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Abstract—The exact nature of the coupling of brain structure 

and function has long been an open area of research. Often, this 

question is approached by first defining a single structural basis 

set, and then estimating functional brain activation time courses 

as a linear combination of these structural bases. However, 

knowing that functional brain activity and connectivity vary over 

time, so might the nature of these structural/functional couplings. 

Thus, a single rigidly defined, “functionally unaware” structural 

manifold may be insufficient to describe structure/function 

linkages across a whole functional time series. Here, we introduce 

dynamic fusion, an ICA-based symmetric fusion, and show 

evidence that challenges current approaches and suggests time-

resolved structural basis sets can better represent changing 

functional manifolds. We perform dynamic fusion using 

measures of both gray matter (GM) and white matter (WM) 

structure and present results that may indicate a stronger link 

between WM structure and dynamic brain function than in GM.  

Keywords—multimodal data fusion, dynamic FNC, fMRI, 

sMRI, DTI, dynamic fusion, structure-function coupling 

I. INTRODUCTION 

While neuroimaging has become a powerful non-invasive 
tool to study the human brain, each of the wide range of 
imaging modalities captures only a fraction of available brain 
information at a given moment and has a unique set of inherent 
limitations, resulting in a somewhat incomplete picture of the 
brain from a single modality alone. A class of approaches 
known as multimodal data fusion have been developed to 
overcome such limitations by enabling integration of 
complementary data across various neuroimaging modalities. 
The umbrella of multimodal data fusion spans a wide range of 
techniques to reveal hidden linkages between modalities, 
which can be broadly divided into two categories: symmetric 
and asymmetric. In asymmetric fusion, data from one modality 
is used to constrain the analysis from another modality, 
whereas in symmetric fusion each imaging modality 
contributes equally to the joint analysis, taking full advantage 
of the combined information across datasets [1], [2]. 

 A prominent application of multimodal fusion in 
neuroimaging is to study the coupling of brain structure and 
function; however, this question comes with the common 
challenge of dimensional incongruence, i.e., fusing data from a 

structural “snapshot” of the brain with a functional “video” that 
contains the added time dimension. To solve this and achieve 
the correct dimensions for fusion, typically one must heavily 
summarize over the temporal dimension of the functional 
magnetic resonance imaging (fMRI) data by computing 
measures such as static functional network connectivity (FNC) 
or amplitude of low-frequency fluctuation (ALFF), effectively 
eliminating the rich temporal information all together [3], [4], 
[5]. Recent work has attempted to integrate time-resolved 
measures of FNC (e.g., dynamic FNC states) to structural brain 
maps via multimodal fusion, which has enabled deeper 
investigation of the relationship between functional dynamics 
and structural brain variation [6], [7]. Lately, another line of 
work has emerged for studying structure-function coupling via 
eigenmode decomposition of structural graphs (e.g., structural 
connectomes derived via diffusion imaging [8] or cortical 
surface geometry [9]) into a single basis set representing 
structural harmonics, then projecting the fMRI signal at each 
timepoint as edge weights onto the discovered structural 
manifold. The former represents a symmetric fusion approach, 
while the latter can be classified as asymmetric fusion 
(structural basis constrains analysis of functional data); 
however, both of these approaches for studying time-resolved 
structure-function coupling suffer from a certain rigidity, in 
that they do not allow flexible linkages between structure and 
function across time. 

Here, we introduce our ICA-based symmetric fusion 
approach that allows for the identification of a temporally 
adaptive basis set that is inclusive of both structure and 
function, which we term “dynamic fusion”. Here, we highlight 
three key results: 1) cross-fusion comparisons revealed a small 
set of “static” (i.e., relatively stable) structural components, as 
well as a large set of “dynamic” components, the dynamic 
fusion approach enabled flexible linkages between structure 
and time-evolving function, 2) dynamic components exhibit 
stronger schizophrenia (SZ) vs. control group differences than 
static components, suggesting the “functionally aware” 
dynamic components may capture clinically-relevant structure-
functional linkages that are missed by standard approaches, and 
3) WM components show evidence for stronger links to 
temporally-evolving functional data than GM components.  
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II. DATA & METHODS 

A. Data Description 

We analyzed functional and structural MRI data from the 
HCP [10] and FBIRN [11] datasets, as well as diffusion tensor 
imaging (DTI) from HCP.  In both datasets, resting state fMRI 
(rs-fRMI) data were preprocessed with a standard pipeline that 
included brain extraction, slice-timing, and motion correction 
steps. Preprocessed data were then registered into structural 
MNI space, resampled to 3 mm3 isotropic voxels, and spatially 
smoothed using a Gaussian kernel with a 6 mm full-width at 
half-maximum (FWHM) on a per-subject basis. Dynamic FNC 
analysis of rs-fMRI differed between the HCP and FBIRN 
datasets, and the pipelines are detailed below.  

All structural MRI data were preprocessed using statistical 
parametric mapping (SPM12) under the MATLAB 2019 
environment. Structural images were segmented into gray 
matter, white matter, and CSF using the modulated 
normalization algorithm, resulting in outputs as gray matter 
volume (GMV), which were subsequently smoothed using a 
Gaussian kernel with a FWHM = 6 mm. DTI data from HCP 
were processed using the FSL software package with a 
standard pipeline for motion and eddy current correction. 
Diffusion tensor models were fit on the corrected data to 
compute scalar fractional anisotropy (FA) maps, which were 
used as the structural inputs to the WM dynamic fusion 
experiments. 

B. Time-resolved FNC in HCP 

We utilized data from 833 subjects (390 male, avg. age = 
28.7 years) from the HCP 1200 dataset [10]. Resting state 
fMRI (rs-fMRI) data were processed via spatially constrained 
ICA (scICA) using the NeuroMark_fMRI_1.0 template [12] in 
GIFT [13] to extract subject-level spatial maps for each of the 
53 intrinsic connectivity networks (ICNs) in the template, as 
well as their respective activation time courses. Dynamic FNC 
(dFNC) was computed from ICN time courses using a sliding 
window Pearson correlation (SWPC) approach outlined in 
[14], with the exception that the window size used in our 
analysis was 20 TR (~15s; TR = 0.72s). K-means clustering 
revealed five dFNC states, and subject-average connectomes 
were computed for each state for dynamic fusion.   

C. Time- and Frequency-resolved FNC in FBIRN 

We utilized an age- and gender-matched dataset including 
150 individuals with SZ (114 male, avg. age = 38.8 years) and 
160 controls (HC; 115 male, avg. age = 37.0 years) [11]. 
Again, rs-fMRI were preprocessed via the NeuroMark pipeline, 
and time- and frequency-resolved functional network 
connectivity (FNC) patterns were then computed from the 
rsfMRI data using the filter-bank connectivity (FBC) approach 
[15]. Briefly, FBC utilizes a filter bank, i.e., an array of 
systems used to filter a time series into different frequency 
bands (typically non-overlapping and spanning the full 
frequency spectrum of the data), which enables estimation of 
FNC within a given frequency range. We designed our filter 
bank to contain 10 Chebyshev type-2 infinite impulse response 
filters that evenly cover the full frequency spectrum of the 
fMRI time series (0.00 – 0.25 Hz). K-means clustering 

identified six distinct states with unique connectivity signatures 
and spectral occupancy across frequency bands. In this work, 
we focus on three of the six states at the extremes of the 
frequency range: State 1 (low-frequency HC-dominant), State 
2 (low-frequency SZ-dominant) and State 6 (high-frequency 
SZ-dominant) (Fig. 1). For more detail on the FBC approach 
and state clustering used here see [7], [15]. 

D. Dynamic Fusion 

We used multi-set canonical correlation analysis + joint 

independent component analysis (mCCA + jICA) [16] to 

perform fusion of both static (GMV/FA maps) and 

temporally-resolved (SWPC/FBC states) neuroimaging 

features. The combined mCCA + jICA model is designed to 

allow for the identification of both strongly and weakly 

correlated joint components that are also independent from 

one another by employing mCCA in the first step to generate 

flexible linkages between the modalities and subsequently 

applying jICA on the associated maps in the second step. The 

mCCA + jICA framework is defined under the assumption 

that a multimodal dataset, Xk, is a linear mixture of m sources 

(Sk) mixed by non-singular matrices (Ak), here, k = (1,2). The 

effective mCCA + jICA framework can be defined as Xk = 

(DkW-1)Sk, where the modality-specific mixing matrices are 

defined as Ak = DkW-1. Further details can be found in [17], 

[18], [19]. 

Specifically, in the rs-fMRI experiments for both HCP and 

FBIRN, we performed separate data fusion experiments for 

each dFNC state (five and three, respectively): State 

1↔GMV, State 2↔GMV, etc. This experimental design 

resulted in a set of structural (GMV or FA) components 

(model order = 10) optimized to each time-resolved state 

independently. Cross-fusion comparisons of these structural 

components across experiments revealed structural manifolds 

unique to each state (i.e., GMV/FA components related to 

frequency-specific functional connectivity dynamics), as well 

as some that were identified across multiple states, indicating 

a “static” structural component.  

 

 

Fig. 1. Dynamic Fusion Example 

This work was supported by the National Institutes of Mental Health grant 
R01MH123610 and National Science Foundation grant 2112455. 

Authorized licensed use limited to: Georgia State University. Downloaded on January 30,2025 at 20:33:01 UTC from IEEE Xplore.  Restrictions apply. 



III. RESULTS 

 

Fig. 2. Dynamic fusion in HCP and FBIRN datasets reveals a small set of 

static structural components and a larger set of functionally influenced 

“dynamic” components. 

Fig. 2 illustrates the cross-fusion stability of GMV (solid 
lines) and FBC/FNC (dashed lines) component maps for both 
FBIRN (top) and HCP (bottom) experiments. We observed low 
correspondence overall for the functional components (dashed 
lines), which was expected as each of the dFNC states have 
unique connectivity signatures, and, in the case of the FBIRN 
data, are found in distinct frequency bands. Though the GMV 
components exhibited higher stability overall, we found fairly 
high cross-fusion correspondence in the first few components 
(|r| > 0.55) followed by a fairly steep drop-off of component 
correspondence, suggesting some of the structural components 
are functionally influenced (i.e., “dynamic”), while some are 
not (i.e., “static”). 

A. Dynamic Components Exhibit Stronger Group Differences 

than Static Components 

 

Fig 3. Dynamic components (max cross-fusion correlation < 0.5) show 

stronger group differences (-log10(pFDR)) in loading parameters than static 

components. 

For each of the 30 components derived across the three 
FBIRN fusion experiments, we computed group differences 
(SZ vs. controls) between the GMV component loading 
parameters and defined each component as “static” or 
“dynamic” based on the max cross-fusion correlation > or < 
0.5, respectively (Fig. 3). While all four static components 
exhibited significant group loading differences, most (19/26) 
dynamic components did as well. In fact, 8 of the dynamic 

components showed stronger group differences than 3 of the 4 
static components. These results suggest dynamic GMV 
components may better represent clinically-relevant structure-
function linkages than traditional fusion or structural dynamics 
approaches.  

B. White Matter Components Show Stronger Links to 

Temporally-Evolving FNC 

Of the total 833 HCP subjects, 737 had processed FA maps 
available, thus we replicated the HCP GMV dynamic fusion 
experiments in this subset of subjects. Results comparing the 
GMV and FA dynamic fusion experiments are shown in Fig 4. 
While the overarching relationship between structure and 
function holds in the FA data (higher stability in structural 
components than functional components), there are a few key 
differences to highlight. First, the FA experiment shows 
evidence for one highly static (mean cross-fusion correlation = 
0.75), with a steep drop-off to the rest as dynamic components, 
as opposed to a gradual decrease in cross-fusion stability and 
2-3 “static” component maps. Second, the overall cross-fusion 
stability of the components is lower in the FA experiments 
compared to GMV, which may suggest a stronger linkage to 
the changing functional manifolds in each distinct dFNC state 
fusion, thus leading to lowered cross-fusion stability. To assess 
this hypothesis, we compared the correlations between the 
structural and functional loading parameters for all components 
in the GMV and FA experiments, and found that the 
correlations were indeed higher in the FNC + FA components 
(p = 0.0043, t = -2.927).  

 

Fig. 4. White matter (FA) components show one highly stable component, 

with a steep drop-off to dynamic components that show overall lower cross-

fusion stability than corresponding GMV components in the same subjects 
(top row). Higher correlation between structural and functional loading 

parameters was observed in FA fusion experiments compared to GMV fusion 

(bottom row; p = 0.0043, t = -2.927). 

IV. DISCUSSION 

Here, we propose an approach for investigating 
dynamic/flexible linkages between brain structure and  time-
varying brain function, termed dynamic fusion. Our approach 
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is fully data driven and allows both modalities to contribute to 
the fusion equally (i.e., symmetric fusion), thus enforcing 
fewer assumptions and enabling a broader spectrum of 
flexibility than recent works in structural dynamics. We show 
that dynamic fusion identifies functionally-adaptive structural 
basis sets that are specific to each dFNC state and absent when 
static FNC is used as functional inputs, which challenges the 
notion that a single structural manifold is sufficient or 
appropriate for representing every time point in an rs-fMRI 
scan. Our results also suggest that dynamic components, which 
are driven by the changing linkage to varying functional 
manifolds, capture stronger SZ/control group differences than 
static components, indicating they may encode unique aspects 
of clinically-relevant pathophysiology that are missed with 
traditional fusion approaches. Finally, we show evidence that 
suggests dynamic fusion of white matter data (FA maps) shows 
stronger linkages to temporally-evolving functional data than 
corresponding gray matter data (GMV maps) in the same 
subjects. This finding, though preliminary, illustrates how 
dynamic fusion can be applied towards the investigation of 
open questions in the field of neuroscience that are currently 
the topics of much debate. Future work may focus on 
replicating these results in other datasets, or comparing with 
different measures of GM or WM, such as cortical thickness or 
even structural connectivity computed from DTI tractography. 
Other extensions of dynamic fusion, including a 3-way fusion 
of GMV, FA, and dFNC could also be useful in further 
elucidating the varying linkages between GM/WM structure 
and time-varying brain function. 
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