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ABSTRACT
Query optimization is a key component in database management
systems (DBMS) and distributed data processing platforms. Re-
cent research in the database community incorporated techniques
from artificial intelligence to enhance query optimization. Various
learning models have been extended and applied to the query op-
timization tasks, including query execution plan, query rewriting,
and cost estimation. The tasks involved in query optimization differ
based on the type of data being processed, such as relational data or
spatial geometries. This tutorial reviews recent learning-based ap-
proaches for spatial query optimization tasks. We go over methods
designed specifically for spatial data, as well as solutions proposed
for high-dimensional data. Additionally, we present learning-based
spatial indexing and spatial partitioning methods, which are also
vital components in spatial data processing. We also identify several
open research problems in these fields.

PVLDB Reference Format:
Xin Zhang and Ahmed Eldawy. Spatial Query Optimization With Learning.
PVLDB, 17(12): 4245 - 4248, 2024.
doi:10.14778/3685800.3685846

1 INTRODUCTION
In database management systems (DBMSs) and data processing
platforms, query optimization involves two main steps: logical
transformation and cost estimation. Modern DBMSs and data pro-
cessing platforms can process heterogeneous data. Each type of
data requires specific considerations in its query optimization pro-
cess. However, the main steps of query optimizations are always
the same, regardless of the type of data being processed. The query
optimizer returns a query plan with the lowest cost. A query plan
is represented by a set of operators that form a query tree. The
query transformer maps a query tree into equivalent query trees
by following a set of rules inherited from relational algebra. The
query optimizer evaluates the overall cost of each candidate plan
to determine the optimal plan. The cost function considers access
cost, storage cost, computation cost, and communication cost [31].
To estimate the computation cost, the query estimators compute
the selectivity and cardinality through data statistics. The data sta-
tistics are extracted and compacted into data synopses, such as
histograms, samples, sketches, and wavelets [9]. The I/O costs of
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the query execution are affected by data storage, such as partition-
ing and indexing. Over the past decades, extensive efforts have
been made to incorporate different query optimization tasks and
various query operation requirements.

AI4DB [18] becomes a very hot direction in the database com-
munity. Researchers spend efforts to improve query optimization
by Artificial Intelligence (AI) techniques. Learned query optimizers
beat the traditional heuristic solutions on generating more efficient
query plans among the large search space [8, 21, 23, 40, 44, 49, 50].
Traditional synopses-based estimators rely on the Attribute Value
Independence (AVI) assumption and cannot capture the attribute
correlations [11, 32]. To overcome this limitation, researchers pro-
pose learned-based estimators including data-driven and query-
driven models. The data-driven models [2, 17, 26, 30, 34, 36, 41,
42, 46, 52] learn the joint data distribution over all attributes. The
query-driven models [16, 20, 25, 28, 38, 41, 48] learn a mapping
function from queries to the corresponding cardinalities.

Existing learned-based query optimization techniques for high-
dimensional data cannot be directly applied to spatial data be-
cause the spatial query operators are more complicated than high-
dimensional vector data. Spatial data includes raster and vector
formats. Raster data is represented by a grid of regularly sized pix-
els, while vector data uses geometry, such as points, linestrings,
and polygons, defined by a set of numerical values. Due to the
complexity of spatial attributes, expressing a spatial query in SQL
often requires multiple inequality predicates in the WHERE clause.
The classification of spatial queries is not unified. One group cat-
egorizes spatial queries into five types: basic, join, computational
geometry, data mining, and raster operations [13]. The other group
classifies spatial queries on vector data into five types: topology-
based, metric-based, and direction-based [7, 24]. Techniques for
spatial query optimization differ significantly from those used for
relational data query optimization. For query rewriting, due to the
complex data types and user-defined functions, several heuristic
rules by relational query rewriter are no longer unconditional for
spatial query rewriter [31]. For cost estimators, spatial query esti-
mations are also more complex than relational query estimations.
Spatial queries involve both spatial operators and nonspatial opera-
tors. Estimating spatial operators is often associated with inequality
relations, such as OVERLAP, DISTANCE, etc.

Previous tutorials present comprehensive studies about learned-
based DBMS [18], query optimizer [15], and learned-based query
optimizers [33, 43]; however, they missed the spatial query opera-
tors and requirements. Several tutorials discuss spatial data man-
agement [12] and spatial data applications [6, 29], but none of them
link to spatial query optimization in DBMS and data processing
platforms. In this tutorial, we aim to review the existing methods in
learning-based query plan generators and cost estimators and dis-
cuss the open problems in spatial query optimization. Additionally,
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• Part 1: Spatial Data Management and Spatial Data Processing (25 minutes)
- Brief overview of the query optimization in DBMS 
 and distributed data processing framework (Spark)
- Highlight the specific features related to manage the spatial data 

and spatial query processing
• Part 2: Learned Solutions for Query Optimizer (15 minutes)

- Query Rewriter
- Query Optimizer

• Part 3: Learned Solutions Cost Estimator (25 minutes)
- Brief overview of spatial query cost estimation tasks
- Learned cardinality estimation
- Learned join selectivity estimation
- Other learned spatial queries

• Part 4: Learned Solutions for Spatial Data Management (20 minutes)
- Brief overview of spatial indexes and spatial partitioning strategies
- Learned Indexes
- Learned Partitioning solutions

• Part 5: Open Problems for Future Research (5 minutes)

Figure 1: Tutorial Outline (90 minutes)

we will also cover learned solutions for spatial data management,
including learning spatial index and spatial partitioning, to high-
light the I/O cost of spatial query execution. A tutorial [1] reviews
learned multi-dimensional indexes. As a supplement to [1], we dis-
cuss newly learned spatial indexes from recent years and learned
spatial partitioning techniques in this tutorial.

2 TUTORIAL OUTLINE
Figure 1 shows the outline of this tutorial. We plan to spend 90
minutes discussing techniques for spatial query optimization with
learning. This tutorial targets students, researchers, and practi-
tioners who are interested in exploring problems in spatial query
optimization. In the first part, we will introduce the background
of query optimization components and spatial data processing. No
prior knowledge of spatial data is required for the audience. We aim
to inspire the audience with the following three parts: (1) Key fea-
tures of spatial data management and spatial query optimizations;
(2) Existing works on spatial query optimization; (3) Why tech-
niques for relational query optimization cannot be directly applied
to spatial query optimization; (4) Gaps for future research in spatial
query optimization with learning. Figure 2 summarizes the works
that will be discussed during the presentation and categorizes them
based on query optimization goals.

2.1 Learned Solutions for Query Optimizer
We cover two topics about learned solutions for query optimiz-
ers: query plan optimizer [5, 8, 23, 34, 40, 44, 49, 50] and query
rewriter [4, 24, 39, 51].

SJML [34] designs a spatial join framework based on several
learning models. The proposed models predict the best spatial join
algorithm and features, such as the plane-sweep direction (along
the x- or y-axis). SpatialEmbedding [5] proposes a framework based
on three learning models, which include an unsupervised model to
capture the features of spatial datasets and two supervised models
for the cost estimation of spatial operations. Optimizing the query
execution plan is an important step in the DBMS and distributed
data processing platforms. There are also several works [8, 23, 40, 44,
49, 50] that use learned models to evaluate the query plan and select

the optimal query execution plan. These works are marked with
grey color in Figure 1 because they are proposed for relational data
and queries. Existing spatial optimizers focus on query execution
and lack of supporting in considering query plans.

Maliva [4] applies the Markov Decision Process model to rewrite
the queries. The proposed model can be applied to spatial aggrega-
tion queries. SemanticQueryOpt [24] proposes a strategy for the
semantic query optimization of spatial join queries. This technique
aims to eliminate unnecessary spatial joins or replace expensive
spatial joins with cheaper thematic joins. Since SemanticQueryOpt
is not a learning solution, it is marked with a dashed border in Fig-
ure 1. We mark LearnedRewriter [51] and WeTune [39] with grey
color because they are rule-based learned query rewriters for rela-
tional data. Although these works in grey are not learning-based
spatial query optimization techniques, we highlight them to guide
future research on rule-based spatial query rewriters.

2.2 Learned Solutions for Cost Estimator
Extensive efforts have been dedicated to learned-based cost esti-
mation. In this subsection, we cover works related to computation
cost estimation. The computation cost of the query plan relates
to selectivity and cardinality. Selectivity refers to the percentage
of tuples among the whole dataset that satisfies the query predi-
cates [3]. Cardinality refers to the number of results returned by
each operation [3].

Researchers usually summarize computation cost estimation
learning models into two categories: query-driven and data-driven.
Query-driven models treat cardinality estimation as a regression
problem and learn a mapping function between the query and its
cardinality on a database [16, 20, 25, 28, 38, 41, 48]. They use query
workload as labeled training data to learn supervised query models.
Data-driven models learn the join data distribution of attributes
directly from the dataset [2, 17, 26, 30, 34, 36, 42, 46, 52]. Some
models take data as unsupervised information to learn unsuper-
vised data models [2, 17, 26, 30, 41, 42, 46, 52] Some models are
unsupervised data models that are directly learned from the data.
Some models are supervised data models. LearningToSample [36]
learns a probabilistic classifier by queries. SJML [34] learns data
statistics similar to data synopses.

In spatial data processing, the statistics used to complete car-
dinality estimation tasks vary for different types of data. For ex-
ample, estimating the cardinality of a spatial overlap-join for two
sets of polygon datasets requires knowledge of the average vol-
ume and other features of the polygons. On the other hand, the
cardinality of a distance-join for two sets of point datasets can
be estimated using data distribution. In this part, we will high-
light the types of cardinality estimation tasks each work addresses
and the types of data each model can handle. SJML [34] is de-
signed for polygon datasets and spatial join selectivity estimation.
Some works are designed for high-dimensional datasets and can
be applied to range query cardinality estimation for spatial point
data [2, 16, 17, 20, 25, 26, 28, 32, 36, 38, 41, 42, 46, 48, 52]. Learning-
ToSample [36] leans a classifier based on the sample of the data and
can be applied to spatial point datasets. TurboReg [30] proposes a
regression model for predicting the presence or absence of spatial
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Figure 2: Taxonomy of Query Optimization Techniques.

phenomena. PivNet [2] uses a regression-based solution to estimate
the k-NN queries.

2.3 Learned Solutions for Spatial Management
Data indexing is the most important factor that affects the I/O cost
of spatial data processing in DBMSs. In distributed DBMSs and plat-
forms, the I/O cost of spatial data processing is also related to data
partitioning. Most recently proposed learned spatial indexes are de-
signed for spatial point data [10, 14, 19, 22, 27, 37, 47]. RW-Tree [10]
and RLR-Tree [14] leverage learning-based methods from query
workload to help with R-tree construction. LISA [19], SLBRIN [37],
and SPRIG [47] learn spatial index based on grid cells partitioning.
RSMI [27] and ELSI [22] learn spatial index based on the z-order
model. There are two recent works on learned spatial partitioning.
ClusterPar [45] uses K-Means clustering to partition the spatial
point datasets. SpatialJoinFramework [35] uses regression models
to learn the features of spatial join. The models can decide the num-
ber of partitions and choose the partitioning strategy for spatial
polygon datasets.

2.4 Open Problems for Future Research
After reviewing recently learned solutions for query optimization,
we want to highlight several gaps in spatial query optimization:
(1) Query rewriting rules for optimizing the spatial operations;
(2) Models and frameworks that also consider the spatial query
execution; (3) More focus on types of spatial data beyond point
datasets, such as linestrings, polygons, and spatial raster data, along

with their cost estimation tasks; (4) How to apply current learned
partitioning models to existing distributed platforms and integrate
these learned solutions into the query optimization components of
distributed platforms.
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