GS dataset. We also excluded 470 empty captures (7.83% 

of GS dataset) from this analysis because we are focused 

on the accuracy of species labels as the most important 

contribution of human supervision. This resulted in 5,314 

species comparison points from the expert labels.

SNAPSHOT SAFARI AI MODELS

The Snapshot Safari data pipeline incorporates labels 

generated by two convolutional neural network (CNN) 

models trained using the ResNet-18 model architecture (He 

et al., 2016) and Tensorflow (Abadi et al., 2016). Training 

data comprised 3.66 million CT images from nine African 

protected areas participating in Snapshot Safari (five in 

South Africa, three in Tanzania, and one in Mozambique). 

CNN models learn the intrinsic features of training data 

by updating model parameter weights and subsequently 

outputting inference results or “predictions” on unseen data; 

therefore, training data distribution has a crucial impact 

on model performance (Pantazis et al., 2024). Serengeti 

data constituted 89% of the training images because 

these models were created shortly after the inception of 

Snapshot Safari and contained only the first six months of 

data from the other CT grids. Therefore, we focused on the 

Serengeti GS dataset for these analyses. The classifier was 

trained by randomly assigning all images to one of three 

datasets while preserving class distributions: training (90% 

of the data), validation (5%), and testing (5%). The models 
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learned from the training set, and were monitored on the 

validation set to reduce overfitting (Willi et al., 2019).

The Snapshot Safari object detection CNN (“detector”) 

was trained to flag empty images, which can constitute 

a significant percentage of images from CTs situated in 

grasslands or other biomes with rapid vegetation growth. 

It produces a binary output of “empty” or “not empty” 

and a confidence (probability) score indicating certainty in 

its prediction. The detector was evaluated on 71,702 test 

samples, of which 74.38% were rated as “high confidence,” 

set at a minimum threshold of 95%. The detector achieved 

an overall accuracy score of 96.03% rising to 99.5% on 

high-confidence images.

The species-classifying CNN (“classifier”) generates 

predictions with associated confidence scores (the probability 

of a match for every species class based on the classifier’s 

perception of similarity) for 56 species classes. The classifier 

was assessed on 36,469 test captures, 69.53% of which 

were labeled as high confidence, again set at 95% minimum 

threshold. As differences in regional wildlife morphology, 

topographic heterogeneity, and background vegetation 

impact AI accuracy (Beery et al., 2018), we sampled a diverse 

mixture of training photos across sites, seasons, and species 

while selecting all available images of rarely seen species. 

The species assemblages are similar at most of the Snapshot 

Safari sites in eastern and southern Africa, but regional 

variations in morphology and colloquial species names exist, 

so we harmonized the taxonomies prior to training.

The overall model accuracy was 89.4%, rising to 

97.2% for high-confidence images. The three most 

commonly observed species in the Serengeti—wildebeest 

(Connochaetes taurinus), plains zebra (Equus quagga), 

and Thomson’s gazelle (Eudorcas thomsonii)—accounted 

for ~65% of Serengeti training images (see Figure 1). 

Wildebeest images were 94% accurate across the board, 

which improved to 98% accuracy on images rated as high 

Figure 1 Evaluation of Snapshot Safari classifier performance on images in the test dataset for every possible species class from the nine 

sites that provided training data. The model was evaluated for accuracy across all training images and separately for images classified 

with high confidence scores (>95%).
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confidence. For the wildebeest class, 80% of the images 

in the testing dataset were marked as high confidence by 

the classifier. Zebra were correctly identified in 93% of all 

images and 96% of high-confidence images (86% of test 

set), and Thomson’s gazelles were correct 96% of the time, 

improving to 99% on high-confidence images (77% of test 

set). In contrast, 15 species classes returned fewer than five 

available training images per class, resulting in 0% accuracy 

for 11 classes in the testing stage. Two species within this 

group returned 40% accuracy—bushpigs (Potamochoerus 

larvatus) and wild dogs (Lycaon pictus)—but zero images 

were classified as high confidence.

With these species-specific accuracies in mind, we 

determined that species classes in which many subjects 

are returned with high confidence scores can be processed 

more quickly using human supervision as a guardrail 

to ensure accuracy, whereas low-confidence images 

should be reviewed by more people when consensus is 

not achieved early in the classification process. Images 

of species for which the classifier demonstrated low 

accuracies were circulated for additional votes to ensure 

human volunteers converged on the correct label, which 

also helped to generate additional training data.

SNAPSHOT SAFARI HITL PIPELINE

To combine our citizen science and AI processing pipelines, 

we presented volunteers with images that had also 

received AI classifications. (See Palmer et al. (2021) for a 

more detailed description and flow chart of the pipeline.) 

Volunteers then completed two stages of labeling—

detection and classification. The detection stage consisted 

of a question task, in which volunteers were asked to 

evaluate whether animals were present in the capture 

(“Empty or not?”). Where once as many as 20 people 

needed to vote on whether a capture was empty to ensure 

an accurate label, adding AI predictions allowed for the 

reduction of volunteer effort at this stage, provided they 

agreed with the detector’s label. If two people agreed with 

the AI prediction that a capture was empty, it was labeled 

empty. If one of the first two people to view a capture 

disagreed with the AI label, it remained in circulation to 

accumulate three more human votes, at which point the 

majority consensus was accepted.

Captures marked as containing wildlife were moved 

to the classification phase, in which species identity 

was annotated. Within the species classification menu, 

volunteers compared a CT image with several exemplar 

Figure 2 Exemplar images, descriptions, and comparison tools that are available to volunteers on the Snapshot Safari survey menu. 

Selecting Wildebeest in the species menu brings up the exemplar images and description of the species. If the volunteer is unsure 

about a classification, they can click on the species in the “Sometimes confused with” category, which pops up that species’ images and 

description for comparison. Volunteers can also use field guides, tutorials, and filters to assign a label. They are then asked to count the 

individuals and annotate behaviors and basic demographics, including counting horns in dimorphic species.
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images of each species from different angles, read detailed 

descriptions of species traits, and reviewed “confused with” 

pairs side by side to compare the likeness of two species, 

as depicted in Figure 2. They could also filter species by 

features such as body type and horn shape, and turn to 

detailed field guides that provided additional tips on 

selecting the correct species.

At this stage, more complex and dynamic rules were 

used to label captures based on the AI species label, the 

AI confidence score, the number of volunteer votes, and 

the agreement of the volunteers with the classifier and one 

another. The objective was to attain the correct species 

label as quickly as possible without sacrificing accuracy. 

For instance, if the classifier returned an 80% confidence 

score that an image contained a wildebeest (a frequently 

observed animal on which AI accuracy is typically high), 

it was assigned that label when the first five volunteers 

confirmed that a wildebeest was present. This rule was also 

implemented for zebras and impala (Aepyceros melampus), 

an antelope species with high abundances across Snapshot 

Safari field sites. Consensus and classification counts 

were dynamically checked as classification advanced. For 

most of the species classes, captures were retired as they 

reached a consensus of at least 50% at ten votes or 25% 

at 15 votes. If consensus >50% was not reached after 15 

votes, that capture was reviewed by the research team to 

assign a label. Many images that failed to reach consensus 

captured an incomplete animal or were the result of the 

animal being too close to the camera. The three most 

common species were assigned labels after ten votes 

maximum. This reduction in the number of votes helped 

to save time and volunteer effort across the classification 

process. The ultimate label is the combined effort of AI and 

humans, described as HITL in the following analyses. The 

AI values are the top predictions produced by the classifier 

on unseen CT observations without further training or 

human assistance.

ANALYSIS AND RESULTS

Across all species classes, AI returned an error rate of 

34.89%, and HITL reduced the error rate to 8.73%. As shown 

in Figure 3, the HITL method outperformed AI in 95% of 

mammal and large bird classes (42 of 44), resulting in a total 

error reduction of 26.15%. AI achieved its best performance 

on highly abundant species within the Serengeti, that is, 

classes for which many training examples were provided. 

The classifier was trained on 10,079 images of wildebeest 

and returned an initial error rate of 7.63% on newly 

presented CT data. HITL reduced the error rate to 5.93% 

when compared with the GS responses. There were 6,676 

training images of zebra, for which AI produced an error 

rate of 5.63% on unseen images. Adding the volunteers’ 

input reduced the error rate to 1.25%. Thomson’s gazelles 

(5,579 training images) were a notable exception to this 

trend—AI produced an error rate of 7.24%, which rose to 

9.5% in our evaluation of the HITL classification method. 

The largest improvements in error rates came in species 

classes that are easily recognizable to humans, such as 

Figure 3 Differences in species-specific error rates between AI 

(black circles) and HITL (orange circles) classification methods. 

The blue bar represents the size of the error reduction from 

adding HITL to supervise AI classifications of unseen CT images. 

In all except two cases (aardwolf and Thomson’s gazelle), HITL 

decreased the error rate. Species are arrayed from most to least 

common within the training dataset with the number of training 

images in parentheses.
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giraffe (Giraffa giraffa), which improved from a 5.59% error 

rate in AI to 0.62% in HITL; hippopotamus (Hippopotamus 

amphibius), which improved from 8.24% to 2.35%; and 

cheetahs (Acinonyx jubatus), which improved from 37.95% 

to 4.82%.

For species for which fewer than 100 images were 

available to train the classifier, the HITL classification 

method yielded an average error rate reduction of 37.94% 

on novel CT data, except for aardwolves (Proteles cristata), in 

which the AI error rate of 37.19% was worsened to 44.63% 

by human classifications. For many of the species in this 

< 100 category, HITL improved final labels but still returned 

unacceptable levels of accuracy. For instance, images of 

steenbok (Raphcerus campestris), a small antelope that is 

rare in the Serengeti, returned a 100% error rate by AI and 

48.57% by HITL. However, there were significant gains in 

accuracy in other rarely photographed species like leopards 

(Panthera pardus), which saw an error rate reduction 

from 35.48% for AI to 4.30% for HITL; ostriches (Struthio 

camelus) dropped from 25.17% to 2.10%; and waterbuck 

(Kobus ellipsiprymnus) decreased from 41.67% to 8.33%.

DISCUSSION

A species classifier confronted with a seldom-seen 

species, camera angle, or location is highly likely to make 

a classification error (Beery et al., 2018). Snapshot Safari 

runs a custom classifier trained on data generated by long-

standing CT survey grids, yet HITL is still required to ensure 

accuracy for most species classes when AI is applied to 

new data from the same sites. The amount of training data 

is crucial since classifiers cannot identify animals without 

a plurality of examples to pull from. Humans, on the other 

hand, can use exemplar images, descriptions (including 

how to discern the differences between species that are 

morphologically similar), field guides, and assistance from 

researchers and moderators to make determinations.

The largest performance improvements achieved by HITL 

were in classes for which few training images were available, 

for example, predators and other cryptic species. With just 

one image of a zorilla (Ictonyx striatus) in the comprehensive 

training dataset, it is expected that AI will not be sufficiently 

effective for this class or others with similarly low availability 

of training images. The effect of small class size may be 

mitigated for species exhibiting unique morphological traits 

as in the case of crested porcupines (Hystrix cristata) in this 

dataset. With only 26 training images, the classifier returned 

an error rate of 5.15%, the lowest of any class. HITL reduced 

the error rate to zero.

Within the predator guild, with 29 capture events 

marked as “caracal” (Caracal caracal) by experts and just 

four caracal images in the training dataset, AI predicted 

the wrong species 82.76% of the time, whereas HITL 

reduced the error rate to 3.45%. Of the 24 errors by AI 

in caracal images, the most common confusion was lion 

(Panthera leo). Several classes that were confused by AI 

and HITL are shown in Figure 4. Caracals and lions are 

both medium-large cats with tawny coats, but humans 

readily distinguished between them even at night due to 

morphological differences in their ears and tails.

It is important to note that improvement from involving 

humans in the classification effort is context-dependent, 

and there is also an element of bias in volunteer responses. 

In two species classes evaluated here, humans performed 

worse than the classifier. In both cases, species with similar 

morphologies confused volunteers, particularly in images 

where only a portion of an animal is visible. HITL accuracy 

is aided by batch aggregation of classifications to obtain 

the label with the highest consensus, so correct responses 

normally outweigh one incorrect vote, but multiple wrong 

votes can lead to an incorrect label. The volunteers’ level 

of agreement is tracked in our reporting to each Snapshot 

Safari site to provide information to the project team about 

which captures achieve consensus and which may warrant 

further review. Anything less than 60% consensus among 

human classifiers likely needs to be checked before use 

in research studies. As demonstrated here, species with 

known confusions should also be reviewed by researchers 

because occasionally humans achieve consensus on the 

wrong identification.

One instance in which consensus did not reliably produce 

the correct label was the species category “aardwolf,” in 

which so many people selected “striped hyena” that the 

HITL error rate was higher than AI despite only 13 images 

in the training dataset (see Figure 4). This may be attributed 

to observer bias from volunteers who are eager to see 

striped hyenas and hence overestimate their perceived 

occurrence in the study area. Since many captures of both 

species occur at night and may not have a view of the tail, 

these images can be tough for experts to decipher, as well.

In the other instance, Thomson’s gazelle was the third 

most common species in the AI training dataset and 

returned an error rate of 7.24% in AI that rose to 9.5% via 

HITL. Thomson’s gazelles are similar in appearance to Grant’s 

gazelles (Nanger granti) and impala, which are sympatric 

throughout the species’ range. Most of the HITL errors for 

these three species reflected confusion among them (see 

Figure 4). It is unclear why Thomson’s gazelle, in particular, 

elicited so many incorrect responses despite extensive field 

guides on how to tell these three species apart.

AI accuracy can vary widely depending on the 

ecosystem, species, and number of images available for 

training models. If researchers are focused only on the 



8Huebner et al. Citizen Science: Theory and Practice DOI: 10.5334/cstp.752

most abundant species, AI trained on many images may 

be sufficient to meet their needs. For projects evaluating 

community dynamics or a suite of species, quickly 

removing empty images and the most abundant species 

classes from circulation allows people to spend more time 

reviewing images of wildlife that the classifier does not 

recall well.

With the proliferation of CT studies and field surveys 

using multitudes of ecological sensors, researchers are 

searching for ways to quickly and accurately translate 

raw data into usable data points. AI is an appealing 

solution because it allows for rapid translation once a 

model has been trained. It has until recently been a 

daunting task to build labeled image libraries; however, 

Figure 4 Comparison images of species commonly confused by AI (a) and HITL (b, c). a) AI consistently labeled pictures of caracals (left) 

as lions (right). b) HITL frequently labeled images of aardwolves (left) as striped hyenas (right). c) HITL reduced error rates for impala (left) 

and Grant’s gazelle (center) but performed worse than AI on Thomson’s gazelle (right).
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citizen science provides opportunities for labeling data 

using crowdsourcing through citizen science platforms. 

Additionally, recent machine-learning techniques have 

successfully developed models using fewer training images 

for select species classes (Schneider et al., 2020; Shahinfar 

et al., 2020). Generalized models that are agnostic to 

locations and backgrounds, such as the object detection 

model MegaDetector (Beery et al., 2019); Beery et al. 

2019), and the global species classifier created by Wildlife 

Insights (Ahumada and Fegraus 2019) represent another 

encouraging trend.

Yet even these improved AI models require ongoing 

human training, validation, and supervision to return 

sufficiently accurate results to inform research studies 

and conservation management interventions. Ecologists 

using AI should ensure that model labels are verified and 

corrected by humans as necessary after initial evaluations 

of error rates by class. Our results indicate that this 

validation can be turned over to citizen scientists in most 

cases, but careful assessment of model and volunteer 

performance on a case-by-case basis is warranted. It 

is also important that researchers communicate with 

volunteers about the introduction of AI into data pipelines 

using citizen science. Some volunteers may be concerned 

that they are being replaced and their skills are no longer 

needed, which could lead to fewer engagements and 

shorter classification sessions. They should be informed 

that they are reviewing and correcting AI labels so that 

they do not become complacent. Further, communicating 

with volunteers about next-generation projects with which 

they can engage is crucial to retention of a motivated 

volunteer workforce. Experienced Snapshot Safari citizen 

scientists are now asked to take on tasks that help with 

identifying individual animals within populations or 

contributing behavioral labels from CT projects that had 

not previously extracted that information from existing 

image collections.

Citizen science and AI offer researchers the ability 

to quickly and efficiently move images through data 

pipelines to achieve labels and create data points for use 

in conservation programs and research studies. Citizen 

science can be a time-consuming process and requires 

monitoring of talk forums while projects are active. When 

AI was introduced to the Serengeti pipeline, classification 

time was halved even using conservative rules for getting 

enough volunteer votes to ensure accuracy. Times could 

be reduced further still by lowering confidence thresholds 

and the number of votes required to achieve a label. 

In species classes in which AI error rates are low, these 

images may not need to be presented to humans for help. 

The involvement of well-trained volunteers can greatly 

improve the performance of AI alone and is recommended, 

particularly for CT surveys with large volumes of data.

CONCLUSIONS

•	 HITL produced fewer errors than AI for 95% of species 

classes evaluated with the Serengeti GS dataset and 

decreased the overall error rate from 34.89% to 8.73%, 

with larger gains in species for which fewer than 100 

training images were available.

•	 AI accuracy varied widely and was correlated with 

the amount of training data available for a particular 

species. Species classes with high volumes of images 

and a high proportion of high-confidence scores may 

be sufficiently accurate to warrant removing HITL for 

the most common classes in a long-tailed distribution 

in addition to removing empty images.

•	 Fewer training images result in worse outcomes from 

both methods, but humans are more likely to converge 

on the correct answers due to context clues and 

consensus.

•	 Turning over the HITL piece to volunteers can save 

researchers time while still yielding high-quality labeled 

image data.

•	 Researchers incorporating AI into pipelines with 

citizen science should communicate with volunteers 

about how their efforts benefit the project and about 

new tasks suited to humans that will lead to more 

informative data for biodiversity monitoring.
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