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ABSTRACT Coral reefs are experiencing unprecedented loss in coral cover due to 
increased incidence of disease and bleaching events. Thus, understanding mecha­
nisms of disease susceptibility and resilience, which vary by species, is important. 
In this regard, untargeted metabolomics serves as an important hypothesis-building 
tool enabling the delineation of molecular factors underlying disease susceptibility 
or resilience. In this study, we characterize metabolomes of four species of visually 
healthy stony corals, including Meandrina meandrites, Orbicella faveolata, Colpophyllia 
natans, and Montastraea cavernosa, collected at least a year before stony coral tissue 
loss disease reached the Dry Tortugas, Florida, and demonstrate that both symbiont 
and host-derived biochemical pathways vary by species. Metabolomes of Meandrina 
meandrites displayed minimal intraspecies variability and the highest biological activity 
against coral pathogens when compared to other species in this study. The applica­
tion of advanced metabolite annotation methods enabled the delineation of several 
pathways underlying interspecies variability. Specifically, endosymbiont-derived vitamin 
E family compounds, betaine lipids, and host-derived acylcarnitines were among the top 
predictors of interspecies variability. Since several metabolite features that contributed 
to inter- and intraspecies variation are synthesized by the endosymbiotic Symbiodinia­
ceae, which could be a major source of these compounds in corals, our data will guide 
further investigations into these Symbiodiniaceae-derived pathways.

IMPORTANCE Previous research profiling gene expression, proteins, and metabolites 
produced during thermal stress have reported the importance of endosymbiont-derived 
pathways in coral bleaching resistance. However, our understanding of interspecies 
variation in these pathways among healthy corals and their role in diseases is limited. 
We surveyed the metabolomes of four species of healthy corals with differing suscepti­
bilities to the devastating stony coral tissue loss disease and applied advanced annota­
tion approaches in untargeted metabolomics to determine the interspecies variation in 
host and endosymbiont-derived pathways. Using this approach, we propose the survey 
of immune markers such as vitamin E family compounds, acylcarnitines, and other 
metabolites to infer their role in resilience to coral diseases. As time-resolved multi-omics 
datasets are generated for disease-impacted corals, our approach and findings will be 
valuable in providing insight into the mechanisms of disease resistance.

KEYWORDS comparative metabolomics, Scleractinia, stony coral tissue loss disease, 
Symbiodiniaceae, tocopherol quinones, acylcarnitines

C oral reefs are an essential component of marine ecosystems, providing habitats 
for nearly a quarter of ocean life (1, 2), prevent shoreline erosion, and contribute 

to local economies (3, 4) and cultural practices (5). Climate change and increases of 
anthropogenic stressors have resulted in an unprecedented increase in the incidence 
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of coral bleaching and exposure to diseases (6–9). Diseases may result in coral colony 
mortality and can drive the local extinction of corals (10). One of the biggest threats 
to Caribbean reefs is the continued spread of stony coral tissue loss disease (SCTLD). 
This virulent disease spread rapidly across Florida’s Coral Reef over the course of several 
years, affecting ~22 scleractinian coral species since its first observation in 2014 (11), and 
has since spread throughout the Caribbean (12). Disease susceptibility, resilience, and 
lethality vary significantly among affected species (11, 13–16), but underlying mecha­
nisms behind resilience remain unknown.

The Scleractinian (stony coral) coral holobiont is diverse, consisting of the coral animal 
(host), the endosymbiotic dinoflagellate algae, archaea, bacteria, viruses, and fungi 
(17–20). Many coral species are sessile organisms that rely heavily on symbiosis with 
photosynthetic microalgae (Symbiodiniaceae) for their daily energy requirement and 
through associations with microbial communities for nutrition and defense (17, 21–25). 
Within the holobiont, multiple interactions occur among all members. The coral animal 
provides a physical habitat for the endosymbiont and a diversity of microorganisms 
within the holobiont. Nutrient exchange between the coral host and Symbiodiniaceae 
includes the exchange of phosphorus and nitrogen (from the coral animal), oxygen, 
and carbon (from the Symbiodiniaceae, generated through photosynthesis). Studies 
have shown that Symbiodiniaceae can modulate intra- and interspecies susceptibility 
to bleaching (26, 27) and disease (28). Metabolite exchange between endosymbiotic 
zooxanthellae and bacteria influences the fitness of the endosymbiont (29). Bacteria 
selected by the coral holobiont fulfill several key roles in holobiont metabolite cycling 
and pathogen defense (30). Endozoicomonas, for example, are proposed to provide 
vitamins to both endosymbiotic dinoflagellates and the coral host (24). The bacterial 
communities are uniquely structured between the coral skeleton, tissue, and mucus 
(25). While the microbial community composition within the skeleton and tissue is 
associated with the coral host species, environmental factors may have a greater impact 
on the community structure within coral mucus (25). Beneficial bacteria (symbionts) 
also produce natural products that can provide competitive advantages to the coral 
holobiont and aid in responding to pathogens (31). Studies that profiled heat-sensitive 
and heat-tolerant corals have established that symbiosis as well as heterotrophy play 
a key role in determining which species thrive in the face of increasing ocean tem­
peratures and that endosymbiont identity is an important factor in survival (32–37). 
Although the cause of SCTLD remains unknown, dysbiosis in the coral holobiont occurs 
with breakdown in the host-endosymbiont relationship in the gastrodermis resulting in 
necrosis and opportunistic infections by bacterial pathogens (38). There is also evidence 
of in situ symbiophagy (symbiont degradation) by the coral host in SCTLD-exposed corals 
(39, 40).

‘Omics techniques such as transcriptomics, proteomics, and metabolomics hold 
promise for delivering insights into biochemical pathways that may drive differences 
in disease response (41). Pairing multiple ‘omics techniques enabled key insights into 
how Endozoicomonas can provide key immune response-related metabolites (such as 
vitamins) to the coral host and symbiotic zooxanthellae within the coral holobiont (24). 
Additionally, by comparing transcriptomes of stony corals of species Acropora hyacinthus 
either resilient or sensitive to bleaching stress, the expression of genes important for 
survival even under non-stress conditions in a phenomenon termed frontloading was 
observed (42). The differential expression of orthologs related to vesicular trafficking and 
signal transduction was positively correlated to species-specific susceptibility to SCTLD 
(39). With advancements in data annotation strategies, untargeted metabolomics is also 
being increasingly employed to generate, refine, and validate hypotheses to untangle 
interactions between different members of the holobiont (43, 44). Metabolomics has 
been largely applied to profile different genotypes of corals (45), locations (46, 47), 
delineate biochemical pathways important in heat tolerance (48–50), and the effect of 
environmental factors such as use of sunscreen (51). We compare the findings of these 
studies to the observations in this work throughout our paper.
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We hypothesized that metabolomes of coral species with different reported SCTLD 
susceptibility would vary in their metabolomes, and such variations could guide future 
work aimed at understanding of the pathways implicated in disease resilience. The 
sampling site in this study, Dry Tortugas, Florida, was being monitored regularly in 
anticipation of SCTLD beginning in September 2020, and the disease was first observed 
on 29 May 2021. Thus, the species in this study were not affected by SCTLD at the 
time of sampling (January 2020) but are representative of Florida species that are 
known to be susceptible to SCTLD. There are only a few investigations that compare 
metabolic or lipid profiles of field-collected corals that are SCTLD susceptible (41). 
With the unabated spread of SCTLD along the Florida reef, opportunities to profile 
inter and intraspecies variation in metabolomes ahead of disease and post disease 
were envisioned to generate testable hypotheses to delineate biochemical pathways 
underlying disease susceptibility. To test our hypothesis and compare metabolomes of 
coral species with different SCTLD susceptibilities, we collected healthy coral fragments 
of four coral species, Orbicella faveolata, Montastraea cavernosa, Meandrina meandrites, 
and Colpophyllia natans, ahead of the SCTLD front in the Dry Tortugas. M. meandrites 
and C. natans are highly susceptible to SCTLD, while O. faveolata and M. cavernosa are 
defined as moderately susceptible (13, 15, 16). SCTLD susceptibility is defined by the 
length of time between the disease’s arrival to a reef and observation of lesions on a 
particular species, rates of lesion progression, and prevalence among species (15, 16). 
M. meandrites was one of the first reported species affected in the Dry Tortugas (52), 
while C. natans recruits spawned from parents in the Dry Tortugas showed ex situ lesion 
progression rates of 24.9-31.1%/day, which is in range for highly SCTLD susceptible 
corals (53). The Dry Tortugas is a unique habitat for corals along the Florida coral reef 
system where species such as Acropora palmata, Siderastrea siderea, and Porites astreoides 
have exhibited faster growth rates and enhanced reproduction relative to conspecifics 
in the Florida Keys (54). This may be attributed to oceanographic conditions that drive 
periodic upwelling, which is favorable for heterotrophy, and cooler temperatures and 
greater distance from urbanization and sources of pollution (54). Exogenous untargeted 
metabolome profiles of Dry Tortugas’ seawater samples were previously reported to be 
distinct from the profiles of seven other zones within Florida’s Coral Reef prior to SCTLD 
arriving at the Dry Tortugas (46). Thus, the visually healthy corals in this study from the 
Dry Tortugas provided the unique opportunity to examine and compare the metabo­
lomes of several coral species growing under optimal growth conditions in Florida (54–
56) before this region was affected by SCTLD.

In this work, we apply an untargeted high-performance liquid chromatography-mass 
spectrometry (LC-MS)-based approach to profile the metabolomes of a small sample 
set of four coral species (M. meandrites, C. natans, O. faveolata, M. cavernosa) utilizing 
recently developed advanced compound annotation methods to identify metabolites 
underlying the interspecies differences observed. While metabolomics analysis has been 
performed on Caribbean Scleractinian corals (43, 45, 46, 57–61), our understanding of 
differences between the metabolomes of visually healthy Caribbean stony coral species 
is limited. Thus, we seek to address this gap in knowledge by describing chemical 
classes that are variably detected between four visually healthy coral species from the 
Dry Tortugas National Park sampled in January 2020 (52). In this study, we identify an 
endosymbiont-derived vitamin E pathway and a host-derived acylcarnitine pathway that 
were significantly variable among species. We describe additional chemical diversity 
by partitioning the crude extract of whole coral. Lastly, we report differences in the 
bioactivity of partitioned extracts of whole corals against bacterial pathogens.

RESULTS AND DISCUSSION

Inter- and intraspecies variation in metabolome profiles

Metabolome extracts from four stony coral species (Orbicella faveolata, Monstastraea 
cavernosa, Meandrina meandrites, and Colpophyllia natans) were subjected to LC-MS 
analysis (Fig. 1; Table S1). The resulting data were analyzed using a variety of data 
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FIG 1 Sample collection, data acquisition, and analyses. (A) Benthic map of the sample sites in relation to Dry Tortugas National Park. Colors denote the benthic 

habitats (partially transparent) overlaid on high-resolution bathymetry. Red and brown illustrate coral reef habitat (Florida unified reef map, Florida Fish and 

Wildlife Conservation Commission, 2016). A, B, C, D refer to the sites at which coral colonies were sampled. Coordinates for these sites are in

(Continued on next page)
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visualization and metabolite annotation tools (Fig. 1C). Unsupervised principal com­
ponent analysis (PCA) revealed that metabolome profiles of M. meandrites had the 
lowest intraspecies variation compared to the other coral species (Fig. 2A). The largest 
interspecific separation captured on the first principal component (PC) was observed 
between M. meandrites and M. cavernosa. Four PCs captured interspecies variation 
between M. meandrites and the other species, and intraspecies variation for M. caver­
nosa (Fig. S1A through E). The largest intraspecies distribution on PC1 was observed 
for C. natans, followed by O. faveolata and M. cavernosa. While the metabolomes of 
M. cavernosa fragments were spread across PC2, tighter clustering was observed for 
the other species along this component. PCs 3 and 4 captured metabolome varia­
tion between individual extracts, revealing that additional factors beyond species are 
captured within the metadata analysis (discussed further below) (Fig. S1A through E). We 
calculated alpha and beta diversity for each coral (using Shannon entropy and Brays-Cur­
tis similarity metrics, respectively, Fig. S2) to quantify metabolome similarity. A principal 
coordinates analysis on the Bray-Cutis similarity matrix constructed on the metabolome 
data revealed tighter clustering for M. meandrites, while the other species were spread 
along the first principal coordinate (Fig. S2A). The within species beta diversity was 
significantly larger than beta diversity between species (Fig. S2B, Mann Whitney U Test, 
P = 0.00082), further supporting that the metabolome analysis captures variation driven 
by factors beyond coral species. There was no significant difference between the alpha 
diversity for each species found using a Kruskal Wallis Test (Fig. S2C, P= 0.119).

Using permutational multivariate analysis of variance (PERMANOVA) (62), we found 
metabolome variation differed significantly across coral species (Pseudo-F3,13 = 2.192, P 
= 0.007), with no significant effect of site (as a random effect, P = 0.670). We queried 
whether SCTLD susceptibility categorization (OFAV, MCAV = moderate; CNAT, MMEA = 
high) affected metabolome variation. We could not examine interactive effects due to 
a lack of Susceptibility × Species replication. We performed PERMANOVA with suscept­
ibility as a single fixed factor and found that metabolome variation was significantly 
different between the two groups (Pseudo-F = 3.191, P = 0.001). Additionally, a model 
with susceptibility as a fixed factor and species as a random effect found that Spe­
cies(Susceptibility) was slightly significantly different (Pseudo-F1, 2 = 1.715, P = 0.021). 
Therefore, both coral species and SCTLD susceptibility affect metabolome variation, but 
it is unclear how the two interact in affecting metabolome differences. We cannot fully 
disentangle the effects of species and susceptibility with the current sampling regime in 
this study; therefore, such efforts are an important avenue for future inquiry. Sampling 
species with moderate resilience (i.e., some individuals are susceptible, others never 
develop lesions) where both affected and unaffected colonies were sampled would be a 
potential way to disentangle this effect. A non-metric multi-dimensional scaling (nMDS) 
plot by species was constructed to visualize metabolome variation using a method 
appropriate for smaller sample sizes. The nMDS plot divided the samples into four 
distinct clusters. Consistent with the PCA, all M. meandrites samples clustered together 
in one group, and a larger spread was observed for other species with metabolomes of 
M. cavernosa displaying the largest intraspecies variation (Fig. S3). These observations 
aligned with previous findings where apparently healthy M. cavernosa from a SCTLD 
endemic site in Broward County showed similar intraspecies variation (43). The proximity 
between M. cavernosa colonies on the reef in this previous study explained the variation 

Fig 1 (Continued)

Table S1. (B) Representative photographs of each coral species in this study (CNAT = C. natans, MMEA = M. meandrites, OFAV = O. faveolata, MCAV = M. 

cavernosa). (C) Untargeted metabolomics data were acquired, processed, and analyzed with a variety of methods. Metabolomics data available through public 

data sets (mined using MASST) and acquired on cultured algae was used to assign the biosynthetic source of annotated metabolite features. (D) Schematics 

of representative interactions between the coral holobiont members are shown. The host genotype, the microbiome composition, and the endosymbiont 

Symbiodiniaceae species as well as the complex interplay of interactions between them can confer resilience to the increased frequency and impact of coral 

diseases.
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in some instances but did not completely explain the metabolome variation observed 
for M. cavernosa in Broward County (43). The beta diversity analysis conducted in this 
study revealed three pairs of corals from the site B or D as having the greatest Bray-Curtis 
similarity score to each other. These include OFAV2B/CNAT12B, MCAV6B/OFAV12B, and 

FIG 2 Intra- and interspecies variation of metabolomics data. (A) Principal component analysis of corals: C. natans (CNAT, red), M. cavernosa (MCAV, green), 

M. meandrites (MMEA, purple), and O. faveolata (OFAV, blue). The SCTLD susceptibility categorization is included in the key (“Highly,” “Moderately”). Axes are 

labeled with the corresponding variance explained by each principal component. A, B, C, D refer to the site from which the coral was sampled (Table S1). 

(B) Hierarchical clustering analysis reveals a separate cluster for all M. meandrites samples, while the other species are distributed across clades. Colored branches 

correspond to species as outlined in (A). The letter at the end of the sample name corresponds to the sampling site. The x-axis represents the distance between 

the samples/clades. (C) UpSet Plot showing the distribution of detected metabolite features. The number above each bar represents the number of features in 

that intersection. “Set Size” denotes the total number of features detected in each coral species. The inset table includes a number of features detected within 

each species, as well as the number of annotated features reported in this paper.
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MMEA2D/MMEA24D. Thus, we see further evidence of reef site driving metabolome 
similarity in some instances although for the MMEA pair we cannot disentangle the 
effect of site and species on the metabolome similarity.

An unsupervised hierarchical clustering analysis (HCA) revealed M. meandrites was 
the only species that clustered within a single clade (Fig. 2B, purple branches), further 
indicating the relatively low intraspecies variation. The HCA also reveals that the corals 
within the aforementioned pairs identified through the Bray-Curtis similarity analysis 
have the greatest metabolome similarity to each other (Fig. 2B). There was significant 
variation in metabolomic variation (multivariate dispersion) among the coral species (F1,3 
= 7.944, P = 0.045). Overall, MCAV was the most variable (average distance to group 
centroid = 33.3) with the variation being significantly higher than the variation observed 
for MMEA (average distance = 19.2, P = 0.036). OFAV was the second most variable 
(average distance = 29.3) and the variation was significantly higher than the variation of 
MMEA (P = 0.030). The relative metabolomic variation did not differ between pairwise 
comparisons performed for other coral species. This phenomenon has been observed 
in deep sea corals where interspecies differences rather than site-dictated clustering of 
metabolite profiles (63). However, intraspecies differences may be attributable partially 
to site, as Haydon and colleagues found metabolite differences in Pocillopora acuta 
based on reef site, even after acclimation of the corals in aquaria as is the case in this 
study (48). Thus, when comparing multiple species of corals from different reef sites, 
replication of species collected from each site should be conducted where possible. 
The intraspecies metabolomic variation observed in this study may further be partially 
explained by different genotypes (45), and both intra- and interspecies variation may 
be influenced by the endosymbiotic profile, microbial community, bleaching history, 
and stimuli/stressors unique to the sampling site (21, 22, 64, 65). Acquiring data on 
seawater (exometabolomics), cataloging abiotic factors at reef sites, and profiling the 
endosymbiont and microbial community will aid in disentangling what additional factors 
drive metabolome variation. In a metabolomics study of cultured Symbiodinium species, 
Klueter et al. noted that metabolite profiles varied by species and the degree of 
metabolome variation was not ubiquitous across species given the different classifica-
tion error rates of each symbiont species (66). The distinct metabolome profiles of 
M. meandrites compared to the other corals species in this study could be influenced 
by the symbiont types of the coral species. The M. meandrites sampled for this study 
may host symbionts with highly similar metabolomes or interaction networks with 
the associated microbiome, while the other coral species may host symbionts and/or 
microbiome with more diverse metabolomes. Incorporating microbiome analysis and 
symbiont typing into metabolome studies would be beneficial toward delineating how 
the degree of observed metabolome variation may correspond to the symbiont and 
the microbiome species present. Another factor that may contribute to the intraspecies 
metabolome variation captured in this study is cryptic lineages observed within the 
studied species (67). Cryptic coral species lineages may share phenotypic traits but 
have distinct underlying genomic differences (67). M. cavernosa (68, 69) and O. faveolata 
(70, 71) are reported to have cryptic lineages. The genomic differences between the 
coral hosts imply a strong possibility for metabolite differences (since the metabolome 
reflects the functional biochemical state of the system, in this case the coral holobiont). 
Proven association with different symbiont genera [reported for O. faveolata (70)] and 
potential association with different microbial assemblages (yet to be studied for the 
species in this report) among cryptic lineages could further diverge metabolome profiles, 
as all the members of the coral holobiont influence and contribute to the metabolome. 
Such phenomena (67) may well explain the metabolome variation of M. cavernosa and 
O. faveolata in this study, and although cryptic lineages have not yet been identified 
for Colpophyllia (67), the observed metabolome variation in C. natans may be partially 
explained by this as well.

The UpSet Plot generated to show the distribution of metabolite features revealed 
the greatest number of unique features were detected in M. meandrites extracts, 
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followed by M. cavernosa, C. natans, and O. faveolata (Fig. 2C). Since the statistical 
analyses revealed a distinct metabolome profile for M. meandrites and a greater 
intraspecies metabolite variation captured for the other coral species, unique features 
present in M. meandrites and features that were variably detected among M. meandrites 
and other coral species were prioritized for annotation and are described below.

Metabolite features driving variation

Vitamin E family compounds as potential biomarkers of stressor susceptibility

A metabolite feature m/z_RT (m/z: mass to charge, RT: retention time in min) 
449.398_21.3 min, uniquely detected in M. meandrites extracts, was proposed as 
α-tocopherolhydroquinone by the in silico annotation tool MolDiscovery. SIRIUS with 
CSI:FingerID also proposed the annotation for this feature as α-tocopherolhydroquinone. 
We searched for α-tocopherolhydroquinone spectra in the literature and used MS2 

spectral matching with a published spectrum (72) of silicated α-tocopherolhydroqui­
none to further support the annotation (Fig. S4A). This feature clustered in Feature 
Based Molecular Networking (FBMN) analysis with another feature at 447.383_21.3 min 
representing one unsaturation from α-tocopherolhydroquinone (Δm/z = 2.015). We 
annotated this feature as α-tocopherolquinone, the oxidation product of α-tocopherol­
hydroquinone (73, 74) and confirmed this annotation with an analytical standard of 
α-tocopherolquinone (Fig. S4B and C). To identify additional metabolites, we applied 
unsupervised substructure discovery using MS2LDA (75) (Fig. 3A; Table S2).

It is interesting to note that α-tocopherolquinone, an oxidation product of α-toco­
pherol (76, 77), and α-tocopherolhydroquinone were exclusively detected in highly 
SCTLD susceptible M. meandrites and C. natans but not in O. faveolata and M. cavernosa 
with moderate SCTLD susceptibility (15, 16). These features were also not detected in the 

FIG 3 Analyses of vitamin E family compounds. (A) Network of annotated vitamin E family compounds with m/z_RT (m/z: mass to charge, RT: retention time 

in min). The * indicates these features have identical MS2 spectra, but different retention times, representing isomeric species. (B) The detection pattern of 

annotated vitamin E family compounds in cultured endosymbiont extracts. The comprehensive list for annotated vitamin E family compounds is provided in 

Table S2, and MS2 mirror plots supporting annotations of tocopherol(hydro)quinone are provided in Fig. S4. The SCTLD susceptibility categorization is included in 

the key (“Highly,” “Moderately”).
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extracts of cultured Symbiodiniaceae included in this study (Fig. 3B). The Durusdinium-
associated mangrove coral Pocillopora acuta was previously reported by Haydon and 
colleagues to accumulate α-tocopherol in summer (48). This observation was suggested 
as a possible mechanism of “frontloading” associated with the resilience of Durusdinium-
associated corals (48). Tocopherols are the most prominent antioxidants that counteract 
lipid peroxidation. Using transcriptomics, the gene for arachidonate 5-lipoxygenase 
(ALOX5) was found to be significantly differentially expressed with its highest expres­
sion in the most susceptible corals, including C natans (39). ALOX5 is a key enzyme 
in mediating lipid peroxidation (78) which can lead to cell death such as apoptosis, 
ferroptosis, and pyroptosis (78). Thus, we searched the literature to identify studies 
that might link α-tocopherol(hydro)quinones with lipid peroxidation and cell death. 
While linking specific metabolites with processes is outside the scope of this study, we 
can speculate on possible functions of metabolites and determine future avenues of 
inquiry based on literature precedence. Indeed, a recent report updated the mechanism 
of action for iron-dependent anti-apoptotic activity (ferroptosis) of α-tocopherol (79). 
Tocopherol was suggested to be the pro-vitamin E form, while the (hydro)quinone forms 
produced from the oxidation of α-tocopherol were shown to be the activated forms 
responsible for the prevention of cell death (79). Thus, it is possible that our detection of 
the α-tocopherol(hydro)quinones indicates the coral cells are frontloading the activated 
form of vitamin E, which is counteracting lipid peroxidation resulting in the detection of 
α-tocopherol(hydro)quinones.

When corals were previously challenged with bacterial pathogen-associated 
lipopolysaccharides, susceptible corals demonstrated a transcriptome response related 
to apoptosis, while resistant corals transcribed genes related to autophagy, a more 
modulated response to stressors (80). The damage threshold hypothesis proposes that 
coral disease susceptibility is inversely related to the upper limit of damage a coral can 
withstand before harmful effects are observed (81). Corals with a low damage threshold 
(high susceptibility) may be unable to modulate immune responses; either mounting too 
high of a response, leading to auto-immune challenges, or too low of a response before 
cellular death is imminent. Thus, the varied detection of tocopherol(hydro)quinones in 
this study should be further investigated to determine if these metabolites serve as a 
biomarker of corals particularly susceptible to disease, represent stressor history, and if 
they vary temporally with disease progression.

M. meandrites and O. faveolata had the highest relative abundance of α-tocomo­
noenol (Fig. 3A). α-Tocomonoenol was previously detected at higher abundance in 
apparently healthy M. cavernosa compared with diseased corals (43). The analog 
α-tocotrienol (m/z 424.333) with three degrees of unsaturation was exclusively detec­
ted in SCTLD-affected M. cavernosa, while other unsaturated analogs were likewise 
detected at higher abundance in the diseased corals (43). In this study, where we have 
analyzed healthy corals ahead of the SCTLD front, α-tocotrienol was not detected. Based 
on these results, we hypothesize that tocotrienols may serve as biomarkers for coral 
disease, wherein accumulation coincides with disease progression. A time course study 
that tracks how tocotrienol analogs and tocopherolquinones accumulate in response 
to disease exposure is required to validate this hypothesis. Recent work highlighting 
differential detection of tocopherol upon heat stress among resilient and susceptible 
species (48, 82) and our work reporting the detection of different tocopherol analogs 
among healthy and SCTLD-affected coral colonies suggest that this endosymbiont 
pathway likely plays an important role in coral health and resilience (48, 83); warranting 
studies that monitor tocopherol-related metabolite production over time after disease 
exposure.

Acylcarnitine profiles differentiate Meandrina meandrites

Feature 476.373_14.4 min was proposed by SIRIUS with CSI:FingerID as docosatetrae­
noyl carnitine (C22:4) (Fig. 4A and B). To confirm this annotation prediction and to 
determine if other acylcarnitines were present in our data, the output of the MS2LDA 
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analysis was consulted. This feature shares MS2LDA substructure motif 185 with feature 
276.180_2.8 min, which was annotated as hydroxyhexanoyl carnitine (C6:0-OH) based on 
the MS2 fragment peak at m/z 217.107 associated with the neutral loss of trimethylamine 
(Δm/z = 59.07, Fig. 4C; S4A). A variety of acylcarnitines were further annotated with 
the aid of the GNPS spectral library, MassQL, substructure motif 185, and SIRIUS with 
CSI:FingerID (Fig. 4; Fig. S4B through O; Table S2).

FIG 4 Annotation of and variation in detected acylcarnitines. (A) Chemical structure of docosatetraenoyl carnitine (C22:4). (B, C, F–I) A subset of the box plots 

of acylcarnitines differentially detected in the extracts of M. meandrites. Asterisks indicate significant differences as determined by a Kruskal Wallis test with 

Dunn’s post-hoc test (adjusted P < 0.05). Additional box plots are reported in Fig. S4. (D) MS2LDA motif 185 used to aid annotations of features annotated as 

acylcarnitines. (E) The query submitted to MassQL to search for acylcarnitines. (J) Heat map of the features annotated as acylcarnitines that were determined 

as statistically differentiating by Kruskal Wallis test with Dunn’s post-hoc test (adjusted P < 0.05). The scale bar represents the log-transformed abundance. 

The putative annotation and m/z_RT are included for each feature (Table S2; Fig. S5). (K) The hierarchical clustering analysis based on the log-transformed 

abundances of the acylcarnitines. The SCTLD susceptibility categorization is included in the key (“Highly,” “Moderately”).
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Acylcarnitines are typically host-derived metabolites, and these metabolites were not 
detected in the cultured Symbiodiniaceae extracts in this study. Acylcarnitines have 
been detected at higher abundances in the daytime exometabolomes of Porites and 
Pocillopora compared to algae (turfing microalgae, macroalgae, and crustose coralline 
algae), where they are hypothesized to play a role in nitrogen and phosphorous cycling 
(84). Acylcarnitines play an integral role in metabolism of fatty acids in mitochondria (85) 
and maintenance of available pools of free coenzyme A (86). In the diatom Phaeodacty­
lum tricornutum, propanoyl-carnitine and butanoyl-carnitine accumulate under nitrogen-
starvation (87). Accumulation of acylcarnitine concentrations has been linked with cell 
toxicity (88), mitochondrial dysfunction (89–91), and dysfunction in cellular bioenerget­
ics in humans (88). Acylcarnitines have been found to be upregulated in corals upon 
exposure to octocrylene, an ingredient used in sunscreens (51), which is the only 
study reporting conditional dysregulation of acylcarnitine levels in corals found in our 
literature search. In this study, the interspecies variation of all features annotated as 
acylcarnitines were analyzed with a Kruskal Wallis test with Dunn’s post-test (adjusted P 
< 0.05). The acylcarnitines with fatty acyl tails with C13-C20 are classified as long chain, 
and tails > C21 as very long chain (92). Features that were differentially detected showed 
two interspecies patterns based on the acyl chain length (Fig. 4B, C and F through J; Fig. 
S4D through O). The hydroxyhexanoyl acylcarnitine and very long chain acylcarnitines 
were detected at a higher intensity in M. meandrites (Fig. 4B, C and F through I). The 
accumulation of long-chain acylcarnitines is associated with several metabolic diseases 
in humans (92). Differences in acylcarnitine profiles have also been reported as indicators 
of frailty in humans (93). Given that certain acylcarnitine analogs are detected at higher 
intensity in M. meandrites (Fig. 4; Fig. S4), a highly SCTLD-susceptible species, it is possible 
that acylcarnitine profiling could represent disease history and/or higher susceptibility to 
disease. Interestingly, when an HCA was performed on only the annotated acylcarnitine 
features, a clear separation of M. meandrites from other coral species was observed 
(Fig. 4K). Thus, host-derived acylcarnitines display a species-specific profile. Since several 
acylcarnitines were variably detected in these apparently healthy corals, the understud­
ied role of carnitines in disease resilience and susceptibility in corals should be further 
investigated.

Several unknown acylcarnitines were distributed differentially across the coral species 
(Fig. 4J; Fig. S4G through O). Upon manual inspection of fragmentation spectra, we 
propose the annotation of these features as acylcarnitines containing fatty acid esters 
of hydroxy fatty acids (known as FAHFAs) (Fig. S5A; Table S2). The fragments at m/z 
85.028 and 144.102, the presence of a fragment corresponding to hydroxylated fatty 
acid of acylcarnitine (CAR 14:1-OH), and the presence of an additional fatty acid tail 
fragment (C18:0) supported the annotation of an FAHFA-containing acylcarnitines [Fig. 
S5A, bottom spectrum; CAR 14:1-(O-18:0)]. FAHFAs are a conserved class of lipids 
that are widely reported, including in dietary plants (94, 95), as defense molecules in 
caterpillars named as mayolenes (96, 97), as anti-inflammatory metabolites in humans 
(98), and in the corallivore Crown-of-Thorns Starfish (99). Oxidative and environmental 
stress increase the synthesis of FAHFAs and ornithine-conjugated FAHFAs (100, 101). 
Acylcarnitines containing FAHFAs have not been previously reported and warrant further 
investigation for structural characterization and their role in coral biology. We searched 
for these acylcarnitines features in the publicly available data sets on the MassIVE server 
using MASST (102). These features were found in several marine organism-derived data 
sets including data sets from several coral species (Table S3) but were not observed in 
human-derived data sets. These observations further strengthen the role and application 
of modern methods in data analysis in untargeted metabolomics to discover biologically 
relevant metabolic pathways and generate testable hypotheses. Here, access to public 
data sets on these pristine endangered coral species is advantageous.
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DGCC betaine lipids with 16:0 fatty acyl tails are differentially detected between 
species

Several differentiating features were identified as diacylglyceryl-carboxyhydroxymethyl­
choline (DGCC) betaine lipids. Feature 774.584_19.6 min was a GNPS library match to 
DGCC(36:5) (Fig. 5A; Fig. S6A). The fragment peaks at m/z 490.373 and 472.363 in the 
MS2 spectra, which are characteristic of the chemical substructure containing a 16:0 
fatty acyl tail, enable further annotation of this feature as DGCC(16:0_20:5) (Fig. S7). This 
feature was variably detected among coral species, present at the highest abundance in 
M. cavernosa. As expected, the feature 490.373_13.1 min, annotated as lyso-DGCC(16:0) 
known to be a constituent of healthy corals (43, 58, 103), was detected in all species (Fig. 
5B; Fig. S6B). We used MassQL to search for additional DGCC analogs containing a 16:0 
fatty acyl tail (Fig. S6C). This approach permitted the annotation of additional metabolite 
features, detected at highest abundances in M. meandrites, as lyso-DGCC(16:0) analogs 
(Fig. 5; Fig. S7; Table S2). Diacylated and unsaturated DGCC betaine lipids have been 
previously proposed as biomarkers of coral bleaching (58, 103). The increase in lipid 
unsaturation is suggestive of increased cell death when the antioxidative capacity of cells 
is lowered (104). DGCC betaine lipids are biosynthesized by Symbiodiniaceae (50). We 
searched the metabolite data acquired on cultured Symbiodiniaceae for the presence 
of the annotated DGCC analogs. While monoacylated lyso-DGCC(16:0) was detected 
in all cultured Symbiodiniaceae genera, the diacylated analogs were notably absent 
in Durusdinium extracts, the genera known to be most thermotolerant (105–108) (Fig. 
5H). Roach et al. noted a higher abundance of lyso-DGCCs in historically non-bleached 
corals, while unsaturated and DGCCs were abundant in historically bleached corals (58). 
Rosset et al. observed significantly higher abundance of lyso-DGCC and unsaturated 
DGCCs in thermotolerant D. trenchii as compared to Cladocopium C3 in both control and 
heat-stressed conditions (49, 50). Symbiodiniaceae genera show differential responses to 
thermal and irradiance stress, which affects the entire holobiont response to stressors 
(64, 109–111). The variable detection of the DGCC(16:0) analogs in the coral extracts 

FIG 5 Interspecies variation of diacylglyceryl-carboxyhydroxymethylcholine (DGCC) betaine lipids. (A–G) Box plots of features annotated as DGCC(16:0) analogs. 

Annotations are provided in Fig. S6 and S7 and Table S2. Asterisks indicate significant differences between coral species as determined by Kruskal Wallis test 

with Dunn’s post-hoc test (adjusted P < 0.05). (H) The detection pattern of DGCC analogs in the cultured zooxanthellae extracts. The SCTLD susceptibility 

categorization is included in the key (“Highly,” “Moderately”).
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may indicate variable bleaching history or the presence or absence of certain Symbiodi­
niaceae species in the coral colonies sampled. Previous reports suggest that the DGCC 
lipid profile is influenced by the host (112). Given that algae transform their membranes 
in response to a variety of stimuli and stressors (113–115), it is also possible that the 
variable detection of the diacylated DGCC(16:0) analogs is reflective of host-dependent 
shifts in betaine lipid profiles of Symbiodiniaceae.

Carotenoid pigments do not show coral species-specific patterns

Carotenoids are important antioxidants in photosynthetic organisms. Symbiodiniaceae 
produce several carotenoids such as peridinin, fucoxanthin, astaxanthin, diatoxanthin, 
diadinoxanthin, and neoxanthin, with peridinin being the most prevalent and abundant 
(116, 117). We examined whether endosymbiont-derived pigment profiles contributed 
to variation among the coral colonies analyzed in this study. Several pigments were 
annotated using mass spectral search and literature search (Fig. 6; Fig. S8A through 
F; Table S2). The features annotated as pigments were also analyzed by HCA (Fig. 
6B). The pigment profile did not display clear interspecies variation but did display 
intraspecies variation. Peridinin was detected in all coral extracts, while fucoxanthin was 
detected in only a few coral extracts (Fig. 6A). Among cultured Symbiodiniaceae in this 
study, peridinin was detected in all genera, whereas fucoxanthin was only detected 
in thermotolerant Durusdinium cultures (Fig. S8G). Since Wakahama et al. reported a 
negative correlation between the presence of fucoxanthin and peridinin in a variety 
of symbiotic and free living Symbiodinium strains (118), we confirmed the detection 
of fucoxanthin in peridinin-containing coral extracts using an analytical standard of 
fucoxanthin (Fig. S8F). The detection of both pigments may represent the presence of 
multiple strains of Symbiodiniaceae within the cultures.

Butanol partitions of whole coral extracts enable additional metabolite 
annotations

The crude extracts from the whole coral samples were further partitioned into ethyl 
acetate (EtOAc) and butanol (BuOH) solvents, and the bioactivity of these fractions was 
tested against the potential SCTLD-associated pathogens Vibrio coralliilyticus OfT6-21 
and OfT7-21, Leisingera sp. McT4-56, and Alteromonas sp. McT4-15 (119, 120) using an 
agar disk-diffusion assay (Fig. 7A; Fig. S9A). Partitions only exhibited activity against V. 
coralliilyticus strains. The largest zones of inhibition were observed for BuOH partitions of 
M. meandrites against both pathogens (Fig. 7A; Fig. S9A). Thus, untargeted metabolomics 
data were acquired on BuOH partitions of all species. The metabolite data were analyzed 
following the scheme outlined in Fig. 1. Within the BuOH partitions, additional 560 
metabolite features were detected (Fig. 7B). The UpSet Plot analysis showed the greatest 
number of unique features was detected in C. natans extracts, followed by M. cavernosa, 
M. meandrites, and O. faveolata (Fig. 7B). We used CANOPUS to predict the chemical 
classes of these features (Table S4). For the features uniquely detected in the BuOH 
partitions, none of the metabolites in the CANOPUS-predicted natural product pathways 
were significantly enriched in M. meandrites compared to the other species (Fig. 7C). The 
UpSet Plot and CANOPUS output were used to guide compound annotations (Fig. 7D).

A feature, detected exclusively in BuOH partitions at 280.157_7.9 min was annotated 
as Tau-C10:0 based on MS2 spectral matching (Fig. S10A). We also observed the presence 
of the N-acyl taurines in several publicly available data sets acquired on diatoms, 
dinoflagellates, and seawater by searching the MS2 spectrum of this metabolite in MASST 
(Table S3). N-acyl taurines have been implicated as important signaling molecules in 
several human processes including postprandial glucose regulation (121), but these 
molecules have not been previously described in corals. Thus, partitioning crude extracts 
into organic solvents can enable detection and characterization of low-abundance 
metabolites, which are otherwise below the limit of detection. Feature 267.960_5.3 min 
with an isotopic pattern of a brominated compound was uniquely detected in the 
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BuOH partitions of O. faveolata. This annotated as caelestine A based on MS2 spectral 
matching and MS1 isotopic pattern (Fig. S10B and C). CANOPUS predicted the chemical 

FIG 6 Analyses of endosymbiont-derived pigments. (A) Heat map showing the distribution of features annotated as pigments. The log-transformed abundance 

is reported. The m/z_RT and annotation are included. The * indicates these features have identical MS2 spectra, but different retention times representing 

isomeric species. (B) Hierarchical clustering analysis based on the log-transformed abundance of the annotated pigments shows no clustering by species nor site. 

The SCTLD susceptibility categorization is included in the key (“Highly,” “Moderately”).
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class as hydropyrimidine carboxylic acids and derivatives. Caelestine A, a brominated 
quinoline carboxylic acid, has been reported as a possible indicator of a response to heat 
stress in the invasive bryozoan Bugula neritina (122). A feature at 615.346_5.9 min was 
proposed as a tunicyclin G analog by DEREPLICATOR, which compares experimental MS2 

spectra against predicted in silico MS2 spectra of peptides (123) and CANOPUS predic­
ted the chemical class of this feature as oligopeptides. We putatively annotated the 
feature 615.346_5.9 min as a polypeptide with partial sequence NGAI/LA (Fig. S9C). This 
polypeptide was detected in M. cavernosa and O. faveolata BuOH partitions. Although 
we could not link the enhanced antibacterial activity with specific molecules or chemical 
classes due to a small sample size, these annotations show that partitioning of whole 
coral metabolomic extracts increases the breadth of detected metabolites and enables 
annotation of low-abundance natural products. Annotation of individual metabolites is 
still a tedious and manual task. As spectral libraries are populated by the community, 
and in silico compound annotation methods advance, these data sets will be a valuable 
resource to untangle mechanisms of symbiosis between members of coral holobionts.

FIG 7 Analysis of BuOH partitions of crude extracts. (A) Bioactivity of EtOAc and BuOH partitions of crude extracts determined using agar diffusion growth 

inhibition assay against coral pathogen V. coralliilyticus OfT6-21. Letters denote results from a Tukey HSD posthoc test following a significant one-way ANOVA (P 

< 0.001). (B) Venn diagram of features detected in whole coral extracts and BuOH partitions. 560 unique metabolite features were detected in BuOH partitions. 

UpSet Plot of all features detected in BuOH partitions, where the number above each bar represents the number of features in that intersection and “Set 

Size” denotes the total number of features detected within that coral species. (MMEA = M. meandrites, OFAV = O. faveolata, MCAV = M. cavernosa, CNAT = C. 

natans). The SCTLD susceptibility categorization is included in the key (“Highly,” “Moderately”). (C) Chemical diversity of features detected exclusively in BuOH 

partitions, along with the distribution of these features among the coral species. Natural product pathways (probability > 0.8) were determined using CANOPUS. 

(D) Chemical structures of putatively annotated metabolite features uniquely detected in BuOH partitions (annotations supported in Fig. S8 and S9).
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Conclusion

The visually healthy corals collected from the Dry Tortugas, a region of Florida 
with oceanographic conditions that support coral productivity, revealed interspecies 
metabolome differences. Tight clustering of the M. meandrites metabolome indicated 
similar metabolite profiles, while higher metabolome variation was found for C. natans, 
M. cavernosa, and O. faveolata. Metabolites driving the variation between species 
included tocopherol(hydro)quinones, diacylated betaine lipids, and acylcarnitines. This 
is the first report describing differences in acylcarnitine profiles between coral species 
and the discovery of potentially novel analogs containing an additional fatty acid group. 
Given the specificity of these acylcarnitine-FAHFA to only marine organisms based on 
the MASST search, the biochemical function of these molecules is of particular interest. 
The role of acylcarnitines in cellular energetics is well established; the varied detection of 
acylcarnitines in corals may indicate variability among species in their ability to readily 
utilize these pathways. Future work will focus on the structural description of these 
carnitines. How the profiles of metabolites reported in this paper change over time 
should also be characterized to determine their viability as biomarkers of health, disease, 
and lesion progression. The juxtaposition of M. meandrites SCTLD susceptibility and the 
observed highest bioactivity of the BuOH partitions of the extracts of this species against 
putative secondary SCTLD pathogens generates interesting avenues for future study, 
including how molecular dynamics of pathogen response and disease susceptibility 
might explain discrepancies between disease susceptibilities in the field while metabo­
lite extracts show high antibacterial activity when challenged with in lab-assays to a 
specific pathogen. Additional studies can also incorporate knowledge of environmental 
factors like heat stress to determine how biochemical disease dynamics and susceptibil­
ity may shift in the field.

As SCTLD appears to affect Symbiodiniaceae and disrupt their relationship with 
the host (13, 38, 40, 43), it is imperative to understand the differences in chemical 
cross-talk between the corals and endosymbionts. Symbiodiniaceae dynamics within the 
host (e.g., relative abundance, density, species) will likely have an effect on the metabo­
lomic profiles. In this study, several Symbiodiniaceae metabolites driving interspecies 
differences and endosymbiont-derived carotenoid pigments displayed both inter- and 
intraspecies variation suggesting the presence of different endosymbiont genotypes 
in these samples and/or different endosymbiont-host dynamics among species. Thus, 
metabolomic studies on Symbiodiniaceae directly isolated from field corals will enable 
source tracking to tease apart host-derived, diet-derived, and endosymbiont-derived 
compounds. Given that the endosymbiont fraction can be isolated from corals using 
mechanical methods such as the air brush technique (124), we propose future studies 
also include comprehensive metabolic profiling of these endosymbionts prior to and 
upon exposure to disease. Such differences should be interrogated across corals with 
different disease susceptibility and with different endosymbiont profiles. Furthermore, 
studies of metabolomic profiles taken at discrete time-points after disease exposure 
will provide insights into the transitory response of corals to disease stressors. With 
the increased application of untargeted metabolomics methods to study coral physiol­
ogy, availability of annotated data sets, and our ability to mine public data sets using 
methods such as MASST, discoveries pertaining to chemical interactions between the 
coral host, the endosymbiont, environment, and the microbiome that define health 
status are a real possibility. By advancing our knowledge of the biochemical pathways 
involved in coral health and susceptibility to disease, we can disentangle the sources 
of metabolites, and how they change with time and increasing anthropogenic and 
climate-related stressors.
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MATERIALS AND METHODS

Coral sample collection and extraction procedure

Whole coral fragments of a maximum size of 200 cm2 were collected on SCUBA from 
four visually healthy Scleractinia coral species, O. faveolata (n = 4), M. cavernosa (n = 
4), M. meandrites (n = 4), and C. natans (n = 3). These were collected in January 2020 
from four sites outside of the Dry Tortugas National Park (Fig. 1; Table S1). This collection 
occurred ahead of the SCTLD front, which was first observed at the Dry Tortugas in 
May 2021 (125). Collection also occurred during a time of year when temperature stress 
and any associated paling or bleaching of the corals should not have been occurring, 
and none was observed at time of collection. Corals were chiseled at the base until 
they released from the substrate and then were transported back to the diving vessel 
in 18.9 L plastic bags filled with ocean water. Collected corals larger than 25 cm2 were 
cut down to this size on the diving vessel using an AquaSaw (Gryphon C-40 CR). The 
cut portions and whole colonies were stored in a 1,000 L covered insulated container 
(Bonar Plastics, PB2145) filled halfway with ocean water. Air stones within the container 
allowed for aeration and water movement. A complete water change was performed 
on the container four times daily. Collections were conducted over 2 days before corals 
were transported the morning of the third day. The cruise was sponsored by the Florida 
Department of Environmental Protection and sample collection was covered by permit 
FKNMS-2019-160 to Valerie Paul. All corals collected from the field were transported to 
the Smithsonian Marine Station in Fort Pierce, FL. For transport, individual colonies were 
wrapped in plastic bubble wrap moistened with ocean water and then placed in a cooler.

Upon arrival, corals were rinsed with filtered seawater (FSW) and stored in a large 
indoor recirculating system holding approximately 570 L of FSW at 25.5°C ± 0.3°C. The 
FSW was collected from an intake pipe extending 1,600 m offshore South Hutchingson 
Island, Port Saint Lucie, FL and was filtered progressively through 20, 1.0, 0.5, and 0.35 µm 
pore filters. While stored prior to use in the recirculating system, the FSW constantly 
circulated through a 20-µm pore filter, a filter canister with ROX 0.8 aquarium carbon 
(Bulk Reef Supply), and a 36-watt Turbo-twist 12× UV sterilizer (Coralife) in series. The 
recirculating system contained a UV sterilizer (same model as described), two circulating 
pumps (AquaTop MaxFlow MCP-5) to create water movement, and a row of 6 blue-white 
30 cm2 LED panels (HQPR) to create 150–250 µmol photons m−2 s−1 for the captive corals. 
Corals were stored in the recirculating system for 5 days prior to sampling to allow them 
time to recover after transport, with a partial water change on the fourth day. All corals 
were held together in a single table.

After the 5th day, the corals were cut into smaller segments with a rock saw, and 
the blade was constantly sprayed down with UV/filter-sterilized seawater to cool the 
blade and wash off any debris, thus reducing cross-contamination between corals. The 
coral fragments ranged from 1 to 13 cm2 in surface area (6.2 + 3.7 cm2, mean + SD) 
were immediately frozen (−80°C) and lyophilized the next day. Coral fragments were 
lyophilized overnight and then extracted twice using a 2:2:1 mixture of ethyl acetate 
(EtOAc), methanol (MeOH) ,and water (H2O) at room temperature in 20 mL scintillation 
vials. For the extraction, coral fragments were covered with an excess of solvent mixture, 
sonicated for 5–10 min and left to sit for 3 h on the initial extraction and overnight 
for the second extraction. The liquid extract was then transferred into a round-bottom 
flask using filter paper to prevent the transfer of coral fragments. The coral extract was 
then dried via rotary-evaporation (Buchi Rotovapor R-210) in a 35°C water bath (Buchi 
Heating Bath B-491) and weighed to determine the amount of crude extract. The extracts 
were dried in vacuo and 0.5 mg of the extract was transferred to Eppendorf tubes for 
metabolomics data analysis. The extracts were stored at −20°C until UPLC-MS data were 
acquired.
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Endosymbiont metabolome data

We previously reported on metabolome profiles of Symbiodiniaceae isolates provided 
by Mary Alice Coffroth from the University of Buffalo Undersea Reef Research (BURR) 
collection (43). Given the challenges involved in isolating and culturing Symbiodiniaceae, 
we used this publicly available data (43) (MassIVE identifier MSV000087471) in this 
current study to aid in determining the biosynthetic producer of detected metabolites. 
Briefly, the endosymbionts were isolated by Mary Alice Coffroth from Orbicella faveolata 
corals sampled between 2002 and 2005 from the Florida Keys. Isolate extracts were sent 
by Richard Karp and Andrew Baker (University of Miami). Culture conditions included 
incubation at 27°C in F/2 media, with 20 μE of light on a 14:10 diurnal cycle. Extracts of 
the culture were performed as previously described (43), using 2:2:1 EtOAc:MeOH:H2O to 
extract pelletized cellular cultures. Solvents were removed, and the dried samples were 
transferred in 3:1 MeOH:H2O into a 1.5-mL microcentrifuge tube. After centrifugation, 
the supernatant was transferred to a microcentrifuge tube and removed via SpeedVac 
for 3 h. The extract was frozen, lyophilized, and analyzed using UPLC-MS/MS. Please see 
Deutsch et al. 2021 for detailed methodology (43).

Mass spectrometry data acquisition and analysis

The dried extracts were resuspended in 100% MeOH containing 1 µM sulfadimethoxine 
as an internal standard. The samples were analyzed with an Agilent 1290 Infinity II 
UHPLC system (Agilent Technologies) using a Kinetex 1.7 µm C18 reversed phase UHPLC 
column (50 × 2.1 mm) for chromatographic separation, coupled to an ImpactII ultra­
high resolution Qq-TOF mass spectrometer (Bruker Daltonics, GmbH, Bremen, Germany) 
equipped with an ESI source for MS/MS analysis. MS/MS spectra were acquired in positive 
mode as previously described (43). Metabolomics data on the cultured Symbiodiniaceae 
from the Burr Collection were previously acquired (43). The strains utilized are reported 
in Table S5.

The raw data were converted to mzXML format using vendor software. MZmine 2.53 
was used to extract metabolite features with steps for mass detection, chromatogram 
building, chromatogram deconvolution, isotopic grouping, retention time alignment, 
duplicate removal, and missing peak filling (126). These processed data were submitted 
to the feature-based molecular networking workflow on the Global Natural Product 
Social Molecular Networking (GNPS) platform (127). The output of MZmine includes 
information about LC-MS features across all samples containing the m/z value, retention 
time, the area under the peak for the corresponding chromatogram, and a unique 
identifier for each feature. The quantification table and the linked MS² spectra were 
exported using the GNPS export module (126, 128) and the SIRIUS 4.0 export module 
(126, 129). Feature Based Molecular Networking was performed using the MS² spectra 
(.mgf file) and the quantification table (.csv file). The molecular network was generated 
as previously described (43). The molecular network and the generation parameters 
are available here. The molecular network was visualized using Cytopscape v3.7.2 (130). 
The MS2LDA analysis was performed as previously described with default parameters 
(131, 132). The MassQL Sandbox Dashboard (133) (v 0.3) on the GNPS platform was 
used to construct the spectral pattern queries for the MassQL search. Feature annota­
tion was performed using SIRIUS with CSI:FingerID, MolDiscovery (134), GNPS spectral 
library matching, MassQL, MASST, and literature searches. The metabolite annotations 
presented herein follow the “level 2” annotation standard based upon spectral similarity 
with public spectral libraries, spectra published in the literature, and through spectral 
comparison with the analytical standards as proposed by the Metabolomics Society 
Standard Initiative (135). All mzXML files included in this study can be accessed publicly 
on the repository Mass Spectrometry Interactive Virtual Environment (MassIVE) with ID 
MSV000089633. The commercial analytical standard for α-tocopherolquinone (catalog 
number 35365) was purchased from Cayman Chemical Company and the commercial 
analytical standard for fucoxanthin (catalog number 16337) was purchased from Sigma 
Aldrich.
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Prior to statistical analysis, blank subtraction was performed as previously descri­
bed (43) to filter out features detected in the solvent and media controls. Unsuper­
vised multivariate statistical analyses including principal component analysis (136) and 
hierarchical clustering analysis (137) were performed using MetaboAnalyst 5.0 (138), and 
pareto scaling was employed prior to the analyses. The Plotter Dashboard (v.0.5) on 
the GNPS platform was used to construct boxplots for metabolite features of interest. A 
nonparametric Kruskal Wallis test with Dunn’s posttest was performed in R studio. The 
UpSet Plots were made using the Intervene app (139).

To test for an effect of coral species on metabolomic variation, we used a permuta­
tional multivariate analysis of variance (PERMANOVA) (62). Coral species was treated as 
a fixed effect (four levels), with site included as a random nested effect (four levels). 
The PERMANOVA was based on a Bray-Curtis similarity matrix (140), type III (partial) 
sums of squares, and 999 random permutations of square-root transformed data (to 
down-weight heavily dominant variables) under a reduced model. Both PERMANOVA 
and non-metric multidimensional scaling (141) plot were constructed from a Bray-Curtis 
similarity matrix of square root transformed data, which was performed using PRIMER 
v7 (142). To quantify metabolomic variation within and between coral species, we 
calculated their multivariate dispersion using the PERMDISP routine (143). PERMDISP 
calculates the distance of each observation (in this case, each coral sample) to its group 
centroid (in this case, each coral species) and then compares the average of these 
distances among groups. It is a multivariate extension of Levene’s test, with the P-values 
obtained using permutations of the raw data. This allowed us to make inferences about 
the relative size of the clouds in multivariate space within and between coral species. The 
tests were based on the same transformed data and Bray-Curtis similarity matrix as our 
PERMANOVA tests. Shannon entropy (144) was calculated for the alpha diversity metric 
using a Jupyter Notebook. A Bray-Curtis similarity matrix of log-transformed data was 
constructed using Primer v7 for the beta diversity metric. A principal coordinates analysis 
(145) was constructed on the Bray-Curtis similarity matrix.

Several in silico tools were used to aid in metabolite annotations. MolDiscovery 
compares in silico generated MS2 spectra of small molecules to user-uploaded exper­
imental MS2 spectra (134). SIRIUS computes putative chemical formulas based on 
user-uploaded MS1 isotopic peaks and MS2 fragmentation patterns (129). CSI:FingerID 
transforms MS2 spectra into predicted structural fingerprints that enable matching to 
fingerprints generated from structure databases (146). CANOPUS, which predicts the 
chemical class of metabolites by utilizing CSI:FingerID’s predicted structural finger-
prints, proposed the chemical class of 449.398_21.3 min as Vitamin E compounds 
(147). Unsupervised substructure discovery performed through MS2LDA (148) enabled 
annotations of several classes. Substructure motif 108 consisted of fragmentation peaks 
characteristic of tocopherol substructure (Fig. S3D). Motif 185 containing characteristic 
carnitine headgroup fragment peaks (91, 149) at m/z 85.028 and 144.102 (Fig. 4D) 
aided acylcarnitine annotations. Supervised substructure discovery was performed using 
MassQL, an MS query language platform that outputs metabolite features based on sets 
of user-defined fragment peaks and neutral losses (133).

Extract partitioning of crude extracts of coral metabolomes

Crude coral extracts were partitioned to remove salts and separate compounds based 
on polarity. First, 3 mL of EtOAc was added to 20 mL scintillation vials containing dry 
crude extracts. Vials were sonicated to resuspend the extracts for 30–60 s. Three milliliters 
of H2O and another 1 mL of EtOAc was then added and the vials swirled to mix. Vials 
were then left to separate into distinct layers. The EtOAc layer was transferred via glass 
pipette into a clean and pre-weighed 20 mL scintillation vial. An additional 2 mL of 
EtOAC was then added to the crude mixture with water, swirled to mix, and left to 
separate again. The EtOAc layer was again transferred into the vial containing the EtOAc 
partition. The EtOAc partitions were then dried via a SpeedVac vacuum concentrator 
(Thermo Scientific Savant SPD121P) at 35°C. The remaining aqueous extract was then 
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partitioned using n-butanol (BuOH). Approximately 2 mL of BuOH was added to the 
aqueous extract, swirled to mix, and then left to sit until distinct layers formed. The 
BuOH partition was then transferred into a clean and pre-weighed 20 mL scintillation 
vial. Another round of BuOH partitioning was performed by adding an additional 1 mL 
of BuOH to the aqueous extract, mixing and allowing time for a final separation. The 
BuOH layer was transferred to the vial containing the initial BuOH partition, which was 
then dried via rotary-evaporation and analyzed using UPLC-HRMS. The BuOH partitions 
were resuspended, and LC-MS data were acquired and analyzed following the procedure 
outlined in “Mass spectrometry data acquisition and analysis,” above.

Disk diffusion

Coral extracts were tested for antibacterial activity using disk diffusion growth inhibition 
assays against putative coral pathogens, Vibrio coralliilyticus OfT6-21 and V. coralliilyti­
cus OfT7-21, Leisingera sp. McT4−56 and Alteromonas sp. McT4-15. To make pathogen 
lawns, overnight liquid cultures of pathogens were grown by inoculating 2–3 mL of 
seawater broth (4 g/L tryptone and 2 g/L yeast extract in 0.22 mm filtered seawater) 
with individual colonies of each strain and shaking culture tubes at 150 RPM and 28°C 
(Benchmark Incu-shaker 10LR). To coat seawater agar (seawater broth with 15 g/L agar) 
plates with a pathogen lawn, a 200 mL aliquot of liquid culture (OD600 = 0.5) was added 
to each plate (150 mm × 15 mm) and spread using sterile glass beads.

Coral partitions were tested by solubilizing partitions in MeOH to a concentration 
of 6.25 mg/mL and applying 4 µL aliquots to sterile paper disks (Whatman Grade 1) in 
triplicate (final amount 25 µg/disk). A filter disc with 4 µL of nalidixic acid at 15.62 mg/mL 
(62.5 µg) was used as a positive control. Negative controls were disks treated with MeOH 
only. Disks were given time to dry completely and then carefully transferred with sterile 
forceps to seawater agar plates containing freshly coated pathogen lawns. Disk diffusion 
plates were then incubated at 28°C overnight. After incubation, zones of inhibition (ZOI) 
were measured using digital calipers from the edge of the paper disk to the edge of the 
zone of bacterial growth inhibition.
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