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ARTICLE INFO ABSTRACT
Keywords: ePDFpy is an interactive analysis program with a graphical user interface (GUI), designed to process the electron
ePDFpy Pair Distribution Function (PDF) analysis of diffraction patterns from Transmission Electron Microscope (TEM),
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to identify the local atomic structure of amorphous materials. The program offers a user-friendly Python-based
interface, providing a straightforward and adaptable workflow for PDF analysis. Various optimization and fitting
processes were implemented to accurately reduce the electron diffraction data, including center-fitting and
elliptical correction of diffraction data. An improved parameter-estimation feature is available to enhance the
efficiency of the fitting process, along with an interactive GUL. ePDFpy will be freely distributed for academic
purposes, with additional features, including a beam mask drawing module.

Program summary

Program Title: ePDFpy

CPC Library link to program files: https://doi.org/10.17632/sym3sfnh7w.1

Developer’s repository link: https://github.com/GWIlab-SKKU/ePDFpy

Licensing provisions: GNU GPLv3

Programming language: Python

Nature of problem: The general process of pair distribution function analysis consists of two major steps: image
process on diffraction pattern and fitting appropriate parameters. Both of the procedures are affected by the
user’s proficiency, which can be responsible for producing inconsistent results and inefficiency. Thus, accurate
calculation methods along with fully automated feature are required to enhance the quality of the analysis result.
Solution method: ePDFpy offers an unbiased automated image process based on a computer vision algorithm
to produce the consistent output of intensity profiles from diffraction patterns. In addition, converting the data
structures into a multi-dimensional array enables efficient multi-parameter fitting features by performing parallel
computation. All of these features are accomplished using various open-source libraries in the Python community,
along with an interactive GUL

1. Introduction with low Brownian noise for gravitational wave detectors [2]. However,
unlike crystalline materials, amorphous materials lack long-range order

Interest in amorphous materials has risen significantly across vari- (LRO). Instead, they exhibit localized atomic structures with short-
ous fields of science, from industrial uses such as promising media for range order (SRO) within approximately 0.5 nm length scale [3] and
solid-state batteries [1] to optical applications such as dielectric mirrors medium-range order (MRO) typically spanning from 0.5nm to 5nm
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scale [4]. The Pair Distribution Function (PDF) is a widely used method
for characterizing the local atomic structure of amorphous materials
[5-7]. The PDF represents the probability of finding a pair of atoms
at a given radius and offers an intuitive means to characterize SRO.
Many previous studies have utilized X-ray [8] or neutron [9] scattering
experiments to extract atomic structure information about amorphous
materials, for example as demonstrated in the case of zirconia-doped
tantala [10]. While these studies showed promising results, electron
probes have emerged as a strong alternative for producing high-quality
PDFs [11]. Compared to x-rays, electrons exhibit greater sensitivity to
the electrostatic potential of matter, which makes it easier to observe
the local atomic structure of thin film with higher spatial resolution,
especially for low-Z materials [12,13].

Transmission electron microscopy (TEM) is an alternative tool to
obtain suitable diffraction data by utilizing high energy electrons as
a probe [13,14]. Using highly accelerated electrons as a probe, it can
obtain a strong signal even with small-scale volumes of the sample [15],
and advanced techniques, such as energy-filtering, are applied to obtain
high-quality diffraction data via TEM [16]. Based on this high-quality
data acquisition, electron PDF (ePDF) analysis requires a complex fitting
process to achieve accurate atomic structure information. To enhance
the efficiency and accuracy of ePDF analysis, ePDFpy is designed with
a user-friendly graphical user interface (GUI).

1.1. Necessity for development

Several free open-source PDF analysis software tools are available
for academic purposes online, including plugins in Digital Micrograph
(DM) such as ePDF tools [17] and standalone tools such as SUePDF [18]
and eRDF Analyser [19]. However, for DM-based plugins, incompatibil-
ities with other operating systems, such as Linux or Mac OS, can be
a significant disadvantage. To overcome this issue, ePDFpy was devel-
oped with Python, which is an open-source and popular programming
language due to its versatility and accessibility.

ePDFpy incorporates several features and workflows from eRDF
Analyser, such as masking, averaging intensity, and background noise
correction, which have proven to be efficient. However, key features
including the image processing and parameter fitting in eRDF Analyser
are partially based on an empirical approach, which requires users’ ex-
pertise to select appropriate input for raw diffraction data. In contrast,
ePDFpy provides a fully automated center-fitting and radial integral al-
gorithm for the extraction of 1-dimensional azimuthally averaged inten-
sity profiles from 2-dimensional diffraction patterns, which minimizes
human intervention to prevent an inconsistent output of the intensity
profile. Users can assess the fitting quality by visually confirming the
real-time display of the polar coordinate transformed image, which is
adapted from py4DSTEM [20]. The analysis process in ePDFpy is also
significantly improved in both accuracy and efficiency by employing the
advanced autofit feature, which utilizes a multi-parameter fitting algo-
rithm. Details about this feature are discussed in forthcoming sections.
In addition to data processing, organizing the output data is significant.
To fulfill this task, ePDFpy includes additional tools that allow users
to select specific analysis results of interest and generate average out-
puts for the final arrangement, as well as the variance between selected
datasets to assess data quality.

ePDFpy adopts an interactive GUI, which enables an intuitive envi-
ronment that allows the user to easily visualize all relevant information
at each stage of the data reduction process. In addition, considering
that the typical analysis involves multiple datasets from experiments,
ePDFpy offers practical tools such as multiple file save/load options
and batch image processing features for all loaded raw data, thereby
alleviating redundancy. Furthermore, users can re-open and edit pre-
saved settings such as chemical compositions and calibration factors,
and essential fitting parameters from previous analysis done by ePDFpy,
which enables easy revision of analysis results.
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The following sections provide a detailed overview of ePDFpy and
its key features: Section 2 covers the basic theory to calculate PDF,
the main features of ePDFpy software are described in Section 3, and
illustrative examples are shown in Section 4.

2. Theoretical background
2.1. Pair distribution function (PDF)

The determination of atomic structure information of a material
involves extracting relative atomic positions or inter-atomic distance
distributions. In isotropic systems, the distribution of inter-atomic dis-
tances can be obtained through the atomic pair density function [6]:

p)= pog(r) = T DIPILIEIN &
m#n

where p, is the average number density of the material, N is the to-
tal number of atoms inside the material, and r,,, is the radial distance
between atom m and n. The function g(r) is defined as the atomic pair
distribution function and represents the probability density function of
finding an atom at a distance r from a center atom [15]. The g(r) func-
tion provides a useful physical quantity that acts as a map of the local
density inside the material with respect to atomic distances. Meanwhile,
another quantity, the reduced pair distribution function G(r) is intro-
duced [5,6], which is defined as,

G(r) =4zr(p(r) — po) @

G(r) is more widely used than g(r), since it can be directly extracted
from the Fourier transform of diffraction data. Although less physically
intuitive than g(r), G(r) is closely related to the distribution of atoms
since [6]:

(i) peak positions are aligned with g(r), which indicates the domi-
nant bond length,

(ii) it oscillates around zero at large r,

(iii) it behaves like —4zrp, in the limit of r — 0.

As a result, the structural information of the material can be ex-
tracted by appropriate of fitting G(r) with the obtained experimental
data using total scattering theory.

2.2. Total scattering theory

According to Warren [5], the scattered intensity from the material
with scattering vector q with a modulus of |g| =4z sin6/ 4 is expressed
as,

1@ =Y, fa@+ D fu@ Y, Sul@)e @™m0 ®)
m m m#n

where r,,, is the position vector between atom m and n. f,(q) and

f.(q) are the electron scattering factors (f(g)) of the atoms m and n

respectively, which can be defined as [21,22],

mee* [ z—f,(q)
f@== < " ) C))
where f (q) is the x-ray scattering factor [21]. Following Cockayne’s
work [7], extending to a system with multiple types of atoms, the sum-
mation term that related to m # n can be generalized by changing the
sum over # to the integral of p,,;(r,,,)dV,, where p,,;(r,,,) is the num-
ber density of atom of type j at r,, within infinitesimal volume dV,
around atom m.

o)=Y fi@+) ) [fmm) x / F5(@ Py ()T AV, ©)
m j m

Introducing the number of each atom type in the material, N;, which
makes the total number of atoms N = Zi N;, Eq. (5) can be written as,
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@)=Y N i@+ Y, [Niff(q) x / T/ @ P )
i J i
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where p; is the average number density of atom j. The last summation
term in Eq. (6) is related to small-angle scattering, which is indistin-
guishable from the transmitted center beam. As the center beam is
masked with a beam stopper to prevent CCD damage, this term can
be neglected, as a result, Ip(q) is defined with the remaining terms:

lop@= X Nifi@+ 3, Y [N,»f,-(q)fj(q)
1 J 1 (7)
X / (P () — p,-)e“q"mn)dvn] :

Introducing the averaging f;(¢) quantities over the chemical ratio of
atoms as:

CXNS@ L, EiNf@
(fl@)= T,(f @)= -~ (8)
the density function p(r,,,) around atom m can be defined as:
S N.f. . .
)= 2 X N i@ (@ (,) ©

N{f(@)*
Hence, the indices i and j can be dropped in Eq. (7) to simplify the
Ioxp(q) as,

Top(@) =N (@) + N{(f(@))* X / (P(Xy) = po)e' ATV, (10)

Following previous studies [5,7], due to the randomized, isotropic
structure of amorphous materials, there is no preferred orientation in
the system. Therefore, the volume integral in Eq. (10) can be simplified
by introducing a radial vector r,,, =r and r = |r|:

[+

ILxp(@) =N{(f*(@) + N(f(@))* x / 4zr*(p(r) = py)
0

sin(gqr)

dr. an

Extracting the integral term, which contains the information on
inter-atomic structure, the reduced intensity function ¢(q) is defined
as:

)= [ISXP@ - N(/(9)

3 q= /4frr(p(r) — po)sin(gr)dr. 12)
N/ @) ] /

Given the definition of G(r) in Eq. (2), ¢(¢) can be expressed as:
@(q) :/G(r) sin(gr)dr. 13)
0

Finally, G(r) can be extracted using the inverse Fourier sine transform:
(s
2 .
G(r) = p / $(q)sin(gr)dq. a4
0

2.3. Practical PDF analysis from experiment data

It is necessary to modify the ideal form of ¢(q) and G(r), since in
experiments background noise such as the dark current of the detector
is also recorded in the raw data. Assuming a correction factor C(g) as
a value of noise from the detector, it should be removed from Texp(@).
Thus, Eq. (12) can be modified as:
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L@ = N(f2) = C(@)

#(q) = NP q- (15)
In addition, the effective range of scattering vector ¢ in a given diffrac-
tion pattern is limited by various instrumental conditions, such as strong
center beam, and finite detector size. Therefore, applying a precise
minimum (g,,;,) and maximum (g,,,,) cut-off value of g to Eq. (14)
is necessary, which corresponds to the center beam masking area and
upper bound of the effective data range. However, reducing the integral
range in Eq. (14) can generate a termination error in the Fourier trans-
form, such as an unusual oscillation or unphysical peaks in G(r). To
compensate for this problem, applying a Gaussian function as a damp-
ing function on ¢(q) is introduced [6,19] to G(r) as:

Imax
2 .
Giry== / $(q) - exp(=bq*)sin(gr)dq ae)
9min
where constant b is the damping factor. Note that scattering vector s =

2sinf/4 = q/2x is often conventionally used, which results in Eq. (16)
becoming:

G(r)=8r / @(s) - exp(—bs?) sin(2rsr)ds. 17)

Smin
3. Software description

ePDFpy is open-source software written in Python, featuring a
platform-independent GUI facilitated by the PyQt5 toolkit. Users can
load diffraction pattern data files, compatible with the most commonly
used file formats such as TIFF, MRC, and DM3. In addition, the software
itself is capable of loading multiple raw data using a batch loading pro-
cess, thus users can easily navigate between files and conduct analysis.

The overview of the workflow is shown in Fig. 1. Once users load
the raw data, using a center fitting feature modified from py4DSTEM
software [20], the radially averaged intensity profile from the raw
diffraction image can be extracted in the ‘Profile extraction’ tab, after
applying a beam stop mask and background noise subtraction on the
raw data. Users can also avoid redundant procedures by simply using
batch calculation processes of center fitting and intensity averaging on
entire loaded images, with fixed beam masks. After profile extraction,
users can proceed to the ‘PDF analysis’ tab in which fitting parameters
can be defined using automatic and/or manual fitting to get G(r). In
the final step, the output from the profile extraction and PDF analysis
can be saved in various text-based file formats like csv and txt. Every
workflow step can easily be revisited, so that users can check the output
quality of each procedure, without starting from scratch.

3.1. Profile extraction

The aim of profile extraction is to obtain a radially averaged 1-
dimensional intensity profile from raw diffraction pattern data. To effi-
ciently facilitate this process, the profile extraction tab is composed of
three main panels as shown in Fig. 2: a control panel (upper-left), an
image panel (lower-left), and a plot panel (right-hand side). Users can
intuitively check each calculation output in the corresponding panels.

3.1.1. Control panel

The extraction of the intensity profile involves a series of automated
steps. The first step is to set the mask on the beam stop region; users
can select from pre-saved mask data (Fig. 3a) or draw a polygon from
the mask drawing module (Fig. 3b).

If users have a noise reference image, it can be subtracted via a noise
subtraction toolbox. A single blank image file can be loaded, and users
can choose whether to subtract it from the raw data, or revert to the
original for each loaded data. This indication of noise subtraction will
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be shown in the text box, and the images will be instantly updated on
the corresponding panels.

After applying the mask and noise subtraction, users can find the
center of the raw data with a two-step fitting algorithm. The initial cen-
ter finding is done by fitting the center of mass [20] of a circle with the
intensity over the threshold which is made by the flood-fill algorithm in
Python’s openCV library [23]. The second stage employs the gradient
descent algorithm, with the center coordinates serving as a parameter
in the cost function. The cost function itself represents the standard de-
viation of intensity along the radial axis of the polar-transformed image
which is generated by the code in py4DSTEM [20]. The azimuthally
averaged intensity profile I(g) is extracted from the fitted center coor-
dinates, with respect to pixel distance.

The entire procedure of these image processes can be done for all
loaded data files, including both center fitting and extraction of inten-
sity profile with fixed mask and noise data, by activating the batch
process from ‘Calculate all data’. Unless users manually change the
center coordinates, all image processes are automated without human
intervention, therefore a consistent /(g) will be generated.

3.1.2. Image and plot panels

A visualization of the image processing is displayed in both panels.
The image panel depicts the colormap of the log-scaled raw diffraction
image to highlight the concentric diffraction rings. White perpendicular
lines indicate the location of the center and the coordinates values are
displayed in a spin box located above the image panel. Users can adjust
the intensity scale with the scalebar on the image panel.

The plot panel consists of two plots. The first plot shows the radially
averaged intensity profiles, plotted with respect to pixel distances from
the center. The second plot shows the polar-transformed image of the
raw diffraction image, with the distance and angle plotted on the hor-
izontal and vertical axes, respectively, which are commonly used for
multiple software, like py4DSTEM [20] and Emilys package (https://
github.com/ju-bar/emilys). The transformation is done by applying the
py4DSTEM’s algorithm [20], with dr =1 and d@ = 1° step size. Users
can visually check the validity of the center and angular aberration of
the diffraction pattern [24,25], by confirming the straight lines formed
with respect to the distance axis.

3.2. PDF analysis

G(r) is calculated from the extracted /(g) in the PDF analysis tab
(Fig. 4). Users can adjust the fitting parameters from the control panel
and immediately observe the results in the plot panels.

3.2.1. Preparation for analysis

Prior to the analysis of 1(g), users must enter the basic experimen-
tal parameters set up essential parameters, which can be done manually
or by selecting pre-saved settings. The required parameters are the type
of atomic scattering factor f(g), chemical composition of the sample,
and calibration factor. Users can choose between the atomic scattering
factors calculated by Kirkland [21] or Lobato [26] for fitting ¢(g). The
chemical composition, including atom type and ratio, is used to calcu-
late the averaged quantity of the scattering factor in Eq. (8), in which
users can input up to 5 elements. The calibration factor is the value to
convert the pixel distance of the extracted Ioy(q) to a unit of scatter-
ing vector s = ¢/2x in reciprocal space. Users can input the values from
the metadata of raw images or calculated values directly from calibra-
tion samples such as gold or silicon. The converted I.,,(q) is presented
in the lower plot panel.

3.2.2. Fitting ¢(q) and calculating G(r)

After setting the prerequisite parameters, users can start the analysis
by adjusting the fitting parameters, which are used to calculate ¢(q)
and G(r) based on Eq. (15) and (17), from the obtained Ty (@) Each
calculated result is presented in the top right (¢(g)) and bottom right
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(G(r)) plot panels, and users can intuitively visualize changes in the
results to find the optimum values. The list of the major parameters is
q range, q;, and N, which are required to optimize ¢(g).

(i) Users can easily set the q range by adjusting the highlighted
ranges in the I,(q) plot panel or by manually changing the num-
bers in the text box. Both methods will change g, and g,,,., which
will determine the integration range in Eq. (17). In addition, the soft-
ware automatically fixes gy, at the first local minimum point in I,(9),
which is expected to be beyond the effect of the beam stop mask. If nec-
essary, users can also modify ¢,,;, from the ‘select’ menu (Fig. 5).

(ii) Cut-off scattering vector qy is used to set the correction factor
C(q) in Eq. (15). From Anstis’s work [27], the effects of inelastic scat-
tering signals from multiple scattering can be ignored for thin samples,
hence ePDFpy assumes the correction factor as a constant C(g;), where
gy is the intersection point between N{f 2(g)) + C(q) and the experi-
mental signal I (@) Thus, g, specifies C(g,) with following condition
[19]:

Clg) = Toyp@) — N(f(q0)) (18)

The default setting in ePDFpy fixes the g, value as the same as g,,,,,, but
users can change it by adjusting values in ‘fit at q’ text box.

(iii) Coordination number N is the total number of atoms in the
illuminated area in the sample. The optimum N value minimizes the
difference between I.,,(¢q) and N(f 2(9)) + C(qy). Users can adjust its
value manually in the 'N’ text box or use the ‘Autofit’ feature, which
optimizes N using least-square fitting. The corresponding N {f2(q)) +
C(gy) is represented by the green line in the I,(q) plot panel.

While these 3 parameters can be manually adjusted by users, an
‘Advanced fitting’ feature is also available to optimize all of these pa-
rameters at once with unbiased values, which will be described in the
next subsection. Once the ¢(q) is set, users can customize additional
factors required in the calculation of G(r). Firstly, the damping factor
b in Eq. (17), which has a default value of 0.15, can be adjusted, and
the corresponding ¢(g) is displayed in the ¢(g) plot panel as a green
line. The r range and resolution of the Fourier transform can be ad-
justed by modifying the values of ‘r(max)’ and ‘dr’. These parameters are
crucial for capturing the short-range order structure in G(r), and the de-
fault values are 10A and 0.01 A, respectively. Each of the parameters
can be adjusted manually by changing the values in the correspond-
ing spinboxes. Users can choose to update plots instantaneously with
each parameter change, allowing for efficient manual optimization of
parameters, by enabling the ‘instant update’ option.

3.2.3. Advanced fitting

To predict the optimum parameters of ¢(g), an automated fitting
feature was developed to fit all 3 factors simultaneously. To initiate
this multi-parameter fitting process, users first need to set the param-
eter searching range, which will involve ¢q,,,, g, in the control panel
(‘Fitting Setting’) section in the GUI panel (Fig. 6). For convenience,
the search range for ¢,,,, is shown as the corresponding pixel range
box in the control panel. In addition, users can adjust the search range
and step size of the parameters to achieve the desired level of accuracy.
The other two control boxes adjust the threshold condition of fitting
and the number of best-selected results. After setting up all initial vari-
ables, users can start the fitting process by activating the ‘Autofit’ button
to conduct the multi-parameter calculation. The fitted results are pre-
sented in the table (fitting parameters) and in graph panels (¢(g) and
G(r)).

In multi-parameter fitting, 3-dimensional array structures (dat-
acube) are formed to stack up all possible cases of ¢(q) and calculated
G(r) within the input parameter searching ranges, as the total calcula-
tion process is described in Figure 7. ¢p(¢q) 1-dimensional array is built
by applying different ¢ range, g, and N value, forming each row in ¢(q)
datacube. For the g range, users only need to set g,.., as g, is deter-
mined automatically in the ‘pdf analysis’ tab. The N range is set within
+5 values from the result of least-square fitting, which is done within
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the ¢ range from 27 to gq,,,,. This fitting range is determined based on
the relation between reciprocal space distance g and real space distance
r, corresponding to an r < 1 A range. Some of the individual ¢(q) rows
are defined with different lengths in ¢, due to different ¢q,,, which
makes it impossible to stack up the ¢(g) datacube. Therefore, those ar-
rays contain manually added NaN (Not a Number) values to match the
length of every row array.

Using a parallel computing algorithm, the Fourier transform based
on Eq. (16) (or Eq. (17)) of this 3-dimensional ¢(g) array is done, which
in results, forms the G(r) datacube, where each row corresponds to each
¢(gq) row with different fitting parameter. To find the optimum parame-
ter sets, G(r) results are filtered based on the following two conditions:

(i) The peak height of G(r) within the distance r less than 1 A should
be minimized, since it indicates atoms existing within 1 A length scale,
which is physically impossible. Therefore, users can set the lower per-
centage threshold for selecting the minimum noise peak value. The

default setting for this is to choose the lowest 1% results among the
entire sets, and its level can be adjusted by changing the threshold in
‘Noise peak cut (%)’.

(ii) The existence of a local maximum in G(r) in the range between
2 to 3A. This peak position corresponds to the second nearest bond
length, which is likely the oxygen-oxygen bond length in most oxide
materials.

Based on the nature of G(r), it should exhibit a linear trend of
—4zpyr. Therefore, the least-squares method is applied to determine
the best-fitted —4zpyr for each possible G(r). From this fitting, grading
values are defined as the sum of the squared differences between the
fitted line and G(r) for r < 1 10\, in order to identify the best-fitted G(r)
that satisfies the filtering conditions. Some of the top best-fitting results
are shown in the bottom-left table and corresponding plots on the right-
side plot panels. Among those results, users can choose the parameter
sets that will be used for further manual fitting.
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Fig. 6. Advanced fitting module GUI panel. The control panel is in the top-left corner, which controls the parameter searching ranges (q,,,, and g;) and threshold
conditions. The ¢(g) and G(r) in graph panels are corresponding to each row in the table panels.
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Fig. 7. Graphical representation of the 3-dimensional array (datacube) calculation used in the autofit process. The lefthand array consists of ¢(g) values and the
righthand array consists of G(r) values, calculated from ¢(q) datacube. Each axis shows the parameter space, and subscripts represent the different fitting parameters.
The black arrow describes the relation between each row (green) in ¢(q) and G(r). The orange blocks show manually added NaN values.

Table 1

Descriptions of the output file from ePDFpy software.
File format Description
_q.csv Effective q range, intensity profile, ¢(q)
_r.csv Atomic distance, G(r)
_.jpg Screenshot of PDF analysis panel
_preset.json  All parameters required for analysis

3.3. Output data

ePDFpy provides various output files to save the final analysis re-
sults, as listed in Table 1. These output files enable users to revisit
previous analysis results from where they left off.

In addition, ePDFpy allows users to load multiple specific output
files for comparison in a single plot panel or to create averaged val-
ues for selected results. Fig. 8 demonstrates the selection analysis on
multiple test analysis result files with a Ta,O5 sample as an example.

The white line in the plot represents the averaged value of G(r) with
a selected list of datasets. Users can save the selected list of data or only
the averaged data in single csv files, along with the txt file containing
the directory information of selected data files.

4. Example and discussion

To demonstrate standardized analysis procedures of ePDFpy, two
illustrative examples are presented in this section. The first example
shows the extraction of a calibration factor from the calibration stan-
dard sample (polycrystalline gold), while the second demonstrates a
PDF analysis of an amorphous material sample.

4.1. Polycrystalline Au

The first example is polycrystalline gold (Fig. 9), which is obtained
using the FEI Tecnai G2 F20 X-TWIN TEM in Stanford Nano Shared
Facility with acceleration voltage of 200kV, condensor aperture (C2)
of 100 um, a camera length of 7S mm and no selected-area aperture
(SA) applied. The image was taken with total exposure time with 0.1's
with 1 frame image. Fig. 9a shows polar-transformed images of the
raw data with center-fitting conducted by ePDFpy, along with off-
centered transformations varied by +5 pixels. The graph confirms that
ePDFpy’s center-fitting results are notably superior, characterized by
straighter lines in the polar-transformed images, particularly within the
near-center region where intensity is most pronounced. In contrast, the
off-centered results exhibit curved lines in a polar-transformed image.
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Fig. 8. Data selection process for pre-analyzed amorphous Ta,O5 data. Poor quality data are excluded from the analysis, which can be confirmed in the legends and
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numbers (hkl) show the indices of corresponding lattice planes.
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Table 2 Table 3
Calculated calibration factor from extracted intensity profile. Parameters from each fitted method of a-Ta,O5 sample.
(hkl) a1y (002) (022) 113) Methods Gonax a N
d 2354 2054 1444 1234 Manual fit 2007447 19.807A7" 181.250
D 168 196 275 822 Advanced fit 204834~ 1925447 181
ds 0.00253 0.00254 0.00252 0.00253
4.2. Amorphous tantala
61 —— Center-fitted G(r)

—— Off-centered G(r)

1, , /\/\/\A

LY VA ASAY

1 2 3 4 5 6 7

Fig. 10. Fitted G(r) comparison between center-fitted and off-center I(g) re-
sults. The vertical lines indicate the first 4 peak positions: 2.87 A,4.06 A, 4.96 A,
and 5.73A.

This comparison confirms that users can intuitively check if the cen-
ter was correctly defined in the analysis process, even as a small offset
(near 5 pixels) can be visually inspected very easily. In Fig. 9b, the er-
ror due to aberration is defined as a normalized variance with respect
to the pixel distance, which is calculated along with the angle axis in
Fig. 9a and normalized by the average intensity calculated in the same
manner. A comparison between these error values and the center-fitted
results demonstrates a significant reduction in errors, particularly in the
near-center region. Moreover, the analysis of other error values derived
from noise-subtracted data indicates an improvement in data quality in
regions further from the center, owing to a decrease in aberration ef-
fects when compared to center-fitted data. As a result, Fig. 9c presents
the intensity profile comparison between noise-subtracted center-fitted
raw data and off-centered data, which exhibits better-defined peaks.
Furthermore, certain peaks, such as those corresponding to the (200)
plane, become obscured by background noise in the off-centered trans-
formations. The extracted intensity profiles of the standard sample can
be used for the calculation of the calibration factor (ds) to convert the
pixel distance of the CCD detector to scattering vector s. This conversion
can be achieved using the equation: ds = (1/d)/ D, where d represents
the d-spacing corresponding to the distance between atomic planes,
and D is the pixel distance of the detector. Referencing the known
d-spacing value of face-centered cubic (fcc) gold calculated from the lat-
tice parameter 4.08 A, the calibration factor is extracted as the following
Table 2. In this particular data, the average value of the calibration fac-
tor is calculated as 0.00253, which can be used in the calculation of
G(r).

From the acquired I(q) and ds value, G(r) is calculated for both
cases to confirm the center-fitting effect. Fig. 10 shows that the center-
fitted I(q) has a more well-defined peak in every region. Both results
were analyzed with the advanced fitting of ePDFpy, which produced

the fitting parameters for center-fitted I(q) as ¢, = 20.381 ;\_1 S =

19.140 f\_l, N =59. Compared with the known interatomic distances of
the fcc gold’s coordination shell, the first four peak positions indicated
with black vertical lines in Fig. 10, show well-matched results within
the offset of +0.02 A in the 1st and 2nd coordination shell, and +0.05 A
in 3rd and 4th coordination shell. These results suggest that although
ePDFpy is designed to analyze the diffraction pattern of amorphous ma-
terials, it is also capable of analyzing the ring pattern of polycrystalline
materials.

The diffraction image from an amorphous Ta,O5 (a-Ta,Os) thin film
sample is used for the second illustrative example. Measurement was
performed by FEI Themis Z TEM located in DGIST, South Korea, oper-
ated with 300kV acceleration voltage, C2 aperture of 10 um, a camera
length of 75 mm and no Selected-area Aperture (SA) conditions. The il-
lumination area on the sample is 150 nm. The image was acquired by
a CCD camera with an exposure time of 50s and integrated among
20 frame images. The image process on the raw data is presented in
Fig. 11: polar transformed images that show the effect of the offset
from the best-fitted center (11a) and the errors calculated from them
(11Db) as defined in Section 4.1. Similar to the example of polycrystalline
gold, a minor shift in the center coordinates produced noticeable devia-
tions that can be visually observed. Furthermore, the error curve for the
center-fitted data demonstrates improved results by reducing distinct
peaks in the near-center region, which are present in the off-centered
data. In addition, the noise-subtracted data demonstrate reduced error
in regions further from the center. This noise reduction consequently
enhances the signal-to-noise ratio, especially in the high-g range of
the acquired diffraction data, leading to improved analytical results for
G(r).

Fig. 12 and Table 3 show a comparison between the optimized pa-
rameter results from both manual and advanced fitting of ¢(g), fixing

Gmin = 1.209 A" and using a ¢q,,,, value of approximately 20 A along
with a calibration factor of 0.00326. Fig. 12a displays the compari-
son of the reduced intensity function ¢(q) for both methods, with a
damping factor of b =0.15. For the calculation of G(r) in Fig. 12b, the
Fourier transformation parameters were set to a maximum r = 10 A, and
Ar=0.01A.

Overall, the results obtained through advanced fitting exhibit similar
trends to those obtained through manual fitting. The primary difference
lies in the oscillations observed in the advanced fitting results beyond
5 A, which may arise from the longer tail in ¢(q). Nevertheless, ad-
vanced fitting produces a G(r) profile that closely aligns with that of
manual fitting. Furthermore, a quantitative comparison of values, as
presented in Table 3, demonstrates that advanced fitting can provide a
reliable initial estimate for optimizing G(r).

In Fig. 12b, vertical lines indicate well-defined peak positions after
1 A, as each value corresponds to 1.96 f\, 2.79 A, 3.34 i\, 3.74 A. The first
peak at 1.97 A, which is reported as Ta-O bond length, matches up with
the previous x-ray study [28] within + 0.03 A. Likewise, other peaks are
in good agreement with those published by Shaym et al. [29], as the
differences are also in the range of + 0.02 A. The second peak (2.79 1°\)
corresponds to the O-O bond, which is better defined than the previous
x-ray PDF results [30].

5. Conclusion

ePDFpy is a useful tool for PDF analysis of electron diffraction
data, with an interactive GUI environment. The package is based on
Python, whose versatility, accessibility, and open-source environment
allow users to customize the software to their requirements. Imple-
menting various techniques using computer vision, ePDFpy provides not
only an advanced image processor that allows users to extract intensity
profiles with enhanced accuracy and consistency but also an advanced
multi-parameter fitting to increase the efficiency of the PDF analysis. In
addition, features such as selection analysis, masking module, and the
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Fig. 12. Comparison between manual fitting and advanced fitting of a-Ta,O;
analysis. Calibration factor is extracted from different standard sample data. (a)
Reduced intensity function ¢(g) (b) Reduced PDF G(r) of a-Ta,O5 sample. All
results were calculated from noise-subtracted images, and the analysis was done
with both manual fitting and advanced fitting for comparison.

reproducible file save-load system enhance the user’s productivity and
accuracy in analysis. The obtained G(r) results of ePDFpy are expected
to be widely used in further analysis of local atomic structure studies
on disordered materials, based on electron diffraction experiments.
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Appendix A. Installation of ePDFpy

ePDFpy is based on the PyQt5 GUI toolkit, with various supporting
libraries such as Hyperspy, and Mrcfile for loading multiple diffrac-
tion data. Users can install via PyPI distribution (pip install epdfpy),
where the source code can be downloaded from the GitHub (https://
github.com/GWlab-SKKU/ePDFpy). The detailed information on the in-
stallation, such as the required libraries to set up the working Python
environment, is described in the readme file in the source code. In ad-
dition, the detailed user guide markdown file is also available in the
above GitHub.
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