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ABSTRACT

Using public support to extract information from vast datasets has become a popular
method for accurately labeling wildlife data in camera trap (CT) images. However, the
increasing demand for volunteer effort lengthens the time interval between data collection
and our ability to draw ecological inferences or perform data-driven conservation actions.
Artificial intelligence (AI) approaches are currently highly effective for species detection
(i.e., whether an image contains animals or not) and labeling common species; however,
it performs poorly on species rarely captured in images and those that are highly visually
similar to one another. To capitalize on the best of human and AI classifying methods,
we developed an integrated CT data pipeline in which Al provides an initial pass on
labeling images, but is supervised and validated by humans (i.e., a “human-in-the-loop”
approach). To assess classification accuracy gains, we compare the precision of species
labels produced by Al and HITL protocols to a “gold standard” (GS) dataset annotated
by wildlife experts. The accuracy of the Al method was species-dependent and positively
correlated with the number of training images. The combined efforts of HITL led to error
rates of less than 10% for 73% of the dataset and lowered the error rates for an additional
23%. For two visually similar species, human input resulted in higher error rates than Al
While integrating humans in the loop increases classification times relative to Al alone, the
gains in accuracy suggest that this method is highly valuable for high-volume CT surveys.
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INTRODUCTION

The cumulative impacts of human activities are creating
rapid changes in the natural world, necessitating frequent
measurements and updates to conservation management
strategies (Pacifici et al. 2015; Bonebrake et al. 2018;
Schlaepfer and Lawler 2023). To understand and mitigate
these challenges on effective timescales, ecologists and
conservation practitioners require timely access to large
amounts of data on wildlife populations. Remote sensors are
increasingly deployed to evaluate how habitats and species
respond to global or local changes and management or
conservation interventions (Anderson et al., 2016; Davis
et al,, 2023; Kays et al., 2010; Palmer et al., 2022). Among
these sensors, motion-activated wildlife cameras or
“camera traps” are widely used due to their ability to collect
detailed data on animal presence, behavior, health, and
population structure with minimal disturbance. Since 2010,
the number of ecologists using camera traps has grown
exponentially due to the hardware’s relatively low cost, ease
of use, and commercial availability, accelerating the pace
and volume of ecological data collection and aggregation
(Burtonetal. 2015; Steenweg et al. 2017). This work has laid
the foundations for novel modeling approaches and large-
scale inference; however, the power and accuracy of these
insights rely on the classification accuracy of raw camera
trap (CT) image data (Burton et al. 2015; Caravaggi et al.
2020; Farley et al. 2018; Hofmeester et al. 2020; Wevers et
al. 2021; Laporte-Devylder et al. 2023).

Surveys composed of dozens to hundreds of CTs
may produce tens of thousands of images over several
months, which must subsequently be labeled with the
observed species, counts of individual animals, and other
variables pertinent to the research or conservation action
in question. In the gathered datasets, many “empty”
images triggered, for example, by windblown plants or
overheated electronics, must be labeled as such and set
aside. Even the resulting “animals only” dataset may
contain numerous species that are not the focal species
relevant to the research or conservation question at hand.
This scenario is becoming commonplace as long-term
ecological monitoring is adopted to track and combat the
current extinction crisis (Ceballos et al. 2017).

Managing such volumes of data can rapidly exceed the
capacity of most CT practitioners, leading many to request
volunteer help (i.e.,, citizen or participatory science) via
online platforms, such as Zooniverse.org, that facilitate
public participation in scientific research (Gadsden et al,,
2021; Hsing et al., 2018; Islam and Valles, 2020; Jones
et al, 2018). The Zooniverse is the world’s largest citizen
science platform, with greater than 2.7 million registered
users who assist projects across multiple scientific
disciplines, including ecology, astronomy, and biomedical

research (Simpson et al., 2014; Trouille et al., 2019). The
first wildlife image-based project to launch on Zooniverse
was Snapshot Serengeti, a survey of 225 CTs running
continuously since 2010 in Serengeti National Park,
Tanzania (Swanson et al. 2015; Palmer et al. 2021). Using
a suite of tools to narrow the potential species options by
body shape, horns, pelage, color, and patterns, and other
distinguishing characteristics, citizen scientists were asked
to categorize the species observable in each picture along
with the number of individuals and basic behaviors and
demographics. Separate details were collected about every
species in an image when multiple species were visible.
Each image was classified by up to 20 volunteers whose
responses were aggregated. The species receiving the most
votes was accepted as the final label.

When the public-facing webpage launched in 2013,
the project had a backlog of 1.2 million observations that
were processed by volunteers in three days (Swanson et al.,
2015). In the subsequent decade, more than 120 similar
CT projects have joined Zooniverse, including 24 additional
project pages for the expanded Snapshot Safari network
launched in 2018, in which Serengeti is the flagship survey
(Pardo et al. 2021). Snapshot Safari is the largest use case
on Zooniverse, with 50+ CT surveys in six African countries
collecting data using the same protocols. (Surveys with <10
CTs and data from temporary CT sites are folded into fewer
project pages on Zooniverse to facilitate data processing pre-
and post-classification.) It is also popular with volunteers,
with >200,000 users from 77 countries logging on regularly
to assist with wildlife image classification. Still, increased
competition for a finite number of willing volunteers extends
the interval necessary to obtain fully and accurately labeled
image datasets and return the information they contain to
researchers and conservation managers.

Increasingly, improvements in computational power
and the lengthening time required to obtain image labels
through citizen science have motivated researchers to
develop artificial intelligence (AI) models for quicker data
classification (Norouzzadeh et al. 2017; Borowiec et al. 2022;
Velez et al. 2023). This presents its own set of challenges,
as training a highly accurate species-classifying algorithm
(hereafter, “classifier”) has traditionally demanded large
volumes of labeled data, on the order of thousands of
images per species category (“class”). This process therefore
requires millions of labeled images (i.e, a “many shot”
approach) for highly diverse ecosystems like the African
savanna (Pantazis et al., 2024). A typical CT survey produces
data with a long-tailed distribution, in which a few classes
contain the vast majority of images while most classes
contain relatively few (Miao et al. 2021). Thus, Al models
often perform better at identifying highly abundant or visible
species than rare and cryptic species that are captured less
frequently or threatened species with low population sizes.
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METHODS

The Snapshot Safari network first deployed Al in 2018,
using labeled image data from the Serengeti CT grid and
eight other African CT surveys to create a custom classifier
for processing the high volumes of data produced by
continuous long-term monitoring (Willi et al., 2019). These
models are available on GitHub for open access use (See
Data Availability Statement 1). Due to Snapshot Serengeti’s
early entry into the field, many existing classifiers for
African wildlife (including transfer learning techniques
and broader extensions of CT data) have been built using
the training data labeled by volunteers (Battu and Reddy
Lakshmi, 2023; Liu et al., 2024; Norouzzadeh et al., 2021;
Villa et al., 2017). All publicly available data is posted to
the Labeled Image Library of Alexandria for Biology and
Conservation (see Data Availability Statement 2). Although
rigorously assessed in an academic context, the specialized
Snapshot Safari classifier was largely untested in practice.
As such, we opted for a “humans-in-the-loop” (HITL)
approach when integrating the AI model into our pipeline
to ensure the accuracy of labels prior to use for research
and conservation purposes.

Prior to incorporating Al allimage labels were generated
by Zooniverse citizen scientists. Capture events consisting
of one to three images (three taken in rapid succession
during the day and one at night) were evaluated by up to
20 volunteers before retirement (removal from circulation),
and a consensus algorithm was run to determine the
species with the highest number of votes, which became
the ultimate label (Swanson et al. 2015). All images
within a capture event were kept together throughout
the classification process as they constitute a single
observation, and more data may be gleaned from a series
of photos than one.

Though the urgent necessity of returning processed data
quickly has made it no longer possible to rely on citizen
science alone, Al-generated labels are known to be fallible,
and many researchers recommend carefully evaluating
these predictions to assess accuracy across time, space,
and species (Clarfeld et al., 2023; Whytock et al., 2021). Al
accuracy varies for many reasons, including low numbers
of training images, differing background vegetation,
difficult-to-interpret images (Westworth et al, 2022),
and/or model drift, that is, the tendency of algorithms
to become outdated and lose accuracy over time, which
may necessitate additional transfer learning and training
(Ackerman et al,, 2021). Prior work has documented that
volunteers are accurate 96.6% of the time across Serengeti
species classes (Swanson et al,, 2016), demonstrating that
humans effectively identify species even when they have
never or rarely viewed them. Therefore, we developed

a hybrid approach to classifying images in which human
volunteers supervised the classifier’s labels, that is, a HITL
strategy. Here, we compare labels produced by Al and
HITL against a newly created gold standard (GS) dataset
annotated by professional ecologists to evaluate the
impact of human guidance on final precision and accuracy.

GOLD STANDARD DATA

To evaluate the accuracy of both classification methods,
experienced wildlife researchers (+3 years of experience
identifying African animals) classified the species in
captures sampled from data collected from early 2015
to mid 2017. This is an update to the original Snapshot
Serengeti GSdataset published in 2016 (see Data Availability
Statement 3). We selected 6,000 capture events across
species classes by including all available records of rare
species during that timeframe and evenly distributing the
remainder across commonly observed species, resulting in
44 species classes. When the expert classified a capture
as “unresolvable” (cannot be classified because the image
is too dark, there is too much motion blur, an animal was
occluded by vegetation, etc.), we removed it from this
analysis since it is impossible that either Al or HITL would
converge on the correct answer if the expert could not.
This excluded 216 captures or 3.6% of the newly created
GS dataset. We also excluded 470 empty captures (7.83%
of GS dataset) from this analysis because we are focused
on the accuracy of species labels as the most important
contribution of human supervision. This resulted in 5,314
species comparison points from the expert labels.

SNAPSHOT SAFARI AI MODELS

The Snapshot Safari data pipeline incorporates labels
generated by two convolutional neural network (CNN)
models trained using the ResNet-18 model architecture (He
et al,, 2016) and Tensorflow (Abadi et al., 2016). Training
data comprised 3.66 million CT images from nine African
protected areas participating in Snapshot Safari (five in
South Africa, three in Tanzania, and one in Mozambique).
CNN models learn the intrinsic features of training data
by updating model parameter weights and subsequently
outputtinginference results or “predictions” on unseen data;
therefore, training data distribution has a crucial impact
on model performance (Pantazis et al.,, 2024). Serengeti
data constituted 89% of the training images because
these models were created shortly after the inception of
Snapshot Safari and contained only the first six months of
data from the other CT grids. Therefore, we focused on the
Serengeti GS dataset for these analyses. The classifier was
trained by randomly assigning all images to one of three
datasets while preserving class distributions: training (90%
of the data), validation (5%), and testing (5%). The models
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learned from the training set, and were monitored on the
validation set to reduce overfitting (Willi et al., 2019).

The Snapshot Safari object detection CNN (“detector”)
was trained to flag empty images, which can constitute
a significant percentage of images from CTs situated in
grasslands or other biomes with rapid vegetation growth.
It produces a binary output of “empty” or “not empty”
and a confidence (probability) score indicating certainty in
its prediction. The detector was evaluated on 71,702 test
samples, of which 74.38% were rated as “high confidence,”
set at a minimum threshold of 95%. The detector achieved
an overall accuracy score of 96.03% rising to 99.5% on
high-confidence images.

The species-classifying CNN  (“classifier”) generates
predictions with associated confidence scores (the probability
of a match for every species class based on the classifier’s
perception of similarity) for 56 species classes. The classifier
was assessed on 36,469 test captures, 69.53% of which

were labeled as high confidence, again set at 95% minimum
threshold. As differences in regional wildlife morphology,
topographic heterogeneity, and background vegetation
impact Al accuracy (Beery et al,, 2018), we sampled a diverse
mixture of training photos across sites, seasons, and species
while selecting all available images of rarely seen species.
The species assemblages are similar at most of the Snapshot
Safari sites in eastern and southern Africa, but regional
variations in morphology and colloquial species names exist,
so we harmonized the taxonomies prior to training.

The overall model accuracy was 89.4%, rising to
97.2% for high-confidence images. The three most
commonly observed species in the Serengeti—wildebeest
(Connochaetes taurinus), plains zebra (Equus quagga),
and Thomson’s gazelle (Eudorcas thomsonii)—accounted
for ~65% of Serengeti training images (see Figure 1).
Wildebeest images were 94% accurate across the board,
which improved to 98% accuracy on images rated as high

Species Number of Training Images Overall Accuracy Tra?:i:;gr;ages Accura::a:::nl‘:g:'.:;::idence
Wildebeest 1079 0L 8 098
Zebra I 6676 003 — 5748 IT0ee
Thomson's gazelle 5579 IS I 4299 [ 099
Impala ] 1684 I 0.9 712 s
Elephant | 1269 I o2 922 I
Buffalo = 1209 I 0.84 682 I0es
Hartebeest | 1032 I 0.53 H 507 097
Human [ 955 Ire3 678 I
Giraffe || 889 ———, (/.9 [l 677 L 0es
Warthog ] 826 I 0.86 423 oes
Grant's gazelle | 801 0.581 171 I 0.77
Spotted hyena ] 656 I o.85 W 346 09
Lion [ | 4+ I 0.791 235 ey
Baboon | | 372 I o.83 1 195 ey
Eland [} 51— .51 128 .88
Hippopotamus [ | 297 I 5 231 [
Dikdik [ ] 293 . 0.8210 161 099
Reedbuck 0 23c I 0.771] 106 ey
Topi 1 235 I 0.69| 62 0192
Cheetah | 128 I 0.79 | 65 I aies
Kudu I 120 I 0.73| 52 004
Jackal | 85 I—— 0.67 | 25 oes
Serval | 74 I 0.66 | 20 I
Hare | 57 I 0.75| 16
Duiker | 48 0.58 S o8
Vervet monkey | 46 I 0.7 11 e o1
Aardvark | 45 I 0.8 200 oy
Bat-eared fox | 44 I 0.66 7 e 0.86
Mongoose | 43 I 0.47 | 8L 0.88
Sable 34 I—o.o1 | 19 (I
Waterbuck [ 32 I 0.62 12—
Gemsbok/Oryx 31 o .87 6 I
Genet I 3,0 I o3| 18 I
Fire 30 — 0,8 17 o4
Leopard | 29 I 0.62/ 13 I 2
Bushbuck 28 0.43 8 .88
Porcupine | 26 I 085 | 18 I
Aardwolf 22 I 0.45 0
Springbok | 19 E— 0.26 2 0
Civet 17 I 0.71 8
Striped hyena 18] (] 2 0

Rhinoceros 11 0.36 0
Cattle 11 [ 0.09 2 0
Steenbok 8 I 0.25 0
Rodents 7 0 0
Wild dog 5 I 0.4 0
Bushpig 5 I 0.4 0
Wild cat 5 0 0
Caracal +sI 075 0
Honey badger 3 I 0.67 0
Zorilla 1 | 0
Grey rhebok 1 0 0
Samango monkey il 0 1 0

Figure 1 Evaluation of Snapshot Safari classifier performance on images in the test dataset for every possible species class from the nine
sites that provided training data. The model was evaluated for accuracy across all training images and separately for images classified

with high confidence scores (>95%).
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confidence. For the wildebeest class, 80% of the images
in the testing dataset were marked as high confidence by
the classifier. Zebra were correctly identified in 93% of all
images and 96% of high-confidence images (86% of test
set), and Thomson’s gazelles were correct 96% of the time,
improving to 99% on high-confidence images (77% of test
set). In contrast, 15 species classes returned fewer than five
available training images per class, resulting in 0% accuracy
for 11 classes in the testing stage. Two species within this
group returned 40% accuracy—bushpigs (Potamochoerus
larvatus) and wild dogs (Lycaon pictus)—but zero images
were classified as high confidence.

With these species-specific accuracies in mind, we
determined that species classes in which many subjects
are returned with high confidence scores can be processed
more quickly using human supervision as a guardrail
to ensure accuracy, whereas low-confidence images
should be reviewed by more people when consensus is
not achieved early in the classification process. Images
of species for which the classifier demonstrated low
accuracies were circulated for additional votes to ensure
human volunteers converged on the correct label, which
also helped to generate additional training data.
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SNAPSHOT SAFARI HITL PIPELINE

To combine our citizen science and Al processing pipelines,
we presented volunteers with images that had also
received Al classifications. (See Palmer et al. (2021) for a
more detailed description and flow chart of the pipeline.)
Volunteers then completed two stages of labeling—
detection and classification. The detection stage consisted
of a question task, in which volunteers were asked to
evaluate whether animals were present in the capture
(“Empty or not?”). Where once as many as 20 people
needed to vote on whether a capture was empty to ensure
an accurate label, adding Al predictions allowed for the
reduction of volunteer effort at this stage, provided they
agreed with the detector’s label. If two people agreed with
the Al prediction that a capture was empty, it was labeled
empty. If one of the first two people to view a capture
disagreed with the AI label, it remained in circulation to
accumulate three more human votes, at which point the
majority consensus was accepted.

Captures marked as containing wildlife were moved
to the classification phase, in which species identity
was annotated. Within the species classification menu,
volunteers compared a CT image with several exemplar
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Figure 2 Exemplar images, descriptions, and comparison tools that are available to volunteers on the Snapshot Safari survey menu.
Selecting Wildebeest in the species menu brings up the exemplar images and description of the species. If the volunteer is unsure
about a classification, they can click on the species in the “Sometimes confused with” category, which pops up that species’ images and
description for comparison. Volunteers can also use field guides, tutorials, and filters to assign a label. They are then asked to count the
individuals and annotate behaviors and basic demographics, including counting horns in dimorphic species.



Huebner et al. Citizen Science: Theory and Practice DOI: 10.5334/cstp.752 6

images of each species from different angles, read detailed
descriptions of species traits, and reviewed “confused with”
pairs side by side to compare the likeness of two species,
as depicted in Figure 2. They could also filter species by
features such as body type and horn shape, and turn to
detailed field guides that provided additional tips on
selecting the correct species.

At this stage, more complex and dynamic rules were
used to label captures based on the Al species label, the
AI confidence score, the number of volunteer votes, and
the agreement of the volunteers with the classifier and one
another. The objective was to attain the correct species
label as quickly as possible without sacrificing accuracy.
For instance, if the classifier returned an 80% confidence
score that an image contained a wildebeest (a frequently
observed animal on which Al accuracy is typically high),
it was assigned that label when the first five volunteers
confirmed that a wildebeest was present. This rule was also
implemented for zebras and impala (Aepyceros melampus),
an antelope species with high abundances across Snapshot
Safari field sites. Consensus and classification counts
were dynamically checked as classification advanced. For
most of the species classes, captures were retired as they
reached a consensus of at least 50% at ten votes or 25%
at 15 votes. If consensus >50% was not reached after 15
votes, that capture was reviewed by the research team to
assign a label. Many images that failed to reach consensus
captured an incomplete animal or were the result of the
animal being too close to the camera. The three most
common species were assigned labels after ten votes
maximum. This reduction in the number of votes helped
to save time and volunteer effort across the classification
process. The ultimate label is the combined effort of AT and
humans, described as HITL in the following analyses. The
Al values are the top predictions produced by the classifier
on unseen CT observations without further training or
human assistance.

ANALYSIS AND RESULTS

Across all species classes, Al returned an error rate of
34.89%, and HITL reduced the error rate to 8.73%. As shown
in Figure 3, the HITL method outperformed Al in 95% of
mammal and large bird classes (42 of 44), resulting in a total
error reduction of 26.15%. Al achieved its best performance
on highly abundant species within the Serengeti, that is,
classes for which many training examples were provided.
The classifier was trained on 10,079 images of wildebeest
and returned an initial error rate of 7.63% on newly
presented CT data. HITL reduced the error rate to 5.93%
when compared with the GS responses. There were 6,676
training images of zebra, for which AI produced an error
rate of 5.63% on unseen images. Adding the volunteers’

Wildebeest (10,079)
Zebra (6676)
Thomson's Gazelle (5579)
Impala (1684)
Elephant (1269)
Buffalo (1209)
Hartebeest (1032)
Giraffe (889)
Warthog (826)
Grant's Gazelle (801)
Spotted Hyena (656)
Guineafowl (606)
Lion (444)

Baboon (372)

Eland (351)
Hippopotamus (297)
Dik-dik (293)
Reedbuck (236)
Topi (235)

Cheetah (128)
Secretarybird (85)
Jackal (85)

Sewval (74)

Ostrich (60)

Kori Bustard (59)
Hare (57)

Duiker (48)

Vervet Monkey (46)
Aardvark (45)
Bat-eared Fox (44)
Mongoose (43)
Waterbuck (32)
Genet (30)

Leopard (29)
Bushbuck (28)
Porcupine (26)
Aardwolf (22)

Civet (17)

Steenbok (8)
Vulture (5)

African Wild Cat (5)
Caracal (4)

Honey Badger (3)
Zorilla (1)

0.00 025 0.50 0.75 1.00
Error rates between 0-100%

Figure 3 Differences in species-specific error rates between Al
(black circles) and HITL (orange circles) classification methods.
The blue bar represents the size of the error reduction from
adding HITL to supervise Al classifications of unseen CT images.
In all except two cases (aardwolf and Thomson’s gazelle), HITL
decreased the error rate. Species are arrayed from most to least
common within the training dataset with the number of training
images in parentheses.

input reduced the error rate to 1.25%. Thomson’s gazelles
(5,579 training images) were a notable exception to this
trend—AI produced an error rate of 7.24%, which rose to
9.5% in our evaluation of the HITL classification method.
The largest improvements in error rates came in species
classes that are easily recognizable to humans, such as
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giraffe (Giraffa giraffa), which improved from a 5.59% error
rate in Al to 0.62% in HITL; hippopotamus (Hippopotamus
amphibius), which improved from 8.24% to 2.35%; and
cheetahs (Acinonyx jubatus), which improved from 37.95%
to 4.82%.

For species for which fewer than 100 images were
available to train the classifier, the HITL classification
method yielded an average error rate reduction of 37.94%
onnovel CT data, except for aardwolves (Proteles cristata), in
which the Al error rate of 37.19% was worsened to 44.63%
by human classifications. For many of the species in this
<100 category, HITL improved final labels but still returned
unacceptable levels of accuracy. For instance, images of
steenbok (Raphcerus campestris), a small antelope that is
rare in the Serengeti, returned a 100% error rate by Al and
48.57% by HITL. However, there were significant gains in
accuracy in other rarely photographed species like leopards
(Panthera pardus), which saw an error rate reduction
from 35.48% for Al to 4.30% for HITL; ostriches (Struthio
camelus) dropped from 25.17% to 2.10%; and waterbuck
(Kobus ellipsiprymnus) decreased from 41.67% to 8.33%.

DISCUSSION

A species classifier confronted with a seldom-seen
species, camera angle, or location is highly likely to make
a classification error (Beery et al,, 2018). Snapshot Safari
runs a custom classifier trained on data generated by long-
standing CT survey grids, yet HITL is still required to ensure
accuracy for most species classes when Al is applied to
new data from the same sites. The amount of training data
is crucial since classifiers cannot identify animals without
a plurality of examples to pull from. Humans, on the other
hand, can use exemplar images, descriptions (including
how to discern the differences between species that are
morphologically similar), field guides, and assistance from
researchers and moderators to make determinations.

The largest performance improvements achieved by HITL
were in classes for which few training images were available,
for example, predators and other cryptic species. With just
one image of a zorilla (Ictonyx striatus) in the comprehensive
training dataset, it is expected that Al will not be sufficiently
effective for this class or others with similarly low availability
of training images. The effect of small class size may be
mitigated for species exhibiting unique morphological traits
as in the case of crested porcupines (Hystrix cristata) in this
dataset. With only 26 training images, the classifier returned
an error rate of 5.15%, the lowest of any class. HITL reduced
the error rate to zero.

Within the predator quild, with 29 capture events
marked as “caracal” (Caracal caracal) by experts and just

four caracal images in the training dataset, Al predicted
the wrong species 82.76% of the time, whereas HITL
reduced the error rate to 3.45%. Of the 24 errors by Al
in caracal images, the most common confusion was lion
(Panthera leo). Several classes that were confused by Al
and HITL are shown in Figure 4. Caracals and lions are
both medium-large cats with tawny coats, but humans
readily distinguished between them even at night due to
morphological differences in their ears and tails.

It is important to note that improvement from involving
humans in the classification effort is context-dependent,
and there is also an element of bias in volunteer responses.
In two species classes evaluated here, humans performed
worse than the classifier. In both cases, species with similar
morphologies confused volunteers, particularly in images
where only a portion of an animal is visible. HITL accuracy
is aided by batch aggregation of classifications to obtain
the label with the highest consensus, so correct responses
normally outweigh one incorrect vote, but multiple wrong
votes can lead to an incorrect label. The volunteers’ level
of agreement is tracked in our reporting to each Snapshot
Safari site to provide information to the project team about
which captures achieve consensus and which may warrant
further review. Anything less than 60% consensus among
human classifiers likely needs to be checked before use
in research studies. As demonstrated here, species with
known confusions should also be reviewed by researchers
because occasionally humans achieve consensus on the
wrong identification.

Oneinstance in which consensus did not reliably produce
the correct label was the species category “aardwolf,” in
which so many people selected “striped hyena” that the
HITL error rate was higher than AI despite only 13 images
in the training dataset (see Figure 4). This may be attributed
to observer bias from volunteers who are eager to see
striped hyenas and hence overestimate their perceived
occurrence in the study area. Since many captures of both
species occur at night and may not have a view of the tail,
these images can be tough for experts to decipher, as well.

In the other instance, Thomson’s gazelle was the third
most common species in the Al training dataset and
returned an error rate of 7.24% in Al that rose to 9.5% via
HITL. Thomson’s gazelles are similar in appearance to Grant’s
gazelles (Nanger granti) and impala, which are sympatric
throughout the species’ range. Most of the HITL errors for
these three species reflected confusion among them (see
Figure 4). It is unclear why Thomson’s gazelle, in particular,
elicited so many incorrect responses despite extensive field
guides on how to tell these three species apart.

Al accuracy can vary widely depending on the
ecosystem, species, and number of images available for
training models. If researchers are focused only on the



Huebner et al. Citizen Science: Theory and Practice DOI: 10.5334/cstp.752

A

Figure & Comparison images of species commonly confused by Al (a) and HITL (b, c). a) AI consistently labeled pictures of caracals (left)
as lions (right). b) HITL frequently labeled images of aardwolves (left) as striped hyenas (right). c) HITL reduced error rates for impala (left)
and Grant’s gazelle (center) but performed worse than Al on Thomson’s gazelle (right).

most abundant species, Al trained on many images may
be sufficient to meet their needs. For projects evaluating
community dynamics or a suite of species, quickly
removing empty images and the most abundant species
classes from circulation allows people to spend more time
reviewing images of wildlife that the classifier does not
recall well.

With the proliferation of CT studies and field surveys
using multitudes of ecological sensors, researchers are
searching for ways to quickly and accurately translate
raw data into usable data points. Al is an appealing
solution because it allows for rapid translation once a
model has been trained. It has until recently been a
daunting task to build labeled image libraries; however,
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citizen science provides opportunities for labeling data
using crowdsourcing through citizen science platforms.
Additionally, recent machine-learning techniques have
successfully developed models using fewer training images
for select species classes (Schneider et al., 2020; Shahinfar
et al, 2020). Generalized models that are agnostic to
locations and backgrounds, such as the object detection
model MegaDetector (Beery et al, 2019); Beery et al
2019), and the global species classifier created by Wildlife
Insights (Ahumada and Fegraus 2019) represent another
encouraging trend.

Yet even these improved Al models require ongoing
human training, validation, and supervision to return
sufficiently accurate results to inform research studies
and conservation management interventions. Ecologists
using Al should ensure that model labels are verified and
corrected by humans as necessary after initial evaluations
of error rates by class. Our results indicate that this
validation can be turned over to citizen scientists in most
cases, but careful assessment of model and volunteer
performance on a case-by-case basis is warranted. It
is also important that researchers communicate with
volunteers about the introduction of Al into data pipelines
using citizen science. Some volunteers may be concerned
that they are being replaced and their skills are no longer
needed, which could lead to fewer engagements and
shorter classification sessions. They should be informed
that they are reviewing and correcting Al labels so that
they do not become complacent. Further, communicating
with volunteers about next-generation projects with which
they can engage is crucial to retention of a motivated
volunteer workforce. Experienced Snapshot Safari citizen
scientists are now asked to take on tasks that help with
identifying individual animals within populations or
contributing behavioral labels from CT projects that had
not previously extracted that information from existing
image collections.

Citizen science and AI offer researchers the ability
to quickly and efficiently move images through data
pipelines to achieve labels and create data points for use
in conservation programs and research studies. Citizen
science can be a time-consuming process and requires
monitoring of talk forums while projects are active. When
Al was introduced to the Serengeti pipeline, classification
time was halved even using conservative rules for getting
enough volunteer votes to ensure accuracy. Times could
be reduced further still by lowering confidence thresholds
and the number of votes required to achieve a label.
In species classes in which Al error rates are low, these
images may not need to be presented to humans for help.
The involvement of well-trained volunteers can greatly
improve the performance of Al alone and is recommended,
particularly for CT surveys with large volumes of data.

CONCLUSIONS

» HITL produced fewer errors than Al for 95% of species
classes evaluated with the Serengeti GS dataset and
decreased the overall error rate from 34.89% to 8.73%,
with larger gains in species for which fewer than 100
training images were available.

* Al accuracy varied widely and was correlated with
the amount of training data available for a particular
species. Species classes with high volumes of images
and a high proportion of high-confidence scores may
be sufficiently accurate to warrant removing HITL for
the most common classes in a long-tailed distribution
in addition to removing empty images.

* Fewer training images result in worse outcomes from
both methods, but humans are more likely to converge
on the correct answers due to context clues and
consensus.

+ Turning over the HITL piece to volunteers can save
researchers time while still yielding high-quality labeled
image data.

* Researchers incorporating Al into pipelines with
citizen science should communicate with volunteers
about how their efforts benefit the project and about
new tasks suited to humans that will lead to more
informative data for biodiversity monitoring.
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