
SZKP: A Scalable Accelerator Architecture for Zero-Knowledge
Proofs

Alhad Daftardar
New York University

United States of America
ajd9396@nyu.edu

Brandon Reagen
New York University

United States of America
bjr5@nyu.edu

Siddharth Garg
New York University

United States of America
sg175@nyu.edu

Abstract
Zero-Knowledge Proofs (ZKPs) are an emergent paradigm in veri�-
able computing. In the context of applications like cloud computing,
ZKPs can be used by a client (called the veri�er) to verify the service
provider (called the prover) is in fact performing the correct com-
putation based on a public input. A recently prominent variant of
ZKPs is zkSNARKs, generating succinct proofs that can be rapidly
veri�ed by the end user. However, proof generation itself is very
time consuming per transaction. Two key primitives in proof gener-
ation are the Number Theoretic Transform (NTT) and Multi-scalar
Multiplication (MSM). These primitives are prime candidates for
hardware acceleration, and prior works have looked at GPU im-
plementations and custom RTL. However, both algorithms involve
complex data�ow patterns – standard NTTs have irregular mem-
ory accesses for butter�y computations from stage to stage, and
MSMs using Pippenger’s algorithm have data-dependent memory
accesses for partial sum calculations. We present SZKP, a scalable
accelerator framework that is the �rst ASIC to accelerate an entire
proof on-chip by leveraging structured data�ows for both NTTs
and MSMs. SZKP achieves conservative full-proof speedups of over
400⇥, 3⇥, and 12⇥ over CPU, ASIC, and GPU implementations.

CCS Concepts
• Computer systems organization ! Special purpose sys-
tems; • Security and privacy! Privacy-preserving protocols;
• Hardware! High-level and register-transfer level synthe-
sis.

Keywords
Zero-Knowledge Proofs, Cryptography, Hardware Acceleration

ACM Reference Format:
Alhad Daftardar, Brandon Reagen, and Siddharth Garg. 2024. SZKP: A
Scalable Accelerator Architecture for Zero-Knowledge Proofs. In Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT
’24), October 14–16, 2024, Long Beach, CA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3656019.3676898

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
PACT ’24, October 14–16, 2024, Long Beach, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0631-8/24/10
https://doi.org/10.1145/3656019.3676898

1 Introduction
Zero-knowledge proofs (ZKPs) [16] are cryptographic protocols
that o�er an enticing capability: a prover is able to convince a veri-
�er of the truthfulness of a statement, without revealing any further
knowledge of how or why that statement is true. For example, one
can prove they qualify for a loan without revealing bank account
details, that one purchased an authentic ticket to enter an event
without revealing personal details, or that one’s vote was counted
without revealing which candidate was selected. ZKPs are seeing
killer applications in Machine-Learning-as-a-service (MLaaS) [36]
and crypto-currencies [10] (the latter with extensions to electronic
voting [38]). MLaaS providers can use ZKPs to o�er services (e.g. rec-
ommendation systems) while protecting proprietary model weights
that would otherwise be necessary to verify correct operation on
clients’ inputs. Cryptocurrencies can use ZKPs to enable private
transactions while maintaining regulatory compliance [6].

Like other cryptographic protocols, however, ZKPs incur mas-
sive computational overheads. For example, the runtime of a single
AES ZKP, i.e., where the prover proves access to the secret key with-
out revealing it, on a CPU is on the order of 100s of milliseconds.
This is because of how programs (that are to be veri�ed) have to be
transformed into speci�c linear forms to even construct the proof
in the �rst place, followed by intense computational demands of
the underlying cryptographic algorithms. The impractically high
runtimes of ZKPs have motivated research on both GPU and cus-
tom hardware acceleration [24, 25, 37]. Recent works accelerate
two of the most computationally demanding kernels of a ZKP: the
number theoretic transform (NTT), and the multi-scalar multipli-
cation (MSM). NTTs are analogs of fast Fourier transforms (FFTs)
over �nite �elds. MSMs compute a weighted sum of points on an
elliptic curve; since multiplications in elliptical curve cryptography
(ECC) are expensive, they leverage Pippenger’s algorithm [31] (see
Section 3.1.1) to restructure computation to reduce the number of
ECC multiplications in favor of ECC additions.

Yet, prior work has stopped short of fully evaluating the bene-
�ts of hardware acceleration for ZKPs. First, these works choose
to leave key parts of the ZKP algorithm, for instance, so-called
“Sparse” MSMs, to software. However, these functions are by no
means inexpensive or easy to accelerate. Prior work reveals that
Sparse MSMs in software are nearly �ve times slower than the hard-
ware accelerated components of the ZKP algorithm [37]. Second,
prior work has presented single design point solutions, leaving a
large design space of area-performance trade-o�s unexplored. This
applies as well to the individual MSM and NTT modules; some of
these implementations have scalability bottlenecks, requiring, for
example, on-chip bu�ers with a large number of read/write ports
and/or complex control logic. And �nally, prior work has stopped

271
Authorized licensed use limited to: New York University. Downloaded on January 30,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Alhad Da�ardar, Brandon Reagen, and Siddharth Garg

short of “full-chip” simulations/evaluations, leaving, for example,
key questions around o�-chip bandwidth unaddressed.

SZKP addresses each of these limitations. First, we accelerate all
steps in online ZKP proof generation. In the process, we uncover
interesting and previously unexplored design choices in integrating
modules such as Sparse MSMs on the chip. Second, we perform a
detailed evaluation of the ZKP accelerator design space, enabled
by new scalable designs for MSM and NTT modules with simple
control logic and high-level synthesis (HLS) friendly implementa-
tions. Full-chip simulations reveal a rich design space of accelerators
from large, highly-parallel 800 mm2 chips to tiny, sub-50 mm2 cores,
yielding designs that achieve 12 � 86⇥ speedups over GPU works
while using 50% less area and 3� 12⇥ speedups over existing ASICs.

2 Background
2.1 Zero Knowledge Proofs
Zero-Knowledge Proofs (ZKPs) allow an entity called the prover to
demonstrate knowledge of a computation ~ = 5 (F , G), on a private
witnessF and public input G without revealing anything about the
witnessF . For instance, a prover could prove knowledge of a secret
key that encrypts public input G to output ~, without revealing the
key itself. This ZKP, for example, would allow the prover to access
a password-protected cloud service without revealing the password
to the cloud. Several ZKP protocols have been proposed in literature
with di�erent properties. A prominent state-of-art protocol is a
zkSNARK, or a zero-knowledge Succinct Non-interactive ARgument
of Knowledge [9, 17]. zkSNARKs have three main properties: (i)
zero-knowledge, meaning the proof reveals no information about
the secret witness F ; (ii) succinctness, meaning the proof is very
small, on the order of 100s of bytes, and (iii) non-interactiveness,
meaning only one round of communication is performed where
the prover sends the proof to the veri�er (as opposed to a protocol
where multiple rounds of communication are performed). Given
their wide applicability and usage, this paper focuses on hardware
accelerators for zkSNARK proof generation.

2.2 zkSNARK Protocol Description
Groth16 [17], shown in Figure 1, is a state-of-art zkSNARK pro-
tocol. In this protocol, the prover �rst generates two keys: (i) a
proving key, which is used subsequently to construct the actual
proof, and (ii) a veri�cation key, sent to the veri�er. This step is
time-consuming but is performed o�ine and only once. Then, for
each new input G , the prover has to construct a proof online. This
online step is also computationally expensive, hence a potential
target for hardware acceleration [24, 25, 37]. Proof generation in
Groth16 involves two basic operations: MSMs and NTTs. These are
described next, followed by the overall data�ow of Groth16.

2.2.1 MSMs. MSMs compute dot products, i.e.,
Õ=�1
8=0 08%8 where

%8 are elements in a cyclic group ⌧ , typically, 3-dimensional points
on an elliptical curve, and 08 are scalar integers. The individual
scalars and coordinates for points can range from 254-753 bits wide
depending on the elliptical curve [2]. Compared to a typical dot
product operation, multiplication between a scalar and a point, e.g.
08%8 , is computationally expensive and achieved via repeated addi-
tions of point %8 . Point additions are themselves costly; depending

upon the elliptical curve, a point addition consists of anywhere
between 16 and 80 modular multiplications alone.

Groth16 computes two types of MSMs: Sparse and Dense. Sparse
MSMs di�er fromDenseMSMs primarily in the values of the scalars.
As the name suggests, Sparse MSM scalars are typically 0 or 1, and
usually account for 90%-99% of all scalars. This is because scalar
values come from intermediate outputs of program execution, and
0s and 1s relate to the outcomes of branches, conditionals, and other
nonlinearities in the program execution that is being veri�ed. This
means that roughly half the points can be ignored and half can be
directly added once, while the remaining 1-10% of points require
more complex processing. In contrast, scalars for Dense MSMs are
typically uniformly distributed [2].

In the Groth16 protocol, there are four Sparse MSMs. Three of
these are performed on points belonging to an elliptic curve group
G1, as is the Dense MSM. The fourth MSM is performed on points
from an elliptic curve group G2. The latter operation is distinct in
that it involves computations on pairs of points within G2, which
is necessary for the pairing-based operations that underpin the
Groth16 proofs. Consequently, the G2 MSM is computationally
more expensive than G1. Furthermore, one of the Sparse G1 MSMs
and the Sparse G2 MSM also exhibit sparsity in their points. In ECC,
this manifests as the “point at in�nity” O, which essentially has the
same properties as the number 0 in normal addition.

2.2.2 NTTs and Polynomial Computation. The Number Theoretic
Transform is an analog of the Fast Fourier Transform with ele-
ments that lie in a �eld, for instance, integers modulo a prime ? .
NTTs are used for performing polynomial multiplications, which
are equivalent to the convolution of polynomial coe�cients. In-
stead, it is faster to compute the NTT of the coe�cients of each
polynomial, element-wise multiply (EWM) the NTT outputs, and
perform an inverse NTT (INTT). Groth16 involves multiplications,
divisions and subtractions over input polynomials implemented
using a sequence of NTTs, EWMs and INTTs. In hardware, typically
the Cooley-Tukey NTT is used, based on the Cooley-Tukey FFT
[12]. Several prior works [18–20, 25, 33–35, 37] propose techniques
to accelerate the NTT, including two prior works on ZKPs.

2.2.3 Overall Dataflow of Groth16. While we cannot do full justice
to Groth16 here, we will highlight some key concepts relevant to
hardware acceleration. Groth16, as well as several other zkSNARK
protocols, represents the computation 5 as a rank-1 constrained
system (R1CS) that represents the inputs and outputs of each in-
termediate computation in 5 via three vectors, 0, 1 and 2 . These
vectors are transformed into polynomials �(G), ⌫(G) and ⇠ (G),
using which Groth16 �rst computes:

� (G) =
�(G)⌫(G) �⇠ (G)

G# � 1
where # is the NTT length. All three sequences start in the NTT do-
main, and each undergoes an INTT, an EWM, and then another NTT.
Then, � (G) is computed, with the division operation performed as
a multiplication by a scalar. � (G) is still in the NTT domain, so it
is processed with an INTT and an element-wise multiply to yield
the set of scalars ⌘.

The elements of ⌘ form the scalars that are used to compute a
Dense MSM with points derived from the proving key (computed

272
Authorized licensed use limited to: New York University. Downloaded on January 30,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

SZKP: A Scalable Accelerator Architecture for Zero-Knowledge Proofs PACT ’24, October 14–16, 2024, Long Beach, CA, USA

INTT EWM NTT

INTT EWM

INTT EWM

NTT

NTT

EWM

EWS

EWM INTT

EWM Dense
G1 MSM

Sparse
G1 MSM

Proving Key () & Witness Vector ()

Sparse
G1 MSM

Sparse
G1 MSM

Sparse
G2 MSM

Construct Proof

Proof

Figure 1: Groth16 data�ow. This protocol involves 7 (I)NTTs and 5 MSMs to construct a lightweight proof for the veri�er.
In our design, software provides us �(B),⌫(B), and ⇠ (B), as well as the witness vector F and ECC points derived from the
o�line-generated proving key.

Scalars (binary) Points

window 0window 1

Figure 2: Pippenger’s algorithm. This example demonstrates
computation of window 1, with %G already computed for
window0. The�nal result involves doubling %~ 3 times before
adding it with %G

o�ine). In parallel, the proving key and witness vectors are also
used to compute the four sparse MSMs. Together, the MSM outputs
are used to construct the �nal proof sent to the veri�er.

3 The SZKP Architecture
3.1 Dense MSM Architecture
SZKP’s Dense MSM architecture uses Pippenger’s algorithm [31],
commonly deployed in a range of ZKP implementations [24, 25, 37].
We review Pippenger’s before describing our architecture.

3.1.1 Pippenger’s algorithm for MSMs. MSM computations are
prohibitively expensive for high bit-width scalars because of the
potentially large number of point additions needed to compute each
term in the MSM. The commonly used alternative is Pippenger’s
algorithm (see Figure 2), where _-bit scalars are broken up into
narrower, -bit windows. For instance, a 256-bit scalar might be
broken up into 64 4-bit windows.

Then, each scalar within a window maps to one of ⌫ = 2, � 1
buckets, omitting the 0C⌘ bucket. For example, for 5-bit windows,
there are 31 buckets. Points are accumulated into buckets corre-
sponding to their 5-bit scalar values—equivalently, all points corre-
sponding to the same 5-bit scalar are mapped to the same bucket.
These points are then added together and multiplied with their
corresponding scalar value at the very end. Finally, the results of
each bucket are summed to yield a �nal value for the window.

Once all windows complete their bucket summations, a global
reduction is performed by “bit-shifting” each 8C⌘ window’s reduced
sum 18 times, where 18 is the o�set of window 8 in the scalar. For
this operation, point doubling is used in lieu of point addition, i.e.,
without incurring point-equality checks inherent to point additions.

Pippenger’s algorithm o�ers two opportunities for parallelism:
(1) points in each bucket within a window can be simultaneously
added; and (2) multiplications across windows are fully independent
until the �nal global reduction. This implies that two di�erent
windows can compute their point additions entirely in parallel.
However, both approaches assume unrestricted and content-based
access to scalars and points which is challenging in practice.

Prior works have exploited these opportunities in both GPU and
ASIC. However, they encounter heavy preprocessing overheads
[25] or are not scalable because of how they handle data on-chip
and because they o�oad Sparse MSM compute to CPU [37].

SZKP relies on a PE-array to exploit the high degree of par-
allelism inherent in Pippenger’s algorithm. Each PE handles the
computation for one, -bit window of scalars at a time, reading
scalars and points from pre-loaded on-chip scalar and point bu�ers.
We �rst describe the architecture of a single PE, and then how SZKP
handles multiple PEs on the chip.

3.1.2 Single PE Design. Figure 3 shows a pipeline diagram of a sin-
gle PE. As noted, in Pippenger’s algorithm, points are fetched into
⌫ = 2, � 1 buckets and each bucket independently accumulates
points mapped to it. In theory, therefore, this work can be paral-
lelized using ⌫ parallel point adders (PADDs). Unfortunately, point
addition is slow; consistent with prior work, the PADDs we syn-
thesized have latencies in the tens of clock cycles (see Table 1) and
dominate chip area. Therefore, we allocate a single, fully-pipelined
PADD to each PE. Prior work does the same but requires com-
plex control logic to maximize PADD utilization. We show a much
simpler scheme that can achieve equal or better utilization.

Storing Point Addresses: EachMSMPE has ⌫ = 2, �1 buckets,
each with a queue of depth ⇡ implemented as a FIFO. Each bucket
also has a single bucket accumulation register, which stores partially
accumulated values of points mapped to that bucket. In each cycle,
2 scalars are fetched from the scalar memory to index the buckets,
but instead of pushing points, we push addresses into the respective

273
Authorized licensed use limited to: New York University. Downloaded on January 30,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Alhad Da�ardar, Brandon Reagen, and Siddharth Garg

Scalar Memory

Fetched
Scalars

Point Memory

Fetched
Point

Pipelined PADD

Execute and
WritebackFetch Scalars Pop Address

and Bucket Sum
Fetch Point

Scalar
Address

Point
Address

Bucket
Sum

Scalar
Addresses

Both Push
Success?

Scalar
Address + 2

To Bucket
Accumulation

Register

MUX network

PE PE

Scalar
Bank

Point
Bank

Scalar
Bank

Point
Bank

Bucket Accumulation Reg.s

Push Scalar

Per-Bucket Queues

Figure 3: Pipeline architecture for a single Dense MSM. Buckets store point addresses. Queue selection policy can be RR, Max-r,
or LQ. Writebacks always succeed. Each PE reads from one bank of scalars and points at a time, avoiding memory contention.

buckets’ queues. Points are typically large, ranging from 762-2259
bits in total, depending upon the elliptical curve, but addresses to a
typical 16K point bu�er are only 14 bits. Thus, we can provision
deep queues, thus ensuring the PADD always has a su�cient supply
of operands to compute from and minimizing stalls to the PADD.
Additionally, the control logic in the fetch stage is simple becausewe
always fetch consecutive scalars unless we stall because a bucket’s
queue is full. Prior work [37] has a complex fetch mechanism that
must fetch the points themselves into either a bucket register or
one of two FIFOs, having to also face contention with writebacks
to the bucket register after a sum is computed from the PADD.

Round-Robin Scheduling: How can we ensure the PADD is
maximally utilized? We start with the simplest implementation
and then iteratively re�ne it. As scalars are fetched, in parallel,
the PADD iterates over buckets in round-robin order. If a bucket’s
queue is non-empty, it pops an address and uses it to fetch the
corresponding point from the point bu�er and add it to the value in
the bucket’s accumulation register. If the bucket’s queue is empty,
it inserts a bubble into the PADD and moves on to the next bucket.
Interestingly, we �nd that as long as the number of buckets, ⌫, is
greater than the PADD latency, C033 , even this simple design has
more than 85% utilization (see Figure 4). The reason is two-fold: (1)
by the time the PADD returns to a bucket, the previous add issued
from that bucket has completed, ensuring that a new add can be
issued unless the bucket’s queue is empty; and (2) scalar values in
dense MSMs tend to be uniformly distributed; thus the probability
of the bucket’s queue being non-empty in C033 > ⌫ clock cycles is
high. We introduce two further optimizations to this architecture.

Longest Queue Policy: To further increase utilization, we re-
place round-robin with a longest available queue (LQ) dispatch
policy. LQ uses simple tournament-style logic to schedule the next
add operation from the deepest bu�er with a valid accumulated
value. As shown in Figure 4, LQ achieves 97 � 99% utilization for
5- to 8-bit windows. We also implement a simpler version of LQ
that dispatches from the largest of A consecutive bu�ers (Max-A).
For example, Max-8 achieves more than 95% utilization as shown
in Figure 4. In contrast, prior work [37] feeds the PADD from one
of two FIFOs, each holding two full points. While this keeps the
PADD fed, they also require a spillover FIFO that store the results of
add operations that could not be written back to a bucket register,
necessitating further area for storing points. In this scheme, it is

trivial to show that if the spillover FIFO is not prioritized for push-
ing points, then the system deadlocks, and forward progress cannot
be made leading to functional correctness not being satis�ed.

3.1.3 Scaling to Multiple PEs. SZKP allocates " PEs to exploit
parallelism across di�erent scalar windows that operate on the same
set of points. In prior work [37], each PE reads from a single point
bu�er shared by all PEs. Unfortunately, since the PEs operate on
di�erent scalar windows, they operate out-of-sync since they stall
at di�erent points. To enable PEs to read from di�erent locations
in the point bu�er, prior work assumes a multi-ported point bu�er
with two ports per PE, presenting a scalability bottleneck.

In SZKP, we partition the scalar and point bu�ers into " banks,
each with 2 read/write ports. Each PE operates on a di�erent bank;
when each PE has completed operating on the points in its bank,
it switches to the next bank and so on. Speci�cally, in round 9 , PE
8 operates on bank (8 + 9) % " . We note that this scheme does
introduce synchronization delays since each PE waits for others
to �nish. However, although the exact execution traces of the PEs
di�er, their completion times di�er negligibly because scalar val-
ues for Dense MSMs are uniformly distributed and hence each PE
has the same stall probability. In other words, the PEs share the
same statistical behavior which averages out over su�ciently many
points. The logic for each PE switching to a di�erent memory bank
is simple and can be handled by a simple crossbar, thereby avoiding
memory contention that would otherwise occur for the same set of
points. Additionally, MSM sequences are long, so to minimize the
number of o�-chip accesses, the PEs collectively compute the MSM
on all windows (storing per-window partial bucket sums in local
on-chip memories) before fetching more points and scalars into the
point and scalar memories. This enables us to have relatively low
MSM bandwidth costs in spite of the large bit-widths.

Algorithm 1: BucketReduction
1 BA O // running sum

2 BC O // total running sum

3 for 8 = 2, � 1 to 1; 8 = 8 � 1 do
4 BA BA + ⌫8
5 BC BC + BA
6 return BC

274
Authorized licensed use limited to: New York University. Downloaded on January 30,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

SZKP: A Scalable Accelerator Architecture for Zero-Knowledge Proofs PACT ’24, October 14–16, 2024, Long Beach, CA, USA

Figure 4: PADD utilization across varying window sizes for
round robin (RR), longest queue (LQ) and Max-A . Max-8 and
LQ consistently have more than 90% utilization.

Bucket Reduction: After a PE processes all points for a window,
the window must compute a bucket reduction,

Õ2, �1
8=1 8 · ⌫8 , where

⌫8 is the accumulated value in bucket 8 . Prior work [37] performs
bucket (and window) reductions in software because these typically
constitute less than 0.1% of the CPU runtime. However, with the rest
of the MSM computation accelerated on-chip, reductions become
a larger portion of the runtime if o�oaded to CPU. In SZKP, we
observe that the recursive Algorithm 1 from [11] admits a hardware-
friendly implementation with simple control logic. This algorithm
iteratively computes a running sum in one pass with two serial
additions per bucket, with a total latency of (2C033) (2, � 1) cycles.

Window Reduction: The �nal step is to take the sum in each
window and compute its o�set based on its location in the overall
scalar. This is analogous to bit-shiftingwith integers, but becausewe
are computing on elliptical curve points, we instead perform point-
doubling. Note that the most-signi�cant bits (in the most-signi�cant
window) have to be doubled the most times. For example, in a 254-
bit scalar with 5-bit windows, the highest window has to be scaled
by roughly 2250, meaning 250 serial point doubling operations. To
account for this, we adopt the approach in the CPU implementation
[2] where we start computing the accumulated sum with the MSB
windows and iteratively compute point doubling towards the LSB
windows. With multiple PEs, each PE can handle the doubling
responsibilities for 1 window. With " PEs,, -bit windows, the
latency of window reduction is roughly

(" ·, · C31; + C033)_/,

The critical path for each group of " PEs is the number of point-
doubling operations needed by the PE handling the accumulated
result (from the prior group of windows). The maximum number of
point doubles done in a group is, · " (the bit-width spanned by
all PEs). Since the LSB window doesn’t need to be doubled within a
group of PEs, all PADD units (which support doubling) are utilized.

3.2 Supporting Sparse MSMs
For the majority of the Sparse MSM computation, Sparse MSMs can
be viewed as Dense MSMs with only one bucket that corresponds
to a scalar value of 1. The Dense MSM architecture loads a point
from point memory and adds it to an accumulated value. Instead,
in a Sparse MSM core, we �rst load all points with a scalar of 1
into the point memory, fetch two points at a time, feed them to the
PADD, and write back the result to point memory, resulting in near
perfect utilization. This process continues until the desired sum is

computed. Afterwards, we compute the scalar multiplications for
the remaining 1% of scalars using the same Pippenger approach as
for Dense MSMs. While prior work implements Sparse G1 MSMs
(without any reductions), they o�oad Sparse G2 MSMs (and all G1
reductions) to CPU [37]; in contrast, SZKP accelerates Sparse G2
MSMs with a dedicated G2 MSM core.

3.2.1 Separate Vs. Shared Hardware. Since both Sparse and Dense
MSMs in group G1 use the same PADDs, we explore PADD shar-
ing between the two operations. We note in the overall Groth16
data�ow that the Sparse and Dense MSMs operate in parallel; thus,
sharing hardware does cause an arti�cial dependency between these
operations that can increase overall latency. On the other hand,
separate hardware for Sparse and Dense MSMs increases chip area.
We compare these alternatives in our empirical evaluations.

3.3 Sparse G2 MSM Optimizations
A fully pipelined G1 adder by itself is large, requiring 16+ modular
multipliers. But a G2 adder is much larger, requiring 80+ modular
multipliers. Because Sparse G2MSMs are executed independently of
other kernels and exhibit sparsity in their points, they are not on the
critical path. We can signi�cantly reduce modular multiplier counts
of Sparse G2 MSMs by pipelining them less. We investigate this by
building G2 PADD units with initiation intervals (II) from II=1 to
II=41. We also implement this for G1 PADD units and tabulate the
multiplier counts in Table 1.

Table 1: Modular multiplier counts for G1 and G2 PADDs for
di�erent initiation intervals (IIs) and ECC bit-widths.

PADD Cycles II=1 II=2 II=3 II=4
G1 (254b) 30 16 8 7 5
G2 (254b) 55 80 43 36 22
G1 (753b) 38 23 15 9 7
G2 (753b) 67 85 45 38 25

3.4 NTT Architecture
Four-Step NTT: In Groth16 protocols, the NTT sequences are long,
ranging from 214 � 220 and potentially longer sequences. Because
large NTT datapaths are prohibitive in cost, we use the Four-Step
algorithm [8] used by prior works [19, 33, 34, 37] to decompose an
-point NTT into a series of

p
#
p
-point computations. Thus,

we only need to construct an NTT core that computes on up to
210 points to support power-of-2 NTT evaluations up to 220-point
NTTs. Each Four-Step (I)NTT involves transforming the input poly-
nomial into a two-dimensional array, computing the (I)NTT �rst on
the columns, scaling by twiddle factors (di�erent from those used
within the (I)NTT), tranposing the matrix, and then performing
(I)NTT on the rows. For each of these steps, we fetch inputs from
o�-chip memory, compute on our NTT core, and write back re-
sults to o�-chip memory in either a transposed or normal manner,
depending on the step being computed.

1In HLS terminology, II represents a module’s throughput; smaller IIs represent more
deeply pipelined modules.

275
Authorized licensed use limited to: New York University. Downloaded on January 30,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Alhad Da�ardar, Brandon Reagen, and Siddharth Garg

Time
Writeback
Compute
Fetch

Prefetch

Figure 5: Example Polynomial Computation Pipeline Schedule. This simple schedule assumes an" ⇥" matrix and" NTT
PEs. Slots with solid borders represent an INTT phase, while dashed borders represent an NTT phase. Slots with cross hatches
represent column-wise operations, while slots with solid �ll represent row-wise operations. Slots with dots represent values that
used operands stored on-chip instead of being prefetched. l� are INTT twiddles, l# are NTT twiddles, and X are generators.

Ping
Memory

 Banks

Pong
Memory

 Banks

Address
Generator

Address
Generator

From
off-chip mem

Prefetched Operand
Memory

Element-wise
Arithmetic unit To off-chip mem

Address
Generator

Address
Generator

 Butterflies

From
off-chip mem

From off-chip mem

Figure 6: Single NTT PE with simple, static control logic for
address generation

Constant-Geometry Topology: Most prior NTT accelerators
are based on the Cooley-Tukey algorithm [12]. However, Cooley-
Tukey exhibits irregular data �ow from stage to stage, resulting in
irregular memory access patterns [27, 32]. For this reason, HLS tools
struggle to synthesize high-performance memory-based Cooley-
Tukey NTT implementations. Instead, we �nd that a constant-
geometry implementation based on the Pease and Korn-Lambiotte
algorithms [21, 30] synthesizes high-utilization NTT hardware and
much faster than Cooley-Tukey implementations.

In constant-geometry NTTs, the read and write addresses for
each butter�y unit in a stage remain �xed, allowing for simple
muxing between butter�ies and memory bu�ers. We implement
our NTT network using* parallel butter�ies and a double-bu�ered,
dual-ported ping-pong on-chip memory with * banks. True dual-
porting enables full pipelining of reads from ping (pong) bu�ers,
butter�y compute, and writes to pong (ping) bu�ers in each stage.
Our constant-geometry NTT implementations are competitive with
state-of-art hand-designed NTT accelerators [20, 27, 33, 37].

Note that manually-coded Cooley-Tukey NTTs (using a memory-
based architecture as we do) would be equally performant to our
HLS constant-geometry NTT because the irregular memory ac-
cesses per stage could be managed by a dedicated controller, thereby
allowing high butter�y utilization. However, the logic for this
is complex (adding area overheads) and requires special care to
avoid memory con�icts as we scale the number of butter�ies [32].
Manually-coded NTTs using pipelined architectures [15, 37] for
large lengths require dedicated SRAM delay bu�ers (and associated
controllers) for each stage. These too add non-trivial overheads
in area and interconnect. # -point constant-geometry NTTs have

simpler control logic, and in turn, are faster to design and proto-
type with HLS tools. However, they are out-of-place and require
2# words for storing intermediate computations. As we show later,
MSMs are typically area-dominant in SZKP, so the out-of-place
memory costs are worth the savings in design complexity.

Operands: In the Four-Step (I)NTT, the output of column-wise
(I)NTTs are multiplied by twiddle factors before being written back
to memory. INTT outputs are scaled by a series of multiplicative
generators on the �nite �eld (the vector - in Figure 1), ⌫(G) is
multiplied with �(G), ⇠ (G) is subtracted from �(G)⌫(G) and � (G)
is scaled by inverse generators (- �1) on the �nite �eld. For post-
(I)NTT scaling/subtraction, we call these twiddle factors, generators,
and intermediates operands. Operands are the same length as the
(I)NTT, and we prefetch them from o�-chip memory while (I)NTTs
are computed by the butter�ies. We then pipeline the element-wise
operand arithmetic with writeback to o�-chip memory.

We can signi�cantly reduce the prefetch bandwidth for the twid-
dle factors and generators because they can be computed on-the-�y
given initial columns of the twiddle and generator matrices. Then,
by interleaving the execution of the �, ⌫, and ⇠ (I)NTTs, we maxi-
mize operand reuse and generate them on-the-�y in our element-
wise arithmetic unit, eliminating most of the prefetch bandwidth
and masking most of the matrix transpose latencies. The operands
that cannot be generated on-the-�y are�(G) for multiplication with
⌫(G) and �(G)⌫(G) from which ⇠ (G) is subtracted; these operands
can directly be loaded into the operand memory bu�er instead of
writing back to o�-chip memory.

Finally, the four-step (I)NTT’s column/row-wise operations can
be performed independently prior to the matrix transpose. This al-
lows for a multi-PE (I)NTT where each PE handles one column/row
(I)NTT without the need for complex interconnect for transferring
data. This enables easy scaling of the number of PEs.

Figure 5 shows a simpli�ed example of the polynomial compu-
tation schedule to highlight the kernel-level pipelining, with each
on-chip compute and fetch, prefetch, and writeback from o�-chip
memory (except where noted) running concurrently. For simplicity,
we display the same matrix names (�,⌫,⇠, or �) for all intermedi-
ate and �nal results. Here, we can see how interleaved scheduling
allows us to complete all column-wise computations before reading
in data row-wise. This helps mask serial matrix transpose latencies.

Bit-reversals: Since our NTT unit supports both NTT and INTT,
it needs to handle bit-reversals. Our NTT does this by utilizing
the chaining property as noted by prior designs [23, 37] to avoid
bit-reversals. However, if we assume the input polynomials are

276
Authorized licensed use limited to: New York University. Downloaded on January 30,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

SZKP: A Scalable Accelerator Architecture for Zero-Knowledge Proofs PACT ’24, October 14–16, 2024, Long Beach, CA, USA

in natural input order, the �nal INTT step will output scalars in
bit-reverse order. Because the points used by the Dense MSM are
generated by the proving key during one-time key generation, we
assume the key generation software bit-reverses these points for
us. Since point addition is commutative, the order in which we
compute the MSM does not matter, thus, elimination of bit-reversal
overhead still maintains functional correctness.

4 Evaluation Methodology
SZKP is, as far as we know, the �rst ASIC to accelerate entire zk-
SNARK proofs on-chip, including Sparse G1/G2 MSMs and MSM
reductions. Figure 7 details the full SZKP architecture. As part of
our evaluation, we conduct a comprehensive design space explo-
ration of both individual modules and the full chip. We additionally
investigate resource sharing among G1 MSMs as well as the e�ect
of o�-chip bandwidth constraints on total proof-generation time.

4.1 Performance Modeling
We used Catapult HLS 2022 to generate the RTL for pipelined �eld
adders and multipliers (we used Montgomery multipliers [29] as in
prior work [33, 37]), constant-geometry NTT PEs, and G1 and G2
PADD units with di�erent IIs to study area vs. runtime tradeo�s.
We synthesized RTL using Synopsys DC Compiler with a TSMC
22nm technology library and a Synopsys 22nm Memory Compiler
for area estimation with a 300 MHz clock to match prior ASICs [37].
We also separately synthesized the longest queue (LQ) dispatch
policy and con�rmed that it clocks at 1 GHz, much faster than the
300 MHz target.

We used HLS-generated modules to determine PADD and NTT
latencies for performance modeling. We developed a cycle-accurate
simulator to model the runtime of the Dense MSM pipeline using
the LQ dispatch policy. We used this simulator along with analytical
models for Sparse MSM computations and bucket/window reduc-
tions. For polynomial computation, we used single-NTT latencies
to model the total latency and constructed traces of the o�-chip
memory accesses for inputs, operands, and outputs. We initially
assumed unconstrained memory bandwidth to model peak theoret-
ical performance, and later imposed bandwidth constraints for a
range of memory technologies. We also constructed power traces
to model thermal design power and power density.

4.2 Benchmarks
We evaluate our architecture using workloads from Jsnark [22],
a Java based library with Libsnark [2] as its backend. Libsnark
is a state-of-the-art CPU implementation of Groth16, supporting
several elliptic curves used for zkSNARK computations.

We focus our analysis on the BN128 and MNT4753 curves which
both provide 128 bits of security and are commonly used in prior
work [24, 25, 37]. The former has an underlying bit-width of 254
for scalars and points, while the latter uses 753 bits. We compare
SZKP with CPU using BN128, with a prior ASIC using BN128 and
MNT4753, and with prior GPUs using MNT4753. This is done to
re�ect the range of areas we typically see as SZKP is scaled to
higher bit-widths. We �rst examine the performance of individual
modules and then use Jsnark workloads to measure the time to
compute full proofs against CPU, ASIC, and GPU.

Table 2: Design Space of SZKP Architecture. We evaluate all
combinations of these design knobs.

Module Design Parameter Values
MSM PEs (") 1, 2, 4, 8, 16
MSM Window Size (,) 5, 6, 7, 8
MSM Points/Window (%%,) 1K, 2K, 4K, 8K, 16K
MSM PADD Pipelining (II) 1, 2, 3, 4
NTT PEs (#) 1, 2, 4, 8
NTT Butter�ies (*) 1, 2, 4, 8, 16, 32

5 SZKP Evaluation
We now evaluate the area and performance of a range of di�erent
SZKP accelerators using the design space exploration parameters
listed in Table 2. In our evaluations, we begin by reporting the area
and power of individual components. We then use synthetic data to
determine runtime and speedup of SZKP’s Dense MSMs and NTTs
over CPU, ASIC, and GPU designs.

Next, we report full-chip results. Since prior work did not accel-
erate Sparse MSMs in hardware, we highlight the impact of design
choices including shared vs. separate hardware for G1 MSMs and
the bene�ts of optimizing II for Sparse MSM PADDs. We then
identify and analyze several representative zkSNARK designs at
di�erent area-performance points, show the impact of bandwidth
on accelerator performance, and report full-chip speedups relative
to CPU, ASIC, and GPU.

Table 3: Area and Power of Components

Component Area (mm2) Power (W)
254b 753b 254b 753b

Modmul 0.30 2.89 0.12 0.78
NTT Butter�y 0.31 2.90 0.13 0.81
G1 PADD II = 1 5.05 67.33 2.14 18.50
G1 PADD II = 2 2.56 43.91 1.08 12.07
G1 PADD II = 3 2.52 26.35 1.06 7.24
G1 PADD II = 4 1.61 20.49 0.67 5.63
G2 PADD II = 4 8.72 73.74 2.72 20.20

5.1 Individual MSM and NTT Unit Evaluations
Table 3 shows the area and power for di�erent components syn-
thesized via HLS. For 254b, HLS generates 30-cycle G1 PADDs and
55-cycle G2 PADDs; for 753b, HLS generates 38-cycle G1 PADDs
and 67-cycle G2 PADDs (see Table 1). We estimate power using
pessimistic 50% switching activity. Figure 8 plots area vs. runtime
Pareto plots for each individual module running the Auction work-
load on 254b datatypes. We note that although Sparse G2 MSMs
consume the most area, they are much faster than and can be
computed in parallel with other computations. Thus, in practice,
full-chip Pareto designs only instantiate the smallest Sparse G2
units which are still well o� the critical path. Of the remaining
modules, Dense MSMs consume the most area, followed by NTTs
and Sparse G1 MSMs.

5.1.1 SZKP vs. CPU. Table 4 details the speedup of our Dense MSM
in isolation and NTT in isolation versus CPU. For fair comparison,

277
Authorized licensed use limited to: New York University. Downloaded on January 30,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Alhad Da�ardar, Brandon Reagen, and Siddharth Garg

Polynomial
intermediate

computations

Off-Chip Memory

G1
PE

G1
PE

G1 MSM Core

2

1

NTT Core

NTT
PE

NTT
PE

G2
PE

G2 MSM Core

1

G1
Proof
3

SpG2
Proof

2

G1
PE

G1
PE

G1 MSM Core

1aSpG1
Proof

2

1b 1c

G2
PE

Figure 7: SZKP Chip Architecture. Numbers indicate order of operations. Red arrows and numbers indicate the critical path
from polynomial computation through the Dense MSM. Blue arrows indicate serialization of the 3 Sparse MSMs through the
G1 core dedicated for Sparse MSMs. The �nal proof is constructed in two parts, a G1 component and a G2 component, that get
written back to o�-chip memory

we pick an MSM and NTT design point that is roughly iso-area to a
single core on our CPU, an AMD EPYC 7502 32-core processor run-
ning either a single Dense MSM or single polynomial computation.
The CPU processor consists of four 8-core chiplets, each of die size
74 mm2 fabricated in 7nm, with a memory bandwidth of 204.8 GB/s
[3–5]. We estimate the core area to be 9.25 mm2, and using a scale
factor of 3.6 based on prior work [13, 28], we pick designs close to
30-33 mm2 in 22nm and estimate a speedup factor of 1.7 to model
scaling down to 7nm [13]. Under these constraints, we choose an
MSM with 4 PEs, 8-bit windows, and 4096 points per window, and
an NTT unit with 4 PEs and 16 butter�ies/PE.

5.1.2 SZKP vs. PipeZK. We compare individual module speedups
with PipeZK [37], the only known ASIC that accelerates full zk-
SNARK proofs, on 254b data in Table 5. For this, we pick an MSM
with 4 PEs, 8-bit windows, and 2048 points per window (26 mm2

vs. PipeZK’s 35 mm2 MSM), and an NTT with 4 PEs and 8 but-
ter�ies/PE (18 mm2 vs. PipeZK’s 15 mm2 NTT). We achieve MSM
speedups of nearly 2⇥ at large workload lengths. Our MSM run-
times include bucket reductions and window reductions performed
on-chip, while PipeZK o�oads reductions to CPU. We also achieve
3-8⇥ NTT speedups. Note that for variable-length architectures,
PipeZK’s NTT su�ers from low butter�y utilization. PipeZK uses a
serially-pipelined NTT [15] which uses 1 butter�y per NTT stage.
PipeZK’s NTT handles up to 210 = 1024 elements to support a Four-
step NTT of maximum length # = 220. However, for workloads of
length #  219, where

p
 1024, one or more stages of the NTT

need to be bypassed during the row and/or column step; butter�ies
in those stages are then underutilized. In other words, except for
workloads of maximal supported length, there are always some
butter�ies underutilized in each PE of PipeZK’s NTT. This poses a
challenge to scalability because supporting longer NTTs risks more
unused butter�ies on sub-maximal-length workloads. In contrast,
SZKP’s memory-based NTT uses all available butter�ies in each
stage ensuring near-perfect utilization during operation.

5.1.3 SZKP vs. GPU designs. Table 6 shows our speedups over
cuZK and GZKP, which both use NVIDIA V100s, using 815 mm2

in 12nm [1, 24, 25]. For data that both cuZK and GZKP provide,
we show speedup over the faster design. We pick Dense MSM and
NTT modules based on a roughly 800 mm2 budget in 22nm. We
use scale factors of 2⇥ for area and 1.65⇥ for delay [13] to scale to

12nm. We pick an MSM with 8 PEs, 6-bit windows, and 1024 points
per window (278 mm2 in 12nm), and an NTT with 2 PEs and 4
butter�ies/PE (20 mm2 in 12nm), with Sparse G1 and G2 combined
area of 102 mm2. We choose this design to show that even with 3⇥
and 40⇥ less area than a V100 (and at 300 MHz), we still achieve
15 � 35⇥MSM speedup and 2.5 � 4⇥ NTT speedup, respectively.

Table 4: Runtime (ms) of kernels vs CPU on 254b

Size CPU SZKP-7nm
Poly MSM Poly MSM

214 102 344 0.078 (1315⇥) 0.52 (662⇥)
215 211 625 0.137 (1545⇥) 0.78 (804⇥)
216 479 1131 0.235 (2040⇥) 1.30 (873⇥)
217 982 2204 0.442 (2223⇥) 2.33 (946⇥)
218 2151 3884 0.807 (2665⇥) 4.40 (883⇥)
219 4379 7554 1.567 (2795⇥) 8.53 (885⇥)
220 8865 14834 2.996 (2959⇥) 16.81 (883⇥)

Table 5: Runtime (ms) of kernels vs PipeZK on 254b

Size PipeZK SZKP
NTT MSM NTT MSM

214 0.076 1 0.026 (2.92⇥) 0.93 (1.07⇥)
215 0.151 2 0.048 (3.15⇥) 1.42 (1.41⇥)
216 0.281 4 0.087 (3.23⇥) 2.40 (1.66⇥)
217 0.604 8 0.166 (3.64⇥) 4.37 (1.83⇥)
218 1.489 16 0.318 (4.68⇥) 8.30 (1.93⇥)
219 4.052 32 0.631 (6.42⇥) 16.17 (1.98⇥)
220 11 61 1.25 (8.80⇥) 31.90 (1.91⇥)

5.2 Full Chip Evaluations
5.2.1 Shared Vs. Separate G1. As mentioned in section 3.2.1, we
can share the G1 MSM core between Sparse and Dense MSMs. We
evaluate both topologies, Shared-G1 and Separate-G1, on Jsnark’s
Auction workload at 254b and plot Pareto curves in Figure 9. We
would typically expect separate (shared) hardware to dominate in
high-performance, high-area (low-performance, low-area) con�gu-
rations.

Surprisingly, from these plots we see that the shared topology
does not yield signi�cant performance bene�ts. In fact, the shared-
G1 topology’s Pareto frontier essentially tracks the separate-G1

278
Authorized licensed use limited to: New York University. Downloaded on January 30,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

SZKP: A Scalable Accelerator Architecture for Zero-Knowledge Proofs PACT ’24, October 14–16, 2024, Long Beach, CA, USA

Table 6: Runtime (ms) of kernels vs GPU on 753b

Size cuZK GZKP SZKP-12nm
MSM NTT MSM NTT MSM

214 – 0.15 20 0.04 (4.1⇥) 0.86 (23.3⇥)
216 – 0.49 50 0.18 (2.8⇥) 2.83 (17.7⇥)
218 – 1.91 160 0.74 (2.6⇥) 10.69 (15.0⇥)
219 732 – – 1.49 21.18 (34.6⇥)
220 1163 7.46 600 2.99 (2.5⇥) 42.15 (14.2⇥)
221 1960 – – 5.98 84.09 (23.3⇥)
222 3608 33.67 2660 11.97 (2.8⇥) 167.98 (15.8⇥)
223 6635 – – 23.96 335.75 (19.8⇥)
224 – 141.4 11300 47.92 (3.0⇥) 671.29 (16.8⇥)
226 – 602.53 40700 191.73 (3.1⇥) 2684.56 (15.2⇥)

Figure 8: Pareto Curves for individual SZKP modules. Sparse
G2 MSMs are the largest module by area but contribute to
less than 0.5% of total proof generation time

topology’s frontier, except for high-performance (and high-area)
where only Separate-G1 yields valid designs. The reason for this is
that Sparse G1MSMs are not on the critical path in low-performance
designs; therefore, even though Separate-G1 requires extra PADDs,
they are small and slow and add minimal area overhead.

However, as we move to higher performance designs, Sparse G1
MSMs improve much slower than Dense MSMs and start appearing
on the critical path. Thus, having separately optimized Sparse G1
cores enables e�cient resource allocation toward Dense MSMs.

5.2.2 Optimizing Pipeline Depth. How much does pipelining actu-
ally bene�t Sparse MSMs? Figure 10 compares the Pareto frontiers
for 254b SZKP designs that have all Sparse MSMs fully pipelined
versus II-optimized designs that save area. As we can see, there
is virtually no performance penalty when we reduce pipelining.
We highlight three designs, denoted as HP for high-performance,
MP for medium-performance, and LP for low-performance. HP is
chosen as the most performant and area intensive design, LP is
chosen to be iso-area with our CPU (when scaled to 7nm), and MP

Figure 9: Comparison of Shared-G1 vs. Separate-G1 Pareto-
optimal designs for Auction. The NTT designs are denoted as
(# ,*), andMSMs are denoted as (" ,, , %%, , � �). For shared
designs, we denote G1 for both Dense and Sparse MSM

Figure 10: E�ect of Pipelining on Area. HP, MP, and LP de-
signs are highlighted.

Figure 11: Runtime and Area breakdowns for chosen designs.

279
Authorized licensed use limited to: New York University. Downloaded on January 30,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Alhad Da�ardar, Brandon Reagen, and Siddharth Garg

Table 7: Full Proof Runtime vs. CPU on BN128

Workload Size CPU Time (s) SZKP-7nm Time (ms) SpeedupPoly Dense SpG1&G2 Total Poly Dense SpG1 SpG2 Total
AES 16383 0.103 0.345 0.127 0.576 0.30 0.90 1.07 0.43 1.20 480⇥
SHA2 32767 0.212 0.626 0.051 0.890 0.51 1.54 2.05 0.03 2.05 434⇥
RSA 131071 0.994 2.207 0.520 3.723 2.11 4.73 3.84 0.95 6.85 544⇥

RSASigVer 131071 0.996 2.213 0.423 3.634 2.11 4.73 5.15 0.90 6.85 531⇥
MerkleTree 131071 0.958 2.190 0.376 3.526 2.11 4.73 2.11 0.84 6.85 515⇥
Auction 1048575 8.912 14.834 0.919 24.666 18.63 34.44 36.87 1.02 53.07 465⇥

Table 8: Full Proof Runtime (ms) vs. PipeZK on MNT4753

Workload Size PipeZK SZKP
Poly G1 MSMs Poly + G1 Total Poly Dense Total2

AES 16383 2 21 23 97 1.03 (1.94⇥) 16.17 17.20 (1.34⇥ / 5.64⇥)
SHA2 32767 3 27 30 102 2.00 (1.50⇥) 31.08 33.09 (0.91⇥ / 3.08⇥)
RSA 98303/131071 14 80 94 1230 7.80 (1.79⇥) 90.28 98.09 (0.96⇥ / 12.54⇥)

RSASigVer 131071 14 105 119 822 7.80 (1.79⇥) 120.50 128.30 (0.93⇥ / 6.41⇥)
MerkleTree 294911/524287 63 226 289 2697 32.01 (1.97⇥) 268.87 300.88 (0.96⇥ / 8.96⇥)
Auction 1048575 139 445 584 2053 65.39 (2.13⇥) 507.31 572.70 (1.08⇥ / 3.79⇥)

Table 9: Full Proof Runtime (ms) vs. GZKP on MNT4753

Workload Size GZKP SZKP-12nm
Poly MSM Total Poly Dense Total

AES 16383 4 99 103 0.31 (12.8⇥) 0.88 1.19 (86.5⇥)
SHA2 32767 5 66 71 0.61 (8.2⇥) 1.54 2.15 (33.0⇥)
RSA 98303/131071 22 120 142 2.37 (9.3⇥) 4.17 6.54 (21.7⇥)

RSASigVer 131071 24 130 154 2.37 (10.1⇥) 5.56 7.93 (19.4⇥)
MerkleTree 294911/524287 60 220 280 9.71 (6.2⇥) 12.19 21.90 (12.8⇥)
Auction 1048575 150 370 520 19.82 (7.6⇥) 22.89 42.71 (12.2⇥)

is chosen as a rough midpoint along the Pareto curve. For each of
these designs, we observe that both Sparse G1 and G2 cores use an
II = 4, demonstrating that they are not on the critical path.

5.2.3 Area and Runtime Breakdowns. Figure 11 shows the runtime
critical path and area breakdowns for each performance point. As
expected, we see the Sparse G1/G2 PADD units progressively be-
come smaller proportions of the area as Dense MSM and NTT cores
become heftier. Interestingly, MP has a relatively balanced runtime.
Designs similar to MP might be preferable for optimizing through-
put at a proof -level of pipelining. For example, MP designs could
bene�t proof-as-a-service applications where a prover is computing
multiple proofs for clients and is not signi�cantly bottlenecked by
the Dense MSM runtimes. This highlights yet another advantage
of decoupling Sparse MSMs from the critical path, as it allows for
designs that otherwise may not have appeared in the design space.

5.2.4 Full-proof Speedup. Similar to measuring the speedup of
NTT/Poly and Dense MSMs, we measure the speedup of our ar-
chitecture over CPU when scaled down to 7nm. We pick low-area
designs near 33 mm2 in 22nm and scale our runtimes to 7nm based
on the aforementioned scale factors and report speedups in Table 7.
SZKP achieves speedups of 434-544⇥ over CPU benchmarks.

Tables 8 and 9 show full-proof speedups over PipeZK and GZKP
on 753b data. We show speedups over only Poly and Total runtimes

because neither GZKP nor PipeZK parallelize Sparse MSMs from
Dense MSMs. Furthermore, SZKP’s NTT architecture only supports
power-of-2 workload lengths, while PipeZK and GZKP report re-
sults for workloads that are of “step-radix” length and require a
di�erent polynomial algorithm [2] than shown in Figure 1. For fair
comparison, we report our power-of-2 length runtimes for Poly
and “step-radix” length runtimes for the Dense MSM, since MSMs
are not bound to power-of-2 lengths.

For comparison with PipeZK, we pick an MSM with 1 PE, 5-bit
windows, 1024 points per window (71 mm2) and an NTT with 1 PE,
4 butter�ies/PE (20 mm2). These designs are dominated in area by
memory due to double bu�ering used in both MSM and NTT mod-
ules; additionally, we use pessimistic memory area estimates due
to the memory compiler’s inability to directly generate 753b mem-
ories. Our total runtime is roughly as fast as PipeZK’s excluding
G2 computation. As previously mentioned, our runtime estimates
include bucket and window reductions while PipeZK performs
them on CPU; PipeZK does not report reduction latencies. Left
un-accelerated, these reduction steps could dominate the overall
MSM latency. With o�oaded-G2 latencies included, we achieve
3 � 12x speedup over PipeZK since G2 computations become their
critical path. Additionally, PipeZK’s 254b architecture is potentially
less e�cient than their 753b one. Given that their 753b single-PE

280
Authorized licensed use limited to: New York University. Downloaded on January 30,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

SZKP: A Scalable Accelerator Architecture for Zero-Knowledge Proofs PACT ’24, October 14–16, 2024, Long Beach, CA, USA

NTT/MSM design is faster than G2-on-CPU, their 254b 4-PE de-
sign is likely much faster than G2-on-CPU. This implies more idle
accelerator time while waiting for G2-on-CPU. Even if PipeZK ac-
celerated G2, for all bit-widths, they would likely incur a high area
footprint (that SZKP would not) from complex FIFO control logic,
since G2 uses pairs of points. This further limits their scalability.

For comparison with GZKP, we use the same design mentioned
in section 5.1.3. Adjusted for length, SZKP achieves 12 � 86x full-
proof speedup over GZKP, using half the area with conservative
scaling factors at slow ASIC frequencies.

Table 10: Full-Chip Power and Power Density

Design Area TDP Power Density
(mm2) (W) (W/mm2)

AMD EPYC 7502 296 180 [4] 0.61
SZKP-7nm 78.7 34 0.43

NVIDIA V100 815 300 [1] 0.37
SZKP-12nm 832 184 0.22

5.2.5 Power. We estimate the thermal design power (TDP) for
SZKP designs by constructing power traces of each module; we as-
sume 100% utilization to estimate worst-case, peak, full-chip power.
We also include a 1 TB/s, 32W HBM stack [19, 20]. We look at high-
performance designs for both 254b and 753b and select those with
highest peak power. We then scale down the 254b design to 7nm
(area by 3.6⇥, power by 3.3⇥) and the 753b design to 12nm (area by
2⇥, power by 2.5⇥) [13, 28]. We compare these two designs’ TDP
with that of the AMD EPYC 7502 (for 254b) and the NVIDIA V100
(for 753b). Table 10 shows these comparisons. High-performance
SZKP architectures fall well within the TDP and power density
limits of high-performance CPUs and GPUs.

5.2.6 Bandwidth Analysis. Our initial Pareto analysis examines
SZKP under unconstrained bandwidth to identify peak performance
across the design space. However, recent ZKP and privacy-centric
accelerators have demonstrated high bandwidth needs. We extend
our analysis by modeling SZKP under 6 memory technologies in-
cluding DDR4 with 4 and 8 channels and four generations of HBM.

Our results on 254b data are illustrated in Figure 13. We can
see that across all workloads, low- and medium-performance de-
sign points can make do with a 4-channel DDR4 or HBM1. High-
performance designs bene�t from increased bandwidth, but here
too HBM2E su�ces to achieve close to ideal performance.

Extending our analysis to 753b, we choose 4 design points to re-
�ect the wider range of areas in our design space. These are chosen
to be iso-area (before scaling) with existing GPUs – LP at 475 mm2

to match an NVIDIA GTX 1080i [7], MP at 815 mm2 to match an
NVIDIA Tesla V100 [1], HP at 1600 mm2 to match 2 V100s, and UHP
(Ultra High Performance) at the largest design point per workload,
ranging from 2000 mm2 to 3500 mm2 to match multiple V100s. UHP
represents an extreme for ASICs, but we include it to highlight the
range of architectures available in our optimal design space. These
GPU references are based on those used by GZKP’s implementation
[25]. As seen in Figure 14, we �nd that even the large LP and MP
designs can reach close to optimal performance with an 8-channel
DDR4, and HP and UHP in several cases can make do with HBM2 or
2speedup over Poly+G1 / speedup over total

Figure 12: Bandwidth-Aware Pareto Frontiers on BN128. All
SpG2 modules have their parameters as (1, 5, 1024, 4).

HBM2E, which are increasingly prevalent in recent fully homomor-
phic encryption accelerators [18–20, 33, 34]. These results show
that SZKP, when scaled to GPU sizes, still can perform optimally
with comparatively modest bandwidth requirements.

We next factor bandwidth constraints into the design space opti-
mization. Figure 12 shows the fastest Pareto-optimal designs under
each bandwidth constraint on the longest workload (Auction) for
254b datatypes. Because the NTT unit is the bandwidth-intensive
feature of SZKP, we see that resource-intensive NTTs are preferable
under less-stringent bandwidth constraints. Notably, each of the
highlighted design points has 16 PEs in the Dense MSM, indicating
that SZKP’s Dense MSM is clearly bandwidth e�cient and scalable.
We observe these trends across all workloads on both bit-widths.
These observations reinforce our intuitions that scalable ZKP design
is achievable for ASICs when the correct data�ow is chosen.

6 Related Work
PipeZK [37] is currently the only other custom hardware accel-
erator for full-proof zkSNARKs. PipeZK assumes relatively small
(50 mm2) chips and has di�culty scaling to larger designs because
of the need for large multi-ported memories and complex control
logic. SZKP, in contrast, is designed to easily scale from small to
large designs, enabling a large design space to cover a range of
applications. Additionally, for the MNT4753 curve, the Sparse G2
module has a signi�cant contribution to overall chip area even
after II optimization. This is because �eld multiplier (and PADD)
sizes grow quadratically with �eld size, suggesting that full-chip
evaluations including all computational modules are necessary to
fully understand the bene�ts of custom ZKP accelerators.

GZKP [25] is a recent GPU-based ZKP hardware acceleration
framework that leverages a custom �nite �eld library to accelerate
ZKP primitives. Their NTT module uses the traditional Cooley-
TukeyNTT data�ow; as such, their NTT heavily depends on caching
mechanisms to address the irregularmemory access patterns. GZKP’s
MSM implementation is similar to SZKP in the sense that they per-
form bucket reductions after all points have been processed by
a window, to avoid intermittent bucket reductions. Additionally,
they eliminate window reductions, but they require preprocessing

281
Authorized licensed use limited to: New York University. Downloaded on January 30,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Alhad Da�ardar, Brandon Reagen, and Siddharth Garg

Figure 13: Normalized proof generation times on BN128 across memory technologies

Figure 14: Normalized proof generation times on MNT4753 across memory technologies

overheads upwards of 5GB to store precomputed o�sets for each
window. They leverage a checkpointing scheme to achieve better
balances between the space and time, but this solution, given the
high memory overhead, is generally not scalable for ASIC-based de-
signs. cuZK [24] is another recent GPU-based work that accelerates
MSMs by converting all operations into sparse-matrix computa-
tions. They report linear speedup over Pippenger’s algorithm, and
additionally perform optimizations to minimize overheads for CPU-
GPU data transfers. SZKP outperforms both of these prior works.

There is a large body of work on NTT acceleration, including
hand-coded designs [18–20, 33, 34, 37] and designs generated using
domain-speci�c languages like SPIRAL [14, 26]. SZKP uses HLS to
synthesize high-performance NTT modules starting with a soft-
ware implementation of constant-geometry NTTs. HLS is valuable
because it enables both an easy design space exploration and a
direct route from a software cryptography library to a hardware
accelerator. As far as we know, prior work on HLS-generated NTTs

only used Cooley-Tukey implementations which resulted in long
synthesis runtimes and less performant designs [27].

7 Conclusion
In this paper, we present SZKP, the �rst ASIC framework that ac-
celerates full zkSNARK proofs on-chip with a speci�c emphasis on
scalability. Through a comprehensive design space exploration, we
show how ZKPs can be constructed to yield orders of magnitudes
of speedup over CPU, scale to GPU sizes while maintaining reason-
able bandwidth needs, and outperform state-of-the-art GPUs and
ASICs. SZKP makes a strong case for scalable ASIC solutions to the
widespread adoption of ZKP hardware architectures.

Acknowledgments
We thank the reviewers for their valuable comments. Support for
this work was provided in part by NSF CAREER award #2340137
and via a Google gift award, including GCP credits. This work was
also supported by NSF RINGS #2148293 and ARL.

282
Authorized licensed use limited to: New York University. Downloaded on January 30,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

SZKP: A Scalable Accelerator Architecture for Zero-Knowledge Proofs PACT ’24, October 14–16, 2024, Long Beach, CA, USA

References
[1] 2017. NVIDIA TESLA V100 GPU ARCHITECTURE. https://images.nvidia.com/

content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
[2] 2018. libsnark: a C++ library for zkSNARK proofs. https://github.com/scipr-

lab/libsnark
[3] 2019. AMD DOUBLES DOWN – AND UP – WITH ROME EPYC SERVER

CHIPS. https://www.nextplatform.com/2019/08/07/amd-doubles-down-and-up-
with-rome-epyc-server-chips/

[4] 2019. AMD EPYC 7502. https://www.amd.com/en/products/cpu/amd-epyc-7502
[5] 2024. AMD EPYC 7502. https://www.techpowerup.com/cpu-specs/epyc-7502.

c2250
[6] 2024. Beyond ZK: Next Steps for Compliance and Constrained Encryption on

Blockchains. https://a16zcrypto.com/posts/videos/beyond-zk-next-steps-for-
compliance-and-constrained-encryption-on-blockchains/

[7] 2024. NVIDIA GTX 1080i. https://www.techpowerup.com/gpu-specs/geforce-
gtx-1080-ti.c2877

[8] D. H. Bailey. 1989. FFTs in external or hierarchical memory. In Supercomputing
’89:Proceedings of the 1989 ACM/IEEE Conference on Supercomputing. 234–242.
https://doi.org/10.1145/76263.76288

[9] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, andMadars Virza. 2013. Succinct
Non-Interactive Zero Knowledge for a von Neumann Architecture. Cryptology
ePrint Archive, Paper 2013/879. https://eprint.iacr.org/2013/879 https://eprint.
iacr.org/2013/879.

[10] Juan Benet and Nicola Greco. 2017. Filecoin: A decentralized storage network. In
Information and Communications Security. Protocol Labs, Cham, 1–36.

[11] Daniel J. Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk. 2012.
Faster batch forgery identi�cation. Cryptology ePrint Archive, Paper 2012/549.
https://eprint.iacr.org/2012/549 https://eprint.iacr.org/2012/549.

[12] James W. Cooley, Peter A. W. Lewis, and Peter D. Welch. 1969. The Fast Fourier
Transform and Its Applications. IEEE Transactions on Education 12, 1 (1969),
27–34. https://doi.org/10.1109/TE.1969.4320436

[13] Nanotechnology Products Database. 2023. TSMC 16FF+ (FinFET Plus). (2023).
https://product.statnano.com/product/6775/16�-(�nfet-plus)

[14] Franz Franchetti, Tze Meng Low, Doru Thom Popovici, Richard M. Veras,
Daniele G. Spampinato, Jeremy R. Johnson, Markus Püschel, James C. Hoe, and
José M. F. Moura. 2018. SPIRAL: Extreme Performance Portability. Proc. IEEE
106, 11 (2018), 1935–1968. https://doi.org/10.1109/JPROC.2018.2873289

[15] Mario Garrido. 2022. A Survey on Pipelined FFT Hardware Architectures. J.
Signal Process. Syst. 94, 11 (nov 2022), 1345–1364. https://doi.org/10.1007/s11265-
021-01655-1

[16] Sha� Goldwasser, Silvio Micali, and Chales Racko�. 2019. The Knowledge Com-
plexity of Interactive Proof-Systems. Association for Computing Machinery, New
York, NY, USA, 203–225. https://doi.org/10.1145/3335741.3335750

[17] Jens Groth. 2016. On the Size of Pairing-based Non-interactive Arguments.
Cryptology ePrint Archive, Paper 2016/260. https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2016/260.

[18] Jongmin Kim, Sangpyo Kim, Jaewan Choi, Jaiyoung Park, Donghwan Kim, and
Jung Ho Ahn. 2023. SHARP: A Short-Word Hierarchical Accelerator for Robust
and Practical Fully Homomorphic Encryption. In Proceedings of the 50th Annual
International Symposium on Computer Architecture (Orlando, FL, USA) (ISCA ’23).
Association for Computing Machinery, New York, NY, USA, Article 18, 15 pages.
https://doi.org/10.1145/3579371.3589053

[19] Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, Minsoo Rhu, John Kim,
and Jung Ho Ahn. 2022. ARK: Fully Homomorphic Encryption Accelerator
with Runtime Data Generation and Inter-Operation Key Reuse. In 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO). 1237–1254.
https://doi.org/10.1109/MICRO56248.2022.00086

[20] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, John Kim,
Minsoo Rhu, and Jung Ho Ahn. 2022. BTS: An Accelerator for Bootstrap-
pable Fully Homomorphic Encryption. In Proceedings of the 49th Annual In-
ternational Symposium on Computer Architecture (New York, New York) (ISCA
’22). Association for Computing Machinery, New York, NY, USA, 711–725.
https://doi.org/10.1145/3470496.3527415

[21] David G. Korn and Jules J. Lambiotte. 1979. Computing the Fast Fourier Transform
on a Vector Computer. Math. Comp. 33, 147 (1979), 977–992. http://www.jstor.
org/stable/2006072

[22] Ahmed Kosba. 2019. jsnark: a Java library for building circuits for preprocessing
zk-SNARKs. https://github.com/akosba/jsnark

[23] Patrick Longa and Michael Naehrig. 2016. Speeding up the Number Theoretic
Transform for Faster Ideal Lattice-Based Cryptography. Cryptology ePrint
Archive, Paper 2016/504. https://eprint.iacr.org/2016/504 https://eprint.iacr.
org/2016/504.

[24] Tao Lu, Chengkun Wei, Ruijing Yu, Chaochao Chen, Wenjing Fang, Lei Wang,
Zeke Wang, and Wenzhi Chen. 2022. cuZK: Accelerating Zero-Knowledge
Proof with A Faster Parallel Multi-Scalar Multiplication Algorithm on GPUs.
Cryptology ePrint Archive, Paper 2022/1321. https://eprint.iacr.org/2022/1321
https://eprint.iacr.org/2022/1321.

[25] Weiliang Ma, Qian Xiong, Xuanhua Shi, Xiaosong Ma, Hai Jin, Haozhao Kuang,
Mingyu Gao, Ye Zhang, Haichen Shen, and Weifang Hu. 2023. GZKP: A
GPU Accelerated Zero-Knowledge Proof System. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA, 340–353.
https://doi.org/10.1145/3575693.3575711

[26] Lingchuan Meng, Yevgen Voronenko, Jeremy R. Johnson, Marc Moreno Maza,
Franz Franchetti, and Yuzhen Xie. 2010. Spiral-generated modular FFT algorithms.
In Proceedings of the 4th International Workshop on Parallel and Symbolic Compu-
tation (Grenoble, France) (PASCO ’10). Association for Computing Machinery,
New York, NY, USA, 169–170. https://doi.org/10.1145/1837210.1837235

[27] Ahmet Can Mert, Emre Karabulut, Erdinç Öztürk, Erkay Savaş, and Aydin Aysu.
2022. An Extensive Study of Flexible Design Methods for the Number Theoretic
Transform. IEEE Trans. Comput. 71, 11 (2022), 2829–2843. https://doi.org/10.
1109/TC.2020.3017930

[28] Jianqiao Mo, Jayanth Gopinath, and Brandon Reagen. 2023. HAAC: A Hardware-
Software Co-Design to Accelerate Garbled Circuits. In Proceedings of the 50th
Annual International Symposium on Computer Architecture (Orlando, FL, USA)
(ISCA ’23). Association for Computing Machinery, New York, NY, USA, Article
10, 13 pages. https://doi.org/10.1145/3579371.3589045

[29] Peter L. Montgomery. 1985. Modular MultiplicationWithout Trial Division. Math.
Comp. 44, 170, 519–521. http://www.jstor.org/stable/2007970

[30] Marshall C. Pease. 1968. An Adaptation of the Fast Fourier Transform for Parallel
Processing. J. ACM 15, 2 (apr 1968), 252–264. https://doi.org/10.1145/321450.
321457

[31] Nicholas Pippenger. 1976. On the evaluation of powers and related problems. In
17th Annual Symposium on Foundations of Computer Science (sfcs 1976). 258–263.
https://doi.org/10.1109/SFCS.1976.21

[32] Sujoy Sinha Roy, Furkan Turan, Kimmo Jarvinen, Frederik Vercauteren, and
Ingrid Verbauwhede. 2019. FPGA-based High-Performance Parallel Architecture
for Homomorphic Computing on Encrypted Data. Cryptology ePrint Archive,
Paper 2019/160. https://eprint.iacr.org/2019/160 https://eprint.iacr.org/2019/160.

[33] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A Fast and Pro-
grammable Accelerator for Fully Homomorphic Encryption. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (Virtual Event,
Greece) (MICRO ’21). Association for Computing Machinery, New York, NY, USA,
238–252. https://doi.org/10.1145/3466752.3480070

[34] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar,
Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and Daniel
Sanchez. 2022. CraterLake: A Hardware Accelerator for E�cient Unbounded
Computation on Encrypted Data. In Proceedings of the 49th Annual Interna-
tional Symposium on Computer Architecture (New York, New York) (ISCA ’22).
Association for Computing Machinery, New York, NY, USA, 173–187. https:
//doi.org/10.1145/3470496.3527393

[35] Deepraj Soni, Negar Neda, Naifeng Zhang, Benedict Reynwar, Homer Gamil,
Benjamin Heyman, Mohammed Nabeel, Ahmad Al Badawi, Yuriy Polyakov,
Kellie Canida, Massoud Pedram, Michail Maniatakos, David Bruce Cousins, Franz
Franchetti, Matthew French, Andrew Schmidt, and Brandon Reagen. 2023. RPU:
The Ring Processing Unit. In 2023 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 272–282. https://doi.org/10.1109/
ISPASS57527.2023.00034

[36] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. 2020. Zero
Knowledge Proofs for Decision Tree Predictions and Accuracy. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security
(Virtual Event, USA) (CCS ’20). Association for Computing Machinery, New York,
NY, USA, 2039–2053. https://doi.org/10.1145/3372297.3417278

[37] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao, Fan Long,
Cong Wang, Dong Zhou, Mingyu Gao, , and Guangyu Sun. 2021. PipeZK: Accel-
erating Zero-Knowledge Proof with a Pipelined Architecture. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA).

[38] Zhichao Zhao and T.-H. Hubert Chan. 2016. How to Vote Privately Using Bitcoin.
In Information and Communications Security, Sihan Qing, Eiji Okamoto, Kwangjo
Kim, and Dongmei Liu (Eds.). Springer International Publishing, Cham, 82–96.

283
Authorized licensed use limited to: New York University. Downloaded on January 30,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

