
Shrinking POMCP: A Framework for Real-Time

UAV Search and Rescue

Yunuo Zhang∗, Baiting Luo∗, Ayan Mukhopadhyay∗, Daniel Stojcsics∗, Daniel Elenius†,

Anirban Roy†, Susmit Jha†, Miklos Maroti‡, Xenofon Koutsoukos∗, Gabor Karsai∗ and Abhishek Dubey∗

∗Vanderbilt University, †SRI, ‡University of Szeged

Abstract—Efficient path optimization for drones in search and
rescue operations faces challenges, including limited visibility,
time constraints, and complex information gathering in urban
environments. We present a comprehensive approach to opti-
mize UAV-based search and rescue operations in neighborhood
areas, utilizing both a 3D AirSim-ROS2 simulator and a 2D
simulator. The path planning problem is formulated as a partially
observable Markov decision process (POMDP), and we propose a
novel “Shrinking POMCP” approach to address time constraints.
In the AirSim environment, we integrate our approach with a
probabilistic world model for belief maintenance and a neu-
rosymbolic navigator for obstacle avoidance. The 2D simulator
employs surrogate ROS2 nodes with equivalent functionality. We
compare trajectories generated by different approaches in the
2D simulator and evaluate performance across various belief
types in the 3D AirSim-ROS simulator. Experimental results
from both simulators demonstrate that our proposed shrinking
POMCP solution achieves significant improvements in search
times compared to alternative methods, showcasing its potential
for enhancing the efficiency of UAV-assisted search and rescue
operations.

Index Terms—Search and Rescue, POMDP, MCTS

I. INTRODUCTION

Search and rescue (SAR) operations are critical, time-

sensitive missions conducted in challenging environments like

neighborhoods, wilderness [1], or maritime settings [2]. These

resource-intensive operations require efficient path planning

and optimal routing [3]. In recent years, Unmanned Aerial

Vehicles (UAVs) have become valuable SAR assets, offering

advantages such as rapid deployment, extended flight times,

and access to hard-to-reach areas. Equipped with sensors and

cameras, UAVs can detect heat signatures, identify objects,

and provide real-time aerial imagery to search teams [4].

However, the use of UAVs in SAR operations presents

unique challenges, particularly in path planning and decision-

making under uncertainty. Factors such as limited battery

life, changing weather conditions, and incomplete informa-

tion about the search area complicate the task of efficiently

coordinating UAV movements to maximize the probability of

locating targets [3]. To address these challenges, researchers

have proposed formalizing UAV path planning for SAR

missions as partially observable Markov decision processes

(POMDPs) [5]–[7]. POMDPs provide a mathematical frame-

work for modeling sequential decision-making problems in

uncertain environments where the system’s state is not fully

observable [8].

POMDP-like planning is crucial for search operations due

to inherent uncertainties [9]. In UAV-based SAR, POMDPs

capture uncertainties in target locations, sensor observations,

and environmental conditions while optimizing UAV paths [4].

They model unknown environmental states, imperfect sensor

information [10], and the complex interdependence between

decisions and future observations [11]. POMDPs naturally ad-

dress partial observability and long-term action consequences

[10]. However, solving large-scale POMDP problems remains

computationally challenging, with complexity growing expo-

nentially with state space, observation space, and planning

horizon sizes, often making exact solutions intractable for

real-world applications [12]. To address this challenge, recent

research has focused on online POMDP solutions, aiming

to find good policies quickly by interleaving planning and

execution and using sampling-based techniques to explore the

belief space efficiently [13], [14]. Online POMDP frameworks

have been applied to UAV path planning for SAR opera-

tions, addressing uncertainties in target motion and sensor

observations [15], partial observability of victim locations

and environmental hazards [16], and challenges in multi-UAV

search missions [17]. Despite these advancements, computa-

tional efficiency under strict time constraints remains a critical

challenge for real-time applications.

This paper presents a novel online path planner for UAVs

designed to enhance the efficiency of search and rescue opera-

tions in urban environments. Our approach combines advanced

simulation techniques with an innovative POMDP formulation

and solution approach. This method, called Shrinking POMCP

(partially observable Monte Carlo planning), guides the agent

toward the next best non-sparse region for planning (we define

a sparse region as a region that has probability of target

appearing in that region less than a given threshold). This

innovation is particularly crucial for real-world applications

with strict time constraints, as it allows for more effective

decision-making within limited computational resources. We

demonstrate the effectiveness of the approach using an Airsim-

based simulator.

The outline of this paper is as follows. We first describe

the necessary background concepts (§II), followed by the

problem formulation (§III), solution framework (§III-A) and

description of the POMDP planning algorithm (§IV), the

primary contribution of this paper. We conclude the paper with

a description of metrics and experimental results (§V).

48

2024 International Conference on Assured Autonomy (ICAA)

979-8-3315-2101-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ICAA64256.2024.00016

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 30,2025 at 21:37:37 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND AND RELATED RESEARCH

POMDPs, or Partially Observable Markov Decision Pro-

cesses, are a mathematical framework for modeling decision-

making in situations where an agent must make decisions in

an environment that is not fully observable. A POMDP is

formally defined as a tuple (S,A, T ,R,O,Z), where:

• S is a finite set of states.

• A is a finite set of actions.

• T : S ×A× S → [0, 1] is the transition function, where

T (s′|s, a) gives the probability of transitioning to state

s′ given action a is taken in state s.

• R : S ×A → R is the reward function.

• O is a finite set of observations.

• Z : S×A×O → [0, 1] is the observation function, where

Z(o|s′, a) is the probability of observing o given action

a is taken and the system transitions to state s′.

In a POMDP, the agent maintains a belief state b(s), which

is a probability distribution over all possible states. The belief

state is updated after each action and observation using Bayes’

rule. Solving a POMDP involves finding an optimal policy

π∗ that maximizes the expected cumulative reward. However,

exact solutions to POMDPs are computationally intractable

for all but the smallest problems. As a result, much research

has focused on approximate methods, including Point-based

Value Iteration (PBVI) [18], Heuristic Search Value Iteration

(HSVI) [19], and Monte Carlo Tree Search (MCTS) methods,

such as POMCP [13]. Note that Partially Observable Monte

Carlo Planning (POMCP) is an online POMDP solver that

extends Monte Carlo Tree Search (MCTS) to POMDPs [13].

(MCTS) is a heuristic search algorithm for decision processes,

particularly effective in large state spaces.

Key components of MCTS include: 1) Selection: Starting

from the root node, a child selection policy is recursively

applied to descend through the tree until reaching a leaf node.

2) Expansion: If the leaf node is not terminal and is within

the computational budget, one or more child nodes are added

to expand the tree. 3) Simulation: A simulation is run from

the new node(s) according to the default policy to produce

an outcome. 4) Backpropagation: The simulation result is

then ‘backed up’ through the selected nodes to update their

statistics.

During selection phase, UCT (Upper Confidence Bounds for

Trees) [20] is used as child selection policy: UCT = Xj +

C
√

2 lnn
nj

, Where Xj is the average reward from node j, n

is the number of times the parent node has been visited, nj

is the number of times child j has been visited, and C is an

exploration constant.

Saisubramanian et al. [21] introduced the Goal Uncertain

Stochastic Shortest Path (GUSSP) problem, a specialized form

of POMDP. GUSSPs extend the Stochastic Shortest Path

framework to handle goal uncertainty, maintaining a belief

state over possible goal configurations. While including an

observation function for goals like POMDPs, GUSSPs sim-

plify the problem by assuming full current state observability

Fig. 1. Our problem features planning the mission of a drone in a
neighborhood to search for some targets. The drone is not aware of the real-
locations and only have access to the likelihood of targets.

and myopic goal observations, resulting in a more tractable

solution space compared to general POMDPs.

Despite these advancements, existing approaches to solving

POMDPs and related problems like GUSSPs still face chal-

lenges in real-time applications. The computational complexity

of these methods often results in solution times that exceed

the strict time constraints of many real-world scenarios. Even

with the simplifications introduced by GUSSPs, the problem

can still be computationally demanding for large state spaces

or complex goal configurations. This limitation highlights the

need for more efficient algorithms that can provide high-

quality solutions within tight time bounds, particularly for

applications such as robotics and autonomous systems where

rapid decision-making is crucial.

A. AirSim and ROS2

Microsoft AirSim is an open-source simulator for au-

tonomous vehicles, developed by Microsoft Research [22]. It

was designed to bridge the gap between simulation and reality

in the field of artificial intelligence, particularly for drones and

self-driving cars. AirSim provides a platform for researchers

and developers to test and train AI algorithms in a realistic,

physics-based environment without the risks and costs asso-

ciated with real-world testing [22]. The simulator leverages

Unreal Engine [23] to create highly detailed, customizable

environments and supports various sensors commonly used in

autonomous systems, such as cameras, GPS, and IMUs [24].

To provide communication and integrate external processing,

the system supports the Robot Operating System v2 (ROS2)

[25]. AirSim has been upgraded for DARPA by Microsoft and

extended with STR Algorithm Development Kit to provide

mission generation and randomization.

III. PROBLEM FORMULATION

Overall, the problem we are interested in is to perform

autonomous target localization with multiple targets in an

urban environment using an unmanned aerial vehicle (UAV)

(fig. 1). A key aspect of this problem is the uncertainty in target

locations. The quadrotor does not possess prior knowledge of

exact target positions. Instead, it maintains a probabilistic map

49

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 30,2025 at 21:37:37 UTC from IEEE Xplore. Restrictions apply.

Perception
Component

Probabilistic
World Model Planner

Navigator +
Height

Adjuster

AIR SIM + ROS2

Fig. 2. Four key components of our approach. This paper focuses on the
planner component.

representing its belief state, which is continuously updated

based on a perception system, which eventually leads to update

of belief system. The perception system is also responsible for

the tracking and identification of the target if they are in the

range of the camera of the drone. Note that it is assumed

that the quadrotor has only one camera that is pointed in the

direction of travel and can only see in a limited area.

Solution to the problem requires perception, belief update,

planning and navigation together to generate trajectories that

minimize the overall cost function, increases the likelihood of

finding targets, avoiding no-fly zones, and minimizing overall

flight time.

A. Solution Approach

Figure 2 shows our software system for mission execution.

The perception module detects objects with specific attributes

and identifies relationships between them, handling environ-

mental novelties due to varying camera views, occlusion, and

weather perturbations. While state-of-the-art object detectors

like YOLO world [26] perform well in closed-world setups,

they struggle with novel attributes and relations in SAR oper-

ations. Our two-stage approach first detects generic objects,

then uses a vision-language model (VLM) [27] to detect

attributes and relations. VLMs, trained on diverse datasets,

can handle novelties effectively.

The probabilistic world model maintains and updates the

belief map using raw sensor information received from the

perception components, and other sensors such as inertial

measurement unit outputting the current drone position, obsta-

cle map, and belief map. It efficiently represents probability

distributions and their relations, generating updates from a

formal specification derived from mission parameters. The

world model also maintains the flight rules including location

of no-fly areas. The planner component is responsible for

generating flight plans – sequence of waypoints. The navigator

component is responsible for finding the shortest and safest

path (while avoiding collisions) in the 3-D environment. The

height adjustment component is utilized to increase or decrease

the height of the drone if no-safe path can be found. Overall,

the system works as an interactive protocol between the plan-

ner and the navigator. When the planner publishes a waypoint

(using ROS2), the determined waypoint is then passed to

the navigator component, which guides the quadrotor while

ensuring collision avoidance. This process continues until the

drone reaches the waypoint or the navigator determines it’s

unreachable. In either case, a new decision epoch is initiated,

allowing the drone to adapt dynamically to its environment

based on the most current information.

Note while there are innovations in each of the above

component, due to space limitations this paper is restricted

to the description of the planning algorithm.

IV. PLANNER

In this section, we describe our POMDP framework and

our approach for computing near-optimal actions for the

POMDP. A major bottleneck in directly using online search

algorithms (e.g., POMCP [13]) in our setting is scalability—

the management of the UAV at each time step can only

afford limited latency. To address this problem, we propose

a “shrinking POMCP” algorithm. Intuitively, once a search

tree is constructed, we hypothesize that the agent can traverse

the most promising actions down the nodes of the search tree,

provided it is in a sparse likelihood region of the map. For

example, consider that the agent is in the lower left corner of

a grid, with the target likely in the upper left corner. The agent

can construct a search tree once and (likely) take multiple

steps toward the target region without recomputing again. This

technique is designed to dynamically reduce the decision space

as planning progresses. The key innovation lies in its ability

to guide the agent towards the next best non-sparse region for

planning, effectively concentrating computational resources on

the most promising areas of the state space. Note that to

reduce complexity, we discretize the 3-D state space into a two

dimensional slice at a given mission height, set to ensure that

the perception component can operate efficiently. If required,

the operating height is changed and the 2-D planner can be

invoked again. The probabilistic world model can generate the

belief distribution at any given height.

A. POMDP Formalization

Decision Epoch: In our framework, the decision epoch

is defined as the moment when the solver is triggered to

determine the next waypoint for the quadrotor. This dynamic

decision-making process occurs at discrete time intervals, tran-

sitioning from time t to t+1, and is initiated by specific events

rather than at fixed time intervals. In practice, these events can

be monitored and controlled by a meta-controller. Specifically,

the solver is activated to make a new decision when one

of two conditions is met: either the quadrotor successfully

reaches its previously issued waypoint, or it encounters a

situation where the current waypoint is unreachable due to

obstacles obstructing all valid paths. At each decision epoch,

the solver receives a comprehensive update of the system’s

state, including the most recent belief states, the obstacles

detected by the quadrotor’s cameras in its immediate vicinity,

the quadrotor’s current position, and a request for the next

waypoint. This event-driven approach to decision epochs en-

sures that the system remains responsive to the dynamic nature

of the environment and the quadrotor’s progress, allowing for

adaptive and efficient navigation strategies.

50

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 30,2025 at 21:37:37 UTC from IEEE Xplore. Restrictions apply.

States: In our POMDP framework, we define the state space S
to encompass the position of the quadrotor and the locations of

all targets. Let st ∈ S denote the pre-decision state at time t.
Each state st is represented as a (3+2M)-dimensional vector:

st = [xq, yq, zq, x1, y1, . . . , xM , yM] (1)

where

• (xq, yq) ∈ R
2 represents the quadrotor’s horizontal posi-

tion

• zq ∈ R
+ denotes the quadrotor’s altitude

• (xi, yi) ∈ R
2 represents the location of the i-th target,

for i = {1, . . . ,M}
Thus, the complete state space S is of dimensions equalling

R
2 × R

+ × (R2)M . This formulation captures the full spa-

tial configuration of the system at any given time t, in-

corporating both the UAV’s three-dimensional position and

the two-dimensional locations of all M targets within the

neighborhood area. To simplify the problem, we discretize the

operational area into a grid. Let the original map be a square

of side length L. We partition this map into an N ×N grid,

where each cell represents an area of (L/N) × (L/N) (in

our implementation, N = 20, resulting in 20m ×20m cells).

Formally, we can define the grid G as:

G = {(i, j) | i, j ∈ {0, 1, . . . , N − 1}} (2)

At each decision epoch, the agent’s position is mapped to

one of these grid cells.

Actions: The action space A consists of four cardinal direc-

tions:

A = {West, South,East,North} (3)

Each action a ∈ A corresponds to moving to an adjacent grid

cell in the specified direction. For an agent in cell (i, j) at

time t, an action a ∈ A results in a transition to a new cell

(i′, j′) at time t+1, where the new coordinates depend on the

chosen direction.

The actual waypoint wt+1 within the chosen grid cell is de-

termined by finding a valid position closest to the quadrotor’s

current position xt:

wt+1 = argmin
w∈V (i′,j′)

∥w − xt∥ (4)

where V (i′, j′) is the set of valid positions within the

grid cell (i′, j′). We describe the translation of the grid-

based decision into a specific waypoint for the quadrotor later.

Observation: In our POMDP framework, the observation

space O provides partial information about the state. At each

time step t, an observation ot ∈ O is defined as a tuple

(γt, Bt), where γt = (xq, yq, zq) ∈ R
3 represents the exact

current position of the quadrotor, and Bt is the updated belief

state. The belief state Bt is a probabilistic map over the grid

G, where for each cell (i, j) ∈ G, Bt(i, j) ∈ [0, 1] represents

the probability of a target being present in that cell.

Reward: The reward function for our POMDP framework is

designed to guide the quadrotor agent in efficiently locating

targets within a specified neighborhood area. The reward

structure comprises two primary components: target capture

and token capture. This dual-component design balances the

agent’s focus between achieving the primary objective and

maintaining comprehensive environmental awareness.

The reward function R is formally defined as:

R = Rtarget + α ·Rtoken (5)

where Rtarget denotes the reward for target capture, Rtoken rep-

resents the reward for token capture, and α is a hyperparameter

controlling the relative importance of token capture.

Target Capture Reward (Rtarget): The target capture compo-

nent directly addresses the primary objective of the simulation.

It is defined as a binary function:

Rtarget =

{

1, if the agent captures a target

0, otherwise
(6)

This component provides a significant positive reinforce-

ment upon successful target capture, incentivizing the agent

to prioritize navigation towards known or suspected target

locations.

Token Capture Reward (Rtoken): The token capture compo-

nent serves as an exploration incentive, encouraging compre-

hensive coverage of the environment while prioritizing areas

of higher probability. It is defined as:

Rtoken =
∑

i

1(i) · Pi (7)

Where 1(i) is an indicator function for cell i, and Pi is the

normalized probability token value for cell i. Note that

1(i) =

{

1, if cell i is visited for the first time

0, if cell i has been visited before
(8)

and

Pi =
pi

∑

j pj
(9)

where pi represents the raw probability value assigned to

cell i in the probabilistic map, and Pi is its normalized form.

This cumulative reward structure incentivizes the explo-

ration of new cells while weighting the reward based on the

likelihood of finding targets in each cell. Cells with higher

normalized probabilities yield greater rewards upon first visit,

potentially facilitating the discovery of targets in areas deemed

more promising by the probabilistic map.

The hyperparameter α in eq. (5) allows for fine-tuning of

the agent’s behavior, balancing the emphasis between target

acquisition and environmental exploration. A higher α value

encourages more thorough exploration, while a lower value

prioritizes immediate target capture.

51

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 30,2025 at 21:37:37 UTC from IEEE Xplore. Restrictions apply.

o1

a1 a2

o7 o8

a3

o2

a1

o3

a2

o4

a3

o5 o6

a4a1

o2

a3

o8

Belief Nodes with Sparse Region

Action Nodes

Belief Nodes with Non-Sparse Region

Fig. 3. A belief tree constructed by the Shrinking POMCP approach,
illustrating its unique decision-making process. Circular nodes represent belief
states, with their normalized probability P (s) and quadrotor position µ(s) =
(xq , yq). Black-filled circles indicate non-sparse regions where P (s) > Pε.
Square nodes represent actions. The red arrows show the action sequence
{a1, a2, . . . , ak} decided by the agent, where each ai = argmaxa Q(bi, a).
This sequence terminates upon reaching either a non-sparse region (black
node) or the maximum depth max level. Unlike standard MCTS, this approach
efficiently guides the agent towards high-probability areas, terminating when
P (bk+1) > Pε or k = max level, thus avoiding goal sampling oscillation.

B. Shrinking MCTS

Algorithm 1 Shrinking POMCP

Require: Initial belief b0, max iterations, max time,

max level, Pε

Ensure: Action sequence A
1: Initialize belief tree T with root node b0
2: while iterations < max iterations and time < max time

do

3: s0 ∼ b0
4: SimulateV(s0, b0, 0)

5: end while

6: return GetActionSequence(b0, max level, Pε)

At each decision epoch, the algorithm constructs a belief

tree T with alternating action (A) and belief (B) nodes. The

root node b0 ∈ B represents the initial belief state (Line 1

in algorithm 1). Figure 3 illustrates this tree structure, where

action nodes are represented by squares and belief nodes by

circles. The red arrows represent the action sequence decided

by the agent.

The algorithm begins by sampling a random state s0 ∼ b0 to

initialize the root node of the tree (Line 3 in algorithm 1). This

initialization step ensures that the search starts from a plausible

state within the current belief distribution. The tree expansion

process involves a series of iterations, each comprising four

main phases: selection, expansion, simulation, and backpropa-

gation. In the selection phase, the algorithm traverses the tree

from the root node using the Upper Confidence Bound for

Trees (UCT) strategy. For a belief node b, the best action a∗

Algorithm 2 SimulateV(s, b, depth)

1: if IsTerminal(s) or depth > max depth then

2: return 0

3: end if

4: if b is leaf node then

5: Expand(b)
6: return Rollout(s, b)
7: end if

8: a = argmaxa

[

Q(b, a) + c
√

log(N(b))
N(b,a)

]

9: (s′, o, r) = G(s, a)
10: if b has no child corresponding to o then

11: b′ = CreateNewBeliefNode(b, a, o)
12: else

13: b′ = b.child(a, o)
14: end if

15: q = r + γ · SimulateV(s′, b′, depth + 1)
16: UpdateStats(b, a, q)

17: return q

is selected according to the equation:

a∗ = argmax
a

[

Q(b, a) + c

√

log(N(b))

N(b, a)

]

(10)

where Q(b, a) is the estimated value of action a in belief

state b, N(b) is the number of visits to node b, N(b, a) is

the number of times action a was selected from belief state b,
and c is an exploration constant (Line 8 in algorithm 2). This

selection strategy balances exploitation of known high-value

actions with exploration of less-visited branches.

The simulation phase employs a simulator G, which accepts

a state and an action as inputs. This simulator produces

three outputs: the probable subsequent state derived from the

transition function, the associated observation, and the cor-

responding reward. This process can be formally represented

as:

(s′, o, r) ∼ G(s, a)

where s′ is the next state, o is the observation, and r is the

reward, all generated based on the current state s and action

a (Line 9 in algorithm 2).

The expansion phase occurs when the selected action leads

to an unexplored observation. In this case, a new belief node

is added to the tree (Line 11 in algorithm 2). If the observa-

tion has been encountered before, the algorithm follows the

existing path (Line 13 in algorithm 2). When a leaf node is

reached during the simulation phase, the algorithm expands it

by creating child nodes for all possible actions. Then, a rollout

is performed till a terminal node. The result of this simulation

is then propagated back up the tree in the backpropagation

phase, updating the statistics (Q-values and visit counts) of all

traversed nodes (Line 16 in algorithm 2).

The key innovation of the Shrinking MCTS algorithm lies in

its decision-making process, which aims to move the agent to

52

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 30,2025 at 21:37:37 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 GetActionSequence(b, max level, Pε)

1: A = [], depth = 0
2: while depth < max level and P (b) f Pε do

3: a = argmaxa Q(b, a)
4: A.append(a)
5: b ∼ G(s, a)
6: depth+ = 1
7: end while

8: return A

the next best non-sparse region while avoiding goal sampling

oscillation. Each belief node s in the tree stores two critical

pieces of information: the quadrotor’s position γ(s) = (xq, yq)
and the normalized probability P (s) at that position. A belief

node is classified as Non-Sparse if its normalized probability

exceeds a predefined threshold, i.e., P (b) > Pε. In fig. 3, a

Belief Node with Non-Sparse Region is represented as a circle

filled with black.

Unlike standard MCTS, which typically selects a single ac-

tion at each step, our Shrinking approach determines an entire

action sequence. As shown in fig. 3, this sequence (represented

by red arrows) guides the agent towards high-probability areas.

The decision sequence is determined by traversing the tree

from the root, selecting the best action at each level until either

a maximum depth max level is reached or a Belief Node with

Non-Sparse Region is encountered. In the figure, we can see

this process leading to the action sequence {a1, a2, a3, a8},

terminating at a black node representing a non-sparse region.

Mathematically, this process can be described as taking k
actions {a1, a2, . . . , ak} such that ai = argmaxa Q(bi, a) and

bi+1 = τ(bi, ai, oi); the constraints we impose for termination

are P (bi+1) f Pε or k f max level, where τ(b, a, o) repre-

sents the belief update function given action a and observation

o. The sequence terminates when either P (bk+1) > Pε or

k = max level, as illustrated in fig. 3 where the sequence ends

at a black node (non-sparse region). This approach efficiently

guides the agent towards promising areas while avoiding the

oscillation often seen in standard MCTS implementations.

This approach allows the algorithm to dynamically shrink

the decision space by focusing on actions that lead to

non-sparse regions, effectively guiding the agent towards

areas of the state space with higher certainty. By doing so,

the Shrinking POMCP algorithm can potentially overcome

the limitations of traditional POMDP solvers in environments

with vast or sparse state spaces, leading to more efficient and

effective planning in partially observable domains.

Rollout In Monte Carlo planning, rollouts present a signifi-

cant computational challenge. These rollouts are essential for

approximating the value of leaf nodes within the search tree

using a computationally inexpensive strategy. Our approach

employs the A* algorithm [28] as the rollout policy, balancing

efficiency and effectiveness in pathfinding. While each individ-

ual rollout is computationally inexpensive, the cumulative cost

of performing thousands of rollouts for each decision becomes

a significant bottleneck. To address this challenge and improve

overall performance, we implement the A* algorithm using C

programming language [29]. We found that this approach led

to better results than standard random rollouts.

Each belief node s in our tree structure encapsulates in-

formation about the quadrotor’s position p(s). This positional

information is represented at two distinct levels of granularity:

1) Fine-grain level: The exact position on a high-resolution

map of dimensions L× L.

2) Discretized level: A coarser N ×N grid, where each cell

corresponds to a region of the fine-grain map.

While the Monte Carlo Tree Search (MCTS) simulation

operates on the discretized N × N grid for computational

efficiency, the rollout process necessitates a more precise po-

sition determination. Given a current state and action, we first

identify the target cell in the discretized grid. The challenge

then becomes determining the exact position within this target

cell.

To address this, we employ a sampling-based approach

that balances accuracy and computational efficiency. Let γc
represent the set of all possible positions in the current cell,

and γt represent the set of all possible positions in the target

cell. We define a sampling function S(γt) that returns a subset

of positions from γt. From this sampled subset, we identify

the set of valid positions V (S(γt)):

V (S(γt)) = {γ ∈ S(γt) | γ is a valid position} (11)

The next exact position γnext is then determined by finding

the position in V (S(γt)) that minimizes the Euclidean distance

from the current position γcurrent:

γnext = argmin
γ∈V (S(γt))

||γ − γcurrent|| (12)

where || · || denotes the Euclidean distance.

Once γnext is determined, we calculate the rollout value by

running the A* algorithm from γcurrent to γnext, using the

given obstacle map. Let L(γcurrent, γnext) denote the path

length returned by A*. The rollout value R is then computed

as a function of this path length:

R = f(L(γcurrent, γnext)) (13)

where f is a monotonically decreasing function. This formu-

lation ensures that shorter paths, indicating easier navigation,

result in higher rollout values, while longer paths, suggesting

more complex navigation, yield lower values.

C. Height Adjustment

Our planning approach initially assumes constant altitude

but incorporates an adaptive height adjustment strategy to bal-

ance obstacle avoidance with smooth flight patterns, mitigating

undesirable ”up and down” motions due to system noise.

The quadrotor starts at altitude hinit. For each target cell Ct

in the planned path, we evaluate the number of valid positions

Nv(Ct, h) at current height h:

53

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 30,2025 at 21:37:37 UTC from IEEE Xplore. Restrictions apply.

Nv(Ct, h) = |{γ ∈ Ct | γ is valid at height h}| (14)

We define an “obstacle tolerance threshold” τ . If

Nv(Ct, h) g τ , the waypoint’s altitude remains unchanged.

Otherwise, we incrementally adjust the height:

hnew = min(h+∆h, hmax) (15)

where ∆h is the height increment and hmax is the maximum

allowed height. This process repeats until Nv(Ct, hnew) g τ
or hnew = hmax.

If Nv(Ct, hmax) < τ , we designate the cell as a no-fly

zone and re-execute the Monte Carlo Tree Search (MCTS)

algorithm for an alternative path. This strategy ensures safe

obstacle avoidance while minimizing unnecessary altitude

changes, resulting in smoother and more efficient flight tra-

jectories.

V. ANALYSIS AND EVALUATION

We evaluate our proposed framework using both the

AirSim-ROS2 simulator and the two-dimensional simulator

described in section III-A and report the performance of

Shrinking POMCP against baseline.

A. Environment Simulators

We test our approach in two simulation environments:

1) 3D AirSim-ROS2 Simulator: This advanced environ-

ment incorporates the full functionality of our framework,

including the Probabilistic World Model and Navigator

components.

2) Two-dimensional Simulator: In this simplified environ-

ment, we test our approach without considering altitude

effects. The Probabilistic World Model and the Navigator

are replaced with surrogate ROS2 nodes that provide

equivalent functionality, allowing for efficient testing and

validation of our algorithms.

B. Hyperparameters

The testing environment for this mission scenario is set

within a 400m × 400m map, with a strict time constraint of 5

minutes to locate all targets. The quadrotor’s initial altitude is

set at 10 meters, providing a balance between coverage area

and detail resolution.

Several hyperparameters are adjusted to optimize the search

strategy. The discount factor in the POMDP framework is

tested with values of 0.8, 0.9, and 0.995, influencing the

balance between immediate and future rewards. The α value

in the reward function discussed in section IV, which affects

the weighting of different reward components, is varied among

0, 1, and 10. Shrinking MCTS runs 3000 iterations for every

decision epoch, with the exploration parameter in UCT set to√
2. For vertical navigation, the height adjustment parameter

δh (discussed in section IV-C) is set to 3m, with a maximum

allowable altitude of 30m. These parameters collectively define

the operational constraints and decision-making framework for

the quadrotor’s search mission.

Fig. 4. Environments for different belief scenarios. Left: Uniform belief
distribution across the environment. Center: Sparse belief with a single peak,
indicating high certainty in one area. Right: Sparse belief with three peaks,
representing multiple areas of high certainty. The green triangle (▲) represents
the start position, and the purple star (⋆) indicates the goal position. Color
intensity corresponds to belief value, with darker blue indicating higher belief.

C. Baselines

In our experiments, we evaluate the performance of our

Shrinking POMCP approach against three baseline methods:

Lawnmower algorithm, Greedy algorithm, and standard MCTS

(POMCP without shrinking). We test these methods on two

types of belief maps: Uniform belief map and Sparse belief

map with one peak. All methods are compared on the same

map, with identical no-fly zones and starting agent positions

for each scenario to ensure a fair comparison.

Lawnmower Algorithm: This baseline performs a sys-

tematic search in non-zero belief areas. At the start of each

episode, the agent moves to the nearest non-zero probability

position on the probability map. It then executes a lawnmower

pattern search, systematically covering the non-zero belief re-

gion until all targets are found. This method ensures complete

coverage of the search area but may not be optimal in terms

of efficiency.

Greedy Algorithm: This approach makes local decisions

based on immediate information. At each step, the agent

selects its next position by choosing the adjacent cell with

the highest value in the resized array. While this method can

be effective in quickly identifying high-probability areas, it

may suffer from getting trapped in local maxima.

Monte Carlo Tree Search (MCTS): We implement the

standard POMCP algorithm without our proposed shrinking

approach as a baseline. This method makes decisions only for

cardinal directions (WEST, SOUTH, EAST, NORTH), moving

to the next adjacent cell in the discretized grid at each step.

This baseline allows us to directly compare the performance

gains achieved by our Shrinking POMCP approach.

D. Results (Two-Dimensional)

Belief Maps: Three types of initial belief distributions

are tested in this scenario. The first is a Uniform Belief

(fig. 4), where probabilities are evenly distributed across the

entire map. The second is a Sparse Belief with One Peak

(fig. 4), characterized by a high probability concentration at

a single location that gradually diffuses outward. The third is

54

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 30,2025 at 21:37:37 UTC from IEEE Xplore. Restrictions apply.

TABLE I
HYPERPARAMETER SWEEP RESULTS: DF REPRESENTS DISCOUNT

FACTOR, RA IS REWARD ALPHA. SE IS STANDARD ERROR OF MEAN.
BOLD NUMBERS REPRESENT THE OPTIMAL COMBINATION OF DISCOUNT

FACTOR AND REWARD ALPHA CHOSEN FOR EACH BELIEF TYPE, BASED ON

THE BEST AVERAGE PERFORMANCE.

DF RA
Uniform Belief One Peak Three Peaks
Mean SE Mean SE Mean SE

0.8 0 17.3 3.4 17.2 5.1 6.2 1.0
0.8 1 24.3 3.4 15.2 4.8 8.4 3.5
0.8 10 37.4 14.5 12.5 4.8 12.6 6.0
0.9 0 18.1 9.9 15.9 5.1 6.1 0.9
0.9 1 16.1 7.7 12.2 5.0 15.4 6.3
0.9 10 15.3 8.4 12.4 4.9 6.7 3.3

0.995 0 5.7 1.6 12.0 4.9 11.3 4.7
0.995 1 7.3 1.6 12.2 5.0 6.7 2.0
0.995 10 22.7 9.7 11.3 4.8 3.0 0.9

a Sparse Belief with Three Peaks (fig. 4), featuring multiple

areas of high probability concentration. In all scenarios, the

belief distribution changes to reflect different levels of prior

knowledge about the environment.

Hyperparameter Sweep: We conducted a comprehensive

hyperparameter sweep to evaluate the performance of our

framework under different conditions and compare it with

baseline algorithms. The experiments were performed on the

three types of belief maps:

Uniform Belief Scenario: For the Uniform Belief scenario

as shown in table I, we explored different combinations

of discount factors (0.8, 0.9, 0.995) and reward alphas (0,

1, 10). The performance metric is the number of decision

epochs required to locate all targets, with a maximum limit of

100 epochs. The results indicate that higher discount factors

generally lead to better performance. This suggests that in

uniformly distributed belief scenarios, our framework benefits

from considering long-term rewards more heavily.

Sparse Belief with One Peak Scenario: In the Sparse

Belief with One Peak scenario as shown in table I, we used a

similar experimental setup. Similar as Uniform Belief, higher

discount factors generally lead to better performance.

Sparse Belief with Three Peaks Scenario: For the Sparse

Belief with Three Peaks scenario, higher discount factors,

particularly when combined with higher reward alpha values,

indicate better performance for our approach. This suggests

that in more complex belief distributions with multiple high-

probability areas, our framework benefits from both long-term

planning (higher discount factors) and a stronger emphasis on

immediate rewards (higher reward alpha).

Based on the results of our hyperparameter sweep, we

selected the combination of discount factor and reward alpha

that achieved the best average performance for each belief

type. These optimal hyperparameter values were then used

consistently in both our 2D environment and AirSim environ-

ment experiments, ensuring a standardized approach across

different simulation platforms.

Comparison between Shrinking POMCP and Other

Fig. 5. Comparison between our Shrinking approach and other methods
(MCTS, Lawnmower, and Greedy algorithms). Shrinking POMCP requires
significantly fewer decision epochs to locate all targets across all belief types.
Colors represent different approaches: Blue - Shrinking, Orange - MCTS,
Green - Lawnmower, Red - Greedy.

Methods: The performance comparison between our Shrink-

ing approach and other methods (MCTS, Lawnmower, and

Greedy algorithms) demonstrates the superior efficiency of

our proposed method. As shown in Figure 5, the Shrinking

approach consistently requires significantly fewer decision

epochs to locate all targets across both Uniform and One Peak

belief types.

The key advantage of our Shrinking POMCP lies in its

ability to output an action sequence at each decision epoch,

rather than a single action. This enables the agent to efficiently

navigate to the next best non-sparse region for planning in

every epoch. By doing so, our approach effectively mitigates

a common challenge faced by traditional POMCP, where sam-

pling goals can cause the agent to oscillate between different

actions. The result is a more decisive and efficient search

strategy, as evidenced by the consistently lower number of

decision epochs required across different belief scenarios.

E. Results (AirSim-ROS2)

No-Fly-Zones: No-fly zones provide spatial and temporal

constraints for quadrotor operations in simulated environ-

ments. These zones are defined areas that the quadrotor should

not enter. Each no-fly zone is represented by geometric bound-

aries, which could be 3D shapes like cubes, cylinders, or com-

plex polygons. A key feature of AirSim’s no-fly zones is their

temporal aspect. Each zone includes no_earlier_than

and no_later_than parameters, specifying the time win-

dow during which the restriction is active.

Entities of Interest: The configuration defines specific

vehicles as targets, each with unique attributes (e.g., a red

SEDAN). As the quadrotor explores, its cameras identify ve-

hicles matching these criteria. The system processes captured

images to update a belief map, reflecting the likelihood of

finding target entities in different locations.

Evaluation Scenarios: We evaluate the components by

running them through simulations in the mission scenario

(example of one scenario shown in figure 6). A scenario is

defined as a single mission and environmental configuration,

consisting of mission-related aspects (e.g., target types and

55

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 30,2025 at 21:37:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. X-Y odometry plot (in North East Down coordinates) of a quadrotor
drone’s area search mission, showing the drone’s path (yellow), ground truth
targets (hexagons), detected targets (numbered circles), no-fly zones (red),
buildings (grey), and search areas (green). The legend lists detected targets
with their probabilities.

arrangements, areas of interest, keep-out zones, and belief

maps) and environmental factors (e.g., weather, time of day,

and camera noise).

Metrics: Overall, the success of the mission is evaluated

using a set of metrics: COP Completeness1: Percentage of

correctly reported target information elements out of total

target information elements. It’s calculated by maintaining

a running status of each information element (e.g., type,

location) throughout the trial, determining if it’s in scope and

correctly reflected in the COP. The metric is presented as

a distribution with mean and 95 % CI for each evaluation

condition. COP Accuracy: Percentage of correctly reported

targets out of total reports. This metric is captured per trial and

presented as a distribution with mean and 95 % CI for each

evaluation condition, reflecting the accuracy of the system’s

target identification and reporting; and COP Reporting La-

tency: Average time between a target change and its correct

reporting. It’s calculated using time points for every relevant

change during each trial at a 1-second resolution. The metric

is presented as a distribution with mean and 95% CI for each

evaluation condition, indicating the system’s responsiveness to

target changes.

The figure (fig. 6) describes a single run of the system

for one of the scenarios. The map is divided into different

zones: green areas represent regions of interest with non-zero

probability of containing targets, grey areas indicate obstacles,

like buildings and trees, and red areas denote no-fly zones. The

drone’s path, shown in yellow, navigates efficiently through

the green areas, avoiding obstacles and restricted zones. In this

1COP stands for common operating picture

Fig. 7. Performance comparison between the Shrinking POMCP approach
and SOTA (Lawnmower) method. The box plots show the distribution of COP
Completeness, COP Accuracy, and COP Latency across multiple runs. The
Shrinking approach (light blue) consistently outperforms the SOTA method
(light green) across all metrics, with higher completeness and accuracy, and
lower latency. Median values are indicated by purple lines.

run, our planner algorithm located all 4 cars of interest, marked

as numbered targets on the map using the novel perception

component developed by SRI in the same DARPA project. The

drone’s path demonstrates an efficient search strategy, entering

high-probability areas directly and minimizing time spent in

low-probability regions. This efficiency is due to our shrinking

approach in the algorithm, allowing the quadrotor to make

faster decisions and focus on promising areas.

Figure 7 illustrates the performance of our Shrinking

POMCP framework compared to the SOTA Baseline (lawn-

mover search pattern with YOLO v8 World perception) across

multiple scenarios and runs. We show variance to remove

experimental bias. Our method consistently outperforms the

Baseline in all three key metrics: COP Completeness, COP

Accuracy, and COP Latency. For COP Completeness, our

approach shows a higher median and a more concentrated dis-

tribution, indicating more consistent and thorough coverage. In

terms of COP Accuracy, our Shrinking approach demonstrates

superior performance, with a median accuracy of 1.0 compared

to the SOTA’s lower and more varied distribution. The average

COP Accuracy for our approach is 0.81, while the SOTA

achieves only 0.57, highlighting our method’s significantly

higher precision in correctly reporting targets. Regarding COP

Latency, our framework exhibits lower latency with a tighter

distribution, suggesting faster and more consistent response

times. These enhancements are due to our framework’s effi-

cient search strategy, enabling the quadrotor to make faster

decisions and prioritize high-probability areas.

VI. CONCLUSION

In this paper, we presented an optimized approach for UAV-

based search and rescue operations in neighborhood areas. We

developed a realistic simulator using AirSim and ROS2, and

formulated the path planning problem as a POMDP. Our novel

56

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 30,2025 at 21:37:37 UTC from IEEE Xplore. Restrictions apply.

Shrinking POMCP approach addresses time constraints in

search and rescue missions. Experimental results demonstrate

that this method significantly outperforms alternatives, locating

all targets in fewer decision epochs. This suggests our solu-

tion can substantially enhance the efficiency of UAV-assisted

search and rescue operations, potentially saving critical time

in emergency situations.

VII. DISCUSSION AND FUTURE WORK

While Shrinking POMCP shows promise in adapting to

non-stationary environments, future research could explore

integrating function approximation techniques into the plan-

ning process. Neural network approximators could be used to

learn the inherent uncertainty in the environment [30], poten-

tially improving the algorithm’s ability to adapt to changes.

Additionally, leveraging learned approximators to acceler-

ate MCTS convergence [31] could enhance computational

efficiency. Combining these approaches with our Shrinking

POMCP could lead to a more robust and efficient algorithm

capable of rapid adaptation in non-stationary environments

while maintaining computational tractability, particularly in

domains with large state spaces and complex dynamics.

ACKNOWLEDGMENTS

This material is based upon work sponsored in part by the

by the Defense Advanced Research Projects Agency (DARPA)

under its Assured Neuro Symbolic Learning and Reasoning

(ANSR) project and the US Air Force Research Laboratory

(AFRL) and in part by the National Science Foundation Grant

2238815. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the authors

and do not necessarily reflect the views of DARPA. The

authors would like to thank Microsoft for creating the AirSim

simulator and STR for developing the challenge scenarios for

the ANSR program.

REFERENCES

[1] J.-H. Ewers, D. Anderson, and D. Thomson, “Deep reinforcement
learning for time-critical wilderness search and rescue using drones,”
2024.

[2] S. Aronica, F. Benvegna, M. Cossentino, S. Gaglio, A. Langiu,
C. Lodato, S. Lopes, U. Maniscalco, and P. Sangiorgi, “An agent-based
system for maritime search and rescue operations,” vol. 621, 09 2010.

[3] L. Lin and M. Goodrich, “Uav intelligent path planning for wilderness
search and rescue,” pp. 709–714, 12 2009.

[4] S. Waharte and A. Trigoni, “Supporting search and rescue operations
with uavs,” 2010 International Conference on Emerging Security Tech-

nologies, pp. 142–147, 2010.
[5] F. Trotti, A. Farinelli, and R. Muradore, “An online path planner based

on pomdp for uavs,” in 2023 European Control Conference (ECC),
pp. 1–6, 2023.

[6] M. Ahmadi, N. Jansen, B. Wu, and U. Topcu, “Control theory meets
pomdps: A hybrid systems approach,” IEEE Transactions on Automatic

Control, vol. 66, no. 11, pp. 5191–5204, 2021.
[7] B. R. O. Floriano, G. A. Borges, H. C. Ferreira, and J. a. Y. Ishihara,

“Hybrid dec-pomdp/pid guidance system for formation flight of multiple
uavs,” J. Intell. Robotics Syst., vol. 101, mar 2021.

[8] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelligence,
vol. 101, no. 1, pp. 99–134, 1998.

[9] N. Roy, G. Gordon, and S. Thrun, “Finding approximate POMDP
solutions through belief compression,” Journal of Artificial Intelligence

Research, vol. 23, pp. 1–40, 2005.

[10] M. Spaan, “Cooperative active perception using pomdps,” 01 2008.
[11] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient point-based

POMDP planning by approximating optimally reachable belief spaces,”
in Robotics: Science and systems, vol. 2008, 2008.

[12] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov
decision processes,” Mathematics of operations research, vol. 12, no. 3,
pp. 441–450, 1987.

[13] D. Silver and J. Veness, “Monte-carlo planning in large pomdps,”
in Advances in Neural Information Processing Systems (J. Lafferty,
C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, eds.), vol. 23,
Curran Associates, Inc., 2010.

[14] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot: Online pomdp
planning with regularization,” in Advances in Neural Information Pro-

cessing Systems (C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Weinberger, eds.), vol. 26, Curran Associates, Inc., 2013.

[15] S. Ragi and E. K. Chong, “Uav path planning in a dynamic environment
via partially observable markov decision process,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 49, no. 4, pp. 2397–2412, 2013.
[16] S. Carpin, D. Burch, N. Basilico, T. Chung, and M. Kölsch, “Variable

resolution search with quadrotors: Theory and practice,” Journal of Field

Robotics, vol. 30, 09 2013.
[17] S. Perez-Carabaza, J. Bermudez-Ortega, E. Besada-Portas, J. A. Lopez-

Orozco, and J. M. de la Cruz, “A multi-uav minimum time search
planner based on acor,” in Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO ’17, (New York, NY, USA), p. 35–42,
Association for Computing Machinery, 2017.

[18] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for pomdps,” pp. 1025–1032, 01 2003.

[19] T. Smith and R. Simmons, “Heuristic search value iteration for pomdps,”
2012.

[20] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”
vol. 2006, pp. 282–293, 09 2006.

[21] S. Saisubramanian, K. H. Wray, L. Pineda, and S. Zilberstein, “Planning
in stochastic environments with goal uncertainty,” 2020.

[22] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” 2017.

[23] Epic Games, “Unreal engine.” https://www.unrealengine.com/, 2023.
Version 5.2.

[24] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” 2017.

[25] Open Robotics, “Ros 2 documentation.” https://docs.ros.org/en/rolling/,
2024. Accessed: 2024/07/25.

[26] T. Cheng, L. Song, Y. Ge, W. Liu, X. Wang, and Y. Shan, “Yolo-
world: Real-time open-vocabulary object detection,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 16901–16911, 2024.

[27] H. You, H. Zhang, Z. Gan, X. Du, B. Zhang, Z. Wang, L. Cao, S.-F.
Chang, and Y. Yang, “Ferret: Refer and ground anything anywhere at
any granularity,” arXiv preprint arXiv:2310.07704, 2023.

[28] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems

Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
[29] B. W. Kernighan and D. M. Ritchie, The C programming language.

Englewood Cliffs, NJ: Prentice Hall, 2nd ed., 1988.
[30] B. Luo, Y. Zhang, A. Dubey, and A. Mukhopadhyay, “Act as you

learn: Adaptive decision-making in non-stationary markov decision
processes,” in Proceedings of the 23rd International Conference on

Autonomous Agents and Multiagent Systems, AAMAS ’24, (Richland,
SC), p. 1301–1309, International Foundation for Autonomous Agents
and Multiagent Systems, 2024.

[31] A. Pettet, Y. Zhang, B. Luo, K. Wray, H. Baier, A. Laszka, A. Dubey, and
A. Mukhopadhyay, “Decision making in non-stationary environments
with policy-augmented search,” in Proceedings of the 23rd International

Conference on Autonomous Agents and Multiagent Systems, AAMAS
’24, (Richland, SC), p. 2417–2419, International Foundation for Au-
tonomous Agents and Multiagent Systems, 2024.

57

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 30,2025 at 21:37:37 UTC from IEEE Xplore. Restrictions apply.

