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ABSTRACT: Untargeted tandem mass spectrometry (MS/MS) has become
a high-throughput method to measure small molecules in complex samples.
One key goal is the transformation of these MS/MS spectra into chemical
structures. Computational techniques such as MS/MS library search have
enabled the reidentification of known compounds. Analog library search and
molecular networking extend this identification to unknown compounds.
While there have been advancements in metrics for the similarity of MS/MS
spectra of structurally similar compounds, there is still a lack of automated
methods to provide site specific information about structural modifications.
Here we introduce ModiFinder which leverages the alignment of peaks in MS/
MS spectra between structurally related known and unknown small molecules. Specifically, ModiFinder focuses on shifted MS/MS
fragment peaks in the MS/MS alignment. These shifted peaks putatively represent substructures of the known molecule that contain
the site of the modification. ModiFinder synthesizes this information together and scores the likelihood for each atom in the known
molecule to be the modification site. We demonstrate in this manuscript how ModiFinder can effectively localize modifications
which extends the capabilities of MS/MS analog searching and molecular networking to accelerate the discovery of novel
compounds.

■ INTRODUCTION
Tandem mass spectrometry (MS/MS) is a powerful analytical
technique for identifying the structure of small molecules.1

However, translating the MS/MS spectra to 2D chemical
structures poses a significant challenge in the field.2 Spectrum
library matching3 is a key strategy within the field of
metabolomics to annotate known compounds. However, in
untargeted mass spectrometry experiments, on average 87% of
MS/MS spectra remain unidentified by spectral library search.4

To bridge this gap, modification aware spectral matching tools
such as analog library search5 and molecular networking6,7

leverage the concept of structural propagation of known to
unknown compounds - bridging between molecules that share
a conserved core structure but exhibit structural modifica-
tions.8−10 A key shortcoming of these approaches is that they
determine which pairs of MS/MS are putatively similar in
structure, but do not describe explicitly the structural
difference, leaving the manual interpretation up to chemists.
To tackle this shortcoming, we have developed a computa-
tional approach, ModiFinder, that builds upon MS/MS
matching and produces putative suggestions on the structural
difference between known and unknown structural analogs.
Our approach borrows a concept from the computational

challenge of site localization of post-translational modifications
(PTM) of peptides in bottom-up proteomics.11−13 In PTM

site localization, b/y ions that flank the modification site are
used to localize the putative PTM on a linear peptide. Here, we
translate this concept to localize structural modifications of
small molecule graphs - representing 2D molecular structures.
In contrast to PTM site localization, the ability to explain the
MS/MS fragmentation, while simpler in peptides, is signifi-
cantly more difficult in small molecules.14 This complexity is
underscored by the plethora of methodologies, including
MetFrag,15 MAGMa,16 MIDAS,17 and MS-Finder18 developed
to tackle the small molecule fragmentation analysis. Despite
the ongoing challenge of explaining MS/MS fragmentation,19

we have found that these in silico approaches are still useful in
addressing the problem of localizing structural modifications
on small molecules.
ModiFinder leverages the insight that flanking masses for

small molecule modifications can be determined by comparing
the MS/MS spectrum of an unknown structure with a
modification (MS2-unknown) with the MS/MS spectrum of
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the unmodified known structure (MS2-known). Specifically,
the peaks that are shifted by the mass of the modification
between the MS2-known and MS2-unknown putatively
represent substructures that contain the modification site.
Conversely, peaks that do not shift in mass between MS2-
known and MS2-unknown, are less likely to include the
modification (Figure 1). Combining this information, Modi-
Finder computes a likelihood score for the specific site of
modification across all atoms in the known compound (S-
known). To accomplish this, each peak is assigned a set of
possible substructures using combinatorial fragmentation.16

Then, for each peak of MS2-known that has a corresponding
shifted peak in MS2-unknown (signifying the substructure
includes site of the modification), ModiFinder increases the
likelihood scores of atoms in the assigned substructures for the
shifted peaks. If the peak is unshifted, the likelihood is
decreased. Finally, ModiFinder is able to map out the
likelihood landscape for where the modification may occur
across the S-known using the likelihood scores (Figure 2).
We complement here the present of the ModiFinder

approach with an evaluation of ModiFinder’s performance
and limitations in identifying the modification site. Addition-
ally, ModiFinder is presented as a command line tool and an
interactive graphical web interface. Finally, we showcase
empirical examples of how ModiFinder’s computational
approach can be combined with domain knowledge expertise
to facilitate the discovery of new natural products.

■ RESULTS AND DISCUSSION
Benchmarking Data and Assessment Criteria. Pairs of

structurally similar compounds with a single structural
modification were used to assess the performance and accuracy
of ModiFinder. These pairs were derived from the data
available in four reference MS/MS libraries. In aggregate, the
benchmark set contains 12,909 pairs with M+H adducts, that
differ by a single structural modification, measured under the
same experimental conditions, i.e., the same adduct and
instrument (See Data Availability). An additional filtering
process was applied to these MS/MS pairs to only include
pairs that have at least one shifted peak which can be explained
by a substructure of the parent compound. After this filter, the
majority (62% of the total pairs, 8033 pairs) of the pairs
remain (Figure 8).
Any evaluation metric that assesses the effectiveness of

ModiFinder must strike a balance between two essential
criteria: proximity cover and ambiguity cover.
Proximity cover assesses the distribution of likelihood

scores relative to the true modification site and examines
whether the high-scoring atoms are in close proximity to the
actual modification site.
Ambiguity cover evaluates the entropy of the prediction

array and its informativeness. For instance, an array where
most atoms have the same high-score exhibits high ambiguity
and may not be helpful for localization.
Several baseline metrics were considered but exhibited

specific weaknesses. For example, if an evaluation function only

Figure 1. Illustration of the intuition behind ModiFinder. MS/MS peaks of Compound 1 and Compound 2 are aligned, and matched peaks along
with the substructures assigned to them are visualized. The matched peaks are shown in blue for the unshift peak and red for the shift peak. The
matched shift peaks differ by the mass of the modification (the red puzzle piece) and contain the modification site (green puzzle piece).
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checks if an algorithm assigns the highest score to the true
modification site, an algorithm that always assigns the same
score to all the atoms will achieve the best result,
demonstrating weakness in ambiguity cover. The Average-
distance evaluation is introduced and adopted as the main
evaluation metric offering good balance between the proximity
cover and ambiguity cover (See Methods - Evaluation and SI
Figure SI-2). Throughout the rest of this manuscript, “Average-
distance” is referred to as ”Evaluation Score”. Illustrative
examples are provided in SI Figure SI-5 to offer intuition and
insight for different values of the evaluation score.
ModiFinder Outperforms Baseline. We introduce three

versions of the ModiFinder method. First, is the basic version
of ModiFinder (MF-N). Second, is the refined version of
ModiFinder (MF-R) that utilizes molecular formula filtration
and substructure ambiguity refinement utilizing structurally
related helper MS/MS spectra (See Methods Substructure
Refinement by Formula and Methods Refinement by Helpers).
Third, an Oracle Method (MF-O) is introduced that has
knowledge of the true modification site to provide an
approximate upper bound of ModiFinder performance. This
is achieved by simulating the ability to reduce the ambiguity of
substructure assignments to the MS/MS peaks (See Methods
Oracle) by eliminating substructures that do not contain the
modification site in shifted MS/MS peaks. Additionally, the
site localization performance is evaluated on two random

baselines: Random choice (RC) and Random Distribution
(RD) (See Methods Site Localization Baselines and Alter-
native Approaches). Finally, an alternative in silico prediction
benchmarking approach is introduced which utilizes MS/MS
fragmentation prediction of CFM-ID20 (See Methods Site
Localization Baselines and Alternative Approaches).
ModiFinder’s performance (MF-R in Figure 3-A and SI

Figure SI-4) lies above the random baselines (RC and RD)

and the CFM-ID approach and below the Oracle (MF-O).
Specifically, MF-R when compared to RC and RD baselines
shows an average Evaluation Score increase of 0.181 and 0.180,
respectively, across all MS/MS pairs (Figure 3-A). Moreover,
MF-R outperforms these baselines in 81% and 80% percent of
benchmark pairs (SI Figure SI-3 A). In comparison, the MF-O
version of ModiFinder outperforms the RC and RD in 85% of
benchmark pairs (SI Figure SI-3 B) and shows an average
increase of 0.208 and 0.207, respectively (Figure 3-A). MF-R
exhibits enhanced performance not only relative to random
baseline comparisons but also over the CFM-ID based
alternative approach evidenced by an increment of 0.266 in
the average evaluation score (Figure 3-A). Surprisingly, the
CFM-ID based approach is found to be worse than RC and
RD. This is because when simulating all regio-isomers, the
resulting simulated MS/MS spectra were highly similar. This
resulted in a nearly uniform likelihood distribution across all
atoms, which was penalized in the “Ambiguity Cover”

Figure 2. Overview of ModiFinder algorithm. (A) The input of
ModiFinder includes the known structure (S-known), spectra of the
known compound (MS2-known), and spectra of the unknown
compound (MS2-unknown). (B) First, in-silico fragmentation
methods compute potential substructure annotations for each MS/
MS peak. Then, these substructures are refined by molecular formula
and with helper MS/MS with a similar structure. (C) Spectral
alignment is performed to identify corresponding peaks (shifted and
unshifted). The atoms in the substructures assigned to the shifted
peaks are positively rewarded (increase in score) and atoms in the
substructures assigned to the unshifted peaks are negatively penalized
(decrease in score). (D) Finally, a likelihood score is calculated
proportionally to each atom’s score.

Figure 3. Performance Results. (A) Evaluation scores across pairs in
all the libraries for different methods where there is at least one shifted
peak. ModiFinder outperforms the Random and CFM-ID baselines.
MF-R, which utilizes helpers and formula constraints, improves upon
MF-N, closing the gap to our upper bound performance of MF-O.
(B) Evaluation score across pairs in all libraries for MF-O and MF-R
based on the number of annotated shifted peaks. By increasing the
number of shifted peaks, the performance of ModiFinder increases.
This performance increase is consistent across different data sets and
even for the MF-O demonstrating the utility of shifted peaks in
finding modification sites.
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evaluation dimension. It scored relatively higher in other
benchmark metrics that deemphasize “Ambiguity Cover”, e.g.
“Is-max” (See SI Figure SI-2 and SI Note 1).
We note that the gap in performance between MF-R and

other baselines is greatest in lib4, which constitutes the
majority of our database and might introduce a bias in the
result. Nevertheless, MF-R maintains a clear advantage over
the baseline across all the libraries (SI Figure SI-4). Manual
analysis of the specific cases where MF-R does not outperform
the RC and RD indicates that in the majority of cases, this is

because of a lack of shifted fragmentation peaks and or
incomplete in silico substructure explanation of the MS/MS
peaks.
With decreasing ambiguity of substructure assignments to

MS/MS peaks, an increase in site localization performance is
observed with MF-R improving upon MF-N, 0.625 vs 0.603
evaluation score respectively and MF-O, with the lowest
ambiguity, further increases performance to 0.652 (Figure 3-A,
Results Section Improving the Quality of Annotation and

Figure 4. Correlation of ambiguity and performance. (A) Impact of Fragmentation Depth on MF-N, MF-R, and MF-O Performance over pairs in
all libraries. By increasing the fragmentation depth, the Oracle method (MF-O) attains higher scores, benefiting from more explanatory
fragmentation. However, due to ambiguity introduced with more in-depth fragmentation, MF-N and MF-R do not benefit in site localization
performance. (B) Correlation of ambiguity and evaluation scores at the pairwise level over pairs in all libraries. The evaluation score improvement
from the unrefined ModiFinder (MF-N) for MF-O and MF-R based on the ambiguity reduction (difference in ambiguity). As the ambiguity
difference increases, i.e., structural annotation becomes increasingly less ambiguous, the evaluation score difference increases. (C) Comparison of
Average Ambiguity and Average Evaluation score across different settings of ModiFinder and Oracle for pairs in all data sets. Methods that yield
lower ambiguity correspondingly achieve higher evaluation scores.

Journal of the American Society for Mass Spectrometry pubs.acs.org/jasms Article

https://doi.org/10.1021/jasms.4c00061
J. Am. Soc. Mass Spectrom. 2024, 35, 2564−2578

2567

https://pubs.acs.org/doi/suppl/10.1021/jasms.4c00061/suppl_file/js4c00061_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jasms.4c00061/suppl_file/js4c00061_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jasms.4c00061/suppl_file/js4c00061_si_001.pdf
https://pubs.acs.org/doi/10.1021/jasms.4c00061?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.4c00061?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.4c00061?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.4c00061?fig=fig4&ref=pdf
pubs.acs.org/jasms?ref=pdf
https://doi.org/10.1021/jasms.4c00061?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Reducing the Ambiguity Increases the Evaluation Score for
more details).
Importance of Peak Annotation. Shifted Peaks Matter

in Site Localization. The results highlight the significance of
annotated shifted peaks in the identification of the
modification site where the MS/MS spectrum pairs featuring
at least one shifted peak exhibit higher evaluation scores
compared to those without any shifted peaks (Figure 3-B).
Furthermore, when there is an increase in the number of
shifted peaks, the measured performance of MF-R and MF-O
increases (Figure 3-B). We hypothesize that the increase in
shifted peaks potentially enriches the diversity of potential
substructures, each MS/MS peak focusing on different
segments of the compound. This diversity may reduce the
overlap among substructures, thereby improving the precision
in pinpointing the modification’s location. MF-O utilizes the
shifted peaks more efficiently than the MF-R as it can remove

the ambiguity introduced by more annotations on the extra
shifted peaks.

Increasing the Fragmentation Depth Increases Ambi-
guity. One of the key steps of ModiFinder is substructure
annotation of MS/MS fragment peaks. ModiFinder utilizes
combinatorial fragmentation, i.e. MAGMa16 (one of the state
of the art approaches21,22), to generate a set of potential
fragmentation substructures for every MS/MS peak. Varying
the fragmentation depth from two to four modulates the site
localization performance. An increase in performance with MF-
O is observed with fragmentation depth 3 or 4 in comparison
to depth 2 (Figure 4-A). This increase in performance can be
attributed to the introduction of more substructures to the
peaks, revealing the true substructure, especially for the peaks
that were previously unannotated. Benchmark data sets show a
19% increase in the number of annotated shifted peaks when
increasing fragmentation depth from two to four. While this
increased explanation benefited MF-O, at higher fragmentation

Figure 5. Using ModiFinder to annotate unknown compounds. An unknown compound related to Thr-C12:1 and Glu-C16:1 is selected for
annotation. The alignment of its MS/MS and ModiFinder’s prediction are shown. ModiFinder assisted annotation led to the manual identification
of 238.211 m/z as being Glu-C12:1, consistent with ModiFinder localization of modifications of Thr-C12:1 (amine headgroup modification) and
Glu-C16:1 (lipid tail reduction).
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depths MF-R performance decreases. This is due to increased
substructure ambiguity (average number of annotations
assigned to each shifted peak). MF-O can counteract the
increased ambiguity by utilizing the true fragmentation site to
filter out substructures that do not benefit the localization. On
the other hand, both the MF-R and MF-N are unable to filter
incorrect substructures, leading to a loss of focus on the true
modification site. Given the performance differences, fragmen-
tation depth of 2 is chosen as the default value for MF-R.
However, we anticipate that the optimal fragmentation depth
might increase with enhancements in substructure assignments
to MS/MS peaks.
Improving the Quality of Annotation and Reducing the

Ambiguity Increases the Evaluation Score. MF-N calculates
the likelihood scores using annotations derived from
MAGMa.16 Upon refining the molecular formula with

SIRIUS23 (MF-S) or Buddy24 (MF-B) applied to MF-N,
there was a decrease in ambiguity by 0.11 and 0.01,
respectively (Figure 4-C). This resulted in minimal improve-
ments to the site localization evaluation score (Figure 4-C). A
larger magnitude reduction in MS/MS peak annotation
ambiguity (reduction of 1.37) when helper compounds are
utilized (MF-R) is observed. The most significant reduction in
ambiguity (1.94) is observed, predictably, with the oracle (MF-
O) (Figure 4-C). There is a noticeable correlation between the
decrease in annotation ambiguity and the improvement in
evaluation scores; specifically, when the ambiguity of shifted
peaks is reduced through refinements or the oracle’s
knowledge, there is a corresponding increase in the evaluation
score (Figure 4-C). Additionally, the impact of ambiguity
reduction was analyzed on a pair-by-pair basis. By categorizing
pairs of MS/MS spectra based on the extent of ambiguity

Figure 6. Combination of domain knowledge with ModiFinder’s user interface to improve the modification site prediction for Kirromycin. For the
pair of Kirromycin and an unknown compound (Goldinodox), the initial prediction is improved by manually selecting the likely substructures for
peak 112.04 m/z and 178.05 m/z improving the evaluation score from 0.86 to 0.93. (A) ModiFinder prediction before the refinement. (B)
ModiFinder prediction after the refinement, the true modification site is highlighted by the green circle. (C) Alignment of Kirromycin and the
unknown compound. The peaks of Kirromycin are shown at the top and the peaks of the unknown compound are shown at the bottom where
shifted and unshifted peaks are highlighted with red and blue colors, respectively. (D, E) Substructures assigned to peaks with 112.04 m/z and
178.05 m/z, due to the high number of substructures (ambiguity) only three substructures are shown. The green dotted box shows the substructure
manually selected based on expert understanding of gas phase fragmentation.
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reduction, it was found that larger decreases in ambiguity
corresponded to more significant improvements in site
localization evaluation scores (Figure 4-B). Figure 4-B further
indicates that for a comparable reduction in ambiguity, the
oracle, on average, achieves greater improvements. This
outcome is anticipated, as the oracle’s role extends beyond
merely reducing ambiguity and skews the distribution of
unambiguous peaks toward the actual modification site by
eliminating substructures that do not contain the modification
site. While these substructure refinements improve the
performance of ModiFinder, one key limitation is that our
initial substructure annotation method (MAGMa) only
supports hydrogen rearrangements. Therefore, peaks corre-
sponding to fragments with heavy atom rearrangements may
not be correctly annotated with substructures.
In analyzing the instances where ModiFinder performs

poorly, several factors stood out: low cosine score, low number
of shifted peaks, or low number of annotated peaks.
Additionally, as mentioned above, ambiguity of substructure
annotations is also a contributing factor due to the true

modification site being absent from the predicted substruc-
tures. This will cause ModiFinder to predict an incorrect
region of the molecule as the modification site, resulting in a
false positive. Alternatively, when the likelihood distribution is
overly diffuse and fails to pinpoint the true modification site
(false negatives) the presence of numerous unshifted peaks
plays a detrimental role. Although penalizing atoms of
substructures in unshifted peaks generally enhances local-
ization performance, an excessive number can disrupt and
degrade the localization (SI Note 3 and SI Figure 10).

Web User Interface for Domain-Based Improve-
ments. An interactive analysis platform was developed for
an enhanced user experience with a graphical user interface.
This interface is used to facilitate the utilization and refinement
of site localization by chemists and mass spectrometrists using
ModiFinder.
We demonstrate ModiFinder’s capabilities on exploring the

chemical space of the metabolome of Synechococcus
elongatus. After solid phase extraction and nontargeted LC-
MS/MS analysis, we created a molecular network. We

Figure 7. Combination of domain knowledge with ModiFinder’s user interface to improve the modification site prediction for Naphthomycin B.
For the pair of Naphthomycin B and an unknown compound (Naphthomycin A), the initial prediction is improved by manually eliminating the
unlikely substructures for peaks 133.07 m/z and 147.08 m/z, improving the evaluation score from 0.56 to 0.72. (A, B) ModiFinder prediction
before and after the refinement, the modification site is highlighted by the green circle. (C) Alignment of Naphthomycin B and the unknown
compound. The peaks of Naphthomycin B are shown at the top and the peaks of the unknown compound are shown at the bottom where shifted
and unshifted peaks are highlighted with red and blue colors, respectively. (D) Substructures assigned to peak with 133.07 m/z, due to the
abundance of substructures (ambiguity) only four substructures are shown. The green dotted box shows the substructures manually selected based
on expert understanding of gas phase fragmentation specific to amide bonds, which are indicated by green arrows. (E) Same filtration applied to the
peak with 147.08 m/z.
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discovered a molecular family of acyl amides identified by MS/
MS library search (Figure 5). An unknown compound
(328.211 m/z) was prioritized as a putative analog through
the neighboring network nodes Thr-C12:1 and Glu-C16:1.
ModiFinder indicated that 328.211 m/z included a structure
modification that reduced the lipid tail of Glu-C16:1.
Corroborating this, ModiFinder additionally indicated that
328.211 m/z contained a modified amine headgroup compared
to Thr-C12:1. Further manual inspection indicated the true
structure was Glu-C12:1−consistent with the ModiFinder
localization predictions.
While the above example demonstrates the efficacy of

ModiFinder on a real-world example, we recognize even with
the integration of helper compounds and MS/MS peak
formula refinement substructure annotation ambiguity may
still remain. Therefore, we have enhanced our web interface to
enable expert users to apply their domain knowledge to
eliminate incorrect substructures for each MS/MS peak. The
web interface then synthesizes this user input (or multiple user
refinements) with ModiFinder to produce a refined likelihood
distribution. As proof of principle, the web interface of
ModiFinder and domain expertise were employed to solve the
location of structural modifications of two natural products:
Kirromycin and Naphthomycin B, two structurally complex
natural product antibiotics.25,26 These compounds were
selected as they exhibited high structural complexity and
there existed a large diversity of structural analogs that remain
unidentified. The first example demonstrates the ability to
localize the N-methylation of Kirromycin that leads to its
derivative Goldinodox (Figure 6). In ModiFinder’s initial
prediction, the true modification site was among the highest
scoring. However, these existed two regions on the structure
with nonzero likelihood scores (Figure 6-A). MF-R computa-

tionally assigned seven possible substructures to each of the
112.04 m/z and 178.05 m/z peaks. By taking the polarization
of the neighboring bonds to the carbonyl as well as the
numbers of (single) bonds to be broken into account, domain
experts were able to limit the substructures assigned to the
peak 112.04 m/z to one (visualized by the green dotted
rectangle in Figure 6). Similarly, the set of substructures
assigned to the 178.05 m/z peak was also manually reduced to
one, i.e. the unlikely events of double bond breaking, forming
of terminal amides through alkene loss, or alkene side chain
methyl cleavage were eliminated. This reduction in ambiguity
improved the site localization of the methylation and increased
the evaluation score from 0.86 to 0.93.
A second example demonstrates the methylation of

Naphthomycin B (Figure 7-A and B). The specific challenge
of Naphthomycin B, is due to the cyclic 2D structure, which
causes MS/MS fragments (133.07 m/z and 147.08 m/z) to be
ambiguous between multiple substructures around the 2D
cycle (Figure 7-D). This ambiguity leads to 24 high scoring
sites (atoms) across the compound. In the case of
Naphthomycin B, taking into account the likely gas phase
fragmentation site at the amide bond, the substructure
ambiguity for 133.07 m/z and 147.08 m/z decreased from
27 and 40 substructures to 2 substructures each. This resulted
in a decrease of 24 high scoring modification sites to two high
scoring modification sites above the true modification site.
Further, the site localization was narrowed to a single
likelihood region for the potential methyl-carrying site. This
manual refinement improved the evaluation score from 0.56 to
0.72. However, ModiFinder, even given this ambiguity
reduction, reported the highest likelihood two atoms away
from the true site. The small number of shifted peaks likely
limited the ability to localize to a specific site, but the

Figure 8. Distribution of Data in benchmarking libraries. (A) Average and distribution of m/z over the different libraries for pairs with at least one
annotated shifted peak. (B) Average and distribution of the number of atoms in the compounds for each benchmark library for pairs with at least
one annotated shifted peak. (C) For each library, the percentage of the pair of spectra with no annotated shifted peak is shown, and the rest of the
pairs are then categorized and shown based on their number of helpers. The majority of pairs have at least one shifted peak.
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ambiguity reduction provided by domain experts enabled
ModiFinder to reach the limits of localization with the given
MS/MS fragmentation.

■ DISCUSSION AND CONCLUSION
Here we introduced the challenge of the site localization of
chemical modifications in small molecules and presented a
computational solution: ModiFinder. As demonstrated in our
benchmarking results, ModiFinder and its refinements can
outperform random baselines and in silico prediction
alternative strategies. Promisingly, we also observe that due
to refinements, ModiFinder makes significant progress to
approach the performance of the oracle method, that is an
estimate of the upper bound on performance. To bridge this
gap for practical usage, our web interface enables an expert
user to input their knowledge to bring the performance closer
to the oracle performance and in some cases could even exceed
the oracle.
We acknowledge the limitations of the initial ModiFinder

approach presented here. First, the modified cosine alignment
metric utilized in this manuscript limits the number of
modifications that ModiFinder can localize to one. However,
this limitation can be overcome by supplying an alignment that
is designed to capture multiple modifications. For example,
Simile27 can capture multiple modifications and produce a
peak alignment for ModiFinder to localize. Additionally, we
have demonstrated a proof of concept method to estimate the
number of modifications from the MS/MS alignments. As a
proof of concept, we anticipate and recognize the need for
future improvements to enhance robustness. Nevertheless, we
recognize the necessity of such a tool to enhance the real world
applicability of ModiFinder (SI Note 4).
Second, the localization performance of ModiFinder is

bound by two factors: (a) the number of shifted peaks and (b)
the substructure annotation ambiguity of the MS/MS peaks.
For (a), since the Oracle only simulates a reduction in
substructure ambiguity, the Oracle’s performance is limited by
the number of shifted peaks and the MS/MS fragmentation
more generally. This is evidenced by the fact that our Oracle
cannot reach perfect performance in our evaluation metric
(Figure 3A) even with knowledge of the true modification site.
For (b) we note that ModiFinder struggles in situations where
the molecules exhibit high levels of structural ambiguity caused
by 2D structure symmetry (SI Note 2). Additionally, the
included substructure annotation technique (MAGMa) lacks
support for heavy atom rearrangements, which limits the ability
to completely annotate all MS/MS fragments. However, the
flexibility of ModiFinder approach allows for the integration of
alternative substructure annotation methods as they become
available. Given these limiting factors to ModiFinder perform-
ance, we anticipate (i) future instrumentation and method
developments will produce richer and more complementary
MS/MS fragmentation; (ii) computational and data acquis-
ition advancements that aid in the reduction of substructure
ambiguity of MS/MS fragmentation in small molecules; (iii)
Algorithms and methods supporting the alignment of pairs
with multiple modifications and improved annotation
techniques. All of these advances will enhance ModiFinder’s
performance and applicability going forward.
Although we have provided example applications in the

natural product field, we hope and anticipate that modification
site localization will be broadly used in other communities that
utilize small molecule untargeted mass spectrometry, e.g.

toxicology, pharmacology, metabolism, exposomics, drug
discovery, chemical biology, to name a few.

■ METHODS
Definitions. MS2-known: The MS/MS spectra of known

compound; S-known: The 2D chemical structure of the known
compound; MS2-unknown: The MS/MS spectra of unknown
compound.

ModiFinder Overview. Given the MS/MS of known
(MS2-known) and unknown (MS2-unknown) compounds and
the structure of the known compound (S-known) as input
(Figure 2-A), ModiFinder produces a likelihood distribution of
the modification site location (Figure 2-D). The process begins
with ModiFinder assigning a set of potential substructures to
the peaks in the MS2-known spectrum through in-silico
fragmentation of S-known (Figure 2-B). Subsequently, the
MS2-known and MS2-unknown are aligned to find the
matching peaks in each respective spectrum, producing peaks
that have shifted in mass (shifted) and those that remain
unchanged (unshifted). To predict the site localization, a
likelihood score is assigned to each atom, where atoms in the
substructures of the shifted peaks are rewarded while the atoms
in the substructures in unshifted peaks are penalized (Figure 2-
C). Finally, The likelihood score of each atom is calculated.
The following sections provide a detailed explanation of each
step in this process.

MS/MS Alignment. First, as a preprocessing step, all the
peaks with intensities less than 1% of the base peak are
removed, and the peaks are normalized to sum to a Euclidean
norm of 1 to reduce noise.4 Then, the GNPS7 alignment
method is utilized to identify matched peaks between the
known and unknown spectrum, by accounting for the mass
delta of their respective precursors.7,28 In the alignment
process, the GNPS alignment method considers two types of
matches: one where peaks have the same mass (nonshift), and
another where peaks are offset by the difference in their
precursor masses (shift). For each peak in the known
compound’s spectrum, the availability of both nonshift and
shift peaks are examined and all possible matched candidates of
each peak are considered; Out of all these possibilities, the
GNPS alignment method efficiently approximates the best-
scoring match. Specifically, A bipartite graph is created where
the nodes represent the peaks of MS2-known and MS2-
unknown. An edge is drawn between an MS2-known peak and
an MS2-unknown peak under two conditions: if their
difference is less than a predefined threshold, indicating an
unshifted match, or if it lies within the threshold range relative
to the difference in precursor masses of the known and
unknown compound, indicating an shifted peak. The weight of
each edge is the product of the intensities of the corresponding
peaks. The goal is to find the maximum-scoring match. A
greedy algorithm is used to approximate this matching. At each
step, the edge with the maximum weight out of all the
remaining edges is selected and added to the result. Then the
chosen edge, both of its ends, and all edges connected to these
ends are eliminated from the graph. In our experiments, a
tolerance of 40 (ppm) is adopted as the difference threshold
used to calculate the existence of the edges.

Combinatorial Fragmentation and Refinement For
Substructure Assignment. The peaks within the MS2-
known spectra are annotated by attributing a series of possible
substructures to each peak. These substructures are derived
from the known structure (S-known) utilizing the MAGMa
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method.16 In short, the fragmentation of S-known goes as
follows: First, each of S-known’s heavy (non-hydrogen) atoms
are removed once, each time yielding one or more
substructures. Then the same process is repeated for each of
the resulting substructures. The full fragmentation of the S-
known is performed in a breadth-first search traversal. The
generated substructures are stored as a bitstring where each bit
represents one of the heavy atoms in S-known. Although
MAGMAa lacks the functionality to manage rearrangements
involving heavy atoms, it can to some degree track hydrogen
rearrangements. This is achieved by recording each fragment
with various weights, accommodating potential hydrogen loss
or gain. ModiFinder begins with the initial structure (S-
known) and continues the aforementioned breadth-first
fragmentation approach up to a predetermined depth; a
maximum depth of 2 is chosen here for the experimental setup.
Once the fragmentation step is done, for each substructure,

the theoretical charged-m/z is calculated and compared to
each peak’s m/z in the MS2-known. The maximum charge is
assumed to be 1. If the theoretical m/z of a substructure falls
within a specified m/z tolerance to the empirical m/z of a peak,
then that substructure is assigned to that peak. Here, 40 ppm
was chosen as the default m/z tolerance.
Substructure Refinement by Formula. Predicted

formulas provided by SIRIUS23 or BUDDY24 were used to
filter the possible substructures for each MS/MS peak. SIRIUS,
given the spectra of a compound, generates a pool of potential
candidates using the information on the MS1. Next, it
evaluates the interpretability of MS/MS spectra for each
candidate by constructing a fragmentation tree.29 The
ModiFinder algorithm leverages this information by parsing
the fragmentation tree and retrieving the formula assigned to
each peak. This formula is then used to remove any
substructure assigned to that peak with a different formula.
Due to the performance complexity, SIRIUS is only computed
for compounds with a precursor mass of 500 Da or less. For
each compound, a mgf file is generated using the data retrieved
from the MS/MS spectral library. This mgf file is then passed
to v5.6.3 of the runnable script [https://github.com/boecker-
lab/sirius/releases]. Then, the non-hydrogen part of the
formula of each peak is compared with the formula of all the
potential substructures assigned to that peak; filtering out all
the substructures that have a different formula.
BUDDY’s ′assign_subformula′ function is employed as an

alternative to annotate formulas of fragmentation peaks24 with
the same parameter set as ModiFinder (40 ppm is applied for
the experiments), -1.0 for the ′dbe_cutof f ′ (the default value).
The provided formulas are used to refine the substructures
assigned to each peak by removing substructures that have
different formulas.
Refinement by Helpers. ModiFinder leverages additional

compounds in MS/MS libraries that exhibit structural
similarities to the known compound S-known, referring as
helper compounds, to refine the substructure annotations.
Specifically, the compounds within the same MS/MS library as
S-known that share identical adducts and instruments but
differ from S-known at precisely one modification site are
identified as potential helper compounds. To ensure there is
no information leakage and the unknown compound is not
among the helpers, any compound that possesses a precursor
mass within a 0.5 range of the precursor mass of the unknown
compound is eliminated. Suppose HS‑known = {h1,···,hn} as the
set of selected helper compounds for S-known. Then, the main

idea of ModiFinder is again applied. That is, if a peak is shifted,
then the modification should appear in the substructures
assigned to the peak, since both S-known and hi’s structure is
known, the modification site is easily calculated and can be
used to filter the substructures assigned to the peaks of MS2-
known. For each helper compound, denoted as hi, the same in-
silico fragmentation process is performed on hi’s structure to
annotate hi’s peaks. Next, hi’s spectra are aligned to the MS2-
known to find matched peaks (shift and unshift). Then, the
modification site is calculated based on S-known and hi’s
structure. Finally, for every peak that is shifted, any
substructure assigned to that peak in MS2-known that does
not include the modification site between S-known and hi is
eliminated. SI Figure SI-9 visually demonstrates this concept
through a toy example.
The intuition behind this Refinement is that although the

modification site of the S-known relative to the unknown
analog might differ from that of the S-known and the helper,
there may still be overlap in the shifted peaks between the
helper and MS2-known, and those observed between MS2-
known and MS2-unknown. This overlap in shifted peaks can
help refine the substructures of S-known that shift even if the
modification sites are different.

Calculating the Site Localization. A score for each atom
of the S-Known is computed, indicative of the likelihood of
being the modification site. This score, termed as the
“likelihood score” and shown by Ω (Ωj for atom with index j
in the graph), aims to serve as a score that measures the
amount of evidence of an atom’s candidacy for being the site of
modification. This scoring is performed under the assumption
that there is only one modification site. Under this assumption,
shifted peaks are probable hosts of the modification site. In
Contrast, the atoms presenting in matched but unshifted peaks
are penalized.
Each matched peak assigns a contribution score to each

atom. θi,j shows the contribution score assigned to atom j by
peak i. For i-th matched peak, the scores for the atoms are
calculated as follows: initially, the contribution scores for all
atoms are assigned a value of 0. Then, assuming Si is the set of
all the substructures assigned peak i:

S
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i j
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j

i
,

i

=
| | × | |
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where |σ| is the number of atoms in substructure σ, |Si| is the
number of structures assigned to peak i, and the 1{j ∈σ} is the
indicator function that is 1 if j-th atom exists in substructure σ
and 0 otherwise.
Each matched peak itself receives a clarity score that

represents how informative its substructures are. For example,
if a peak has one substructure assigned to it but the
substructure contains all the atoms in the compound or if
the peak has multiple substructures assigned to it and overall
each atom appears the same number of times, then the peak is
not informative and must receive a low clarity score. Similarly,
if the peak has few structures and they all focus on a specific
and small part of the atom, then the peak is considered
informative and will receive a high clarity score. To compute
this clarity score, the Shannon entropy30 is calculated. The
clarity score of the peak i, Ci, is proportional to this entropy
score:
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where n is the total number of atoms (Figure SI-16 provides an
example for scoring). Finally, Ωj is calculated as follows:
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Where shifted and unshifted are the set of shifted peaks and
unshifted peaks, respectively.
For the final step, after normalizing Ω so that the maximum

value is 1, Then any value below 0.5 is set to 0 and to further
highlight the differences, especially in the high-scoring atoms,
all the values are raised to the power of 4 as a dynamic range
adjustment. Finally, the values are normalized again to have a
sum of 1.
Evaluation Score. To measure the performance of

ModiFinder and compare it to alternative approaches and
baselines, an evaluation function is needed. This evaluation
function takes in the predicted likelihood array together along
with the true modification site, i.e. the 2D graph structure of
the known compound and the actual modification site location.
The evaluation produces a score between zero and one. Scores
approaching one signify more accurate predictions, while those
closer to zero indicate less accurate predictions.
The Average-distance evaluation method is proposed for the

evaluation.
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Where di,γ denotes the distance between the atom with index i
and true modification site γ on the 2D graph structure and Φ
denotes the diameter (greatest shortest distance between any
two nodes in the graph) of the 2D graph structure. Using the
diameter helps normalize the distances based on the size and
structure of the compound. Normalization ensures uniformity
in the evaluation metric across molecules of varying sizes. In
Average-distance, the impact of each atom on the total score
decreases exponentially with its distance from the actual
modification site. Atoms with high predicted likelihood
situated far away from the true site contribute less to the
evaluation score, whereas those in closer proximity contribute
more. This aspect addresses the Average-distance’s capacity to
account for the proximity cover. In addition, since the scores
are normalized to have a sum of 1, the likelihood scores are
directly proportional to each atom’s relative influence.
Consequently, in ambiguous scenarios where many atoms
have high predicted likelihood, the relative likelihood of a
single atom diminished. This reduction, in turn, lessens their
overall effect on the evaluation score, encapsulates the
method’s ambiguity cover (SI Figure SI-5). Beyond this
evaluation score, the performance of ModiFinder is also
examined over Is-max, Proximity, and Sorted-rank evaluation
methods (See SI Note 1).
Site Localization Baselines and Alternative Ap-

proaches. Random Choice (RC) adopts a random selection
approach for designating one of the atoms as the modification
site. In contrast, our second baseline, termed “Random
Distribution” assigns a likelihood score |Si| to atom i, where
Si ∼ N(0,1).
The Oracle approach is built on top of ModiFinder and uses

the extra information on the true modification site. After

ModiFinder has annotated the peaks with putative sub-
structures using the combinatorial fragmentation and formula
and helper refinements, Oracle applies an extra elimination
step. Specifically, for every shifted peak of MS2-known, Oracle
filters out any substructure assigned to that peak that does not
contain the true modification site. Once this step is completed,
all the substructures assigned to the shifted peaks are
guaranteed to contain the modification site.
In addition, utilizing the MS/MS fragmentation prediction

property of CFM-ID20 a different modification site method is
developed as an alternative approach and a baseline to
compare against. CFM-ID is a tool to predict spectra based
on a given molecular structure. This alternative approach is
only developed for evaluation as it uses the structure of the
“unknown compound” which is paradoxical and impractical in
real-world scenarios. It serves merely as a reference for
comparison, and the ability of ModiFinder to surpass its
performance, despite the latter’s theoretical omniscience,
further emphasizes the effectiveness of ModiFinder. This
alternative method is designed to use CFM-ID as a black box
to find the modification site (Refer to SI Figure SI-6 for a
visual illustration of this method). First, using the extra
information provided by the structure of the “unknown”
compound, the modification substructure is calculated. Then,
this modification substructure is permuted across the known
structure (S-known). With each permutation, the modification
is attached to an atom in S-known, creating an analog to S-
known and a possible candidate for the unknown compound.
To attach the modified part to an atom, first the same original
bond type is tried, if that does not produce a valid structure,
other bond types are tried. After this step, CFM-ID tool is used
to predict spectra for each structure (SI Figure SI-6. C.). To
run CFM-ID, the docker container provided [https://hub.
docker.com/r/wishartlab/cfmid is used with 0.001 for
“prob_thresh” (the default value), “trained_models_cfmid4.0/
[M + H]+/param_output.log” for param_file, “/trained_mo-
dels_cfmid4.0/[M + H]+/param_conf ig.txt” for config file.
The similarity of the predicted spectra and MS2-unknown is

measured using the cosine similarity score (SI Figure SI-6. D).
This similarity is reported as the likelihood score of the atom
corresponding to the permutation SI (SI Figure SI-6. E.). In
addition to the visualization of the algorithm, two examples for
Deoxyadenosine and Deoxyadenosine Monophosphate (SI
Figure SI-7), and Tyramine and 3-MethoxyTyramine (SI
Figure SI-8) are also provided.

MS/MS Spectral Library Data Preparation. The
creation of the database used for ModiFinder evaluation
involved a multistep process. Initially, compounds with known
2D structures were selected from MS/MS libraries containing
compounds with known structure.31−36 the following public
MS/MS spectral libraries were used to retrieve the MS/MS
and structure pairs: [1-GNPS-MSMLS, 2-GNPS-NIH-
NATURALPRODUCTSLIBRARY_ROUND2_POSITIVE,
3-GNPS-NIH-SMALLMOLECULEPHARMACOLOGIC-
ALLYACTIVE,35 and 4-BERKELEY-LAB]. In addition, data
from the TUEBINGEN-NATURAL-PRODUCT-COLLEC-
TION was used for the web tool performance demonstration.
For each library, every possible pair in that library are

analyzed to verify their eligibility. For each pair with known
structure, (i) their precursor mass is checked to be less than
2000 Da, (ii) the difference in precursor masses is less than
50% of the precursor mass of the smaller compound, (iii) they
share the same M+H adduct, and finally, (iv) the structures are
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examined to differ in exactly once modification site. In the final
verification step, both SMILES structures are converted to an
RDKit37 molecule object, then the “GetSubstructMatch”
function is called on the heavier compound’s object with the
smaller compound’s object as input. If the smaller compound is
a substructure of the larger compound, the number of edges
between the atoms in the substructure set and the atoms not in
the substructure set is calculated as the number of modification
sites. Any pair with more than one edge is discarded.
Culturing and Extraction of Synechococcus Samples.

Synechococcus elongatus PCC 7942 was grown in BG11
medium under continuous illumination (40−80 μE) at 28
°C, with agitation at 120 rpm. Cells were harvested by
centrifugation (6000 rpm, 20 min, 4 °C) and immediately
frozen in liquid nitrogen. Harvested cell pellets were
resuspended in 20% methanol (MeOH), using a ratio of 10
mL per 1 g of wet cell mass. Cell disruption was achieved
through sonication in an ultrasonic water bath, followed by
centrifugation (4200 rpm, 30 min, 4 °C) to remove cell debris.
For solid phase extraction, C18 columns were activated with

three column volumes (CV) of 100% MeOH to ensure
comprehensive wetting of the sorbent matrix. Diluted samples
(5% MeOH) were introduced to the column under gentle
vacuum to ensure thorough contact with the sorbent. Flow
Through was collected dropwise. The column was washed with
5% MeOH (2 CV) before eluting with increasing concen-
trations of MeOH (20%, 40%, 60%, 80%, and 100%, each at 3
CV). The column was regenerated with 100% MeOH. Elution
fractions were dried in a vacuum centrifuge.
The dried extracts were dissolved in 50% MeOH to a

concentration of 1 mg/mL for LC-MS/MS analysis.
Natural Product Sample Preparation. Kirromycin, Gold-

inodox, Naphthomycin B, and Naphthomycin A samples were
dissolved in DMSO. Subsequently, the samples were pooled
and diluted with ACN/water (80/20) to a final concentration
of 8 μg/mL (Kirromycin, Goldinodox) respectively 7 μg/mL
(Naphthomycin A and B).
LC-MS/MS Data Acquisition Methods. LC-MS/MS Data

was acquired on a Vanquish ultrahigh-performance liquid
chromatography (UHPLC) coupled to a Q Exactive HF
apparatus (Thermo Fisher Scientific) equipped with an heated
electrospray ionization (HESI) source. The chromatographic
separation was performed with a constant flow rate of 0.15
mL/min (microflow setup) or 0.5 mL/min with mobile phase
A (H2O + 0.1% formic acid) and mobile phase B (ACN +
0.1% formic acid). The separation gradient started with 5% B
as initial conditions, which was linearly increased to 50% B at 8
min, and then to 99% B at 10 min, followed by a washing
phase with 99% B, and a re-equilibration phase at the initial
conditions. The microflow gradient was run from 5 to 99% B
over 5 min with 2 min washout at 99% and 3 min re-
equilibration at 5% B. Both methods used a Kinetex 1.7 μm
EVO C18 RP, 100 Å pore size, reversed phase UHPLC
column (Phenomenex) with the dimension 50 mm × 2.0 mm
and 50 × 1 mm (microflow). The MS/MS method was
previously optimized,38 the HESI source parameters were set
as follows: auxiliary gas flow and temperature were respectively
12 AU and 400 °C, sweep gas flow was 1 L/min, sheath gas
flow rate was set to 50 AU. The MS was operated in positive
mode, The spray voltage was set to 3.5 kV while an inlet
capillary temperature of 250 °C was adopted. The scan range
was set to 150−1500 m/z or 120−1500 m/.z (microflwo
setup) and the resolution to 30,000. The fragmentation was

performed in Data Dependent Analysis (DDA) mode, the 5
most abundant ions were fragmented per MS survey scan with
a resolution of 15,000, or 45,000 for the microflwo setup (both
MS1 and MS2). An isolation window of 1 m/z, and with the
following stepped normalized collision energy: 25, 35, 45 eV.
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