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Abstract—The high simulation cost has been a bottleneck of
practical analog/mixed-signal design automation. Many learning-
based algorithms require thousands of simulated data points,
which is impractical for expensive to simulate circuits. We
propose a learning-based algorithm that can be trained using
a small amount of data and, therefore, scalable to tasks with
expensive simulations. Our efficient algorithm solves the post-
layout performance optimization problem where simulations are
known to be expensive. Our comprehensive study also solves
the schematic-level sizing problem. For efficient optimization,
we utilize Bayesian Neural Networks as a regression model to
approximate circuit performance. For layout-aware optimization,
we handle the problem as a multi-fidelity optimization prob-
lem and improve efficiency by exploiting the correlations from
cheaper evaluations. We present three test cases to demonstrate
the efficiency of our algorithms. Our tests prove that the proposed
approach is more efficient than conventional baselines and state-
of-the-art algorithms.

Index Terms—electronic design automation, analog/mixed-
signal optimization, analog sizing automation, analog layout
automation

I. INTRODUCTION

Analog/Mixed-signal (AMS) integrated circuit (IC) design
typically follows a process flow visualized in Figure 1. A
combination of designer experience and computer simulation
feedback is iterated to determine the design that meets the
performance requirements. A large portion of design time
is spent on the sizing and layout phases, where multiple
iterations are possible due to potential loop-backs in the design
flow. This is a labor-intensive process in industry practice
with little to no automation. To address this costly exercise,
a considerable effort in academia is focused on introducing
automated solutions.

Analog sizing automation is the task of optimizing AMS
design variables, e.g., transistor widths, lengths, resistor, and
capacitor values. The aim is to satisfy the performance con-
straints and optimize the design objective. In general, siz-
ing automation is run through schematic-level simulations.
However, AMS IC performance is also sensitive to layout
implementation [1]. Especially in the advanced process nodes,
layout-induced parasitics may greatly affect the final design
performance. Therefore, sizing the AMS design variables
considering the layout effects is also crucial.

The majority of the recent sizing and post-layout perfor-
mance optimization algorithms have simulation feedback in
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Fig. 1: AMS Design Flow

the loop. Due to advanced scaling, simulations are required
to obtain accurate performance evaluations. Simulation-based
AMS automation algorithms adapted various methods from
the optimization and Machine Learning (ML) communities.
The earlier approaches include population-based methods such
as particle swarm optimization [2] and evolutionary algo-
rithms [3]. Although these algorithms have good convergence
behavior, they are inefficient in sampling since they explore
the design space randomly. To mitigate sample inefficiency,
model-based methods gained popularity [4]–[6]. These meth-
ods employ surrogate-models between the solution space and
performance space and provide efficiency in exploring the
solution space. A typical surrogate model is Gaussian Pro-
cess Regression (GPR) [7], which is a well-studied model
in Bayesian Optimization (BO) field [8] and is adapted by
several analog sizing algorithms. The main drawback of GPR
modeling is its computational complexity.

Recent research trend in analog sizing introduces ML to
simulation-based methodology [9]. However, the literature
review reveals that most of these methods require thousands of
simulation data to train Deep Neural Network (DNN) models
that approximate the relations between the design variables and
the performance metrics. Therefore, the practicality of these
algorithms is severely reduced when the optimization task
has a high simulation cost. For example, drawing/generating
the layout, extracting the parasitics, and running post-layout
simulations is typically an expensive procedure. Therefore,
optimization algorithms designed for schematic-level sizing
can not be adapted by simply changing how data is generated.
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This paper presents a Machine Learning-based simulation-
in-the-loop automation method for the AMS design problem.
Overall, we formalize two stand-alone recipes for schematic-
level sizing and post-layout performance optimization, i.e.,
layout-aware sizing. We integrate the state-of-the-art analog
layout generator, MAGICAL [10], into our flow to handle
layout-aware sizing. Our algorithms do not assume the pre-
existence of any dataset, and we generate all training data
during the optimization. We employ Bayesian Neural Net-
works (BNN) for modeling design performances. Bayesian
Neural Networks allow error quantification, and compared to
Deep Neural Networks, BNN are shown to be effective in
handling scarce datasets and preventing overfitting [11]. There-
fore, BNN can be trained on smaller datasets, significantly
improving the practicality and scalability. We also introduce
a batch-optimization framework and design space sampling
strategy that is compatible with BNN modeling. Further,
when optimizing the design variables based on post-layout
performance, we exploit the correlation between schematic-
level simulations and post-layout simulations. Our algorithm
introduces a co-learning scheme that reduces the need for
costly post-layout simulations and boosts efficiency even fur-
ther. We compile our contributions as follows:

• We use Bayesian Neural Network-based modeling to
obtain performance approximations. Different learning
strategies are adapted for schematic-level sizing and post-
layout performance optimization.

• We adopt a scalable sampling strategy and query the opti-
mization batches by utilizing a trust region and Thompson
sampling.

• The post-layout sizing is handled as a multi-fidelity op-
timization problem, and an efficient co-learning strategy
is developed.

• The efficiency of the proposed methods is demonstrated
on three circuits by providing comparisons to previous
state-of-the-art.

The rest of the paper is organized as follows. Section II
introduces the backgrounds and previous work. Section III de-
scribes our algorithms for handling schematic-level sizing and
post-layout performance-based sizing problems. Section IV
provides the experiments on circuit examples to demonstrate
the efficiency of our algorithms. Finally, Section V concludes
the paper.

II. BACKGROUND & RELATED WORK

In this section, we first formally define the AMS design
automation problem. Then we review the recent approaches to
schematic-level sizing and layout-aware sizing. We summarize
the state-of-the-art algorithms’ advantages and shortcomings.

A. Problem Formulation

In this paper, we assume that the existence of post-layout
performance implies the existence of schematic-level perfor-
mance values. However, the reverse implication does not hold.

We formulate the AMS schematic-level sizing and layout-
aware sizing task as a constrained optimization problem suc-
cinctly as below.

minimize f0(x)

subject to fi(x) ≤ 0 for i = 1, . . . ,m
(1)

where, x ∈ Rd is the parameter vector and d is the number of
design variables of sizing task. Thus, Rd is the design space.
f0(x) is the objective performance metric we aim to minimize.
Without loss of generality, we denote ith constraint by fi(x).
Notice that if the problem is schematic-level optimization,
the fi values are obtained from schematic simulations. If
the problem is post-layout optimization, the fi values are
determined by post-layout simulations.

Through this paper, we will evaluate the quality of a design
by defining a Figure of Merit (FoM) in the following form:

FoM(x) = w0×f0(x)+
m∑
i=1

min (1,max(0, wi × fi(x))) (2)

where wi is the weighting factor. Note, a max(·) clipping is
used for equating designs after constraints are met, and min(·)
is used to prevent single constraint violation from dominating
FoM value.

B. Schematic-Level Sizing

The recent methods for AMS sizing can be collected under
two algorithm classes: Bayesian Optimization methods and
Deep Learning methods.

Bayesian Optimization methods are tested on AMS prob-
lems and are proven to be sample efficient. For example,
GASPAD [4] is a hybrid algorithm using a combination of
evolutionary space exploration and GPR surrogate-based se-
lection. WEIBO [5] method also employs GPR as a surrogate
and introduces a Bayesian Optimization framework where
a weighted acquisition function is tailored to comply with
the performance-constrained nature of sizing problem. In [6],
the authors introduced a multi-fidelity GPR algorithm where
the fidelity of the performance is varied with the simulation
accuracy. However, this work did not address the layout
effects. The disadvantage shared by all GPR models is their
cubic complexity to the number of samples, O(N3).

Deep Learning based sizing methods includes supervised
learning and reinforcement learning (RL) methods [12]–[16].
GCN-RL [13] is a Graph Neural Network algorithm where
state representation is built via device index, type, and selected
electrical properties. They also propose methods to transfer
the optimization experience between different topologies and
processes. However, their training graphs show that they use up
to 104 simulations for sizing academic circuits. AutoCkt [14]
is a discrete action space policy gradient method. The RL
agent is trained on different optimization tasks where the task
is randomly sampled from a predefined set. The trained agent
is then tested for the particular tests during deployment. We
also observe from the training graphs that AutoCkt requires
up to 105 simulated samples for training. In [17], the authors
successfully applied BNN on multi-objective analog sizing.
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Fi g. 2: Pr o p os e d A M S A ut o m ati o n Fr a m e w or k

H o w e v er, t h e y di d n ot c o nsi d er h a n dli n g c o nstr ai nts, a n d l a y-
o ut eff e cts ar e i g n or e d. D N N- O pt [ 1 5] is i ntr o d u c e d as a n R L-
i ns pir e d s u p er vis e d l e ar ni n g o pti mi z ati o n m et h o d t h at s h o ws
hi g h s a m pl e ef fi ci e n c y a n d c a n b e tr ai n e d d uri n g o pti mi z ati o n.
It us es l ess t h a n a t h o us a n d it er ati o ns t o o pti mi z e a c a d e mi c
b e n c h m ar ks. D N N- O pt d o es n ot q u a ntif y t h e v ari a n c e o n
a p pr o xi m at e d v al u es a n d h as n o m et h o di c w a y t o b al a n c e
e x pl or ati o n/ e x pl oit ati o n d uri n g d esi g n s p a c e e x pl or ati o n.

C. P ost- L a y o ut B as e d Sizi n g

S e v er al w or ks i n A M S si zi n g pr o p os e d s ol uti o ns t o i n-
cl u d e l a y o ut-i n d u c e d p ar asiti cs. T h e st u di es pr o p os e d i n [ 1 8]
a n d [ 1 9] e m b e d d e d a l a y o ut g e n er at or i n t h e a ut o m ati o n l o o p,
a n d p erf or m a n c e m etri cs t o b e o pti mi z e d ar e o bt ai n e d t hr o u g h
p ost-l a y o ut si m ul ati o ns. H o w e v er, t h e y di d n ot c o nsi d er t h e
c orr el ati o ns b et w e e n t h e s c h e m ati c-l e v el a n d p ost-l a y o ut si m-
ul ati o ns; t h er ef or e, t h eir ef fi ci e n c y is li mit e d. T h e w or k i n [ 2 0]
e m pl o ys a l ess a c c ur at e p ar asiti c pr e di cti o n d uri n g si zi n g,
s o t h e fi n ali z e d p ost-l a y o ut p erf or m a n c e is n ot g u ar a nt e e d.
I n [ 1 6], t h e a ut h ors pr o p os e a Tr a nsf er L e ar ni n g str at e g y w h er e
a D N N is first tr ai n e d o n s c h e m ati c-l e v el si m ul ati o ns. T h e n
t his k n o wl e d g e is tr a nsf err e d t o i m pr o v e t h e l e ar ni n g of a
r el ati v el y s m all n u m b er of p ost-l a y o ut d at a. Alt h o u g h t his
w or k pr o vi d es a s u g g esti o n t o i m pr o v e t h e ef fi ci e n c y of p ost-
l a y o ut o pti mi z ati o n, it r e q uir es u p t o 5 × 1 0 3 s c h e m ati c-l e v el
d at a f or i niti al D N N tr ai ni n g, w hi c h s uff ers fr o m t h e s c al a bilit y
c o n c er ns m e nti o n e d b ef or e. I n s u m m ar y, a s c al a bl e s ol uti o n t o
o pti mi z e A M S d esi g n p ar a m et ers u n d er l a y o ut p ar asiti cs is y et
t o b e st u di e d.

III. A N A L O G / MI X E D- S I G N A L I C AU T O M A T I O N F L O W

I n t his w or k, w e pr o vi d e s ol uti o ns t o t w o pr o bl e ms i n
A n al o g/ Mi x e d- Si g n al d esi g n a ut o m ati o n: s c h e m ati c-l e v el si z-
i n g a ut o m ati o n ( Tas k 1) a n d l a y o ut- a w ar e si zi n g a ut o m a-
ti o n ( Tas k 2). T h e hi g h-l e v el fr a m e w or ks of pr o p os e d s ol uti o ns
t o b ot h t as ks ar e s u m m ari z e d t o g et h er i n Fi g ur e 2. S e cti o n
III- A i ntr o d u c es a n d el a b or at es o n t h e c or e pri n ci pl es t h at
c o m pl et e o ur pr o p os e d a ut o m ati o n fl o w f or s c h e m ati c-l e v el
si zi n g t as ks. T h e n, i n s e cti o n III- B, w e e x pl ai n h o w t o s ol v e
t h e p ost-l a y o ut p erf or m a n c e o pti mi z ati o n pr o bl e m ef fi ci e ntl y
b y tr a nsf or mi n g t h e B N N l e ar ni n g s c h e m e.

A. S c h e m ati c- L e v el Sizi n g A ut o m ati o n

We pr o p os e a B N N- b as e d si zi n g al g orit h m t o o pti mi z e
A M S d esi g n o n s c h e m ati c-l e v el si m ul ati o ns. T h e c o m pl et e

fl o w of t h e pr o p os e d a p pr o a c h is s u m m ari z e d i n Al g orit h m 1.
T h e al g orit h m st arts wit h s a m pli n g r a n d o m p oi nts i n t h e d esi g n
s p a c e a n d si m ul ati n g t h e m vi a t h e S PI C E si m ul at or. A n i niti al
d at as et f or tr ai ni n g t h e B N N p erf or m a n c e m o d el is b uilt fr o m
t h es e s a m pl es. T h e n a tr ust-r e gi o n st at e is i niti ali z e d b ef or e
al g orit h m it er ati o ns st art. T h e tr ust r e gi o n d et er mi n es t h e
b o u n ds of t h e e x pl or ati o n s p a c e. T h e f oll o wi n g s u bs e cti o ns
will pr o vi d e m or e d et ails r e g ar di n g t h e B N N m o d eli n g a n d
tr ust-r e gi o n s e ar c h.

O ur al g orit h m m o d els e a c h p erf or m a n c e m etri c at e a c h
o pti mi z ati o n it er ati o n wit h a n i n di vi d u al B N N m o d el. T h e n a
b at c h of s a m pl es is c oll e ct e d b as e d o n t h e p ost eri or r e ali z ati o n
of p oi nts l yi n g i nsi d e t h e tr ust r e gi o n. C a n di d at e d esi g n
p erf or m a n c e r e ali z ati o ns ar e o bt ai n e d usi n g t h e T h o m ps o n
s a m pli n g m et h o d, a n d t h e c a n di d at es ar e r a n k e d b as e d o n t h e
utilit y v al u es ( F o M). A b at c h of q p oi nts is c oll e ct e d, a n d t h eir
r e al p erf or m a n c es ar e o bt ai n e d t hr o u g h si m ul ati o n. T h e n e w
d at a is a d d e d t o t h e d at a b as e, a n d t h e tr ust r e gi o n is u p d at e d
b as e d o n t h e r e al si m ul ati o n o ut p uts of t h e l ast b at c h.

Al g o rit h m 1 B N N- B as e d Si zi n g Al g orit h m

R e q ui r e: A n i niti al s a m pl e s et X i ni t of N i ni t d esi g ns a n d t h eir
e v al u ati o ns f (X i ni t)

1: Assi g n t h e s ol uti o n wit h m a xi m u m utilit y
2: I niti ali z e tr ust-r e gi o n st at e
3: f o r t = 1 , 2 , . . . , tm a x d o
4: Tr ai n B N N f or e a c h p erf or m a n c e m etri c
5: G e n er at e r c a n di d at e p oi nts x 1 , . . . , xr ∈ Ω i n t h e

tr ust r e gi o n.
6: f o r b = 1 , 2 , . . . , q d o
7: F or e a c h of t h e r p oi nts of t h e n e xt b at c h, s a m pl e a

r e ali z ati o n { ( f̂ ( x i ) , f̂ 1 (x i ) , . . . , f̂ m (x i ))
T | 1 ≤ i ≤ r }

fr o m t h e p ost eri or o v er e a c h c a n di d at e a n d a d d a p oi nt of
m a xi m u m utilit y t o t h e b at c h.

8: e n d f o r
9: Si m ul at e t h e q n e w q u er y p oi nts a n d o bt ai n s p e cs

f (X t ) vi a S PI C E si ms
1 0: U p d at e d at a b as e wit h n e w d esi g ns a n d e v al u ati o ns
1 1: U p d at e tr ust r e gi o n st at e b y c o m p ari n g t h e c urr e nt b est

a n d f (X t )
1 2: e n d f o r
1 3: r et u r n T h e d esi g n wit h t h e hi g h est utilit y

A ut h ori z e d li c e n s e d u s e li mit e d t o: U ni v er sit y of T e x a s at A u sti n. D o w nl o a d e d o n J a n u ar y 3 0, 2 0 2 5 at 2 0: 2 3: 4 4 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 



1) Perf or m a n c e M o d eli n g wit h B a y esi a n N e ur al N et w or ks:
We b as e o ur B a y esi a n N e ur al N et w or k r e gr essi o n m et h o d
o n t h e ass u m pti o n t h at t h e o bs er v e d f u n cti o n v al u es f oll o w
a G a ussi a n distri b uti o n a n d t h e pr o b a bilisti c m o d el o n t h e
o bs er v ati o ns ar e i n t h e f oll o wi n g f or m:

p (f (x ) | x, θ ) = N ϕ (x ; θ ), τ − 1 ( 3)

w h er e θ is t h e B N N p ar a m et ers, i. e., w ei g hts a n d bi as es,
ϕ (x ; θ ) is t h e o ut p ut of t h e B N N wit h p ar a m et ers θ a n d τ is t h e
n ois e p ar a m et er. We assi g n a st a n d ar d G a ussi a n pri or distri b u-
ti o n o v er e a c h el e m e nt of t h e N N p ar a m et ers, θ , a n d a G a m m a
pri or o v er e a c h n ois e pr e cisi o n, p (τ ) = G a m ( τ | a 0 , b0 ). L et
d e fi n e y n = f (x n ). Gi v e n t h e d at as et D = { (x n , yn )}

N
n = 1 , t h e

j oi nt pr o b a bilit y of o ur m o d el is gi v e n b y

p (θ, Y , τ, | X ) = N ( v e c( θ ) | 0 , I )p (τ )
N
n = 1 N y n | ϕ (x n ) , τ − 1

( 4)
w h er e X = { x n } , Y = { y n } , a n d v e c (·) is v e ct ori z ati o n.

D u e t o its u n bi as e d, hi g h- q u alit y u n c ert ai nt y q u a nti fi c ati o n,
w e us e H a milt o ni a n M o nt e C arl o ( H M C) [ 2 1] s a m pli n g t o
p erf or m p ost eri or i nf er e n c e a n d g e n er at e s a m pl es of θ i ∼
p (θ | D) fr o m t h e p ost eri or of B N N p ar a m et ers. T h e n, usi n g
t h e s a m pl es of θ , w e m a k e a G a ussi a n a p pr o xi m ati o n t o t h e
f u n cti o n v al u e as f oll o ws:

µ (f (x ) | D) =
1

M

M

i = 1

ϕ (x ; θ i )

σ 2 (f (x ) | D) =
1

M

M

i = 1

ϕ (x ; θ i ) − µ (f (x ) | D)
2

+
1

τ

( 5)

w h er e µ is t h e m e a n a n d σ 2 is t h e v ari a n c e a p pr o xi m ati o n.
2) Tr ust- R e gi o n S e ar c h E n gi n e: We f oll o w t h e tr ust r e gi o n

a p pr o a c h i ntr o d u c e d i n [ 2 2] a n d c o n fi n e t h e c a n di d at e p oi nts
l o c all y. T h e tr ust-r e gi o n assi g ns a l o c ali z e d s u bs et of t h e
s e ar c h s p a c e a n d pr o c e e ds i n r o u n ds. We d e n ot e t h e tr ust
r e gi o n b y Ω . I n e a c h r o u n d, a b at c h of q d esi g ns i n Ω ar e
s el e ct e d b y t h e B N N al g orit h m a n d t h e n si m ul at e d i n p ar all el.
N ot e t h at t his pr o c e d ur e is e asil y e xt e n d e d t o as y n c hr o n o us
b at c h e v al u ati o ns, a n d w e a d a pt as y n c hr o n o us e v al u ati o n f or
t h e m ulti- fi d elit y B N N al g orit h m ( will b e dis c uss e d), w h er e
e v al u ati o n ti m es s h o w si g ni fi c a nt diff er e n c es. T h e tr ust-r e gi o n
is c e nt er e d ar o u n d t h e b est d esi g n e x pl or e d, i. e., t h e d esi g n
wit h mi ni m u m F o M w h er e t h e ti es ar e h a n dl e d a c c or di n g
t o t h e d esi g n o bj e cti v e. T his a p pr o a c h miti g at es c o m m o n
iss u es of B a y esi a n o pti mi z ati o n i n hi g h- di m e nsi o n al s etti n gs,
w h er e p o p ul ar a c q uisiti o n f u n cti o ns f ail t o f o c us o n pr o mis-
i n g r e gi o ns a n d s pr e a d o ut s a m pl es d u e t o l ar g e pr e di cti o n
u n c ert ai nt y.

T h o m ps o n S a m pli n g- b as e d E x pl o r ati o n : We e m pl o y
T h o m ps o n s a m pli n g t o o bt ai n p erf or m a n c e a p pr o xi m ati o ns f or
u nt est e d d esi g n c a n di d at es. T h o m ps o n s a m pli n g s c al es t o l ar g e
b at c h es at l o w c o m p ut ati o n al c ost a n d h as s h o w n t o b e as
eff e cti v e as t h e e x p e ct e d i m pr o v e m e nt a c q uisiti o n f u n cti o n
[ 2 2]. F urt h er, t h e T h o m ps o n s a m pli n g n at ur all y e xt e n ds t o
c o nstr ai n e d s etti n gs w hi c h is us u all y t h e c as e f or A M S a u-
t o m ati o n. T o s el e ct a p oi nt f or t h e n e xt b at c h, w e s a m pl e r

c a n di d at e p oi nts i n Ω . L et x 1 , . . . , xr b e t h e s a m pl e d c a n di d at e
p oi nts. T h e n w e us e t h e pr e di cti v e m o d el gi v e n i n E q u a-
ti o n 5, a n d s a m pl e a r e ali z ati o n ( f̂ 0 (x i ), f̂ 1 (x i ), ..., f̂ m (x i ))

T

f or all x i wit h 1 ≤ i ≤ r fr o m t h e r es p e cti v e p ost e-
ri or distri b uti o ns o n t h e f u n cti o ns f 0 , f1 , . . . , fm . L et F̂ =

x i | f̂ j (x i ) ≤ 0 f or 1 ≤ j ≤ m } b e t h e s et of p oi nts w h os e

r e ali z ati o ns ar e f e asi bl e. If F̂ ≠ ∅ h ol ds, w e s el e ct a n
ar g mi n x ∈ F̂ f̂ ( x ) , i. e., t h e d esi g n wit h mi ni m u m o bj e cti v e.
Ot h er wis e, w e s el e ct a p oi nt of mi ni m u m t ot al vi ol ati o n b as e d
o n t h e F o M d e fi niti o n gi v e n i n E q u ati o n 2.

M ai nt ai ni n g t h e t r ust- r e gi o n: We i niti ali z e a tr ust r e gi o n
as a h y p er c u b e wit h si d e l e n gt h L ar o u n d t h e m a xi m u m utilit y
p oi nt. As t h e o pti mi z ati o n pr o gr ess es, w e tr a c k t h e n u m b er
of s u c c ess es n s a n d f ail ur es n f si n c e t h e l ast ti m e t h e tr ust-
r e gi o n is u p d at e d. A s u c c ess is w h e n t h e al g orit h m i m pr o v es
t h e s ol uti o n q u alit y, a n d b y c o nstr u cti o n, t his p oi nt m ust b e
i nsi d e t h e tr ust r e gi o n. We c all it a f ail ur e w h e n t h e l ast b at c h
of si m ul at e d d esi g ns is w ors e t h a n t h e c urr e nt b est s ol uti o n.
T h e c e nt er C of t h e tr ust r e gi o n is u p d at e d as f oll o ws. If t h er e
e xist f e asi bl e d esi g ns, t h e o n e wit h t h e mi ni m u m o bj e cti v e is
assi g n e d as t h e c e nt er. Ot h er wis e, t h e d esi g n wit h mi ni m u m
F o M, i. e., mi ni m u m s c al e d c o nstr ai nt vi ol ati o n, is c h os e n as
t h e c e nt er. T h er ef or e, t h e c e nt er of t h e tr ust-r e gi o n is u p d at e d
e v er y ti m e t h e d esi g n p erf or m a n c e is i m pr o v e d. T h e si d e
l e n gt h of t h e tr ust r e gi o n is u p d at e d as f oll o ws: if n s = τ s

t h e n t h e si d e l e n gt h is s et t o L = mi n { 2 L, L m a x } a n d w e r es et
n s = 0 . If n f = τ f , t h e n w e s et L = L / 2 a n d n f = 0 . If t h e
si d e l e n gt h dr o ps b el o w a s et t hr es h ol d L mi n , w e i niti ali z e a
n e w tr ust r e gi o n.

B. P ost- L a y o ut Perf or m a n c e O pti miz ati o n

We st art o ur dis c ussi o n b y d e fi ni n g t h e m o di fi c ati o ns n e c es-
s ar y t o a ut o m at e p ost-l a y o ut p erf or m a n c e- b as e d A M S si zi n g.
We t ail or t h e cl assi c al si zi n g fl o w t o i n cl u d e t h e p ost-l a y o ut
eff e cts o n t h e p erf or m a n c e d uri n g si zi n g. I nst e a d of o pti mi zi n g
t h e d esi g n v ari a bl es b as e d o n t h e s c h e m ati c l e v el si m ul ati o ns,
w e utili z e t h e l a y o ut a ut o m ati o n t o ol M A GI C A L t o m o dif y
p erf or m a n c e e v al u ati o n st e ps. T h e s u g g est e d fl o w is s h o w n i n
Fi g 3. First, a n a ut o m at e d l a y o ut is g e n er at e d vi a M A GI C A L
t o o bt ai n t h e p ost-l a y o ut p erf or m a n c e of e a c h n e w d esi g n. T his
st e p is f oll o w e d b y p ar asiti c e xtr a cti o n, a n d cir c uit si m ul ati o ns
ar e r u n o n t h e u p d at e d n etlist wit h p ar asiti c el e m e nts.

L a y o ut 
G e n er ati o n
( M A GI C A L)

P ar asiti c 
E xtr a cti o n

P o st -l a y o ut 
Si m ul ati o n s

O pti mi z ati o n Al g orit h m
( M ulti-Fi d elit y B N N)

N e xt D e si g n P erf or m a n c e V al u e s

G e n er at e P o st -L a y o ut P erf or m a n c e

Fi g. 3: P ost- L a y o ut P erf or m a n c e B as e d O pti mi z ati o n

H o w e v er, t his n e w fl o w is m u c h m or e e x p e nsi v e t h a n t h e
s c h e m ati c-l e v el si zi n g t as k si n c e t h e a d diti o n al st e ps (l a y o ut
g e n er ati o n, p ar asiti c e xtr a cti o n, a n d p ost-l a y o ut si m ul ati o ns)

A ut h ori z e d li c e n s e d u s e li mit e d t o: U ni v er sit y of T e x a s at A u sti n. D o w nl o a d e d o n J a n u ar y 3 0, 2 0 2 5 at 2 0: 2 3: 4 4 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 



are typically computationally expensive. Therefore, methods
are sought to further increase the efficiency of the (BNN-
based) optimization algorithm. As a solution, we treat this
problem as a multi-fidelity problem where we have access
to two different information sources for calculating circuit
performance metrics. Considering that the schematic-level
simulations are less accurate approximations of post-layout
level simulations, we define these information sources as
schematic-level simulations having the lower fidelity and post-
layout simulations are the highest fidelity.

We modify the BNN architecture to capture two levels of
fidelities (Figure 2) at the output and propose a co-learning
scheme similar to multi-task BNN learning [23]. The multi-
fidelity BNN model has two output nodes where ϕ(x)[1]
models the lower fidelity prediction, i.e., schematic-level per-
formance prediction, and ϕ(x)[2] models the high fidelity
prediction, i.e., post-layout performance prediction. Under the
assumption that we have access to two levels of information
sources, we denote the new dataset by D = D1 ∪ D2, where
Di =

{(
xk
n, y

k
n

)}Nk

n=1
and the joint probability of the updated

BNN model is given by:

p(θ,Y, τ, | X ) = p(θ)p (τ)
∏2

k=1

∏Nk

n=1 N
(
ykn | ϕ

(
xk
n

)
[k], τ−1

)
(6)

where p(θ) = N (vec(θ) | 0, I) and Nk is the number training
points in given fidelity level k. The joint probability expression
is a combination of the data sourced from both types of
simulations; therefore, we utilize the full dataset to train multi-
fidelity BNN. In this way, both fidelities are learned together,
and the correlations between them are captured due to shared
BNN parameters.

To handle the multi-fidelity problem, we adopt the following
modifications to Algorithm 1:
1) We train multi-fidelity BNN models using the whole history
of simulations, D.
2) The trust-region centering and length updates are based on
the post-layout simulation results, i.e., highest-level fidelity
results.
3) We determine the candidate selection by modifying the
work of [24] where they propose an upper-confidence-bound
selection criteria for a single objective BO. We obtain
Thompson sampling-based realizations for each fidelity, i.e.,
{f̂ (1)

i (x), f̂
(2)
i (x), for i = 0, 1, . . . ,m} where {1, 2} indi-

cate the fidelity level (schematic-level simulations and post-
layout level simulations) and then calculate the low fidelity
and high fidelity FoM approximations, FoM(f̂L(x)) and
FoM(f̂H(x)) using the corresponding realizations. The can-
didate selection is queried according to the following utility
expression:

U(x) = max(FoM(f̂L(x))−∆, FoM(f̂H(x)))

where ∆ is the FoM difference between the samples with the
best utility at each fidelity. In this step, we take a practical
approach to convert two fidelities to each other by defining a
reduction term and assign the conservative prediction as the
utility value. Finally, the argmin selection is conducted on the

candidate utility values to determine the next batch.
4) The current literature on multi-fidelity Bayesian optimiza-
tion lacks in handling large number of constraints. Therefore,
we randomly assign the fidelity (simulation type) for selected
candidates and leave the fidelity selection as future work. Note
that this action does not prevent us from studying the benefits
of multi-fidelity handling of layout-aware sizing. However, we
sacrifice potential cost-aware improvements through intelligent
fidelity selection.

IV. EXPERIMENTS

Experiment Setup and Algorithm Settings: We run our
tests using 3 different AMS circuits designed with differ-
ent technologies. A Two-Stage Folded Cascode Operational
Transconductance Amplifier (OTA), and a Strong-Arm Latch
Comparator are designed with TSMC 180nm process and
used to test schematic-level sizing algorithms. Then, we
demonstrate the results for layout-aware algorithms on a Two-
Stage Miller OTA. This circuit is designed in TSMC 40nm
technology since the layout generator used in this work,
MAGICAL, is crafted for TSMC 40nm. The schematic designs
for these circuits are included in Figure 4.

We run experiments to study the effectiveness of both of
the proposed algorithms. First, we test for the schematic-level
sizing algorithm, which is given by Algorithm 1, and we refer
to our Bayesian Neural Network Based Bayesian Optimization
algorithm as ”BNN-BO”. Then, we run tests for our post-
layout performance-based sizing algorithm. Since we utilize a
multi-fidelity BNN for this task, we will refer to this algorithm
as ”MF-BNN-BO”.

We implemented several state-of-the-art baseline algorithms
to compare and quantify the quality of our proposed al-
gorithms. We selected the baseline algorithms to cover the
different categories of approaches. We list the compared
baseline algorithms as follows: 1) A differential evolution
global optimization algorithm (DE), 2) Bayesian Optimization
with weighted expected improvement (BO) [5], and, 3) RL-
based sizing algorithm, DNN-Opt [15]. All algorithms are
implemented using Python. We implemented DNN-Opt via
PyTorch [25], Bayesian Optimization algorithm is imple-
mented using BoTorch [26] package and BNN-BO and MF-
BNN-BO are implemented using PyTorch and Hamiltorch [27]
packages.

We configured BNN-BO and MF-BNN-BO to evaluate a
batch of q = 8 designs in parallel. For fairness, DNN-Opt and
BO are also configured to do parallel evaluations. Both our
algorithms use 200 HMC samples to train BNN models. All
BNN models are feedforward neural networks with 2 hidden
layers and 100 nodes at each hidden layer. Trust-region is ini-
tiated with L = 0.8 and Lmin and Lmax are chosen to be 0.54

and 1.6, respectively. Failure and success tolerances as chosen
as nf = 2 and ns = 3. All experiments are run on the same
machine using CPU for training learning (DNN and BNN)
models. During experiments, the model-based algorithms BO,
DNN-Opt, and BNN-BO are run until exploring 500 designs,
and DE is run for 5000 new samples.
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Fig. 4: Schematics of Tested AMS Circuits

HMC Sample Number

Fig. 5: Folded Cascode OTA Power Modeling

Schematic-Level Sizing Automation: We tested our al-
gorithm, BNN-BO, and other baseline algorithms on two
circuits: two-stage folded cascode ota and strong-arm latch
comparator. All transistors in both designs are parameterized
for optimization. The Folded Cascode OTA has 20 independent
design variables, and the Strong-Arm Latch Comparator has
13 independent design variables after respecting the symmetry
constraints. The parameterized device sizes include: transistor
lengths & widths, capacitor values, and multipliers (integer
valued).

The schematic-level constrained sizing problem for Folded
Cascode OTA is defined as follows:

minimize Power
s.t. DC Gain > 60 dB Settling Time < 30 ns

CMRR > 80 dB Saturation Margin > 50 mV
PSRR > 80 dB Unity Gain Freq. > 30 MHz
Out. Swing > 2.4 V Out. Noise < 30 mVrms

Static error < 0.1 Phase Margin > 60 deg.

(7)

The schematic-level constrained sizing problem for Strong-

Fig. 6: Folded Cascode Optimization

Arm Latch Comparator is defined as follows:

minimize Power
s.t. Set Delay < 10 ns

Reset Delay < 6.5 ns
Input-referred Noise < 50 µVrms
Differential Reset Voltage < 1 µV
Differential Set Voltage > 1.195 V
Positive-Integration Node Reset Voltage < 60 µV
Negative-Integration Node Reset Voltage < 60 µV
Positive-Output Node Reset Voltage < 0.35 µV
Negative-Output Node Reset Voltage < 0.35 µV.

(8)

We show the accuracy of the BNN modeling by demonstrat-
ing the training metrics. Training Mean Squared Error (MSE)
and the logarithmic likelihood of the fitted model are given
in Figure 5. Collecting new HMC samples from the posterior
increases the likelihood and reduces the training error. We
observed very similar training schemes for all other circuits
and performance metrics.

We repeat all experiments 10 times to account for the
randomization involved in tested algorithms. The statistical
results of our tests are shown in Table I. Testing on both
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TABLE I: Schematic-Level Sizing Optimization Statistics

Circuit Name Folded Cascode OTA Strong-Arm Latch Comparator
Algorithm DE BO DNN-Opt BNN-BO DE BO DNN-Opt BNN-BO
success rate 10/10 7/10 10/10 10/10 7/10 1/10 9/10 10/10
# of simulations 3200 340 151 82 2800 >500 154 68
Min power (mW ) 0.75 0.88 0.64 0.60 3.02 3.67 2.45 2.5
Max power (mW ) 1.53 1.43 0.8 0.75 4.1 3.67 2.66 2.55
Mean pow. (mW ) 1.14 1.19 0.72 0.69 3.44 3.67 2.54 2.52
Modeling time (h) NA 30 0.6 1.5 NA 17 0.3 0.7
Simulation time (h) 54 2.7 2.7 2.7 72 3.6 3.6 3.6
Total runtime (h) 54 32.7 3.3 4.2 72 20.6 3.9 4.3

Fig. 7: Strong-Arm Latch Comparator Optimization

circuits suggests that BNN-BO can achieve feasible solutions
in all runs, and it uses the smallest number of simulations to
achieve this. Compared to Differential Evolution (DE), BNN-
BO can find feasible solutions using up to 40x less number
of simulations. Compared to the closest baseline algorithm,
DNN-Opt, BNN-BO reduces the simulation time for finding
similar results by up to 55%, proving its high efficiency. It is
also demonstrated in Table I that, on average, the final design
proposed by BNN-BO draws up to 40% less power. The only
disadvantage of BNN-BO to DNN-Opt is the modeling time as
DNN-Opt maintains a single DNN model to approximate all
performance metrics. Note that all reported times consider the
full simulation budget (500 new samples). Therefore, although
it takes longer time for BNN-BO to do a single iteration, the
required real time for BNN-BO to find a feasible solution is
still smaller than other approaches.

In addition to experiment statistics, we further include the
FoM convergence curves of both tests in Figure 6 and Fig-
ure 7. The y-axis in the graphs represents the total constraint
violation; therefore, FoM=0 represents a feasible solution. We
observe that, compared to DNN-Opt, BNN-BO has 65% and
33% smaller area under the curve for Folded Cascode OTA
and SA Latch Comparator, respectively.

Fig. 8: Miller OTA Post-Layout Performance Optimization

Layout-Aware Design Automation: In order to demon-
strate the importance of layout effects on the final perfor-
mance, we perform experiments on a Miller OTA circuit
designed in 40nm technology (Fig. 4). The optimization prob-
lem has 17 independent design variables and the optimization
problem is defined as follows:

minimize Power
s.t. DC Gain > 45 dB Settling Time < 100 ns

CMRR > 55 dB Saturation Margins > 50 mV
PSRR > 55 dB Unity Gain BW. > 40 MHz
Out. Swing > 1 V RMS Noise < 400 uVrms

Static error< %2 Phase Margin > 60 deg.
(9)

Obtaining the post-layout performance of the Miller OTA is
around 9 times more expensive than obtaining the schematic-
level performance. Therefore this experiment is to prove
the efficiency by utilizing multiple information sources. We
initialize all algorithms with 50 high-fidelity random samples,
and MF-BNN-BO has additional 50 samples from low-fidelity
source (schematic-level simulations). We demonstrate the FoM
evolution for the rest of the optimization steps in Figure 8. We
observe that our Multi-Fidelity BNN algorithm provides even
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more efficiency compared to already efficient BNN-BO. Our
analysis shows that the area under the curve is 45% smaller for
MF-BNN-BO compared to BNN-BO. Further, we observe that
BNN-BO’s average best solution after 150 high-fidelity itera-
tions is surpassed by MF-BNN-BO only using 84 simulations.
This also implies close to 45% improved efficiency due to
utilizing correlations between the schematic-level evaluations
and post-layout level evaluations. Note that there is an equal
number of schematic-level simulations while running MF-
BNN-BO that are not reflected in Figure 8. Considering these
simulations, the time efficiency is slightly reduced to around
38%. This efficiency figure serves as a lower-bound since we
leave the improvements on fidelity selection as a future work.

V. CONCLUSION

In this work, we presented Bayesian Neural Network-
based solutions for schematic-level analog sizing automa-
tion and post-layout performance optimization. We targeted
the scalability issue of the learning-based automation meth-
ods and provided a sample efficient optimization flow. We
demonstrated the efficiency of the proposed approaches on
academic benchmarks. Compared to the state-of-the-art, we
improved the sizing automation efficiency by up to 45%.
The Multi Fidelity BNN algorithm analysis proved that uti-
lizing cheaper (schematic-level) simulations reduces the need
for expensive (post-layout) simulations considerably, further
boosting the efficiency.
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