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ABSTRACT: Partially cooperative phase transformations, with characteristically sigmoidal conversion curves, are commonly
observed, but rigorous analytical solutions are widely familiar only for fully cooperative and fully noncooperative conversions
(exp(−Kt4) and exp(−kt), respectively, in three dimensions). The JMAK formula, exp(−κtn) with noninteger Avrami exponent n,
has been used to fit data for partially cooperative conversions, but this approach has only been empirical and so far seems to lack
theoretical derivation and support. We show that the Ishibashi−Takagi modification of Avrami theory rigorously accounts for partial
cooperativity that arises from the competition between random volume filling by newly formed nuclei of finite volume and
cooperative domain growth. The imperfect cooperativity and finite initial domain volume are accounted for by a prenucleation
growth time t0, resulting in conversion curves of the form exp(Kt04) exp(−K(t + t0)4), with K depending on nucleation and growth
rates as in fully cooperative Avrami theory. The validity of the analytical theory, which solves the Finke−Watzky problem of
competing nucleation and growth and can be cast in terms of two rate constants, has been confirmed by numerical simulations of
domain growth with finite initial domain volume on a lattice with the nucleation rate varying over nearly 5 orders of magnitude. The
first-order kinetics exponential decrease in the limit of no cooperativity is correctly recovered for large t0. Between the random and
fully cooperative limits, the partially cooperative conversion curves resemble, but are not exactly matched by, empirical Avrami
exp(−κtn) with a noninteger exponent or Finke−Watzky curves. A cooperativity parameter C = exp(−(4K)1/4t0) ranging between 0
and 100% is introduced and related to the empirical Avrami exponent.

1. INTRODUCTION
Many solid-state reactions and phase transformations in
materials science, including photochemical1,2 or thermally
driven3−5 solid-state cycloaddition of monomers and crystal-
lization of polymers,6 show characteristically sigmoidal
conversion curves with time. The recent observation of
sigmoidal cycloreversion of a dianthracene-based molecular
solar thermal (MOST) energy storage material by solid-state
NMR7 stimulated our own interest in this phenomenon. Since
random conversion results in first-order kinetics with a simple
exponential decrease of the initial phase (reactant), it is clear
that the sigmoidal behavior must be due to cooperative or
autocatalytic processes. Conversion is fully cooperative if a
volume element can convert only in contact with an already
converted volume or a fresh nucleus of negligible volume. It
can be modeled and described analytically in terms of domain

growth by the Avrami or Johnson−Mehl−Avrami−Kolmogor-
ov (JMAK) theory.8−12 In three spatial dimensions, the case
relevant here, the JMAK theory gives the time dependence of
the remaining volume fraction of the initial phase ‘A’ as

V t V Kt( )/ (0) exp( )A A
4= (1)

where the constant K depends on the nucleation rate density
and the domain growth rate (see details below).12−14 The
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derivation of the Avrami equation has proved challenging to
textbook authors15−17 due to the impingement of growing
domains or simultaneous nucleation and growth of different
domains,18 but it has been presented convincingly in several
sources.12−14

Standard Avrami theory always implies a fully cooperative
scenario and does not include a description of partial
cooperativity, where volume is filled by random noncoop-
erative conversion and cooperative domain growth in
competition. While a generalized Avrami formula, exp(−κtn),
has been used to interpolate between noncooperative kinetics
with exp(−kt), and the fully cooperative standard Avrami eq 1,
the use of noninteger exponents n has not been supported by a
rigorous theory. Our analysis here documents that the
equation exp(−κtn) may serve only as an approximation for
partially cooperative transformations.
Herein, we analyze partially cooperative phase trans-

formations based on Avrami theory modified to include an
initial volume of the nucleus, following the pioneering work of
Ishibashi and Takagi,13 which was based on Kolmogorov’s
rigorous derivation12 of the original JMAK equation. When the
size of the nucleus is finite, noncooperative filling of space by
the formation of new nuclei competes with cooperative
domain growth of standard Avrami theory. This corresponds
to the situation of simultaneous nucleation and growth that
Finke and Watzky19 sought to describe approximately by
simple two-step kinetics with random nucleation A → B and
cooperative growth A + B → 2B.19,20 Our analytical theory,
which exactly solves the Finke−Watzky nucleation and growth
problem in a three-dimensional solid, is validated by numerical
simulations of the growth of compact, convex domains with
finite initial domain volume on a lattice with periodic boundary
conditions, and partial filling of lattice volume elements to
better model the continuous growth. The conversion curves
are compared with Finke−Watzky and empirical Avrami fits. In
the limit of no cooperativity, from our general formula we
recover the exponential decrease due to first-order kinetics. A
cooperativity parameter is introduced and related to the
empirical Avrami exponent. The analytical result is also re-
expressed in terms of two rate constants.

2. METHODS
2.1. Lattice Simulations of Domain Growth. Simu-

lations were performed using MATLAB on matrices of size 240
× 240 × 240, corresponding to a three-dimensional lattice of
(30 nm)3 in space. Matrix entries ranged between 0 and 1,
representing the extent of conversion of that volume element,
starting with 0 everywhere. After each time step of 1 min,
growth was calculated by adding a given small growth fraction
of v/(0.125 nm/min) to elements facially neighboring any
element with a value of 1 but capping the resulting value at 1.
Periodic boundary conditions were implemented by assigning
the boundaries of the system as neighbors of their counterparts
on the other end. For simplicity, numerical simulations were
performed in Cartesian coordinates, which spawn rounded
cubic nuclei as opposed to exactly spherical ones and may lead
to nonconvex domains in the beginning of growth. This issue
was mitigated by using larger nuclei of dimensions 8 × 8 × 8,
where concavity is negligible. Fractional filling of volume
elements allows growth to be much finer grained, making it
unnecessary to scale up the system size excessively.
Nucleation (with nuclei of size V0 = 8 × 8 × 8 = 1 nm3) was

simulated by generating a 30 × 30 × 30 random matrix and

then scaling it up to 240 × 240 × 240 lattice elements; a value
of 1 was assigned to all volume elements whose corresponding
random value was smaller than that of the small input
nucleation probability of ṅ nm3 min. A total of 800 time steps
of 1 min each were calculated. All simulations were repeated 32
times and averaged to reduce random noise from the
nucleation step.

3. BACKGROUND
3.1. Random Noncooperative Conversion of A to B.

An important limiting case in phase transformation is
uncorrelated or random conversion of A to B. Each volume
element has a certain probability of converting within a given
time period, independent of its neighbors. In this case, phase
conversion exhibits first-order kinetics as described by the
simple proportionality |dNA/dt| ∼ NA(t), which is the number
of volume elements of type A at time t. The volume still
occupied by the unconverted phase at time t, VA(t), is given by

V t V N t( ) ( )A 0 A= (2)

where V0 represents the volume of one element. With the
nucleation rate per volume ṅ (i.e., the number of nuclei formed
per volume and time), we can express the rate of conversion as

N t nV t nV N td /d ( ) ( )A A 0 A| | = = (3)

which gives the first-order rate law

N t nV N t k N td /d ( ) ( )A 0 A 1 A= = (4)

with

k nV1 0= (5)

The well-known solution of eq 4 is the exponential decrease
of the fraction fA of component A typical of first-order kinetics:

N t N V t V

f t k t nV t

( )/ (0) ( )/ (0)

( ) exp( ) exp( )
A A A A

A 1 0

=
= = = (6)

3.2. Avrami Theory: Debated Derivation. Avrami or
JMAK theory8−12 describing the filling of space by growing
domain is a fully cooperative process. In this study, interest is
focused on domain growth in three dimensions from nuclei
generated randomly in space and time. Progressive filling of
volume by growing domains limits the space where new nuclei
can form, and growing domains progressively overlap. These
probabilistic effects complicate the analysis. Major challenges
include how to correctly account for the already converted
volume and for random nucleation. The mathematically
rigorous analysis by Kolmogorov12 has rarely been discussed,
but it was notably used by Ishibashi and Takagi.13 The
derivation by Avrami refers to perplexing “phantom nuclei”
and “extended volume” concepts, which have been questioned
in the literature.12,18

Textbooks struggle with presenting a valid, understandable
derivation of Avrami theory. Strobl15 finds it preferable not to
present a proof; Sperling’s16 derivation contains at least two
conceptually relevant typographical errors; Young17 tells
readers that “one can show that...” the equation can be derived
and adds a factor of 2 to the Avrami constant in 3D; the proof
presently on Wikipedia convinces at short times only.
Gedde’s14 proof is correct but also so brief and lacking the
needed diagrams that it is difficult to follow. It is also
confounding that various symbols are used for the same rates
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by different authors. We review an instructive and rigorous
derivation of the Avrami formula and then modify it to
incorporate the finite initial volume, V0, of a nucleus.
3.3. Avrami Theory: A Rigorous Derivation. In the

following, we review and interpolate Gedde’s14 derivation of
the Avrami/JMAK formula in 3D, as a basis for its subsequent
modification for partially cooperative processes.
Consider a point P surrounded by a spherical shell of radius

r and thickness dr as shown in Figure 1. In the spherical shell,

nuclei are generated with a rate density ṅ (number per time
and per volume) and then expand with a growth front speed v.
The average number dE of growth fronts nucleated in the
spherical shell that pass the point P in the center is obtained
according to

E Vn td d= (7)

with the shell volume dV = 4πr2dr and the time Δt during
which growing domains from the shell can reach the point in
the center,

t t r/v= (8)

The travel time τ = r/v between shell and center, during which
no growth front reaches the center yet, is properly subtracted
out from the total time t. Then

E Vn t r rn t rd d 4 d ( /v)2= = (9)

We integrate space around point P from 0 to vt, the maximum
distance from which growing domains can reach the point P
within time t, to obtain the average number E of growth fronts
passing through the point:

E
n

r t r r K t t K t Kt
4

v
(v )d 12

1
3

12
1
4

t

0

v
2 3 4 4= = =

(10)

with

K n( /3)v3= (11)

the well-known constant of Avrami theory in 3D with random
nucleation. It is notable that the product v3ṅ in K combines the
effects of nucleation and growth rates in such a way that they
cannot be determined independently. According to Poisson
theory (see next section), the probability that within time t no
growth front has passed through a given point, i.e., the
remaining fraction fA(t), is

f t E Kt( ) exp( ) exp( )A
4= = (12)

A new nucleus potentially occurring in an already converted
region does not pose a problem in this analysis.

3.4. Poisson Statistics. The last step of the derivation of
eq 12 refers to a result of Poisson statistics, which is reviewed
in the following. For a process occurring with a constant rate λ
over a time interval t, the expected number of events with the
time t is

E trate time period= × = (13)

If t is divided into N small subintervals of equal length t/N
with very big N, such that only one event can occur in any
subinterval, the probability of an event occurring is t

N
, and of

no event is 1 t
N
, in each interval. The probability of exactly

m events in the total time t (leaving N − m intervals without
events) is given by the binomial distribution:

P m N
m N m

t
N

t
N

( )
( )

1
m N m

= !
! !

i
k
jjj y

{
zzz i

k
jjj y

{
zzz

(14)

where the first factor is the number of permutations of m
intervals with events and (N − m) intervals without. Taking
the limit of N → ∞, i.e., N ≫ m, neglecting m relative to N, we
find

N
N m

N N N m N m
N m

N

lim
( )

lim
( 1) ( 1)( )

( )

N

N

m

!
!

= ··· + !
!

= (15a)

t
N

lim 1 e
N

N m
t=i

k
jjj y

{
zzz (15b)

Inserting these two limits into the binomial distribution
yields the Poisson distribution

P m
N
m

t
N

E
m

( ) e e
m m

t
m

E=
!

=
!

i
k
jjj y

{
zzz (16)

which is independent of the chosen number N of intervals. The
average number of events within the time t is

m mP m

m
E
m

E E
m

E E
m

E E

( )

0 e

e
( 1)

e e e

m

m

m
E

E

m

m

E

m

m
E E

0

1

1

1

0

=

= +
!

=
!

=
!

= =

=

=

=

= (17)

consistent with eq 13.
3.5. Raindrops on a Pond. The probability of a certain

number of waves passing a point on a pond with raindrops
falling at a constant rate ṅ is a classical application of the
Poisson distribution and conceptually related to Avrami theory
in 2D. When a raindrop hits the surface, a circular water wave
propagates out radially from the point of impact with velocity
v. This is analogous to the growth of circular domains from
nuclei generated randomly with constant rate ṅ per time and

Figure 1. Representation of domains nucleated at a distance r from a
generic point P in space and reaching that point at a time t ≥ r/v.
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area. The probability that exactly m waves have reached an
arbitrary point (i.e., the probability of m events) within time t
is given by the Poisson distribution of eq 16:

P m
E t

m
( )

( )
e

m
E t( )=

!
E(t) is the average number of waves that have reached the
point within time t, which can be calculated through
integrating the number of raindrops that have fallen at time
τ and have propagated for a period of t − τ:

E t n t n t( ) v( ) d
1
3

v
t

0

2 2 3= [ ] =
(18)

Importantly, the probability of no waves having reached the
point within time t is, according to eq 16, given by

P n(0) e e with
1
3

vE t(t) 23
= = =

(19)

which is the Avrami equation in 2D. In three dimensions, the
propagation, as shown in Figure 1, is out of a spherical shell
instead of a circle, resulting in eq 10.
3.6. Avrami Theory with Partial Cooperativity: The

Finke−Watzky Problem. In contrast to the fully cooperative
process described by standard Avrami theory, where growth
starts solely in contact with existing nuclei (defined as points of
zero volume), we propose a partially cooperative model. In this
model, randomly generated nuclei of finite size are introduced
into the system and fill volume alongside domain growth. The
cooperative conversion resulting from contact with existing
phases competes with that resulting from randomly generated
nuclei. This is the problem of competing nucleation and
growth posed in 1997 by Finke and Watzky,19 which we solve
here in three spatial dimensions instead of using simplifying
kinetics equations.
This model can be implemented by a modification of 3D

Avrami theory. In Avrami theory, a nucleus is “born” as a point
of zero volume (Figure 2a), so without growth, volume will not

be filled by the new phase. In contrast, in our partially
cooperative model, see Figure 2b, a nucleus initiates with a
finite volume V0, for instance representing the volume of a
lattice element. This departure from the zero-volume initiation
in Avrami theory reflects the real-world scenario where
domains have a finite size from the beginning. Ishibashi and
Takagi13 introduced and solved this model, but without
reference to cooperativity, by applying an advanced mathe-
matical method introduced by Kolmogorov.12 Here, we
present an instructive derivation of the resulting equation in
the context of cooperativity, elucidating how partial cooper-
ativity influences the kinetics of phase transformations.

3.7. Avrami Theory Modified with Prenucleation
Growth Time. The initial volume (or “volume at birth”) V0
of a nucleus is the volume of one lattice element. It can be
incorporated13 into Avrami theory by assuming that every
domain started growing to the volume V0 during a
“prenucleation growth time” t0, even before the nucleus
formed. The initial radius

r tv0 0= (20)

with prenucleation growth time t0 and linear growth velocity v
(e.g., in nm/min) relates to the initial volume V0 as expected:

V r t(4/3) (4/3) v0 0
3 3

0
3= = (21)

Now we calculate again, as in eq 7, the average number dE of
growth fronts passing a central point P having started from
nuclei in a surrounding spherical shell of radius r, see Figure 3,
but the time Δt during which growing domains from the
spherical shell can reach the point in the center is modified to

t t r t( /v )0= (22)

or

t t r r( )/v0= (23)

The travel time τ = (r/v − t0) between shell and center,
during which no growth fronts can reach the center yet, is
reduced by the “head start” due to the prenucleation growth
time t0. Then

E Vn t r rn t r td d 4 d ( ( /v ))2
0= = (24)

Figure 2. Cartoons comparing (a) the conventional Avrami model,
with vanishing initial volume of a nucleus, and (b) the Ishibashi−
Takagi model with nuclei of initial volume V0. Grayscale indicates the
probability of conversion to monomer in the next time step.

Figure 3. Representation of (left side) a domain nucleated at a
distance r from a generic point P in space and reaching that point at a
time t = (r −r0)/v. Right side: a nucleus touching the point P at time
0 is centered at a distance r0 from the point.
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We integrate space around point P from r = r0 = vt0, the
closest approach between P and another nucleus, to r = vt + r0,
the furthest distance of a nucleus from which a growth front
could reach point P, see Figure 3, to obtain the average
number E of fronts passing through point P within the time t:

E n r t t r r E

n r t t r r r V nt

n
t t r t t t t

t t nt

n t t K t t Kt Kt t

K t t Kt

4
v

(v v )d

4
v

(v v )d d

4
v

1
3

(v v ) (v v )
1
4

(v v )

v
4
3

v

4
v

1
3

v ( ) 4

( )

r

t r

r

t t

r

t t

v
2

0 0

v v
2

0

v v
3

0

0
4

0
3

0 0
4

0
4 3

0
3

4
0

3
0

4
0

4
0

3

0
4

0
4

0

0

0

0

0

0

= + +

= + +

= [ + + ] [ +

] +
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(25)

Through the term E0, the probability of a new domain
arising within V0 has been taken into account. The number of
growth fronts it adds is

E V nt t nt Kt t4/3 v 40 0
3

0
3

0
3= = = (26)

From the average in eq 25 we calculate as before the
probability that no growth front has passed through a given
point, i.e., the remaining fraction fA(t):

f t E Kt K t t( ) exp( ) exp( )exp( ( ) )A 0
4

0
4= = + (27)

with K = (π/3)v3ṅ. This is the same constant as in fully
cooperative Avrami theory, eqs 11 and 12, which is the limit of
eq 27 for t0 = 0 (i.e., with zero initial volume of a nucleus). In
terms of the underlying physical parameters of nucleation rate
ṅ, speed v of a growth front, and initial radius r0 of the nucleus
when formed, eq 27 can be written as

f t nr v t r( ) exp(( /3) / (1 (1 v/ ) ))A 0
4

0
4= + (28)

where we have used eqs 11 and 20.

4. RESULTS AND DISCUSSION
4.1. Validation by Numerical Simulations of Compact

Convex Domain Growth. In the following, we validate the
abstract analytical theory with numerical simulations on a
lattice with varying nucleation and growth rates, as visualized
in Figure 4 for low, intermediate, and high degree of
cooperativity. Figure 5a shows conversion curves generated
from a series of such numerical simulations where K ∼ v3ṅ of
eq 11 was held nearly constant through simultaneous scaling of
the nucleation rate ṅ by x and the growth rate v by x−1/3. In the
simulations, ṅ was varied over 4.5 orders of magnitude. In
order to account for the change in particle shape recognized in
Figure 4c, the effective growth rate veff was determined from
the volume of a single growing domain, V = 4π/3(veff (t + t0))3,
for the last third of the growth period, resulting in ≤15%
corrections of veff relative to microscopic v (see the legend in
Figure 5a). The curves from the simulation were fitted with the
analytical eq eq 27. With K nearly constant, t0 was the
dominant fit parameter in eq 27. Given that the lattice element
volume V0 and spacing r0 were implicitly fixed, based on eq 20
we obtain the proportionality t0 = r0 (1/v), which is confirmed

by the predicted linear increase in t0 with the inverse of the
effective growth rate in Figure 5b.

4.2. Partially Cooperative Conversion vs Empirical
Generalized Avrami Formula. Figure 6 compares rigorous
partially cooperative fA(t) = exp(Kt04) exp(−K(t + t0)4) where
K = (π/3)v3ṅ was fixed at K = 10/h4 while t0 = v/r0 was varied
widely, with fits based on the empirically generalized Avrami
formula fA(t) = exp(−κtn) (dashed), where both κ and n were
adjusted as fitting parameters. The empirical Avrami formula
shows the predicted behavior of decreasing Avrami exponent n
approaching 1 as t0 increases but fails to provide precise fits in
the intermediate partially cooperative cases (note the deviation
between solid curves and dashed fits). This comparison
documents that the noninteger Avrami formula is just an
approximation to our rigorously derived partially cooperative
nucleation-and-growth model. As fit functions, both formulas
give fairly similar curves with varying sigmoidal character.

4.3. Vanishing Cooperativity: Recovering Exponen-
tial Kinetics. In the limit of vanishing domain growth rate v
→ 0, while keeping the volume of the lattice element V0 and its
radius r0 constant, volume is filled by nongrowing domains,
randomly placed. In this limit we expect eq 27 to recover
simple first-order kinetics as in eq 6. This is confirmed
mathematically in the following.
Using constant r0 = vt0 from eq 20 and Taylor expansion of

the second exponent in eq 27, with

t t t r/ v / 10 0= (29)

which is small due to its proportionality to v → 0, we can write

Figure 4. Snapshots of simulations of phase conversion that is (a)
nearly random, with v = 0.625 × 10−3 nm/min and ṅ = 5 × 10−2/
nm3/min; (b) partially cooperative, with larger growth-front speed v =
3.1 × 10−3 nm/min and smaller nucleation rate ṅ = 4 × 10−4/nm3/
min; (c) nearly fully cooperative, with v = 12.5 × 10−3 nm/min and
very small ṅ = 6.25 × 10−6/nm3/min. To different degrees,
noncooperative nucleation of new domains of finite initial volume
competes with cooperative growth of existing ones. Box size: (30
nm)3. Shading reflects incomplete filling of a volume element of the
lattice near the surface of a growing domain.
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Inserting K = (π/3)v3ṅ from eq 11 and using eq 21 for V0,
we obtain

f t nt t nV t k t( ) exp( 4 /3v ) exp( ) exp( )A
3

0
3

0 1= =
(31)

with

k Kt nt nV4 4/3 v1 0
3 3

0
3

0= = = (32)

exactly reproducing the exponential noncooperative first-order
conversion of eqs 6 and 5 in this limit. Due to t/t0 ≪ 1, see eq
29, this slow-growth limit corresponds to large

t t k nV1/( )0 1
1

0= (33)

where the approximate equality arises from the conversion
occurring on the time scale of the correlation time k1−1. The
outer relation of eq 33 is confirmed by the simulated
conversion curves in Figure 7, which approach the exponential
shape when t0 exceeds 1/(ṅV0) = 1/(3.2 × 10−3 min−1) = 3100
min.

4.4. Conversions at Constant Nucleation Rate and
Initial Nucleus Volume. Figure 7 shows an instructive series
of simulated conversion curves for constant initial volume V0 of
the nucleus and constant nucleation rate ṅ = 3.2 × 10−3 nm−3

min−1, with the domain growth rate v as the variable

Figure 5. (a) Comparison of partially cooperative conversion obtained from numerical modeling as shown in Figure 4 (solid curves) with the
analytical eq 27 (dashed curves), using the parameters shown in the legend, with the nucleation rate ṅ varying by 4.5 orders of magnitude. Small
deviations between the accurate analytical curves for spherical particles and the simulations on a cubic lattice arise from differences in particle
shape, see also Figure 4. (b) Prenucleation growth time t0 as a function of the inverse of the effective growth rate veff (with the constant effective
radius r0 = 0.62 nm of a lattice element as the proportionality constant according to eq 20) from the fits in (a).

Figure 6. Comparison of (solid lines) partially cooperative conversion
fA(t) = exp(Kt04) exp(−K(t + t0)4), for the t0 values given in the
legend and K = (π/3)v3ṅ = 10/h4 held fixed, with (dashed) best fits
by the empirically generalized Avrami formula fA(t) = exp(−κtn),
where both n and κ are free fit parameters without theoretical
underpinnings.

Figure 7. Series of simulated curves for constant nucleation rate ṅ =
3.2 × 10−3 nm−3 min−1 and constant initial nucleus volume V0 = 1
nm3 with decreasing growth rate v, and consequently increasing t0 =
r0/v, from left to right, as indicated in the legend.
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parameter. At high growth rates, conversion is fast but as
domain growth lags, the overall process slows down and the
exponential noncooperative conversion of eqs 6 and 31
becomes the asymptotic limit. V0 is much easier to hold
fixed in lattice simulations than in the analytical expression of
eq 27 given in terms of K and t0, but fundamentally the two
approaches of course remain equivalent.
The curves of Figure 7 document that for fixed finite V0 or

equivalently r0, the effects of the rates ṅ and v can be assessed
separately in

K t t n t rexp( ( ) ) exp( /3v ( /v) )0
4 3

0
4+ = + (34)

while they are fundamentally inseparable as a factor v3ṅ in their
effect on the fully cooperative Avrami behavior with exp(−K
t4) = exp(−π/3(v3ṅ)t4). In some cases, with t0 determined by
fitting the curve and r0 from the elementary volume V0 (e.g., of
a dimer in a cycloreversion process), the growth rate (or
speed) v = r0/t0 could be estimated.
4.5. Physical Interpretation of V0, r0, and t0. The

elementary volume V0 “at birth” of a nucleus is an important
parameter in the theory of partially cooperative phase
conversion developed here, which extends it beyond the
limitations of the original fully cooperative Avrami model. V0
often has an intuitive meaning: it may be the volume of the
critical nucleus of a crystallizing polymer chain,6 the volume of
a disintegrating dimer in a cycloreversion process,21 or the
volume of individual species A or B in Finke−Watzky theory
(see below). In simulations it is the volume of the lattice
element(s) that a nucleus occupies when it is formed. V0 is
closely related to the radius r0 of the nucleus when first formed,
via V0 = 4/3πr03.
The prenucleation growth time t0 is introduced mainly out

of notational convenience that keeps a notional link to the
Avrami equation. It is the time period for which the nucleus
would have had to grow from an initial point in space to reach
the volume V0. Eq 28 shows how t0 could be avoided in our
analytical expression for the conversion curves, but at the
expense of one more parameter in the expression. Comparison
with the simpler eq 27 in terms of t0 and K documents that the
conversion curves depend only on two functional parameters,
one of which is conveniently chosen to be t0.
4.6. Cooperativity Parameter. The theory presented here

can correctly describe the continuum between vanishing
cooperativity (exponential decrease) and full cooperativity
(3D Avrami model). The degree of cooperativity can be
quantified by a unitless cooperativity parameter C with values
between 0 (no cooperativity) and 1 (100% cooperativity)
defined as

C k t K texp( ( ) ) exp( 2 )1 0
1/4 1/4

0= = (35)

where k1 = 4Kt03 according to eq 31. In terms of the underlying
physical parameters, based on eqs 11 and 20 we can write

C n rexp( 1.43( /v) )1/4
0= (36)

In the limits of small and large t0, we find

t C0: exp( 0) 10 = = =

corresponding to the fully cooperative Avrami model with no
volume filling from conversion of individual units (V0 = 0), and

t C: exp( ) 00 = =

corresponding to no growth of nuclei, random volume filling,
no cooperativity, and exponential decrease. With the time
constant t1/2 of decay to 50%, which for the fully cooperative
Avrami model equals t1/2,coop = 0.92/K1/4, for processes with
the same nucleation and growth rates (and therefore the same
K) but different V0 and therefore different degrees of
cooperativity, see Figure 5, we find

C t t/1/2 1/2,coop (37)

as documented in Figure 8. This provides additional
justification for the exponent of 1/4 in the expression for C

in eq 35. With reduced cooperativity, noncooperative
conversion speeds up the process and t1/2 decreases, see
Figure 5. In the nearly random, partially cooperative, and
nearly fully cooperative simulations visualized in Figure 4a−c,
the cooperativity parameters were 0.07, 0.60, and 0.85,
respectively.

4.7. Cooperativity Parameter and Avrami Exponent.
In the literature, the Avrami exponent n has implicitly been
treated as a cooperativity parameter2 but Avrami theory
provides no basis for this assumption since it does not produce
noninteger n that is not a multiple of 1

2. The relation between
Avrami exponent n and cooperativity parameter C, obtained by
best-fitting one model with the other as in Figure 6, is shown in
Figure 9.

Figure 8. Correlation between normalized “half-life” t1/2 and the
cooperativity parameter C = exp(−√2 K1/4t0). The relation is roughly
linear.

Figure 9. Correlation between the cooperativity parameter C and the
empirical Avrami exponent n, obtained by best fitting as shown in
Figure 5. Two simple approximations are shown as dashed curves and
allow for easy conversion between n and C.
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The relationship can be closely approximated, see the
dashed parabola and straight line in Figure 9, by

C Cn 5 1 for 0.32 + < (38a)

C Cn 3.7 0.3 for 0.3+ (38b)

or conversely

C ((n 1)/5) for n 1.45< (39a)

C (n 0.3)/3.7 for n 1.45 (39b)

This plot and the simple equations make it easy to
determine the cooperativity parameter C from the exponent
n in a conventional empirical Avrami fit.
4.8. Comparison with Finke−Watzky Theory. The

problem of competing nucleation and growth solved in this
paper for the solid state was posed in 1997 by Finke and
Watzky.19 Simplifying, these authors represented the process
by a two-step kinetic model, previously and independently
investigated by Peŕez-Benito and coworkers,20,22 of random
nucleation A → B with rate constant k1 and autocatalytic
growth A + B → 2B with rate constant k2. Analytical solutions
fA,FW(t) of the Finke−Watzky kinetic equations19 are fractions
with the time dependence in a fairly complicated denominator:

f t
k k N

k N k k k N t
( )

(0)
(0) exp ( (0))A,FW

1 2 A

2 A 1 1 2 A
= +

+ [ + ] (40)

which is not simpler to write than our solution fA(t) =
exp(Kt04) exp(−K(t + t0)4) in eq 27 for the actual nucleation
and growth process in a three-dimensional solid. Figure 10

shows the comparison of the Finke-Watzky approximation
with our full solution of their nucleation and growth problem
for a wide range of parameter values. The Finke−Watzky
curves are seen to include a more extended “tail” at long times.
Under the assumption that Avrami and Finke−Watzky

theories are “somehow equivalent”,20 Finney and Finke as well
as other groups23 compared fits of experimental data with the
Avrami equation and with the Finke−Watzky model. Given
that free fitting of either model leads to fairly good agreement
with our full solutions for competing nucleation and growth in
three-dimensional space, see Figures 6 and 10, it is under-
standable that in most cases both models are nearly equivalent
in terms of goodness of fit to experimental data.20,23

Both types of conversion curves in Figure 10 have two
parameters (e.g., K and t0 in our eq 27). Of the two Finke−
Watzky parameters, the nucleation rate constant k1 directly
corresponds to the derived parameter

k nV n r nt Kt
4
3

4
3

v 41 0 0
3 3

0
3

0
3= = = =

(41)

of our model, see eqs 5 and 31. This is confirmed by the one-
to-one relationship between ṅV0 in our model and k1 of the
best Finke−Watzky fits in Figure 10a, see Figure 11a. Equation

41 indicates that (like Avrami K, see eq 11, and our t0 = r0/v)
k1 is not a fundamental physical parameter, since it is the
product of the nucleation rate and the initial volume of a
nucleus.
Since the representation of particle growth by A + B → 2B is

simplistic, the rate constant k2 does not seem to correspond to
a specific single parameter of our model. Nevertheless, at a
constant nucleation rate ṅ, k2′ = k2NA(0) has an approximately
linear relation with the growth-front speed v, see Figure 11b.
Our realistic model avoids the puzzling appearance of initial
concentration [A]0

20 or particle number NA(0) in expressions
like eq 40.

4.9. Reparametrization in Terms of Two Rate
Constants. Like Finke−Watzky theory, our result of eq 27
can be written in terms of two rate constants with units of s−1:
nucleation-related k1 = ṅ4/3πr03 as in eq 41 and growth-related

k t r1/ v/0 0 0= = (42)

which again combines a physical rate in space, in this case the
rate v of particle growth, with the fundamental length scale r0.
With eqs 32 and 42, we have K = k1k03/4 and eq 27 converts to

Figure 10. Comparison of (solid lines) conversion fA(t) = exp(Kt04)
exp(−K(t + t0)4) due to simultaneous nucleation and growth, using K
= 10/h4 as in Figure 6, with (dashed) best fits by the Finke−Watzky
model with the rate-constant parameters k1 and k2′ as indicated in the
legend.

Figure 11. Correlation between (a) the rate constant k1 in the best-fit
Finke−Watzky model curves in Figure 10 with k1 = ṅV0 in our full
nucleation-and-growth model and (b) the rate constant k2′ = k2NA(0)
in the best Finke−Watzky fits with the speed v of the growth front, at
constant V0 = 1 nm3 and nucleation rate ṅ = 5 nm−3 h−1.
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an appealingly simple two-parameter formula for a wide range
of sigmoidal curves as shown in Figures 6 and 7. The
cooperativity parameter of eq 35 is simply

C k kexp( ( / ) )1 0
1/4= (44)

5. CONCLUSIONS
We have presented and analyzed an analytical theory for
partially cooperative phase conversions, with domain growth in
parallel with random conversion, based on the Ishibashi−
Takagi modification of standard Avrami theory. It represents
an accurate solution of the Finke−Watzky nucleation-and-
growth problem in a three-dimensional solid. The amount
(fraction) of the initial phase decreases as fA(t) = exp(Kt04)
exp(−K (t + t0)4) with K = (π/3)v3ṅ from 3D Avrami theory
and V0 = 4π/3v3t03 as the initial volume of the nucleus. The
prenucleation growth time t0 = r0/v relates directly to the linear
size r0 of the critical nucleus or molecular unit and the growth-
front speed v. The result fA(t) can also be expressed in terms of
two rate constants, k0 = v/r0 and Finke−Watzky k1 = ṅV0.
Numerical simulations have confirmed the theory over 4.5
orders of magnitude in nucleation rate. The nucleation rate ṅ
and growth rate v can sometimes be determined individually,
unlike in the conventional Avrami model, where only v3ṅ can
be obtained. Noncooperative exponential first-order kinetics is
recovered in the limit of large t0. A cooperativity parameter C =
exp(−√2 K1/4t0) can quantify cooperativity between 0 and 1,
and it is related to the empirical Avrami exponent n according
to C ≈ (n−0.3)/3.7 for n ≥ 1.45.

■ AUTHOR INFORMATION
Corresponding Author

Klaus Schmidt-Rohr − Department of Chemistry, Brandeis
University, Waltham, Massachusetts 02453, United States;
orcid.org/0000-0002-3188-4828; Email: srohr@

brandeis.edu

Authors
Zhenhuan Sun − Department of Chemistry, Brandeis
University, Waltham, Massachusetts 02453, United States;
orcid.org/0009-0000-2381-710X

Grace G. D. Han − Department of Chemistry, Brandeis
University, Waltham, Massachusetts 02453, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpcc.4c05750

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
G.G.D.H. acknowledges the NSF CAREER award (DMR-
2142887), Alfred P. Sloan Foundation (FG-2022-18328), and
the Camille and Henry Dreyfus Foundation (TC-23-028).

■ REFERENCES
(1) Kataoka, S.; Kitagawa, D.; Sotome, H.; Ito, S.; Miyasaka, H.;
Bardeen, C. J.; Kobatake, S. Relationship between Spatially
Heterogeneous Reaction Dynamics and Photochemical Kinetics in
Single Crystals of Anthracene Derivatives. Chem. Sci. 2024, 15 (33),
13421−13428.

(2) Morimoto, K.; Kitagawa, D.; Bardeen, C. J.; Kobatake, S.
Cooperative Photochemical Reaction Kinetics in Organic Molecular
Crystals. Chem.�Eur. J. 2023, 29 (14), No. e202203291.
(3) Athiyarath, V.; Mathew, L. A.; Zhao, Y.; Khazeber, R.;
Ramamurty, U.; Sureshan, K. M. Rational Design and Topochemical
Synthesis of Polymorphs of a Polymer. Chem. Sci. 2023, 14 (19),
5132−5140.
(4) Krishnan, B. P.; Rai, R.; Asokan, A.; Sureshan, K. M. Crystal-to-
Crystal Synthesis of Triazole-Linked Pseudo-Proteins via Top-
ochemical Azide−Alkyne Cycloaddition Reaction. J. Am. Chem. Soc.
2016, 138 (45), 14824−14827.
(5) Raju, C.; Kunnikuruvan, S.; Sureshan, K. M. Topochemical
Cycloaddition Reaction between an Azide and an Internal Alkyne.
Angew. Chem., Int. Ed. 2022, 61 (37), No. e202210453.
(6) Wunderlich, B. Thermal Analysis of Polymeric Materials; Springer
Science & Business Media, 2005.
(7) Chakraborty, S.; Nguyen, H. P. Q.; Usuba, J.; Choi, J. Y.; Sun,
Z.; Raju, C.; Sigelmann, G.; Qiu, Q.; Cho, S.; Tenney, S. M.; et al.
Self-Activated Energy Release Cascade from Anthracene-Based Solid-
State Molecular Solar Thermal Energy Storage Systems. Chem 2024,
10, 3309−3322.
(8) Avrami, M. Kinetics of Phase Change. I General Theory. J. Chem.
Phys. 1939, 7 (12), 1103−1112.
(9) Avrami, M. Granulation, Phase Change, and Microstructure
Kinetics of Phase Change. III. J. Chem. Phys. 1941, 9 (2), 177−184.
(10) Avrami, M. Kinetics of Phase Change. II Transformation-Time
Relations for Random Distribution of Nuclei. J. Chem. Phys. 1940, 8
(2), 212−224.
(11) Johnson, W. A.; Mehl, R. F. Reaction Kinetics in Processes of
Nucleation and Growth. Trans. Metall. Soc. AIME 1939, 135, 416−
442.
(12) Kolmogorov, A. N. On the Statistical Theory of the
Crystallization of Metals. Bull. Acad. Sci. USSR, Math. Ser. 1937, 1,
335−359.
(13) Ishibashi, Y.; Takagi, Y. Note on Ferroelectric Domain
Switching. J. Phys. Soc. Jpn. 1971, 31 (2), 506−510.
(14) Gedde, U. Polymer Physics; Springer Science & Business Media,
1995.
(15) Strobl, G. R. The Physics of Polymers; Springer, 1997; vol 2.
(16) Sperling, L. H. Introduction to Physical Polymer Science; John
Wiley & Sons, 2005.
(17) Young, R. J.; Lovell, P. A. Introduction to Polymers; CRC Press,
2011.
(18) Tomellini, M.; Fanfoni, M. Why Phantom Nuclei Must be
Considered in the Johnson-Mehl-Avrami-Kolmogoroff Kinetics. Phys.
Rev. B 1997, 55 (21), 14071−14073.
(19) Watzky, M. A.; Finke, R. G. Transition Metal Nanocluster
Formation Kinetic and Mechanistic Studies. A New Mechanism
When Hydrogen Is the Reductant: Slow, Continuous Nucleation and
Fast Autocatalytic Surface Growth. J. Am. Chem. Soc. 1997, 119 (43),
10382−10400.
(20) Finney, E. E.; Finke, R. G. Is There a Minimal Chemical
Mechanism Underlying Classical Avrami-Erofe’ev Treatments of
Phase-Transformation Kinetic Data? Chem. Mater. 2009, 21 (19),
4692−4705.
(21) Raju, C.; Sun, Z.; Koibuchi, R.; Choi, J. Y.; Chakraborty, S.;
Park, J.; Houjou, H.; Schmidt-Rohr, K.; Han, G. G. D. Elucidating the
Mechanism of Solid-state Energy Release from Dianthracenes via
Auto-catalyzed Cycloreversion. J. Mater. Chem. A 2024, 12 (39),
26678−26686.
(22) Mata-Pérez, F.; Pérez-Benito, J. Permanganate Ion Oxidation of
Amines. Zeitschrift für Physikalische Chemie 1984, 141 (2), 213−219.
(23) Kearns, E. R.; D’Alessandro, D. M. Variable-Temperature
Photocyclization Kinetics in a Metal−Organic Framework (MOF): A
Comparison of the Johnson−Mehl−Avrami−Kolmogorov and
Finke−Watzky Models. Cryst. Growth Des. 2023, 23 (8), 6100−6106.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.4c05750
J. Phys. Chem. C 2024, 128, 20765−20773

20773

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Klaus+Schmidt-Rohr"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3188-4828
https://orcid.org/0000-0002-3188-4828
mailto:srohr@brandeis.edu
mailto:srohr@brandeis.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhenhuan+Sun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0009-0000-2381-710X
https://orcid.org/0009-0000-2381-710X
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Grace+G.+D.+Han"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c05750?ref=pdf
https://doi.org/10.1039/D4SC03060E
https://doi.org/10.1039/D4SC03060E
https://doi.org/10.1039/D4SC03060E
https://doi.org/10.1002/chem.202203291
https://doi.org/10.1002/chem.202203291
https://doi.org/10.1039/D3SC00053B
https://doi.org/10.1039/D3SC00053B
https://doi.org/10.1021/jacs.6b07538?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.6b07538?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.6b07538?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/anie.202210453
https://doi.org/10.1002/anie.202210453
https://doi.org/10.1016/j.chempr.2024.06.033
https://doi.org/10.1016/j.chempr.2024.06.033
https://doi.org/10.1063/1.1750380
https://doi.org/10.1063/1.1750872
https://doi.org/10.1063/1.1750872
https://doi.org/10.1063/1.1750631
https://doi.org/10.1063/1.1750631
https://doi.org/10.1143/JPSJ.31.506
https://doi.org/10.1143/JPSJ.31.506
https://doi.org/10.1103/PhysRevB.55.14071
https://doi.org/10.1103/PhysRevB.55.14071
https://doi.org/10.1021/ja9705102?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja9705102?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja9705102?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja9705102?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cm9018716?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cm9018716?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cm9018716?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D4TA05282J
https://doi.org/10.1039/D4TA05282J
https://doi.org/10.1039/D4TA05282J
https://doi.org/10.1524/zpch.1984.141.2.213
https://doi.org/10.1524/zpch.1984.141.2.213
https://doi.org/10.1021/acs.cgd.3c00612?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.cgd.3c00612?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.cgd.3c00612?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.cgd.3c00612?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.4c05750?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

