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Abstract—Despite significant recent advancements in analog
design automation, analog front-end design remains a challenge
characterized by its heavy reliance on human designer expertise
together with extensive trial-and-error simulations. In this paper,
we present a novel data-driven analog circuit synthesizer with
automatic topology selection and sizing. We propose a modu-
lar approach to build a comprehensive, parameterized circuit
topology library. Instead of starting from an exhaustive dataset,
which is often not available or too expensive to build, we build
an adaptive topology dataset, which can later be enhanced with
synthetic data generated using variational autoencoders (VAE), a
generative machine learning technique. This integration bolsters
our methodology’s predictive capabilities, minimizing the risk of
inadvertent oversight of viable topologies. To ensure accuracy
and robustness, the predicted topology is re-sized for verification
and further performance optimization. Our experiments, which
involve over 360 OPAMP topologies and over 540K data points
demonstrate our framework’s capability to identify optimal
topology and its sizing within minutes, achieving design quality
comparable to that of experienced designers.

I. INTRODUCTION

The analog front-end circuit design comprises two funda-
mental stages: circuit topology selection and device sizing.
While contemporary algorithms like [1]–[4] excel at device
sizing within a specified topology, these methods still rely
on expensive simulations and they only work for a given
circuit topology. The quest for practical and effective circuit
topology searches remains an ongoing challenge. Their real-
world application requires further improvement due to various
challenges, like excessive runtime caused by in-the-loop sim-
ulations [5], [6], need for substantial design knowledge to
formulate equations [7]–[9], availability of a limited set of
circuit topologies [10], computationally expensive and time-
consuming approaches [11], and the possibility of generating
invalid topologies [12]. While some studies prioritize novel
circuit topology generation over topology selection [13], [14],
industrial practice favors selecting from a known, tested set,
especially for simpler specifications. This inclination is driven
by the aim to achieve robust reliability in post-fabrication
performance, a characteristic further reinforced in designs
supported by validated silicon-proven observations. As a result,
the broader potential of analog circuit synthesis and sized
netlist generation for previously unseen performance specifi-
cations remains limited.

In this paper, we propose a novel data-driven strategy for
swift analog circuit synthesis, encompassing both automated

topology selection and device sizing. In contrast to methods
like [5], [6], which may take days to converge and impose
constraints on subblock complexity for improved convergence
rates, our data-centric approach can generate a complete sized
schematic netlist in minutes. Our approach entails an initial
one-time effort to collect simulation-based performance data,
which is subsequently leveraged in a data-centric flow to
facilitate efficient topology search and device sizing. While
comprehensive, diverse performance datasets for each topol-
ogy are essential to capture design capabilities, the compute-
intensive nature of SPICE simulations is a severe limitation.
This data-driven approach is scalable and has an edge over
traditional optimization schemes [15] regarding time and
computational effort. In this paper, we have validated our
concept for the Operational Amplifiers (OPAMPs) case.

The key contributions of this work are as follows.

• We present a novel data-driven methodology for ana-
log circuit synthesis, encompassing automatic topology
selection and sizing. We establish a topology library
and corresponding data repository with a one-time data
collection effort, incorporating both simulation-based and
synthetic performance data with ML assistance. When
generating a new netlist for an unseen set of performance
specifications, our algorithm leverages this library and
repository to select a topology and optimize its device
sizing automatically.

• We propose a modular approach for building a topology
library from scratch. We use an analog automatic device
sizer for simulation-based performance data collection for
each OTA topology. Additionally, we leverage VAE to
enhance the density of the performance data using the
collected dataset.

• We propose an efficient method for netlist generation
leveraging the established data repository. We select a
ranked list of topologies based on the target user specifi-
cation and the data repository. These topologies undergo
verification and automatic device sizing optimization to
meet the target specification.

• We have validated our methodology for OPAMPs, en-
compassing 4000+ topologies, of which a representative
subset of around 360 based on performance spectra was
curated by our expert designers for this paper to show-
case our method’s robustness and interpretability. Our
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approach can generate optimal-sized topology netlists in
approximately 10 minutes and is easily scalable to even
more extensive libraries.

II. PRELIMINARIES

In this section, we discuss established automatic analog siz-
ing techniques such as DNN-Opt (Section II-A) and highlight
the definition of a key design quality metric, Figure of Merit
(FOM), that will guide our approach. An introduction to the
generative machine learning model, VAE, is also presented in
Section II-B

A. Automatic Analog Sizing

After generating a library comprising a diverse array of
OPAMP topologies, we use an automatic analog sizer to
size the devices and generate performance data. Compared
to conventional approaches, the transferability of Deep Re-
inforcement Learning (DRL) based techniques improves the
efficiency of device sizing in different technology nodes [16].

In this work, we employed DNN-Opt [3], a state-of-the-art
multi-threaded sizing optimization tool to size the devices in
each OTA topology and generate the simulation-based dataset.
DNN-Opt is an online optimization method where the simula-
tion response is obtained during the optimization iterations.
DNN-Opt is engineered to harness the strengths of actor-
critic algorithms, a key feature of reinforcement learning (RL),
and population-based optimization techniques. The learning-
based optimization engine globally searches the optimal device
parameters that maximize the circuit performance.

Given an objective performance metric f0(x), and m con-
straint metrics {fi(x) ≤ 0 for i = 1, . . . ,m}, DNN-Opt
evaluates the quality of a design by defining a Figure of Merit
(FoM) in the following form:

FoM(x) = w0×f0(x)+

m∑
i=1

min (1,max(0, wi × fi(x))) (1)

where wi is the weighting factor, a max(·) clipping is used for
equating designs after constraints are met, and min(·) is used
to prevent single constraint violation from dominating FoM
value. We will utilize this formulation in our work.

B. Variational Autoencoders

Variational autoencoders (VAEs) [17] [18] constitute a pow-
erful class of generative models in machine learning that oper-
ate within a probabilistic framework p(x), where x represents
the observed data points. VAEs consist of two neural networks:
encoder (Eϕ), which converts x to lower-dimensional latent
variable z space (prior distribution p(z)) and decoder (Dθ),
which reconstructs them back to the data space (p(x|z)),
resulting in a likelihood of p(x) =

∫
p(x|z)p(z)dz. Fig. 1

shows a VAE architecture.
VAEs employ the Evidence Lower Bound (ELBO) as a

surrogate objective for computational ease to maximize log-
likelihood log p(x). ELBO can be defined as:

ELBO = Eq(z|x)[log p(x|z)]− KL[q(z|x)||p(z)],

Fig. 1: Architecture of a VAE

where Eq(z|x)[log p(x|z)] represents the reconstruction loss
and KL[q(z|x)||p(z)] is the Kullback-Leibler (KL) divergence
between the approximate posterior distribution q(z|x) assum-
ing prior distribution p(z) to be a simple Gaussian distribution.

We capture crucial tradeoffs among analog specifications
using VAE to generate synthetic performance data to enrich the
relatively small simulation-based dataset to explore the innate
design potential embedded within each topology, saving time
and resources.

III. ALGORITHMS

Fig. 2 illustrates our overall proposed framework for gen-
erating sized analog schematic netlists. Our overall flow can
be broadly divided into two main parts: performance dataset
generation;topology selection, verification and sizing. Sec-
tion III-A provides a detailed explanation of the performance
dataset generation phase. This phase involves a one-time data
collection effort that includes establishing a parameterized
topology library and a subsequent data repository generation
for each topology, incorporating simulation-based data from
DNN-Opt along with VAE-generated synthetic performance
data. Once the data repository is established, users can submit
queries with diverse, unseen performance specifications, and
our algorithm will leverage this library and repository to
select a topology and optimize its device sizing automatically.
Section III-B delves into the topology selection, verification
and sizing phase in detail.

In this paper, our specific area of focus will be Oper-
ational Amplifiers (OPAMPs), often known as Operational
Transconductance Amplifiers (OTAs), and on the following 14
performance metrics: DC gain (Gain), quiescent current (IQ),
3dB-bandwidth (BW), common-mode rejection ratio (CMRR),
power supply rejection ratio (PSRR), minimum common-mode
input voltage (VCM Min), maximum common-mode input
voltage (VCM Max), minimum output voltage (Vout Min),
maximum output voltage (Vout Max), slew rate (SR), rise time,
fall time, input-referred noise density at 1KHz (IRN Density),
and phase margin (PM). These metrics can be categorized
into two groups: those where higher values are better, and
those where lower values are more desirable as demonstrated
in Table I.

TABLE I: Performance Metrics

Higher is better DC Gain, BW, CMRR, PSRR,
VCM Max, Vout Max, SR, PM

Lower is better IQ, VCM Min, Vout Min,
Rise time, Fall time, IRN Density
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Fig. 2: The overall framework for Analog Circuit Synthesis

A. Performance Dataset Generation
Fig. 2 highlights the overall process of generating

simulation-based performance data and subsequently enriching
it with a synthetic dataset. It comprises of two main sections:
Topology Library Generation (Section III-A1, and Real and
Synthetic Performance Dataset Generation(Section III-A2).

1) Topology Library Generation: Conducting a comprehen-
sive topology search necessitates a sufficiently extensive search
space. However, constructing an extensive topology library
from scratch presents a challenge. We noticed that different
categories of analog circuits can be normalized to a standard
format customized for their specific circuit type. For instance,
comparators can be divided into modules like the pre-amplifier,
latch, tail current, and more. Similarly, low-dropout regulators
(LDOs) consist of the error amplifier, power switch, compen-
sation, and more. Likewise, OPAMPs can be deconstructed
into different fundamental building blocks, such as differential
input pairs, tail current, bias generator, compensation network,
and load components, among others. The overall idea of this
modular concept for some analog circuit types is showcased
in Fig. 3a. In order to facilitate the sizing tool optimizer in
generating performance data for each topology in the subse-
quent stage, each module is parameterized, employing the sizes
of the contained MOSFETs as parameters. Varied selections
within each module type, with appropriate constraints, then
create different parameterized functional topologies for a given
circuit type. We have developed SKILL codes to automate
this entire process. This modular strategy helps expedite the
swift construction of an initial foundational library comprising
various parameterized standard topologies for the specified
circuit type within minutes.

Fig. 3b illustrates an OTA modularization diagram. Multiple
options are available within each module element of an OTA.
For instance, the input pair elements can vary from a standard
P/NMOS differential pair, with or without source degeneration,
to an inverter-based configuration, among other options. The
load can be implemented using a resistor, an active load, a
current source, a cascode current source, or an inverter-based
load, among other options. Furthermore, each OPAMP can

(a) Modular breakdown of analog circuits

(b) Modular Approach for building OPAMPs

Fig. 3: A Modular Approach for Topology Library Generation

TABLE II: Representative examples of some key OTA modules

Module Name Examples

Input pairs Differential pair [with/without source
degeneration], Inverter-based

Load Resistors, Active load, Current source,
Folded-cascode, Telescopic cascode

Tail current Current mirror,
Cascode current mirror, Resistor

Bias generation Diode connected mosfet,
Magic battery current mirror, Resistor

Compensation Miller cap, Nulling resistor,
Indirect compensation

Second stage Common-source, Common drain,
Differential OTA

serve as an individual building block, allowing us to increase
the diversity of topologies by cascading different OPAMPs.
Table II provides representative examples of some fundamental
building blocks of an OTA that apply to both NMOS and
PMOS configurations.

We use a valid topology filter incorporating designer
expertise-derived compatibility constraints to guide the module
combination process. This constraint-based method is essential
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because certain building blocks have inherent compatibility
requirements. For instance, merging an NMOS-input pair with
a PMOS tail current would generate an invalid topology.
Similarly, an NMOS-input pair has to be combined with a
PMOS-based load. Applying these constraints removes the
invalid topologies, narrowing our search space to encompass
only those OPAMP architectures that demonstrate functional
behavior. Following the above approach, we swiftly generated
an initial foundational library comprising approximately 4,000
valid standard parameterized OPAMP topologies. From this
pool, our expert designers curated a representative subset of
around 360 topologies based on performance spectra for this
paper to showcase our method’s robustness and interpretability.

2) Real and Synthetic Performance Dataset Generation:
After selecting a library of 360 parameterized OPAMP topolo-
gies (as discussed in Section III-A1), we employ an auto-
matic analog sizer to size the devices within each OPAMP
topology and obtain the corresponding spice simulation-based
performance metrics. For this study, we utilized the DNN-
Opt sizing tool [3] for this purpose. To enhance the di-
versity of the DNN-Opt-generated performance dataset for
each topology, we implement six distinct configurations of
objectives and constraints in the sizing tool. This approach
ensures we encompass a broad range of performance behaviors
and variations within our dataset. Due to the computational
intensity of spice simulations, we limited our simulation-based
performance dataset to around 1,000 data points per topology,
balancing resource usage with valuable performance insights.

We further enrich the depth of our simulation-based per-
formance dataset by leveraging the generative capabilities
of variational autoencoders to generate new synthetic data
points that closely resemble the inherent characteristics of the
performance distribution. VAEs excel at learning continuous
and smooth data representations in a latent space modeled
as a Gaussian distribution, ensuring that small changes in
the latent variables correspond to small, meaningful changes
in the data space. This characteristic facilitates easy random
sampling and interpolation between data points within this
latent realm, facilitating a systematic exploration of gradual
shifts and transitions across dimensions. This capability is
crucial for understanding tradeoffs among analog specifica-
tions and comprehensively exploring a topology’s performance
capabilities. We individually train VAE models based on the
simulation-based performance dataset corresponding to each
topology and generate synthetic performance data specific
to each. In the experiments showcased in this paper, we’ve
generated synthetic data approximately 10X the size of the real
dataset per topology. Using this data repository we can swiftly
obtain the predicted topology and its sizing within minutes for
a given user specification, showcasing the effectiveness of our
data-driven approach.

B. Topology Selection, Verification and Sizing

Fig. 2 illustrates the comprehensive process that follows
when a user inputs objective and constraints. As depicted,
we adopt a two-fold strategy that combines a binary search

based topology selection method (Section III-B1) applied to
the actual simulation-based performance dataset for identifying
dominant data points, complemented by a parallel synthetic
data based topology ranking (Section III-B2), to glean insights
beyond the scope of the binary search approach alone. The
ranked topologies are automatically sized in the verification
and sizing flow (Section III-B3). Ultimately, the final sized
topology from the synthetic dataset is compared with that from
the binary search method based on performance.

1) Binary Search based Topology Selection: We leverage
the real simulation-based performance data repository in this
stage. To facilitate constraint-based searches, we sort the
dataset of topologies into 14 lists, based on each metric.
When a user queries with objectives and constraints, we
perform a binary search on sorted lists for each metric and
extract a set of feasible data points for each. The intersection
of these points across all sets provides a list of candidate
topologies. Binary search, with a time complexity of O(log n),
ensures swift operations. This set of candidate topologies is
prioritized based on their best objective number. The top-
ranking schematic netlist is designated as the output. This
output will be subsequently compared with the VAE-based
verified prediction based on their respective objective numbers.

2) Synthetic Data based Topology Ranking: We utilize the
synthetic data repository to systematically rank topologies
based on user specifications (objective and constraints). We
will adopt the Figure of Merit (FOM) definition as described
in Equation 1 in Section II-A, to evaluate the design quality
and rank the topologies. According to this definition, for a
given set of user specifications and two sets of performance
metrics x and y, if FoM(x) ≤ FoM(y), it signifies that x
aligns more closely with the user’s constraints than y. We sort
the topologies in ascending order based on their best synthetic
dataset-derived FOMs. In cases where multiple topologies
yield a zero value, we prioritize those with superior synthetic
objective numbers. We proceed with the top three from this
ranked list for subsequent verification.

3) Verification and Sizing: We initiate a verification process
after obtaining the ranked list of synthetic data-based candidate
topologies (Section III-B2). DNN-Opt [3] is invoked on this
sorted list using constraints and objectives tailored to the user’s
specifications. We iterate till we achieve a Figure of Merit
(FOM) 0. For efficiency, we strategically initialize the elite
population sample of the sizing tool with points from our
simulation-based dataset closest to the user query. Some points
with poor FOM are also included for robust convergence.
This flow validates our predictions and pushes each topology’s
FOM to its lowest possible value, optimizing performance to
match user-defined criteria closely, even in challenging sce-
narios, swiftly generating simulation-verified sized schematic
netlists.

In the final step, we compare the sized topology from the
synthetic dataset with that from the real dataset, if available,
based on their performance. If both topologies meet the user-
defined constraints, we give precedence to the one with the
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superior objective for netlisting. However, if one or both fail
to meet the constraints fully, we prioritize the one that most
closely aligns with or fulfills the user specifications.

IV. EXPERIMENTAL RESULTS

Our schematic simulation results are based on
freePDK45nm [19] technology node and obtained using
SPICE (Simulation Program with Integrated Circuit Emphasis)
simulator in Analog Design Environment (ADE). The
experiments were conducted in a Linux environment on a
4-core 3.3GHz CPU.

Fig. 4 demonstrates the enriched performance data through
histograms comparing the real dataset with its augmented
counterpart for some of the normalized specification dimen-
sions for a randomly picked topology: Single-stage OTA with
telescopic cascode (NMOS).

(a) Normalized BW (b) Normalized CMRR

(c) Normalized VCM Min (d) Normalized Slew Rate

Fig. 4: Histogram for Real Dataset v/s Augmented Dataset for
Single-stage OTA with telescopic cascode (NMOS) topology

To demonstrate the efficiency of our algorithm, we present
the test results for our algorithm for six distinct test cases,
each with varying objectives and constraints, in Table III, jux-
taposed with designer expectations and DNN-Opt performance
numbers for a comprehensive comparison. Fig. 5a highlights
the effectiveness of our ranking approach. It showcases the
performance trends for topologies ranked 1, 3, 5, and 7 for
a test case through an FOM plot over time. Our algorithm
can swiftly generate a fully-sized circuit netlist in just 6.87
minutes to meet the requirements of this test case. In Table III,
we observe that for test case 1, both binary search and VAE-
generated synthetic data yield similar predictions. However,
in test cases 2, 3, and 5, binary search falters due to a
dearth of data points in proximity to the user query space. In
contrast, the synthetic data-based approach adeptly identifies,
ranks and sizes the topologies. Test case 4 depicts a case
where binary search-predicted result outperforms the synthetic
data-based result, highlighting how binary search and VAE
go hand in hand in providing sized schematic netlists for a
given user specification. Table III affirms that our predictions

meet designer expectations, noting a maximum run time of
12 minutes. With a cap on the maximum number of samples
produced by the sizing tool, in the worst case where our
algorithm runs for all three top-ranked topologies, the total
time taken would be approximately 3 × 12 = 36 minutes. If
the user specification is very complex, our algorithm reports
the sized topology closest to the user specification (has the
lowest FOM), as demonstrated in test case 6.

A. Comparison with existing works

We compare our algorithm against two other methods: a)
MOJITO, an established topology selection approach, and b)
DNN-Opt for sizing after topology selection. Existing topology
selection methods like MOJITO [20] involve extensive in-the-
loop simulations making them computationally demanding.
In addition, they impose subblock complexity constraints to
enhance convergence. If we scale the reported runtime of 7
days for 101904 topologies in the library [20] to our setup,
achieving comparable results based on a user specification
would take approximately 7 days × (5×2×4 cores × 2 GHz) /
(4 cores × 3.3 GHz), i.e., 42.4 days of computational effort for
101,904 topologies, or about 3.6 hours for 360 topologies. Our
methodology, being data-centric, inherently surpasses these
conventional approaches by 5-10X times, with a worst-case
time of approximately 36 minutes even for a very challenging
specification.

We also conduct an extensive comparison between our ap-
proach and DNN-Opt, assuming that the topology is given for
DNN-Opt, which serves as our baseline. We present the Figure
of Merit (FOM) plotted against time for our approach and
DNN-Opt, showcasing the top-ranked and verified topologies
corresponding to two distinct test cases in Fig. 5b. The start
and end FOM values in Fig. 5b, along with the corresponding
FOM @500 samples and run-time column values in Table III,
highlight the efficiency of our data-centric approach. It enables
the generation of a fully-sized schematic netlist within minutes,
surpassing DNN-Opt by 5–10X times.

(a) Ranking efficiency (b) Comparison with DNN-Opt

Fig. 5: FOM v/s time plots

V. CONCLUSION

This paper introduces a novel data-driven approach for
rapid analog circuit synthesis, including automated topology
selection and device sizing. A constraint-based modular ap-
proach was also introduced to swiftly establish foundational
parameterized analog topology libraries from scratch, which is

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 30,2025 at 19:47:53 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: Comparative Analysis of the test results: Designer Expectations v/s Our Method v/s DNN-Opt

Test
case

Designer
Expectation

Binary Search-
Based

Prediction

VAE-Based
Prediction

Final Predicted
Sized Topology

Our
Method:

FOM
@500

samples

Our
Method:

Run-
time

(mins)

DNN-
Opt:
FOM
@500

samples

DNN-
Opt:
Run-
time

(mins)

1
Two-stage OTA

with cascode
load

Two-stage OTA
with cascode
load (NMOS)

Two-stage OTA
with cascode
load (NMOS)

Two-stage OTA
with cascode
load (NMOS)

0 10.95 7.03 73

2 Standard
Two-stage OTA Failed

Standard
Two-stage OTA

(PMOS)

Standard
Two-stage OTA

(PMOS)
0 6.875 6.05 63

3
Single-stage

inverter-based
OTA with cascode

Failed
Single-stage

inverter-based
OTA with cascode

Single-stage
inverter-based

OTA with cascode
0 6.593 1.66 48.7

4

Two-stage OTA
with cascode
load, Single-

stage OTA with
folded-cascode load

Two-stage OTA
with cascode
load (NMOS)

Single-stage OTA
with folded cascode
load and cascode tail

current (NMOS)

Two-stage OTA
with cascode
load (NMOS)

0 10.7 7.03 73

5 Standard
Two-stage OTA Failed

Standard
Two-stage OTA

(NMOS)

Standard
Two-stage OTA

(NMOS)
0 10.959 6.5 67

6
Single-stage

inverter-based
OTA with cascode

Failed
Single-stage

inverter-based
OTA with cascode

Single-stage
inverter-based

OTA with cascode
0.15 10.9 3.04 48.5

beneficial when a pre-existing topology repository is not read-
ily available. Simulation-based performance data and VAE-
generated synthetic data were incorporated through a one-
time data collection effort to capture each topology’s design
capabilities, notably streamlining search and sizing processes.
By combining binary search with synthetic data-driven rank-
ing, verification, and an initial data-driven sizing strategy, we
efficiently produced optimal-sized topology netlists in minutes.
We rigorously validated our methodology on 360+ diverse
OPAMP topologies. This work represents an advancement
towards data-driven analog circuit synthesis. We aim to extend
its application to intricate analog circuits, advancing data
collection techniques to bolster VAE model robustness for
future studies.
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