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Abstract—Spatiotemporal brain dynamism is a complex phe-
nomenon, characterized by dynamic patterns of neural activity
that unfold across both space and time. However, capturing
these dynamic patterns poses a formidable challenge due to
the sheer complexity of neural interactions and the demand
for advanced computational models. In this context, we have
harnessed advances in computer vision and formulated this
challenging issue as the weakly supervised spatiotemporal dense
prediction of dynamic brain networks. To accomplish this, we
have developed a novel framework for encoding spatiotemporal
characteristics of functional magnetic resonance imaging (fMRI)
data to densely predict dynamic brain networks, each encom-
passing 4D maps that vary over time and between subjects. The
backbone of our framework is an isotropic model architecture
that contains a deep stack of pre-activated ConvMixer modules.
Furthermore, we introduce a strategy for generating prior
information, which serves as weak supervision for training the
model, since no benchmark currently exists for addressing the
dynamic brain network issue and annotating fMRI data proves
to be an expensive and inaccurate process. We also address
some of the significant drawbacks in popular brain parcellation
methods. Finally, our experimental results indicate the method’s
ability to generate plausible brain network maps that are highly
dynamic and consistent with previous findings in brain dynamics.
The proposed advancement in generating brain dynamic maps
transcends the boundaries of conventional neuroscience research,
ushering in a paradigm shift which facilitates the discovery of
new perspectives on the complexity of brain function.

Index Terms—Dense Prediction, Weakly Supervised Learning,
Spatiotemporal Encoding, Dynamic Brain Mapping, Brain Par-
cellation

I. INTRODUCTION

The human brain is a spatiotemporal complex system with
billions of interconnected neurons forming intricate computa-
tional networks and memory units that exhibit dynamic activity
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patterns across both space and time, playing vital role in shap-
ing cognitive ability, memories, emotions, sensory perception,
and eventually our identity. Thus, studying brain dynamism
is essential for advancing our understanding of consciousness
and cognition, as well as for finding reliable biomarkers and
developing interventions for brain disorders [1]. However, this
phenomenon has been comparatively less explored due to the
inherent complexities of the brain organization.

Over the past decade, research on brain dynamics has
grown, with a focus on temporal rather than spatial dy-
namism [2], [3]. Some methods analyze brief, spontaneous
co-activation patterns in fMRI data [4], but they may encounter
challenges in identifying meaningful patterns when activities
temporally overlap [5]. Additionally, quasi-periodic patterns
in spatially dynamic approaches reveal recurring spatiotem-
poral brain activity patterns and evolving spatial networks
(spatial chronnectome) [6]. However, drawbacks include the
significant impact of user-defined parameters on results. The
spatial chronnectome approach allows for the estimation of
overlapping temporally evolving networks within an ICA-
based brain parcellation framework [7], providing an approach
to jointly parcellate and estimate dynamics; however, initial
approaches focus on linear decomposition methods.

Recent advances in computer vision enable us to decipher
the principles underlying brain dynamics, while moving be-
yond linear approaches. In this work, we contribute to the
field by addressing a gap in neuroscience research related to
dynamic brain maps. We introduce a novel, weakly supervised
framework for dense prediction of dynamic brain networks.
In computer vision, dense prediction entails the intricate task
of generating pixel-wise (or voxel-wise) predictions, allowing
for the capture of detailed spatial information essential for
nuanced analysis [8]. Additionally, weakly supervised learning
represents a paradigm in machine learning designed to train
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models using ambiguous, noisy, or incomplete data. This
approach proves valuable in addressing challenges associated
with the high expenses and complex nature of annotating
procedures, offering a solution for gathering supervision in-
formation [9].

All in all, our goal is to encode the spatiotemporal charac-
teristics of fMRI data, capturing brain dynamics and ultimately
generating dynamic representations of input data that illustrate
4D brain maps varying over time for each voxel. This sets
it apart from atlas-based methods, which provide fixed-size
templates and ignore the natural variability of the brain in
terms of size, shape, and gyrification, or ICA-based approaches
(i.e., a soft parcellation method) that typically consider a fixed
spatial map for each network over time, with variability only
captured by a single time-course. Moreover, the dynamic na-
ture of our method makes it feasible to study the contribution
of each voxel in multiple networks and potential temporally
overlapped patterns. Our method is computationally efficient
during the deployment phase, surpassing other brain parcella-
tion approaches, and has no user-defined parameters for end-
users, enhancing its stability compared to other techniques.
Last but not least, our method has the potential to expand
the horizons of brain dynamics research and enrich relevant
studies by providing 4D dynamic maps, which can be used as
a fundamental tool for further studies.

II. METHODOLOGY
A. Scepter Framework

We formulate brain dynamism phenomena as a 4D soft
brain parcellation task with weak supervision and then ex-
plore a strong backbone architecture for spatiotemporal dense
prediction of dynamic brain networks. To do this, we design
the Scepter framework including an isotropic encoder with
pre-activated ConvMixer modules. We also leverage advances
in weakly supervised learning paradigm to train the model
with priors, generated by applying ICA on fMRI and merging
extracted components and time-courses. The overview of our
framework architecture is shown in Fig 1.

Let S;, P, € RY™®X¥*= denote a fMRI image and its
prior for a specific brain network n, where ¢ is the number
of time-points and x,y, 2 are space dimension respectively.
We want to learn a function like fn for each brain network
n, such a way that encodes spatiotemporal information of
the data and generate a representation similar to the given
prior while preserving temporal variability. To do this, the
input image is split into a series of non-overlapping patches
S; = [s}, ..., sF] where ¢ is the patch size and k is the number
of patches, using a patch embedding module that contains a 3D
batch normalization, non-linearity function, and convolution
layer respectively for implementing pre-activation scenario.
We also encode index of timepoints using a temporal position
embedding e € R**¢° with similar shape as patches to reduce
asynchronization effects of brain activity patterns in different
subjects.
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Fig. 1. Schematic of the proposed Scepter framework for encoding spatiotem-
poral information to densely predict 4D dynamic brain networks using weak
supervision. Our framework comprises an isotropic architecture that considers
the temporal dimension as an input channel and subdivides the fMRI input
image into patches. These patches are subsequently fed into a series of k
encoders to generate a spatiotemporal dynamic brain map.

Where conv is a normal 3D convolution, ¢ (.) is the non-
linear function (Gaussian Error Linear Unit - GELU), and bn
refers to 3D batch normalization layer. Next, our architecture
is followed by & number of encoders, including two redundant
set of residual pre-activated depth-wise convolution layers
followed by a normal point-wise convolution and a dropout
layer.

Ay = conv (o (bn (conv (o (bn (Ai-1)))))) 2)
A1 = o (bn (conv (A;))) 3)

Where conv is a depth-wise convolution with depth of ¢ and
conv refers to point-wise convolution. Our base architecture
begins with a patch embedding layer and d encoders all
stacked together to form our isotropic architecture.

B. Generating Prior

Generating dynamic brain maps faces a significant barrier
due to the lack of annotated data, which is costly, complex,
and prone to inaccuracies. These challenges drive the need
for alternative approaches, motivating us to leverage ICA
spatial maps and time-courses for generating priors as weak
supervision for model training.

To extract spatial maps and time-courses, we employed the
NeuroMark template [10] — a template consists of replicable
independent components (ICs) that are computed by spatially
aligning correlated group-level ICs from two extensive healthy
control fMRI datasets with more than 800 subjects. Sub-
sequently, we utilized the template for running a spatially
constrained ICA algorithm on a per-subject basis, enabling
us to detect 53 maximally independent resting state networks
(RSNs), each comprising a spatial map CI* € R53x63x52
and its corresponding time-course T_C’:L with size of timepoint
count. Therefore, we compute the prior for each of networks
by applying a brain mask on spatial maps and vectorizing
it, then computing outer product of the time-course and
vectorized spatial map as follows:

Pr=TC, @ Cr €
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Fig. 2. Qualitative comparison with the prior was conducted for a randomly selected subject from the test set. Spatial variability in sample sensory-motor,
auditory, default mode network, subcortical, and cerebellar regions was analyzed for the given subject. The first column displays the prior averaged over time,
while the second column demonstrates the generated dynamic map averaged over time. In the third column, spatial deviation is presented, showcasing the
remarkable ability of our framework to encode spatial dynamics. Interestingly, the right postcentral gyrus reveals distinct activities in the spatial deviation
map within the sensory-motor network, not visible in the averaged map. The fourth and final column showcases the peak voxel value over time, providing
further evidence of spatial variability over time. The model’s output is thresholded to deliver more detailed information.
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Fig. 3. The upper panel displays horizontal slice of 5 consecutive timepoints
post mean removal for the Sensory-Motor network, emphasizing the spatial
variation. In the lower panel, a heatmap illustrates the functional network
connectivity across sensory-motor, auditory, default mode, subcortical, and
cerebellar networks. The figure unveils a lower correlation between these
diverse networks, consistent with previous research findings.

Finally, we unmask the computed matrix to get the 4D spa-

tiotemporal tensor and use the generated prior P; € R{***yx2
as weak supervision to train our model.

III. EXPERIMENTS

Our backbone architecture contains a patch embedding unit
that split and project the input image into set of patches
by utilizing a pre-activated depth-wise 3D convolution with
group size of t, and same patch size of 2 for both kernel and
stride. We use a small patch size as the spatial dimension of
input image is not large enough and using a bigger patch size
will result in artifacts in generated map. Next to the patch
embedding unit, there is a stack of 9 encoders to capture
spatiotemporal information, each of which has two identical
pre-activated depth-wise convolution layers with kernel size
of 3 and padding of 1 to preserve shape of extracted features,
followed by a normal point-wise convolution all with group
ratio of t, and a dropout layer with ratio of 0.1. Moreover,
we trained the model on two V100 GPU with 32 GB of
dedicated memory by minimizing mean squared error between
prior and generated 4D tensor along with Adam optimizer
with learning ratio of 0.001, batch size of 3, weight decay
ratio of 0.05 for 1000 epochs and eventually early stopping
policy for preventing overfitting issue with ¢ = 1078, Also,
we train and evaluate our model on BSNIP dataset [11] using
182 healthy control samples (train set =150, test set = 32),
collected from 4 different sites by 3.0 T Siemens Verio Scanner
with an 8-channel SENSE head coil, 3.0 T Signa HDx GE
Scanner, and 3.0 T Siemens Trio Trim Scanner. Additionally,
we employed a straightforward technique for uniformly sam-
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pling timepoints with step size of 4 as utilizing all timepoints
would be computationally intensive resulted in sample shape
of §; € RZPX53%63X52 " and smoothed the input image by
gaussian filter with ¢ = 0.5 and then applied z-scoring
to the input images to ensure proper normalization. Finally,
we trained the model for different brain regions including
subcortical, cerebellar, sensory-motor, auditory, default mode
network.

A. Qualitative results

Our qualitative results demonstrate the capability of our
framework to generate plausible maps with globally similar
patterns to the prior, as depicted in Fig 2. Moreover, the spatial
deviation maps —depicting absolute differences between con-
secutive timepoints— exhibit smooth changes around active
regions in all the maps, with variable amplitudes for differ-
ent subjects. This collective evidence highlights the model’s
proficiency in capturing spatiotemporal brain dynamism. More
intriguingly, activities in the right postcentral gyrus of the spa-
tial deviation map within the sensory-motor network become
apparent, which remains unseen in the averaged map. This
observation aligns with previous anatomical knowledge of the
sensory-motor network. Furthermore, we explored functional
network connectivity, as shown in Fig 3, revealing a signifi-
cant low correlation among distinct networks, indicating their
functional differentiation.

B. Quantitative results

Currently, as there is no similar work on dynamic brain
maps, there are no direct comparisons to competing state-
of-the-art methods. Moreover, there is no specific metric to
evaluate generated maps directly. Thus, we study the quality
of generated maps in terms of the global difference with
prior maps using the mean Absolute Relative Error (mARE),
localization of the active region with Intersection over Union
(I0U), visual quality of maps with the structural similarity
index measure (SSIM), and eventually homogeneity which is
correlation of voxel time-series within the ROI. The model’s
ability to capture dynamic brain activities while preserving
the global pattern of the brain map for the given networks is
demonstrated by high IOU, SSIM, and Homogeneity values,
along with low mARE, as shown in Table L.

TABLE 1

RESULTS ON THE LOCALIZATION AND VISUAL QUALITY OF GENERATED
DYNAMIC BRAIN NETWORKS.

Brain Quantitative metrics
Networks mARE | | IOU 1 | SSIM 1 | Homogeneity T
Default Mode 0.18 0.64 0.82 0.98
Auditory 0.23 0.57 0.8 0.99
Sensory-Motor 0.24 0.55 0.8 0.94
Subcortical 0.21 0.58 0.81 0.98
Cerebellar 0.23 0.56 0.81 0.98

IV. CONCLUSION

In this work, we propose a novel weakly supervised frame-
work for spatiotemporal dense prediction of 4D dynamic brain
networks. Our approach surpasses current brain parcellation

methods by offering insights into complete spatiotemporal
variations across space, time, and networks. We leverage
advances in weakly supervised learning to generate a prior
for training the model by merging spatial maps and time-
courses extracted from input fMRI data through the application
of the ICA algorithm. This choice is driven by the lack
of a benchmark for creating 4D dynamic brain maps. The
results from the test set reveal that our framework generates
maps with sensitivity to individual variations. We additionally
examined spatial variability by computing the summation of
absolute spatial deviation. This method unveils regions that
exist within the network boundaries but deviate from the
overall mean activity. This unique aspect of our approach
offers a further understanding of brain activity. Moreover,
we assessed the temporal relationships between networks by
calculating functional network connectivity, which exhibited
the anticipated modular pattern. We believe that a pivotal
aspect of Scepter, involving the encoding of spatiotemporal
information to construct dynamic brain networks, offers ex-
tensive suitability for investigating brain disorders, potentially
identifying biomarkers, and understanding cognitive processes.
Several upcoming studies in this vein are part of our planned
research agenda.
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