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ABSTRACT

BPF programs provide the ability to extend the kernel while en-
suring safety. The safety guarantees are provided by the in-kernel
verifier. However, the verification guarantees may not hold when
multiple BPF programs interact with each other through helper
functions. This is because, while verifying a BPF program, the veri-
fier considers each BPF program as an individual unit rather than
part of a composite system. One aspect affected by this unsafe com-
position is the kernel stack. In this paper, we highlight how different
possible nesting scenarios can affect the safety of the kernel stack.
To address this problem, we propose a helper-rooted callgraph-
based approach, which enables the verifier to have a global view
of the system. By using the callgraph and maximum stack depth
information during verification, the verifier will either accept or
reject a program by considering all the possible nesting scenarios,
which ensures runtime stack safety.
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1 BACKGROUND AND MOTIVATION

In this section, we provide background on BPF and its verifier, and
then demonstrate unsafe BPF composition by considering the stack
as a running example.

1.1 Overview of BPF programs and Verifier

BPF programs are extensions to the kernel that provide the flexibil-
ity to attach code from userspace at runtime. These programs are
attached to the kernel through hook points. The hooks get triggered
when they are in the kernel execution path. The BPF verifier plays
an important role by verifying a BPF program and ensuring safety
to the kernel. After verification, the verified BPF instructions are
directly JIT compiled into machine instructions.

BPF programs serve a wide range of use cases like tracing, net-
working, security modules, etc. To facilitate these usecases there is
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Figure 1: Nested BPF programs Overview
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a need for BPF programs to interact with the kernel. For this inter-
action BPF programs use helper functions (stable between releases)
or kfuncs (unstable) as an interface to the kernel.

During the verification step, the verifier assumes BPF programs’
interactions with helper functions are safe. Though it performs type
checking, memory access validation, and resource allocation/release
checking on the bytecode, the verifier lacks the ability to see what
is happening inside the helper functions. In the case of stack usage,
the verifier only restricts BPF programs from exceeding more than
512 bytes. However, helper functions’ stack usage is unaccounted
for. So, with a sufficient amount of nesting, the kernel stack can be
overflowed. To address this issue, kernel developers [11] recently
developed an approach to allocate BPF local variables on the heap'.
This approach might delay the overflow, but not completely prevent
it.

1.2 The Fundamental lack of a global view

The BPF verifier operates under a limited scope during the verifica-
tion process, which is supported by certain assumptions about the
execution environment that BPF programs interact with. However,
these assumptions and the verifier’s limited scope prove [9] to be
insufficient when dealing with the nesting of BPF programs.

In the kernel, multiple BPF programs can be nested through
helper functions. For example, as shown in Figure 1, BPF program 1
can call a helper function, which then calls a function to which BPF
program 2 is attached. The verifier’s limited scope and assumptions
do not adequately consider the complexities introduced by these
nesting scenarios. In the stack example this leads to an overflow, as
the verifier fails to account for the cumulative stack usage resulting
from nested program executions. We next explore how helper-
rooted callgraphs can help the verifier in achieving a global scope.

IDiscussed in detail in Section 3
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Figure 2: Proposed design overview

2 CALLGRAPH BASED SOLUTION

In this section, we define helper-rooted callgraphs, describe how
they will be utilized by the BPF verifier to solve stack overflow
issue and provide some hypothesis on using these callgraphs in the
context of design.

2.1 Helper-rooted Callgraphs

Helper-rooted callgraphs consist of helper functions as root nodes
and functions callable from these helpers as nodes in the graph.
This callgraph can be used to identify nesting scenarios at load
time. For example, if a BPF program is attached to a helper function
or any of the functions called by that helper (callee’s), then the
callgraph data will be updated with the stack depths utilized by
the BPF program during attachment time. The verifier will use
this updated information to determine whether a BPF program is
attaching directly to a helper or to a function inside these helpers,
representing a nesting scenario, as shown in Figure 2.

The callgraph design consists of two components: static and
dynamic. The static component refers to all the helper functions
and their respective stack sizes, which are defined by the kernel
code. The dynamic component refers to updating the call graph
when a new BPF program is attached to a helper function’s call
graph, as this can change the maximum stack size when that helper
function is used.

2.2 Discussion on generated callgraphs

Generating the call graph for the entire kernel is a challenging task.
However, generating a call graph for a subset of functions, such as
helper functions, should be relatively straightforward. There are
challenges in handling both the static and dynamic pieces. The static
piece has to handle indirect calls and loops within the graph. While
loops are beyond the scope of this project, we propose addressing
indirect calls using type matching [6], which predicts potential
targets for indirect call sites. This method improves the accuracy
of our call graph by providing a clearer picture of possible function
calls and maximum stack depth at runtime. For the dynamic piece,
the callgraph should be recalculated based on runtime attachments.
Multiple cases of nesting are possible in BPF, such as a BPF program
being stacked on top of other BPF programs, plugged in the middle
between the programs, or as a leaf. The dynamic piece has to handle
all three possible nesting scenarios and recalculate the stack depths
accordingly.
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Among the 278 helper functions in the kernel, some are partic-
ularly complex. For example, bpf_sys_bpf has deep call depths, a
large number of loops and indirect calls, and accesses many kernel
panic interfaces. This complexity can lead to overestimation of the
calculated stack depth. However, we hypothesize that there is a
subset of helper functions for which the generated call graph is
straightforward and accurately represented, which may be suffi-
cient for some popular classes of BPF extensions. For this subset,
our proposed call graph solution will be effective.

3 RELATED WORKS

Providing a safe way to extend Operating Systems has been a pivotal
area of research for over two decades. A number of approaches have
been proposed to provide safety by using type-safe languages [1],
software fault isolation [10, 12], interpretive languages [7], proof-
carrying code [5, 8], and hardware-based protection mechanisms
[3] but they do not address how multiple extensions interact and
co-exist safely with other extensions.

Similar to stack management in kernel extensions, embedded
systems must work within tight resource constraints. In work pro-
posed by Biswas et al. [2], they studied how to protect embedded
system stacks from overflow. To address the problem, they pro-
posed reusing dead space in the heap and compressing live data
if additional stack memory is required. This kind of approach for
providing runtime safety will not work if there is a possibility of infi-
nite nesting. A similar approach has been recently discussed on the
Linux mailing list [11] to solve nesting issues to facilitate a schedul-
ing usecase. The proposed design is to allocate stack variables in the
heap or per-cpu pre-allocated memory so that multiple-level nested
BPF programs cannot easily overflow the stack. Even this proposed
design has the same problem of potential runtime overflow with
deeper nested call chains.

We have suggested that with a call graph, the verifier will have
the ability to prevent unsafe nesting. Some related work has been
done in this area to evaluate the code coverage of system calls to
gain insight into the effectiveness of fuzzers with Function Call
Graphs [4]. However fuzzers will not cover all execution paths of
the program and are therefore ineffective for estimating stack sizes
statically.

4 SUMMARY

In this extended abstract, we presented the fundamental issue of
the verifier’s lack of a global view on BPF programs’ interactions
leading to problems like kernel stack overflows. We then provided
a helper-rooted callgraph-based approach that can fix this problem
at verification time. Finally, we provided thoughts on why the
generated callgraph solution has to be limited to a subset of helper
functions.
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