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Abstract— Analog circuit performance can degrade due
to random and spatial variations. While random variations
can be mitigated using larger-sized devices, such devices
tend to have more spatial variations. To address this, a
common technique involves employing symmetric layout
like the common-centroid, which effectively reduces linear
variations or first-order effect. However, achieving high per-
formance in analog systems often necessitates mitigating
nonlinear spatial variations, for which common-centroid
layout is unsuitable. In response, this work introduces an
efficient approach based on simulated annealing for tran-
sistor placement, with a particular focus on mitigating non-
linear spatial variations. Importantly, our proposed method
can also handle important layout constraints, including
routing complexity, layout-dependent effects, and diffusion-
sharing within the optimization. Experimental results show
the proposed method beats state-of-the-art in all important
parameters while minimizing nonlinear spatial variations.
Moreover, our approach gives users better control over
optimization objectives than existing methods.

I. INTRODUCTION
The performance of various analog circuits depends

significantly on the precise matching of elements [1].
Matching of elements can be impacted by two types of
variations: random and spatial. Random variations can
be reduced by increasing the area of the device [2][3].
However, larger device may have more spatial varia-
tions as the distance between the devices increases [3].
Several factors, including process variations, thermal
distribution or uneven mechanical stress from other
circuit layers, can contribute to spatial variations [3].
The spatial variations can be modeled by Taylor series,
where the lower order terms have greater impacts on
the mismatch among devices [3][4][5][6]. Common-
centroid (CC) is a special layout technique which has
been shown to be beneficial in reducing first-order
variations [6][7][8][9]. However, for high performance
systems, layout must be optimized considering nonlin-
ear or higher order effects [3][4][5][6][10][11].

Implementing any type of symmetricity in the lay-
out can bring various challenges. Routing becomes
more complicated with CC type layout, circuit area
can increase if diffusion region is not shared, layout
dependent effect can affect device threshold voltage,
mobility and circuit performance [7][12][13]. Sharma
et. al. [14][7] have proposed custom algorithm for sym-

metric transistor placement, which handles layout con-
straints. However, this method is limited to producing
layouts of the CC type, making it inefficient in handling
nonlinear variations. The method also lacks a well-
defined objective in the problem formulation, hindering
the ability to prioritize one constraint over another. Fur-
thermore, the layout constraints are handled separately
through post-processing steps after placement, which
can lead to sub-optimal results.

Several prior studies have considered nonlinear spa-
tial variations in device placement optimization. Lin
et. al. [4] perform global placement of capacitors by
adopting a conjugate gradient method and then legal-
izing the placement with an integer linear program-
ming formulation. McAndrew [6] cancels the effect
of nonlinear variations by swapping symmetrical de-
vices. However, this approach can only manage two
devices, and a dimension constraint requires the num-
ber of unit cells in each column to be a multiple of
four. Vadipour [10] has proposed a ring-like struc-
ture to compensate for quadratic error. However, the
techniques reported in [3][4][10][11] may not apply
to general transistor circuits, and some of the ap-
proaches [4][5][6][10] dealing with device placement,
focus on spatial variations and do not consider impor-
tant layout constraints.

We present a simulated annealing based general tran-
sistor placement algorithm which can optimize nonlin-
ear spatial variations while handling important layout
constraints. Simulated annealing, a popular optimiza-
tion technique [15], has found applications in both dig-
ital [16][17] and analog placement [3][18][19]. The gen-
eral idea behind these approaches revolves around the
random selection of sub-blocks, followed by swapping
to enhance performance. However, these approaches
have limitations – they are inherently customized to
specific systems and are not well-suited for address-
ing the general transistor placement problem. This is
particularly evident when considering the absence of
critical layout constraints within their formulations.

We adopt a strategy similar to random selection and
swap, yet our approach is more general. It can handle
transistor placement of varied configurations, such as
current mirror, differential input pair, load pair, so

2024 Design, Automation & Test in Europe Conference (DATE 2024)	

 979-8-3503-4859-0/DATE24/© 2024 EDAA 

	

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 30,2025 at 20:21:13 UTC from IEEE Xplore.  Restrictions apply. 



can find application across a wide spectrum of analog
systems. Our approach starts with an initial placement
of unit cells, subsequently fine-tuning it through a
dynamic process involving random selection and swap-
ping. At each iteration, the placement is evaluated with
models, developed for this work, guiding the process.
The major contributions are as follows.

• We propose a simulated annealing based general
approach for analog transistor placement consid-
ering nonlinear spatial variations.

• Compared to the state of the art [14][7], where
layout constraints are handled separately through
post-processing steps, our approach considers the
constraints within the optimization.

• Experimental results show the proposed approach
beats the state-of-the-art in important parameters
while minimizing nonlinear spatial variations.

• The proposed approach provides users with better
control over the objectives than the state-of-the-art.

The rest of the paper is organized as follows. Sec-
tion II formulates the problem, Section III describes the
proposed approach, Section IV presents experimental
results, and Section V concludes the paper.

Fig. 1: (a) Differential input pair. (b) A layout consider-
ing only first-order effect. (c) A better layout consider-
ing nonlinear effect.

II. Transistor Placement Problem Formulation
Spatial variations can cause mismatch issues in ana-

log circuits. Spatial variations have linear and nonlinear
components. In Fig. 1(b)-(c), two different layouts of a
differential pair (Fig. 1(a)) are shown. While the layout
in Fig. 1(b) is effective when only considering the first-
order effect, it is not the best layout for minimizing
nonlinear variations. To reduce nonlinear variations,
as a general rule, devices must be placed with the
highest possible dispersion [6], as shown in Fig. 1(c).
It is important to note that both these layouts are
CC type. While it is possible to generate a CC layout
that performs well for nonlinear variations involving
a few units and devices, in general, as the number of
units or devices increases, a non-CC layout consistently
outperforms a CC layout. However, a layout that is
designed to perform well for spatial variations may
not align with critical layout constraints such as diffu-
sion break, routing complexity, and layout-dependent
effects. Therefore, our transistor placement formulation
problem encompasses all these constraints to achieve
a comprehensive and balanced optimization approach.

Based on the mismatch in spatial variations function
𝑀𝑉(·), routing complexity function 𝑅𝐶(·), mismatch
in length of diffusion function 𝑀𝐼𝐿𝐷(·), and diffusion
break function 𝐷𝐵(·), the optimization objective is de-
fined as follows.

min 𝜂MVMV(fp) + 𝜂RCRC(fp) + 𝜂MILDMILD(fp) (1)
such that, DB(fp) == 0 (2)

Here, 𝑓𝑝 is a feasible layout solution and 𝜂𝑐 , 𝑐 ∈
{𝑀𝑉, 𝑅𝐶, 𝑀𝐼𝐿𝐷} denotes the coefficients. A hard con-
straint is put on diffusion sharing as this parameter
has the most impact on the quality of the layout,
directly or indirectly. A layout that does not share
diffusion region can lead to worse routing length and
may degrade spatial variations due to increased layout
area. Consequently, our proposed method can ensure
diffusion-break-free layout which is not possible with
other methods [14][20][8]. Importantly, [14] is more
focused on generating CC layout, constraints are han-
dled separately through post-processing steps. We han-
dle layout constraints directly within the optimization
framework, this can lead to better results. Moreover,
our formulation allows users control over the objectives
through coefficients 𝜂𝑐 , which is not possible by other
methods due to a fixed-type formulation that lacks a
well-defined objective.

III. The Proposed Approach to Transistor Placement
We first discuss the details on the funtions in Eqs. (1)

and (2) before presenting the optimization algorithm in
Section III-E to solve them.

A. Mismatch in Spatial Variations
Thermal-induced and technology-related spatial

variations can be approximated using a Taylor series,
which takes the following form [3][4][5][6].

𝑝𝑛(𝑥, 𝑦) =
∞∑
𝑖=1

𝐺𝑖(𝑥, 𝑦) + 𝐶 (3)

𝐺𝑖(𝑥, 𝑦) =
𝑖∑

𝑗=0
𝑔𝑗 ,𝑖−𝑗𝑥

𝑗𝑦 𝑖−𝑗 (4)

Here, (𝑥, 𝑦) is the location of a unit cell and 𝐶 is a
constant independent of 𝑥 and 𝑦. 𝐺𝑖(𝑥, 𝑦) is the 𝑖𝑡ℎ

order variations component and 𝑝𝑛(𝑥, 𝑦) is the sum
of such components. Our objective is to minimize the
difference (or mismatch) in spatial variations for all the
devices. We propose the following model.

1
𝑁

𝑁−1∑
𝑙=1

𝑁∑
𝑚=𝑙+1

(
∑𝑛𝑙

𝑢=1 𝑝𝑢(𝑥, 𝑦)
𝑛𝑙

−
∑𝑛𝑚

𝑢=1 𝑝𝑢(𝑥, 𝑦)
𝑛𝑚

) (5)

𝑝𝑢(𝑥, 𝑦) = 𝑔1,0𝑥 + 𝑔0,1𝑦 + 𝑔2,0𝑥
2 + 𝑔1,1𝑥𝑦 + 𝑔0,2𝑦

2 (6)

Here, 𝑁 is the number of devices and 𝑛𝑙 , 𝑛𝑚 is the
number of units for the device 𝑙 and 𝑚, respectively.
𝑝𝑢(𝑥, 𝑦) is the sum of first and second-order spatial
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variations with coefficients 𝑔1,0 , 𝑔0,1 , 𝑔2,0 , 𝑔1,1 , 𝑔0,2 being
modeled as multivariate Gaussian random variables.
By iterating mismatch calculation following Eq. (5), 𝑀
times, 𝑀 number of mismatch values are obtained and
the standard deviation of these values represents the
magnitude of difference in spatial variations over all
devices, referred to as 𝑀𝑉(·).

Fig. 2: RMST for calculating routing complexity of a
differential input pair cascode (DIPC).

B. Routing Complexity
The routing complexity is affected by the position

of the unit cells in the layout, making it essential to
take routing considerations into account during the
placement optimization. Sharma et al. [14] address
routing complexity, but the approach has a limitation in
that it handles routing after placement step, which can
lead to sub-optimal results. In our approach, routing
model is integrated within the placement step.

We use rectilinear minimum spanning tree (RMST) to
calculate routing complexity separately for every net in
the netlist and sum the values. For illustration purpose,
we use the circuit in Fig. 2, where each device has 4
units. First, we construct an undirected graph in which
a unit cell connected to the net is represented by a node,
and rectilinear edges are used to connect every pair of
nodes on the net. For example, net1 has unit cells from
𝑀2, so a total of 4 nodes and 6 edges, net3 has unit cells
from 𝑀2 and 𝑀0, so a total of 8 nodes and 28 edges.
We determine the RMST that connects all the units on
the net with the fewest possible edges. For example, the
routing complexity of net1 and net3 are 7 and 9 units,
respectively. Total routing complexity is determined by
summing the edge weights of the spanning trees for
all the nets, which in this case is 56. A pseudocode is
presented below. The time complexity of our algorithm
is 𝑂(𝑛2) with 𝑛 being the number of units.

Algorithm 1 Routing Complexity Model
1: getRoutingComplexity(pattern, netlist)
2: route_complexity = 0
3: for each net in netlist do
4: for each unit connected to net do
5: G.node ← unit
6: for every pair of node (u,v) in G do
7: G.edge ← (u,v)
8: find location (loc) of u and v in pattern
9: G.weight ← |loc.u.x - loc.v.x| + |loc.u.y - loc.v.y|

10: find 𝐺𝑅𝑀𝑆𝑇 in G
11: route_complexity = route_complexity + sum(𝐺𝑅𝑀𝑆𝑇 .𝑤𝑒𝑖𝑔ℎ𝑡)
12: return route_complexity
13: end getRoutingComplexity

C. Mismatch in Length of Diffusion
Among several layout dependent effects (LDEs), the

most critical is length of diffusion (𝐿𝑂𝐷), which cap-
tures the variations in the threshold voltage (𝑉𝑡ℎ) of a
transistor due to stress effect [12][13][14].

Δ𝑉𝑡ℎ ∝
1

𝐿𝑂𝐷
=

𝑛∑
𝑖=1
( 1
𝑆𝐴𝑖 + 0.5𝐿𝑔

+ 1
𝑆𝐵𝑖 + 0.5𝐿𝑔

) (7)

Here, 𝑛 is the number of unit cells, 𝐿𝑔 is the gate length
of the unit. 𝑆𝐴𝑖 and 𝑆𝐵𝑖 are the distances from poly-
gate of the unit cell 𝑖 to the diffusion/active edge on
either side of the layout. Two unit cells with different
𝑆𝐴𝑖 , 𝑆𝐵𝑖 values will lead to the mismatch in threshold
voltage shift (Δ𝑉𝑡ℎ). To reduce variations induced by
𝐿𝑂𝐷, we aim to minimize the difference (i.e. mismatch)
of the mean values of 1

𝐿𝑂𝐷 over all devices, referred
to as 𝑀𝐼𝐿𝐷(·). We propose the following model for
𝑀𝐼𝐿𝐷(·).

𝑀𝐼𝐿𝐷(·) =
𝑁−1∑
𝑘=1

𝑁∑
𝑙=𝑘+1

|
( 1
𝐿𝑂𝐷 )𝑘
𝑛𝑘

−
( 1
𝐿𝑂𝐷 )𝑙
𝑛𝑙
| (8)

𝑁 is the number of devices and 𝑛𝑖 is the number of unit
cells of the device 𝑖. Hence, there are

∑𝑁
𝑖=1 𝑛𝑖 number of

unit cells in total. ( 1
𝐿𝑂𝐷 )𝑖 is the 1

𝐿𝑂𝐷 value of the device
𝑖. For the comparison between different placement, it is
not essential to calculate the exact value of 1

𝐿𝑂𝐷 , rather
the following simplification of Eq. (7) is sufficient.

( 1
𝐿𝑂𝐷

)𝑖 =
𝑛𝑖∑
𝑢=1
( 1
𝑥𝑢
+ 1

𝑤 + 1 − 𝑥𝑢
) (9)

Here, 𝑥𝑢 is the column of unit cell 𝑢 and 𝑤 is the
number of unit cells in each row, and these values
can be easily obtained with changing placements. For
example, if the unit cell 𝑢 is placed at the lowest left
corner of 4 × 6 placement grid, 𝑥𝑢 is 1 and 𝑤 is 6.

D. Diffusion Break
The diffusion region can be shared between two units

of the same device and between units from different de-
vices if their drain/source regions are connected. This
practice can significantly reduce layout area, thereby
improving routing length and spatial variations. In
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cases where sharing is not possible, there is diffusion
break. Our objective is to have zero diffusion break.

Below, we present pseudocode for counting the num-
ber of diffusion breaks. The algorithm iterates through
each unit in the row following the layout pattern. In
each iteration, we maintain two units: ’curr’ and ’next,’
each comprising three fields: ’name,’ ’left’ terminal,
and ’right’ terminal. The process begins by checking
whether starting from a drain (’D’) as the leftmost
terminal would result in a diffusion-break-free solution.
Following the netlist, if two consecutive units are found
to be not connected, the process is repeated with the
source (’S’) as the leftmost terminal. If we still reach
two consecutive units having no connection, it indicates
the presence of a diffusion break. To resolve this, a
dummy unit is inserted between the units. Now, the
left terminal of the unit, next to the dummy, becomes
the leftmost terminal. The process continues until the
end of the row is reached. The process is repeated for
every row, and the diffusion break numbers 𝑛_𝑑𝑏(𝑖),
𝑖 ∈ {1, 2, ..., 𝑟𝑜𝑤} are summed up to determine the total
number of diffusion breaks. The time complexity of our
algorithm is 𝑂(𝑛), where 𝑛 is the number of units.

Algorithm 2 Diffusion Break Model
1: getDiffusionBreak(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑟𝑜𝑤×column, netlist)
2: for i = 1 to 𝑟𝑜𝑤 do
3: n_db(i) = 0 // number of diffusion break in row 𝑖
4: curr.left = ’D’; curr.right = ’S’; startSourceDone = false
5: j = 0; start_s = 0; start_d = 0
6: while j++ <= 𝑐𝑜𝑙𝑢𝑚𝑛-2 do
7: curr.name = pattern(i,j); next.name = pattern(i,j+1)
8: if curr.name == next.name then
9: next.left = curr.right

10: if next.left == ’D’ then next.right = ’S’
11: else next.right = ’D’
12: curr = next; continue
13: else if curr connected to ’S’ of next in netlist then
14: next.left = ’S’; next.right == ’D’; curr = next; continue
15: else if curr connected to ’D’ of next in netlist then
16: next.left = ’D’; next.right == ’S’; curr = next; continue
17: else if startSourceDone == false then
18: startSourceDone = true; curr.left = ’S’; curr.right = ’D’
19: start_d = j; j = min(start_s, start_d)
20: else
21: startSourceDone = false; n_db(i)++; curr.left = ’D’; curr.right = ’S’
22: start_s = j; j = max(start_s, start_d); start_s = j; start_d = start_s
23: return sum(n_db)
24: end getDiffusionBreak

E. Optimizing Placement
Simulated annealing (SA) is a probabilistic optimiza-

tion technique based on a global search metaheuris-
tic [15]. SA is particularly useful when the search space
is discrete. While SA typically performs well for small
to medium size problems, it may have problems for
large size problems, potentially getting stuck in local
minima. Additionally, due to its iterative nature, SA can
be time-consuming when applied to large problems.
The motivation behind using SA is that the search space
in our problem is not large enough that SA would be
considered inefficient, and it is also not small enough
that a brute force method would work. Note that there

are (∑𝑁
𝑖=1 𝑛𝑖 )!∏𝑁
𝑖=1 (𝑛𝑖 !)

possible placement solutions, where 𝑛𝑖 is
the number of units for the device 𝑖 and 𝑁 is the
number of devices.

Let 𝑓 : 𝒮→ R be an objective function defined in the
solution space 𝒮, and 𝒩(𝑠) be the neighbor function
for 𝑠 ∈ 𝒮. SA starts with an initial solution 𝑠 ∈ 𝒮.
At each iteration, neighboring solution 𝑠

′ ∈ 𝒩(𝑠) of the
current solution 𝑠 is selected through a predefined per-
turbation strategy. The metropolis criterion determines
the acceptance probability for the system’s transition
from the current solution 𝑠 to a candidate counterpart
𝑠
′ according to the following.

𝑃(𝑠, 𝑠′ , 𝑡𝑘) =
{

1, if 𝑓 (𝑠′) ≤ 𝑓 (𝑠)
𝑒𝑥𝑝(−( 𝑓 (𝑠

′ )− 𝑓 (𝑠))
𝑡𝑘

), if 𝑓 (𝑠′) > 𝑓 (𝑠)
(10)

where 𝑓 (·) is the objective function defined in Eq. (1)
and 𝑡𝑘 represents the temperature value at the 𝑘𝑡ℎ

iteration. The metropolis criterion guides the system
toward a state of lower cost.

1) Initial Solution: The initial step in our proposed
algorithm involves determining the number of rows
and columns based on the width and height of the
unit cell and the total number of units from the netlist.
It is understood that a square-like pattern offers the
best matching performance [14][11]; therefore, we strive
to achieve such a pattern, even if it necessitates the
inclusion of dummy devices. The initial pattern is then
generated with a sequential placement of device (with
units of the same device placed together) with two
consecutive devices sharing either drain and source, or
source and source, or source and drain in the netlist.
For example, for the circuit in Fig. 2, we can place units
of 𝑀2, 𝑀0, 𝑀1, and 𝑀3 in the four rows, from top
to bottom, respectively. This sequential arrangement
ensures there is no diffusion break to begin with. We
have observed that this technique of initial pattern gen-
eration yields better final results than starting from a
completely random placement. In cases where we begin
from a completely random placement, the algorithm
may fail to converge to a diffusion-break-free solution.

2) Random Perturbation: A neighboring placement
solution is produced by some predefined perturbation
strategy. We follow the below rules for the perturbation.
• Swap only if the pair is from different devices.
• Swap only if the new solution does not degrade

diffusion break.
• Swap if there is an improvement in the objective.
• Swap a worse solution with some probability de-

fined in Eq. (10).
We measure the quality of a swap using models

developed in prior sections. When we encounter a can-
didate that improves the current best objective (Eq. (1))
without degrading diffusion break, best solution is
updated. We update the current solution if a candidate
improves the current objective without degrading dif-
fusion break. We may also update the current solution
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with the candidate solution even if it deteriorates the
objective. The likelihood of that happening decreases as
the temperature decreases. Note that a solution is never
accepted if it degrades diffusion break. Fig. 3(a) shows
the execution of the algorithm, how best, current, and
candidate objectives change over the course of the
iterations as temperature changes. Below, we present a
pseudocode of the placement optimization algorithm.

Fig. 3: (a) Placement algorithm run. (b) As temperature
decreases, the likelihood of accepting a worse new
solution reduces. (c) Spatial variations data generated
using multivariate statistics.

Algorithm 3 Optimize Placement
Input : netlist, init_pattern, n_iteration, temp, 𝜂𝑐 , 𝑐 ∈ {𝑀𝑉, 𝑅𝐶, 𝑀𝐼𝐿𝐷}
Output : best_pattern

1: best.obj = f(init_pattern, netlist, 𝜂𝑐 ); best.DB = 𝐷𝐵(init_pattern, netlist)
2: curr = best
3: for i=1 to n_iteration do
4: Generate random number, x and y
5: cand = curr
6: tmp.pattern = cand.pattern
7: cand.pattern(x.row, x.col) = curr.pattern(y.row, y.col)
8: curr.pattern = tmp.pattern
9: cand.obj = f(cand_pattern, netlist, 𝜂𝑐 ); cand.DB = 𝐷𝐵(cand_pattern, netlist)

10: if cand.obj < cand.obj ∧ cand.DB ≤ cand.DB then best = cand
11: 𝑡𝑖 = temp/(i+1)
12: diff.obj = cand.obj - curr.obj
13: diff.DB = cand.DB - curr.DB
14: metropolis = exp(-diff.obj/𝑡𝑖 )
15: Generate random number, z
16: if (diff.obj < cand.obj ∧ diff.DB ≤ 0) ∨ (z < metropolis ∧ cand.DB ≤ best.DB)

then
17: curr = cand
18: return best_pattern

IV. Experimental Results
We have implemented the proposed algorithm in

Python, referred to as SA here. We contacted the au-
thors of the paper [14] and discussed the implemen-
tation of their algorithm, which we refer to as SOTA
(State-of-the-Art). Some of the results presented for the
SOTA approach are based on this discussion and others
are taken directly from [14]. Since it is difficult to obtain
the exact values of the coefficients in Eq. (6) [3], and
the second order terms can be as significant as the first
order terms [6], we define the five random variables
in Eq. (6), with a mu of [0 0 0 0 0], and a positive
semidefinite covariance matrix of [0.9 0.8 0.7 0.6 0.5;
0.8 0.9 0.8 0.7 0.6; 0.7 0.8 0.9 0.8 0.7; 0.6 0.7 0.8 0.9 0.8;

Fig. 4: (a) Current mirror (CM) circuit. (b) Pattern
produced by SOTA and SA algorithms. (c) Histogram
plot of the mismatch. (d) Layout of the patterns using
standard industry tool. SOTA and SA layouts have 88
and 67 units route length, respectively. (e) Differential
load pair cascode (DLPC).

0.5 0.6 0.7 0.8 0.9], following the multivariate statistics.
Correlation of these variables is shown in Fig. 3(c). 𝜂𝑐
for 𝑐 ∈ {𝑀𝑉, 𝑅𝐶, 𝑀𝐼𝐿𝐷}, and 𝑡𝑒𝑚𝑝 in the simulated
annealing algorithm are set to 1, and 100, respectively.
In all the tests, our algorithm converges within 1000
iterations (𝑛_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛). All experiments are conducted
on a Linux environment with an Intel Core 3.3𝐺𝐻𝑧
CPU with 128𝐺𝐵 memory.

To compare the proposed approach with SOTA, we
use five configurations of the current mirror structure,
as reported in [14], referred to as CM:1-5 in Table I. Our
algorithm outperforms SOTA. Both algorithms produce
layout free of diffusion break (𝐷𝐵). We further validate
quality of the layout using standard industry tool. We
place the devices following the pattern generated by the
algorithms and auto-route the circuit. The total route
length (’Router’ in Table I) is estimated using a script
provided by industry representative. Our algorithm
consistently performs better than SOTA, thereby vali-
dating correctness of the routing model. It is important
to note that a shorter route length should result in
reduced parasitics and IR drop, an important require-
ment in analog design. However, standard industry
tools do not factor in spatial variations, as foundry
models lack sensitivity to the distance between devices.
While these tools do consider 𝐿𝑂𝐷 effect, quantifying
its isolated impact is challenging due to the presence
of other layout effects and random variations. LDEs
are considered in post-layout simulation in [14], never-
theless, the improvement in circuit offset performance
mainly comes from the dummies, placed around the
CC structure. In Fig. 4(b), we present the layout pattern
of the circuit in Fig. 4(a). Fig. 4(c) presents histogram
plot of the mismatch in spatial variations. The actual
layout of this example is presented in Fig. 4(d).

We have created six more tests in Table II, two
from each of the three different configurations, CM
(Fig. 4(a)), DIPC (Fig. 2), and DLPC (Fig. 4(e)). The pro-
posed algorithm outperforms SOTA. Importantly, the
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Test Algo. 𝑀𝑉 𝑀𝐼𝐿𝐷
𝑅𝐶

𝐷𝐵Model Router
CM:1 SOTA 208 0.58 75 88 0

[2,2,4,8,8], K=1.3 SA 174 0.44 65 67 0
CM:2 SOTA 381 0.46 55 61 0

[2,2,4,10], K=2 SA 280 0.40 47 54 0
CM:3 SOTA 77 0.36 46 53 0

[2,2,4,8], K=1.3 SA 18 0.31 44 50 0
CM:4 SOTA 425 0.26 76 82 0

[4,4,8,8], K=1.3 SA 31 0.13 64 69 0
CM:5 SOTA 738 0.33 108 113 0

[4,4,4,10,10], K=2 SA 251 0.03 86 91 0

TABLE I: Comparison with [14] for five current mirror
(CM) configurations reported in [14].

proposed algorithm produces layout with no diffusion
break while SOTA has diffusion break. Note that the
’Router’ and model values differ significantly in SOTA
due to dummies being added to the layout to enable
diffusion sharing while keeping the CC structure intact.
All the patterns produced by our algorithm in Tables I
and II are non-CC type. Our algorithm is fast, and takes
less than 7 mins for the largest test.

Test Algo. 𝑀𝑉 𝑀𝐼𝐿𝐷
𝑅𝐶

𝐷𝐵Model Router
CM:1 SOTA 359 0.67 56 96 2

[2,2,2,2,10], K=2 SA 233 0.40 46 57 0
CM:2 SOTA 447 0.67 58 98 2

[2,2,2,6,6], K=2 SA 213 0.37 48 56 0
DIPC:1 SOTA 319 0.01 127 182 4

[6,6,10,10], K=2 SA 98 0.11 90 91 0
DIPC:2 SOTA 199 0.07 158 191 4

[10,10,10,10], K=2 SA 111 0 118 107 0
DLPC:1 SOTA 157 0.28 47 64 0

[2,2,6,6], K=2 SA 46 0.35 40 62 0
DLPC:2 SOTA 290 0.18 65 116 3

[6,6,6,6], K=1.3 SA 47 0.12 60 70 0

TABLE II: Comparison with [14] for six tests.

V. Conclusions

We have proposed an efficient algorithm for analog
transistor placement optimization focusing on nonlin-
ear spatial variations while addressing important lay-
out constraints within the optimization. Our approach
has a well-defined objective and can handle varied con-
figurations. Considering the constraint imposed by cen-
troid matching, which limits the optimization search
space, opting for a non-CC layout becomes especially
advantageous when dealing with nonlinear effect.
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