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Abstract—The exact nature of the coupling of brain structure
and function has long been an open area of research. Often, this
question is approached by first defining a single structural basis
set, and then estimating functional brain activation time courses
as a linear combination of these structural bases. However,
knowing that functional brain activity and connectivity vary over
time, so might the nature of these structural/functional couplings.
Thus, a single rigidly defined, “functionally unaware” structural
manifold may be insufficient to describe structure/function
linkages across a whole functional time series. Here, we introduce
dynamic fusion, an ICA-based symmetric fusion, and show
evidence that challenges current approaches and suggests time-
resolved structural basis sets can better represent changing
functional manifolds. We perform dynamic fusion using
measures of both gray matter (GM) and white matter (WM)
structure and present results that may indicate a stronger link
between WM structure and dynamic brain function than in GM.
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I. INTRODUCTION

While neuroimaging has become a powerful non-invasive
tool to study the human brain, each of the wide range of
imaging modalities captures only a fraction of available brain
information at a given moment and has a unique set of inherent
limitations, resulting in a somewhat incomplete picture of the
brain from a single modality alone. A class of approaches
known as multimodal data fusion have been developed to
overcome such limitations by enabling integration of
complementary data across various neuroimaging modalities.
The umbrella of multimodal data fusion spans a wide range of
techniques to reveal hidden linkages between modalities,
which can be broadly divided into two categories: symmetric
and asymmetric. In asymmetric fusion, data from one modality
is used to constrain the analysis from another modality,
whereas in symmetric fusion each imaging modality
contributes equally to the joint analysis, taking full advantage
of the combined information across datasets [1], [2].

A prominent application of multimodal fusion in
neuroimaging is to study the coupling of brain structure and
function; however, this question comes with the common
challenge of dimensional incongruence, i.e., fusing data from a
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structural “snapshot” of the brain with a functional “video” that
contains the added time dimension. To solve this and achieve
the correct dimensions for fusion, typically one must heavily
summarize over the temporal dimension of the functional
magnetic resonance imaging (fMRI) data by computing
measures such as static functional network connectivity (FNC)
or amplitude of low-frequency fluctuation (ALFF), effectively
eliminating the rich temporal information all together [3], [4],
[5]. Recent work has attempted to integrate time-resolved
measures of FNC (e.g., dynamic FNC states) to structural brain
maps via multimodal fusion, which has enabled deeper
investigation of the relationship between functional dynamics
and structural brain variation [6], [7]. Lately, another line of
work has emerged for studying structure-function coupling via
eigenmode decomposition of structural graphs (e.g., structural
connectomes derived via diffusion imaging [8] or cortical
surface geometry [9]) into a single basis set representing
structural harmonics, then projecting the fMRI signal at each
timepoint as edge weights onto the discovered structural
manifold. The former represents a symmetric fusion approach,
while the latter can be classified as asymmetric fusion
(structural basis constrains analysis of functional data);
however, both of these approaches for studying time-resolved
structure-function coupling suffer from a certain rigidity, in
that they do not allow flexible linkages between structure and
function across time.

Here, we introduce our ICA-based symmetric fusion
approach that allows for the identification of a temporally
adaptive basis set that is inclusive of both structure and
function, which we term “dynamic fusion”. Here, we highlight
three key results: 1) cross-fusion comparisons revealed a small
set of “static” (i.e., relatively stable) structural components, as
well as a large set of “dynamic” components, the dynamic
fusion approach enabled flexible linkages between structure
and time-evolving function, 2) dynamic components exhibit
stronger schizophrenia (SZ) vs. control group differences than
static components, suggesting the “functionally aware”
dynamic components may capture clinically-relevant structure-
functional linkages that are missed by standard approaches, and
3) WM components show evidence for stronger links to
temporally-evolving functional data than GM components.
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II. DATA & METHODS

A. Data Description

We analyzed functional and structural MRI data from the
HCP [10] and FBIRN [11] datasets, as well as diffusion tensor
imaging (DTI) from HCP. In both datasets, resting state fMRI
(rs-fRMI) data were preprocessed with a standard pipeline that
included brain extraction, slice-timing, and motion correction
steps. Preprocessed data were then registered into structural
MNI space, resampled to 3 mm? isotropic voxels, and spatially
smoothed using a Gaussian kernel with a 6 mm full-width at
half-maximum (FWHM) on a per-subject basis. Dynamic FNC
analysis of rs-fMRI differed between the HCP and FBIRN
datasets, and the pipelines are detailed below.

All structural MRI data were preprocessed using statistical
parametric mapping (SPM12) under the MATLAB 2019
environment. Structural images were segmented into gray
matter, white matter, and CSF wusing the modulated
normalization algorithm, resulting in outputs as gray matter
volume (GMV), which were subsequently smoothed using a
Gaussian kernel with a FWHM = 6 mm. DTI data from HCP
were processed using the FSL software package with a
standard pipeline for motion and eddy current correction.
Diffusion tensor models were fit on the corrected data to
compute scalar fractional anisotropy (FA) maps, which were
used as the structural inputs to the WM dynamic fusion
experiments.

B. Time-resolved FNC in HCP

We utilized data from 833 subjects (390 male, avg. age =
28.7 years) from the HCP 1200 dataset [10]. Resting state
fMRI (rs-fMRI) data were processed via spatially constrained
ICA (scICA) using the NeuroMark fMRI 1.0 template [12] in
GIFT [13] to extract subject-level spatial maps for each of the
53 intrinsic connectivity networks (ICNs) in the template, as
well as their respective activation time courses. Dynamic FNC
(dFNC) was computed from ICN time courses using a sliding
window Pearson correlation (SWPC) approach outlined in
[14], with the exception that the window size used in our
analysis was 20 TR (~15s; TR = 0.72s). K-means clustering
revealed five dFNC states, and subject-average connectomes
were computed for each state for dynamic fusion.

C. Time- and Frequency-resolved FNC in FBIRN

We utilized an age- and gender-matched dataset including
150 individuals with SZ (114 male, avg. age = 38.8 years) and
160 controls (HC; 115 male, avg. age = 37.0 years) [11].
Again, rs-fMRI were preprocessed via the NeuroMark pipeline,
and time- and frequency-resolved functional network
connectivity (FNC) patterns were then computed from the
rsfMRI data using the filter-bank connectivity (FBC) approach
[15]. Briefly, FBC utilizes a filter bank, i.e., an array of
systems used to filter a time series into different frequency
bands (typically non-overlapping and spanning the full
frequency spectrum of the data), which enables estimation of
FNC within a given frequency range. We designed our filter
bank to contain 10 Chebyshev type-2 infinite impulse response
filters that evenly cover the full frequency spectrum of the
fMRI time series (0.00 — 0.25 Hz). K-means clustering
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identified six distinct states with unique connectivity signatures
and spectral occupancy across frequency bands. In this work,
we focus on three of the six states at the extremes of the
frequency range: State 1 (low-frequency HC-dominant), State
2 (low-frequency SZ-dominant) and State 6 (high-frequency
SZ-dominant) (Fig. 1). For more detail on the FBC approach
and state clustering used here see [7], [15].

D. Dynamic Fusion

We used multi-set canonical correlation analysis + joint
independent component analysis (mCCA + jjICA) [16] to
perform fusion of both static (GMV/FA maps) and
temporally-resolved (SWPC/FBC states) neuroimaging
features. The combined mCCA + jICA model is designed to
allow for the identification of both strongly and weakly
correlated joint components that are also independent from
one another by employing mCCA in the first step to generate
flexible linkages between the modalities and subsequently
applying jICA on the associated maps in the second step. The
mCCA + JICA framework is defined under the assumption
that a multimodal dataset, X, is a linear mixture of m sources
(Sx) mixed by non-singular matrices (4x), here, £k = (1,2). The
effective mCCA + jICA framework can be defined as X; =
(DiW)Sy, where the modality-specific mixing matrices are
defined as Ay = DiW'. Further details can be found in [17],
[18], [19].

Specifically, in the rs-fMRI experiments for both HCP and
FBIRN, we performed separate data fusion experiments for
each dFNC state (five and three, respectively): State
1-GMYV, State 2<GMV, etc. This experimental design
resulted in a set of structural (GMV or FA) components
(model order = 10) optimized to each time-resolved state
independently. Cross-fusion comparisons of these structural
components across experiments revealed structural manifolds
unique to each state (i.e., GMV/FA components related to
frequency-specific functional connectivity dynamics), as well
as some that were identified across multiple states, indicating
a “static” structural component.

Dynamic Fusion (can be
extended to more than 2)
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Fig. 1. Dynamic Fusion Example
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III. RESULTS
FBIRN FBC + GMV Cross-Fusion
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Fig. 2. Dynamic fusion in HCP and FBIRN datasets reveals a small set of
static structural components and a larger set of functionally influenced
“dynamic” components.

Fig. 2 illustrates the cross-fusion stability of GMV (solid
lines) and FBC/FNC (dashed lines) component maps for both
FBIRN (top) and HCP (bottom) experiments. We observed low
correspondence overall for the functional components (dashed
lines), which was expected as each of the dFNC states have
unique connectivity signatures, and, in the case of the FBIRN
data, are found in distinct frequency bands. Though the GMV
components exhibited higher stability overall, we found fairly
high cross-fusion correspondence in the first few components
(Ir] > 0.55) followed by a fairly steep drop-off of component
correspondence, suggesting some of the structural components
are functionally influenced (i.e., “dynamic”), while some are
not (i.e., “static”).

A. Dynamic Components Exhibit Stronger Group Differences
than Static Components

Significance of Group Differences vs. Cross-
Fusion Stability of Structural GMV Components
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Fig 3. Dynamic components (max cross-fusion correlation < 0.5) show
stronger group differences (-log10(prpr)) in loading parameters than static
components.

For each of the 30 components derived across the three
FBIRN fusion experiments, we computed group differences
(SZ vs. controls) between the GMV component loading
parameters and defined each component as “static” or
“dynamic” based on the max cross-fusion correlation > or <
0.5, respectively (Fig. 3). While all four static components
exhibited significant group loading differences, most (19/26)
dynamic components did as well. In fact, 8 of the dynamic

components showed stronger group differences than 3 of the 4
static components. These results suggest dynamic GMV
components may better represent clinically-relevant structure-
function linkages than traditional fusion or structural dynamics
approaches.

B. White Matter Components Show Stronger Links to
Temporally-Evolving FNC

Of the total 833 HCP subjects, 737 had processed FA maps
available, thus we replicated the HCP GMV dynamic fusion
experiments in this subset of subjects. Results comparing the
GMV and FA dynamic fusion experiments are shown in Fig 4.
While the overarching relationship between structure and
function holds in the FA data (higher stability in structural
components than functional components), there are a few key
differences to highlight. First, the FA experiment shows
evidence for one highly static (mean cross-fusion correlation =
0.75), with a steep drop-off to the rest as dynamic components,
as opposed to a gradual decrease in cross-fusion stability and
2-3 “static” component maps. Second, the overall cross-fusion
stability of the components is lower in the FA experiments
compared to GMV, which may suggest a stronger linkage to
the changing functional manifolds in each distinct dFNC state
fusion, thus leading to lowered cross-fusion stability. To assess
this hypothesis, we compared the correlations between the
structural and functional loading parameters for all components
in the GMV and FA experiments, and found that the
correlations were indeed higher in the FNC + FA components
(p=10.0043, t=-2.927).
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Fig. 4. White matter (FA) components show one highly stable component,
with a steep drop-off to dynamic components that show overall lower cross-
fusion stability than corresponding GMV components in the same subjects
(top row). Higher correlation between structural and functional loading
parameters was observed in FA fusion experiments compared to GMV fusion
(bottom row; p = 0.0043, t = -2.927).

IV. DISCUSSION

Here, we propose an approach for investigating
dynamic/flexible linkages between brain structure and time-
varying brain function, termed dynamic fusion. Our approach
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is fully data driven and allows both modalities to contribute to
the fusion equally (i.e., symmetric fusion), thus enforcing
fewer assumptions and enabling a broader spectrum of
flexibility than recent works in structural dynamics. We show
that dynamic fusion identifies functionally-adaptive structural
basis sets that are specific to each dFNC state and absent when
static FNC is used as functional inputs, which challenges the
notion that a single structural manifold is sufficient or
appropriate for representing every time point in an rs-fMRI
scan. Our results also suggest that dynamic components, which
are driven by the changing linkage to varying functional
manifolds, capture stronger SZ/control group differences than
static components, indicating they may encode unique aspects
of clinically-relevant pathophysiology that are missed with
traditional fusion approaches. Finally, we show evidence that
suggests dynamic fusion of white matter data (FA maps) shows
stronger linkages to temporally-evolving functional data than
corresponding gray matter data (GMV maps) in the same
subjects. This finding, though preliminary, illustrates how
dynamic fusion can be applied towards the investigation of
open questions in the field of neuroscience that are currently
the topics of much debate. Future work may focus on
replicating these results in other datasets, or comparing with
different measures of GM or WM, such as cortical thickness or
even structural connectivity computed from DTI tractography.
Other extensions of dynamic fusion, including a 3-way fusion
of GMV, FA, and dFNC could also be useful in further
elucidating the varying linkages between GM/WM structure
and time-varying brain function.
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