

1 Resting metabolic rate does not predict peak metabolic rate in the Glanville fritillary butterfly

2 Running title: Metabolic rates in a butterfly

3

4 Kristjan Niitepõld*

5 Orcid ID: 0000-0002-7069-9326

6 Metapopulation Research Centre

7 Department of Biosciences

8 PO Box 65 (Viikinkaari 1)

9 00014 University of Helsinki

10 Finland

11

12 *Current address:

13 The Finnish Science Centre Heureka

14 Tiedepuisto 1

15 01300 Vantaa

16 Finland

17 kristjan@niitepold.net

18 Phone: +358 50 3070587

19

20

21

22

23

24

25 Abstract

26 Peak metabolic rate reflects maximal performance and may have direct fitness consequences, whereas
27 resting metabolic rate (RMR) represents the maintenance cost of the whole animal. These traits may be
28 linked, which has significant implications for the evolution of both traits. In vertebrates, a positive
29 correlation between resting metabolic rate and aerobic capacity has been proposed to explain the origin of
30 endothermy. However, as studies on the relationship between resting metabolic rate and aerobic capacity
31 have focused on vertebrates, we know much less about these traits in ectothermic insects. I measured RMR
32 in the Glanville fritillary butterfly (*Melitaea cinxia*) using two configurations: one optimized for measuring
33 flight metabolic rate, the other optimized for resting metabolic rate. The relationship between RMR and
34 body mass was similar for the two configurations. Body mass explained 82% of the variation in RMR when it
35 was measured using the "flight" configuration at 32°C, and 91% when using the "rest" configuration at
36 23°C. The Q_{10} coefficient calculated based on the two RMR measurements was 2.8. Mass-independent RMR
37 was positively correlated between measurements obtained using the two instrument configurations.
38 However, neither measure of RMR was correlated with peak metabolic rate, which indicates that RMR
39 cannot be used as a surrogate measure for aerobic capacity in the Glanville fritillary. Ectothermic insects
40 may be able to combine high metabolic capacity with no apparent increase in maintenance cost. Even
41 though RMR is among the most frequently measured physiological variables, it may have limited predictive
42 power when it comes to questions related to activity or aerobic capacity, or in the case of butterflies, flight
43 performance.

44

45

46

47

48

49 **Box 1: Glossary**

50 **BMR:** Basal metabolic rate, the metabolic rate of an endothermic, homeothermic vertebrate that is
51 inactive, postabsorptive, adult, nonreproductive and measured during the inactive period of the day in a
52 thermal environment where the animal uses a minimum amount of energy for thermoregulation.

53 **Peak MR:** Peak metabolic rate, in the present study, the highest rate of CO_2 production during flight. A
54 likely proxy for aerobic capacity in butterflies.

55 **Q_{10} coefficient:** Factor describing the increase in metabolic rate with a 10-degree C increase in
56 temperature.

57 **RMR:** Resting metabolic rate, the metabolic rate of an inactive endotherm or ectotherm measured at a
58 specific temperature.

59 **RMR_{cool}:** In the present study, resting metabolic rate in postabsorptive, nonreproductive Glanville
60 fritillaries measured at 23°C during the inactive period of the day.

61 **RMR_{warm}:** In the present study, resting metabolic rate in postabsorptive, nonreproductive Glanville
62 fritillaries measured at 32°C during the active period of the day.

63 **SMR:** Standard metabolic rate, the metabolic rate of an ectothermic animal that is inactive, postabsorptive,
64 adult, nonreproductive and measured during the inactive period of the day at a specific temperature. Often
65 used in the context of ectothermic vertebrates.

66

67

68

69

70

Introduction

71

72 Resting metabolic rate (RMR) is the energy expenditure rate of a quiescent, postabsorptive animal and
73 represents the maintenance cost of the physiological machinery. In life-history ecology, allocation of
74 resources among various processes related to growth, survival and reproduction is critical for determining
75 fitness (van Noordwijk and de Jong 1986; Boggs 2009; Lailvaux and Husak 2014). As RMR determines the
76 minimum amount of energy needed for supporting the biological functions of the individual, it sets the
77 foundation for the entire energy budget. Variation in RMR reflects different life-history strategies, and
78 there is considerable interest in to what extent it can be used to predict other behaviorally important or
79 fitness-related traits (Reinhold 1999; White and Seymour 2004; Biro and Stamps 2010; Careau and Garland
80 2012; Metcalfe et al. 2016; Arnold et al. 2021). A key assumption is that RMR is connected with metabolic
81 phenotype or personality, which may explain differences in performance in a given environment (Careau et
82 al. 2008). Indeed, RMR has been linked to variation in survival or fitness in many taxa, although such effects
83 may be positive or negative and often depend on the environment (Burton et al. 2011). The term RMR can
84 be used for describing maintenance metabolic rate in both endotherms and ectotherms (see Box 1 for
85 exact definitions), whereas basal metabolic rate (BMR) is usually reserved for endothermic vertebrates
86 (McNab 1997) and standard metabolic rate (SMR) for ectothermic vertebrates. In vertebrates, a positive
87 connection between BMR and maximal aerobic capacity has been proposed to explain the origin of
88 endothermy (Bennett and Ruben 1979; Hayes and Garland 1995). The aerobic capacity model postulates
89 that endothermy evolved due to a mechanistic link between aerobic capacity and BMR, as selection acted
90 on the former trait (Nespolo and Roff 2014; Nespolo et al. 2017). Correlations between RMR and various
91 measures representing the upper end of the metabolic spectrum such as aerobic capacity, summit
92 metabolic rate (M_{sum} , cold-induced maximum metabolic rate in endothermic vertebrates, usually in birds),
93 and daily energy expenditure (DEE) have been examined empirically both at the intraspecific and
94 interspecific level, and the general pattern appears to be that RMR and maximum metabolic rate are

95 positively correlated in vertebrates (Auer et al. 2017). In their meta-analysis Auer et al.(2017) found larger
96 effect sizes at the interspecific level than at the intraspecific level, and that the relationships between RMR
97 and M_{sum} or DEE were more consistently positive than the relationship between RMR and aerobic capacity
98 (VO_2max). There are, however, some mixed results, such as no significant correlation between mass-
99 independent BMR, M_{sum} and maximum metabolic rate in several bird species at the intraspecific level
100 (Swanson et al. 2012). The lack of correlation between RMR and maximum metabolic rate may reflect the
101 fact that different organs contribute to metabolism at different activity levels (Weibel 2002). In addition,
102 physiological adaptations such as brown adipose tissue in small mammals may result in different patterns
103 among taxonomic groups (Auer et al. 2017).

104 As most of the studies on the connection between RMR and aerobic capacity have been performed
105 in the context of the evolution of endothermy, much less is known about these traits in ectotherms, and
106 even less in insects. Flying insects reach extremely high mass-specific metabolic rates (Suarez 2000), and
107 flight capacity is critical for many insects, as flight allows exploring and exploiting resources in three
108 dimensions over large spatial scales. Flight is used for migration and dispersal, and flight allows carrying out
109 tasks such as mate location, oviposition, foraging and escaping from predators (Van Dyck and Baguette
110 2005). Due to the high energetic cost, there may exist selection pressures against high flight capacity or
111 flight capability (Roff 1994; Zera and Denno 1997). Insect flight appears to be powered by aerobic
112 metabolism (Harrison and Lighton 1998), suggesting that measurements of peak metabolic rate may closely
113 represent aerobic capacity. In support of this, experimental manipulations have shown that Lepidoptera did
114 not increase their peak metabolic rate when weights were added to their bodies (Marden et al. 2008).
115 Among insects, both RMR and flight metabolic rate scale positively with body mass (Niven and Scharlemann
116 2005), which is in accordance with the general rule of a positive relationship between metabolic rate and
117 body mass found among all animals (Glazier 2010; Gillooly et al. 2017), but we still lack understanding of
118 the interdependence of the two traits. Studies on butterflies, a well-studied group of wing-monomorphic
119 insects that use flight for practically all activities, have shown that flight metabolic rate is affected by the
120 population of origin (Zhan et al. 2014; Kvist et al. 2015; Van Dyck and Holveck 2016; Tenger-Trolander et al.

121 2023), genotype (Haag et al. 2005; Marden et al. 2013), environmental conditions (Niitepõld et al. 2009;
122 Mattila 2015; Fountain et al. 2016; Wong et al. 2016), mitochondrial performance (Niitepõld et al. 2022),
123 and dietary conditions (Marden et al. 2008; Lebeau et al. 2016; Niitepõld et al. 2022). Nevertheless, in the
124 Glanville fritillary butterfly (*Melitaea cinxia* L.) attempts to find positive correlations between RMR and
125 flight metabolic rate provided mixed results (Niitepõld 2010). In addition, variation in RMR did not explain
126 any significant proportion of the variation in the distance flown by Glanville fritillaries that were tracked in
127 the field using a harmonic radar (Niitepõld et al. 2009).

128 Unlike endotherms that have a thermoneutral zone, defined as the range of temperatures where
129 the amount of energy needed for thermoregulation (heat production or cooling) is at its lowest, ectotherms
130 do not have a clear temperature point where measurements of metabolic rate should be done. As there is a
131 positive relationship between RMR and body temperature, depicted for example by the Q_{10} coefficient
132 (Chown and Nicolson 2004), the selected measurement temperature has practical, behavioral and
133 physiological implications. Room temperature is an often-used choice but most likely due to practical rather
134 than biological reasons. A more informed approach is to use experimental methods to identify the
135 preferred temperature for the species (Pough and Gans 1982). Experimental assessments suggest that
136 preferred temperatures (T_{pref}) in ectotherms are often lower than physiologically optimal temperatures
137 (T_{opt}), possibly reflecting adaptations to thermally variable environments and other environmental factors
138 (Woods et al. 2015; Crickenberger et al. 2020; Hui et al. 2022). Measurements of flight metabolic rate on
139 the other hand require experimental temperatures that allow ectothermic insects to fly, and body
140 temperatures of flying insects are often significantly higher than ambient temperatures due to
141 thermoregulation such as metabolic heat production or basking (Harrison and Roberts 2000; Mattila 2015).
142 In the case of butterflies, body temperatures of flying individuals tend to be in the range of 25 to 39°C, and
143 optimal body temperatures for flight are often in the upper part of the range (Watt 1968; Heinrich 1986;
144 Tsuji et al. 1986; Van Dyck and Matthysen 1998; Saastamoinen and Hanski 2008; Mattila 2015).
145 Measurements of RMR at a high temperature in conjunction with measurements of flight metabolic rate
146 have revealed interesting dynamics in the maintenance costs of butterflies exposed to different stressors

147 (Niitepõld et al. 2014; Niitepõld and Boggs 2015; Niitepõld 2019), but we do not know how measurements
148 of RMR at conditions optimized for flight compare to more conventional measurements of RMR at room
149 temperature.

150 Here, I performed an experiment using Glanville fritillary butterflies and measured RMR at two
151 temperatures, as well as flight metabolic rate. There were two specific aims: first, to validate measurements
152 of RMR done at a temperature corresponding to body temperatures of active butterflies by comparing the
153 measurements against RMR measurements done at 'gold standard' conditions (room temperature, small
154 measurement chamber, early morning) to establish if RMR represents a metabolic phenotype that is robust
155 across a range of temperatures. Second, I wanted to see, if either measurement of RMR predicted
156 individual variation in flight metabolic rate, i.e. can RMR be used as a proxy for aerobic capacity in an
157 ectothermic butterfly?

158

159 Material and Methods

160 *Rearing*

161 The Glanville fritillaries originated from the Åland Islands in Southwest Finland. The parent generation was
162 collected as larvae in the field in the autumn of 2015. The parents were reared in the laboratory and
163 released in a large outdoor cage in 2016. The eggs were collected, and the larvae were reared on Petri
164 dishes with fresh leaves of the host plant *Plantago lanceolata* available *ad libitum*. The larvae entered
165 diapause and were kept at 4°C until January. Diapause was broken by exposing the larvae to light and
166 higher temperature. The larvae were reared in the laboratory under 12 h light / 12 h dark conditions, and
167 the temperature cycled between 28°C at midday and 15°C at night. Fresh leaves of *Plantago lanceolata*
168 were always available. When individuals pupated, they were transferred to an individually marked plastic
169 cup with a mesh cover. After emergence, each individual was sexed, weighed and individually marked with
170 a felt tip pen on the hindwings. Males and females were placed in separate large cylindrical cages (40 by 50

171 cm). The cages were kept in a brightly lit room during the day and the butterflies could gain flight practice.
172 Food was provided in the form of 20% honey-water absorbed in a sponge. The total sample consisted of 24
173 males and 14 females.

174

175 *Measurement of resting metabolic rate at 23°C*

176 In the evening of the first full day after emergence, butterflies were transferred into individual plastic cups
177 and placed in a dark cupboard without access to food. Early next morning, before daylight, each individual
178 was placed in a 110 ml respirometry chamber that was kept in the dark during the measurement of resting
179 metabolic rate. A maximum of seven individuals could be measured in each trial. Drierite (W.A. Hammond,
180 Xenia, OH, USA) and Magnesium perchlorate (Alfa Aesar, Karlsruhe, Germany) were used to dry the
181 incoming air, and CO₂ was scrubbed using Medisorb (GE Healthcare, Chalfont St. Giles, UK) and Ascarite II
182 (Thomas, Swedesboro, NJ, USA). A Sable Systems RM-8 multiplexer (Sable Systems International, Las Vegas,
183 NV, USA) was used to direct the dried and CO₂-free air through one chamber at a time. The flow rate was
184 kept at 300 ml min⁻¹ with the help of a Sable Systems SS-4 pump and a Sierra Instruments 840 mass-flow
185 controller (Sierra Instruments, Monterey, CA, USA). The CO₂ production rate of each butterfly was
186 measured twice for the duration of 5 minutes using a Li-Cor 7000 infrared H₂O/CO₂ analyzer (LI-Cor
187 Biosciences, Lincoln, NE, USA). The last recording was used for analyses and the metric 'RMRcool' was
188 calculated from the mean CO₂ production rate during the final two minutes of the recording. Individuals
189 spent between 30 to 90 minutes in the chamber prior to the last recording, depending on the number of
190 individuals in the trial and the order of chambers. Standard equations were used to convert CO₂
191 concentrations to rates (Lighton 2008). The mean measurement temperature was 23.0 ± SD 0.9°C. After the
192 measurement, the individual was weighed in a glassine envelope using a Mettler Toledo XS 105 balance
193 (Mettler Toledo, Greifensee, Switzerland; readability 0.01 mg), given water from a piece of moist cotton
194 wool, and gently placed in an individual plastic cup.

195

196 *Measurement of resting metabolic rate at 32°C and flight metabolic rate*

197 The butterfly was placed into a 1-l measurement chamber that was covered with a dark cloth. The chamber
198 was kept in a temperature-controlled cabinet with an open front. The mean temperature across RMR
199 measurements was $31.5 \pm 0.69^\circ\text{C}$. After a ca 25-minute wait period, the recording of CO_2 production was
200 started and two minutes of stable resting metabolic rate was measured. If the individual became restless
201 during the measurement, it was given additional time to settle, and the recording was continued until a
202 steady baseline was reached. In the analysis, the mean of 90 seconds of steady CO_2 production rate was
203 used for the calculation of 'RMRwarm'. Once RMR had been recorded, the dark cloth was removed, and the
204 chamber was exposed to light. After 30 seconds, the chamber was shaken using rapid yet precise hand
205 movements with the intention of stimulating flight by flipping the butterfly in the air. Every time the
206 butterfly attempted to land, the chamber was shaken again. If the butterfly hovered in the air, the chamber
207 was moved only gently. The procedure was repeated for a total of seven minutes. At the end of the
208 experimental period the chamber was covered again, the CO_2 concentration in the chamber was allowed to
209 return to the baseline, and the measurement was terminated. The butterfly was removed from the
210 chamber and weighed with a Mettler Toledo balance (see above). In the analysis, two parameters were
211 extracted: the highest rate of CO_2 production (Peak MR) and the total volume of CO_2 emitted during the
212 flight experiment (total CO_2 production). Peak MR was typically reached during the first minutes of the
213 flight trial and is likely to reflect aerobic capacity. The total volume of CO_2 contains a behavioral component
214 as it is affected by the willingness to fly.

215

216 *Statistical analyses*

217 All metabolic rates and body masses were \log_{10} -transformed to facilitate examining metabolic scaling
218 (Glazier 2021). I used generalized linear models to examine factors that affected resting metabolic rate and
219 flight metabolic rates. The models contained body mass, sex, measurement temperature, and the
220 interaction between body mass and sex as independent effects. Temperature was included as a covariate

221 to account for variation in temperature among measurements in the same treatment, and the body mass
222 by sex interaction term was included for detecting potential sex-specific differences in the relationship
223 between metabolic rate and body mass. I examined correlations between RMR and flight metabolic rates
224 using Pearson Product-Moment correlation analysis. In these analyses, instead of the raw metabolic rates, I
225 used mass-independent metabolic rates. Mass-independent metabolic rates were obtained by extracting
226 the residuals from linear models thus accounting for variation in body mass. For this purpose, I reran the
227 models presented above with only significant variables included in the model. Body mass was included in
228 all models and temperature was included in the models with RMR as the dependent variable. As there was
229 no overlap in the body masses of males and females, and visual inspection of the data suggested that male
230 and female data points did not necessarily follow the same regression line, I performed the correlation
231 analyses for males and females separately, and for both sexes pooled together. All analyses were
232 performed with SAS Studio (SAS Institute, Cary, NC, USA).

233 I calculated Q_{10} temperature coefficients for resting metabolic rates measured at two temperatures
234 using the formula $(RMR_{warm}/RMR_{cool})^{10/(T_{warm}-T_{cool})}$, where T_{warm} is the measurement temperature at
235 which RMR_{warm} was measured and T_{cool} the temperature at which RMR_{cool} was measured. The Q_{10}
236 coefficient represents the factor by which RMR increases with a 10°C increase in temperature (Chown and
237 Nicolson 2004).

238

239 Results

240

241 Resting metabolic rate

242 Resting metabolic rate measured at 23°C (RMR_{cool}) was positively affected by body mass ($F_{1,33} = 52.05; P <$
243 0.0001). Body mass explained 91% of the variation in RMR_{cool} (Fig. 1A). The effect of measurement

244 temperature was not significant ($F_{1,33} = 2.02; P = 0.17$). The effect of sex was not significant ($F_{1,33} = 0.10; P =$
245 0.76), and the body mass by sex interaction was also not significant ($F_{1,33} = 0.09; P = 0.76$).

246 Resting metabolic rate measured at 32°C (RMRwarm) was affected by body mass ($F_{1,33} = 23.59; P <$
247 0.0001). Body mass explained 82% of the variation in RMRwarm (Fig. 1B). There was a significant effect of
248 temperature ($F_{1,33} = 5.11; P = 0.03$). The effect of sex was not significant ($F_{1,33} = 0.06; P = 0.81$), and the body
249 mass by sex interaction was not significant ($F_{1,33} = 0.05; P = 0.82$).

250 The mean Q_{10} coefficient based on RMR measurements at the two temperatures (23°C and 32°C)
251 was 2.8.

252

253 *Flight metabolic rates*

254 Peak flight metabolic rate was positively affected by body mass ($F_{1,33} = 14.80; P = 0.0005$) (Fig. 2A). Body
255 mass explained 22% of the variation in Peak MR. The effect of temperature was not significant ($F_{1,33} = 1.01;$
256 $P = 0.32$). Sex had no significant effect on Peak MR ($F_{1,33} = 0.06; P = 0.80$) and the body mass by sex
257 interaction was not significant ($F_{1,33} = 0.00; P = 0.98$).

258 The total volume of CO₂ emitted during the flight experiment was affected by body mass ($F_{1,33} =$
259 14.21; $P = 0.0006$) (Fig. 2B). Body mass explained 29% of the variation in the total volume of
260 CO₂. Temperature had no significant effect on the total volume of CO₂ ($F_{1,33} = 0.30; P = 0.59$). The effect of
261 sex was not significant ($F_{1,33} = 0.01; P = 0.91$), and the body mass by sex interaction was not significant ($F_{1,33}$
262 = 0.11; $P = 0.74$).

263

264 *Correlations between metabolic rates*

265 Mass-independent RMRcool and mass-independent RMRwarm were significantly correlated ($r = 0.44; P =$
266 0.005) (Fig. 3). The residual metabolic rates used in the analysis were extracted from the linear models

267 above and had also been corrected for measurement temperature. In males, the correlation coefficient
268 between mass-independent RMRcool and mass-independent RMRwarm was 0.55 ($P = 0.005$). In the female
269 subsample, there was no significant correlation ($r = 0.26$; $P = 0.37$).

270 Correlation statistics for mass-independent RMRcool, RMRwarm, Peak MR, and total volume of CO_2
271 are given in Table 1. In brief, mass-independent RMRcool and RMRwarm were not significantly correlated
272 with mass-independent Peak MR (Figure 4A-D) or with mass-independent total volume of CO_2 .

273

274 Discussion

275

276 The present study compared resting metabolic rates measured at a low temperature in early morning
277 (RMRcool) to measurements performed at a temperature corresponding to the body temperature of an
278 active butterfly during the active phase of the day (RMRwarm). Both measurements confirmed that body
279 mass explains the majority of variation in RMR when individuals are in a postabsorptive state and not
280 actively reproducing or engaging in other energetically intensive activities. Indeed, body mass explained a
281 total of 91% of the variation in RMRcool, indicating that the individuals were in a rather undisturbed state.
282 According to expectations, at the higher measurement temperature, physiological activity increased, and
283 the percentage of variation explained by body mass decreased somewhat to 82%. An effect of temperature
284 was also seen within the high-temperature conditions, as measurement temperature (treated as a
285 covariate) had a positive effect on RMRwarm.

286 The increase in CO_2 production rate with temperature between the two measurement
287 temperatures was quantified using the Q_{10} coefficient. A Q_{10} value of 2.8 indicated that RMR more than
288 doubled with the increase of 10°C, which is within the typical range for insects (Nespolo et al. 2003; Chown
289 and Nicolson 2004) and close to or somewhat higher than previously measured Q_{10} values in the Glanville
290 fritillary, 2.1 and 2.6, in two different experiments (Niitepõld 2010). Despite the increase in RMR with

291 temperature, there was a significant correlation between mass-independent RMRcool and RMRwarm. The
292 result confirms that both measurements of RMR convey a signal of individual phenotypic variation that is
293 independent of body mass. The finding validates the use of resting metabolic rate recordings that have
294 been measured with the flight configuration at a temperature that is higher than in typical measurements
295 of RMR. That the correlation between RMRcool and RMRwarm was in fact not stronger may depend on the
296 very high proportion of variation explained by body mass in the case of RMRcool, as there simply was not
297 much residual variation left, and part of the biological variation would be masked by measurement error. In
298 addition, as RMR tends to follow temperature in an exponential pattern at sub-optimal temperatures, it is
299 possible that the increase in temperature activated physiological processes that were mostly shut off at the
300 relatively low temperature of 23°C, such as activity of the endocrine system, reproductive maturation or
301 increased mitochondrial proton leak (Schulte 2015). It could therefore be argued that individuals may not
302 have been in the same physiological state between the two measurements, which makes finding a
303 significant correlation even more valuable. The result suggests that RMR is a robust trait that conveys
304 individual phenotypic variation despite poikilothermic butterflies being subjected to considerable variation
305 in body temperature.

306

307 *Lack of correlation between RMR and peak metabolic rate*

308 No correlations were found between mass-independent resting metabolic rates and flight metabolic rates.
309 Here, the pattern differs from findings in vertebrates where minimum and maximum metabolic rates have
310 often been found to correlate (Auer et al. 2017). However, there tends to be a difference between
311 interspecific and intraspecific studies, such that many intraspecific studies covering amphibians, birds, fish,
312 mammals and reptiles have failed to find a correlation between RMR and aerobic capacity (Auer et al.
313 2017). For example, RMR was not correlated with aerobic capacity in an ectothermic lizard, the garden
314 skink (*Lampropholis delicata*) (Merritt et al. 2013). In a similar way, a study on RMR and flight metabolic
315 rate in another butterfly, the Speckled wood (*Pararge aegeria*), also found no significant correlation (Van

316 Dyck and Holveck 2016). These intraspecific studies are in contrast with studies that have compared RMR
317 between taxa that are capable of flight or flightless, where the presence of the flight apparatus is
318 associated with higher RMR (Reinhold 1999). Indeed, the general pattern seems to be that RMR is
319 connected to differences between species, but it is not necessarily correlated with other traits within the
320 species. Not finding a correlation is not surprising in itself, as different organs are responsible for the
321 majority of energy consumption in flight and at rest. In insects, flight muscle tissue is highly active in flight
322 and may use up to 95% of the total oxygen consumed by the individual (Snelling et al. 2012). Future studies
323 in different insect taxa will confirm if the lack of a correlation between RMR and maximum metabolic rates
324 is the norm among insects, but it is worth noting that several differences between vertebrates and insects
325 exist at the physiological level. Among insects, too, one would expect to find physiological differences
326 between taxa that are to certain degree endothermic, such as bees, bumblebees and hawkmoths, and pure
327 ectotherms, such as sun-basking butterflies, as these taxa exhibit strikingly different behaviors (Heinrich
328 1975, 1986).

329 In general terms, the apparent decoupling of maximum metabolic rate from RMR, which represents
330 the costs of maintenance, suggests that individual insects can reach high metabolic capacity without an
331 additional energetic cost at rest. Empirical evidence, however, shows that butterflies subjected to repeated
332 flight treatments display chronically elevated RMR (Niitepõld and Boggs 2015; Niitepõld 2019), which may
333 represent increased investment in repair and maintenance and hint that high metabolic expenditure does
334 come with a cost after all. Nevertheless, morphological features such as the tracheal network used for gas
335 exchange in insects may serve as adaptations that allow high energetic throughput when active, while
336 requiring only minimal energetic investments when sedentary. Dynamics related to metabolic enzymes
337 may also differ between rest and flight. For example, in the Glanville fritillary, the *Pgi* locus which encodes
338 the glycolytic enzyme phosphoglucose isomerase has been linked with variation in flight metabolic rate
339 (Haag et al. 2005; Orsini et al. 2009). However, there are no differences between *Pgi* genotypes in RMR
340 (Niitepõld et al. 2009; Niitepõld 2010), suggesting that different physiological processes regulate RMR and
341 flight metabolic rate. Results from heritability experiments, too, point to different mechanisms

342 underpinning variation in minimum and maximum metabolic rates. Flight metabolic rate was found to be
343 significantly heritable while RMR was not (Mattila and Hanski 2014).

344 While RMR is to a very high degree explained by body mass, Peak MR is inherently more variable.
345 Undoubtedly, the motivation to fly may have an effect on flight performance and the individual may not fly
346 at its absolute maximum level. Nevertheless, measurements of Peak MR and total CO₂ production seem to
347 capture variation in flight performance that carries a biological signal, as seen in previous studies. Flight in
348 the respirometry chamber requires repeated take off bouts, and take off-flight is considered energetically
349 challenging (Berwaerts et al. 2002), suggesting that butterflies fly close to their maximum capacity. We also
350 know that total CO₂ production is correlated with variation in flight performance of female Glanville
351 fritillaries in the field (Niitepöld et al. 2009). Finding out how different measures of flight performance are
352 correlated remains an important question in the context of energetics (Ducatez et al. 2012). As the
353 relationships between energetic traits may not be universal (Careau et al. 2008; Portugal et al. 2016),
354 incorporating behavioral, ecological and evolutionary insight in physiological studies will be beneficial.

355

356 Author contributions

357 K.N. was responsible for all stages from the original idea and experimental work to the preparation of the
358 manuscript.

359

360 Acknowledgments

361 I wish to thank Sivi Ikonen for help with rearing the butterflies and logistical assistance during the
362 experiment. I am grateful to Otso Ovaskainen and Marjo Saastamoinen for the opportunity to carry out the
363 work in the Metapopulation Research Centre at the University of Helsinki. Three anonymous referees

364 provided constructive feedback and I thank them for their significant contribution to the improvement of
365 the manuscript.

366

367 Funding

368 This work was supported by the Ella and Georg Ehrnrooth Foundation and the Academy of Finland (Centre
369 of Excellence in Metapopulation Biology 2015–2017; 284601).

370

371 Supplementary data

372 Dataset: Niitepold *Melitaea cinxia* data

373

374 Conflict of interest

375 No conflict of interest to declare.

376

377 Data availability

378 The data used in the study are available as supplementary material.

379

380

381 References

382 Arnold PA, Delean S, Cassey P, White CR. 2021. Meta-analysis reveals that resting metabolic rate is not
383 consistently related to fitness and performance in animals. *J Comp Physiol B* 191:1097–1110.

384 Auer SK, Killen SS, Rezende EL. 2017. Resting vs. active: a meta-analysis of the intra- and inter-specific
385 associations between minimum, sustained, and maximum metabolic rates in vertebrates. *Funct Ecol*
386 31:1728–38.

387 Bennett AF, Ruben JA. 1979. Endothermy and activity in vertebrates. *Science* (80) 206:649–54.

388 Berwaerts K, Van Dyck H, Aerts P. 2002. Does flight morphology relate to flight performance? An
389 experimental test with the butterfly *Pararge aegeria*. *Funct Ecol* 16:484–91.

390 Biro PA, Stamps JA. 2010. Do consistent individual differences in metabolic rate promote consistent
391 individual differences in behavior? *Trends Ecol Evol* 25:653–59.

392 Boggs CL. 2009. Understanding insect life histories and senescence through a resource allocation lens.
393 *Funct Ecol* 23:27–37.

394 Burton T, Killen SS, Armstrong JD, Metcalfe NB. 2011. What causes intraspecific variation in resting
395 metabolic rate and what are its ecological consequences? *Proc R Soc B Biol Sci* 278:3465–73.

396 Careau V, Garland T. 2012. Performance, personality, and energetics: Correlation, causation, and
397 mechanism. *Physiol Biochem Zool* 85:543–71.

398 Careau V, Thomas D, Humphries MM, Réale D. 2008. Energy metabolism and animal personality. *Oikos*
399 117:641–53.

400 Chown SL, Nicolson S. 2004. *Insect Physiological Ecology: Mechanisms and Patterns* Oxford University Press.

401 Crickenberger S, Hui TY, Landry Yuan F, Bonebrake TC, Williams GA. 2020. Preferred temperature of
402 intertidal ectotherms: Broad patterns and methodological approaches. *J Therm Biol* 87:102468.

403 Ducatez S, Legrand D, Chaput-Bardy A, Stevens VM, Fréville H, Baguette M. 2012. Inter-individual variation
404 in movement: Is there a mobility syndrome in the large white butterfly *Pieris brassicae*? *Ecol Entomol*
405 37:377–85.

406 Fountain T, Melvin RG, Ikonen S, Ruokolainen A, Woestmann L, Hietakangas V, Hanski I. 2016. Oxygen and

407 energy availability interact to determine flight performance in the Glanville fritillary butterfly. *J Exp*
408 *Biol* 219:1488–94.

409 Gillooly JF, Gomez JP, Mavrodiev E V. 2017. A broad-scale comparison of aerobic activity levels in
410 vertebrates: Endotherms versus ectotherms. *Proc R Soc B Biol Sci* 284:7.

411 Glazier DS. 2010. A unifying explanation for diverse metabolic scaling in animals and plants. *Biol Rev*
412 85:111–38.

413 Glazier DS. 2021. Biological scaling analyses are more than statistical line fitting. *J Exp Biol* 224:jeb241059.

414 Haag CR, Saastamoinen M, Marden JH, Hanski I. 2005. A candidate locus for variation in dispersal rate in a
415 butterfly metapopulation. *Proc R Soc B Biol Sci* 272:2449–56.

416 Harrison JF, Lighton JRB. 1998. Oxygen-sensitive flight metabolism in the dragonfly *Erythemis simplicicollis*.
417 *J Exp Biol* 201:1739–44.

418 Harrison JF, Roberts SP. 2000. Flight respiration and energetics. *Annu Rev Physiol* 62:179–205.

419 Hayes JP, Garland T. 1995. The evolution of endothermy: Testing the aerobic capacity model. *Evolution*
420 49:836–847.

421 Heinrich B. 1975. Thermoregulation in bumblebees - II. Energetics of warm-up and free flight. *J Comp*
422 *Physiol B* 96:155–66.

423 Heinrich B. 1986. Thermoregulation and flight activity of a satyrine, *Coenonympha inornata* (Lepidoptera:
424 Satyridae). *Ecology* 67:593–97.

425 Hui TY, Crickenberger S, Lau JWT, Williams GA. 2022. Why are ‘suboptimal’ temperatures preferred in a
426 tropical intertidal ectotherm? *J Anim Ecol* 91:1400–1415.

427 Kvist J, Mattila ALK, Somervuo P, Ahola V, Koskinen P, Paulin L, Salmela L, Fountain T, Rastas P, Ruokolainen
428 A, Taipale M, Holm L, Auvinen P, Lehtonen R, Frilander MJ, Hanski I. 2015. Flight-induced changes in
429 gene expression in the Glanville fritillary butterfly. *Mol Ecol* 24:4886–4900.

430 Lailvaux S, Husak J. 2014. The life history of whole-organism performance. *Q Rev Biol* 89:285–318.

431 Lebeau J, Wesselingh RA, van Dyck H. 2016. Nectar resource limitation affects butterfly flight performance
432 and metabolism differently in intensive and extensive agricultural landscapes. *Proc R Soc B Biol Sci*
433 283.

434 Lighton JRB. 2008. Measuring Metabolic Rates: A Manual for Scientists, *Measuring Metabolic Rates: A*
435 *Manual for Scientists* New York: Oxford University Press.

436 Marden JH, Fescemyer HW, Saastamoinen M, MacFarland SP, Vera JC, Frilander MJ, Hanski I. 2008. Weight
437 and nutrition affect pre-mRNA splicing of a muscle gene associated with performance, energetics and
438 life history. *J Exp Biol* 211:3653–60.

439 Marden JH, Fescemyer HW, Schilder RJ, Doerfler WR, Vera JC, Wheat CW. 2013. Genetic variation in hif
440 signaling underlies quantitative variation in physiological and life-history traits within lowland
441 butterfly populations. *Evolution* 67:1105–15.

442 Mattila ALK. 2015. Thermal biology of flight in a butterfly: Genotype, flight metabolism, and environmental
443 conditions. *Ecol Evol* 5:5539–51.

444 Mattila ALK, Hanski I. 2014. Heritability of flight and resting metabolic rates in the Glanville fritillary
445 butterfly. *J Evol Biol* 27:1733–43.

446 McNab BK. 1997. On the utility of uniformity in the definition of basal rate of metabolism. *Physiol Zool*
447 70:718–20.

448 Merritt L, Matthews PGD, White CR. 2013. Performance correlates of resting metabolic rate in garden
449 skinks *Lampropholis delicata*. *J Comp Physiol B* 183:663–73.

450 Metcalfe NB, Van Leeuwen TE, Killen SS. 2016. Does individual variation in metabolic phenotype predict fish
451 behaviour and performance? *J Fish Biol* 88:298–321.

452 Nespolo RF, Lardies MA, Bozinovic F. 2003. Intrapopulational variation in the standard metabolic rate of

453 insects: Repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket. J
454 Exp Biol 206:4309–15.

455 Nespolo RF, Roff DA. 2014. Testing the aerobic model for the evolution of endothermy: Implications of
456 using present correlations to infer past evolution. Am Nat 183:74–83.

457 Nespolo RF, Solano-Iguaran JJ, Bozinovic F. 2017. Phylogenetic analysis supports the aerobic-capacity model
458 for the evolution of endothermy. Am Nat 189:13–27.

459 Niitepõld K. 2010. Genotype by temperature interactions in the metabolic rate of the Glanville fritillary
460 butterfly. J Exp Biol 213:1042–48.

461 Niitepõld K. 2019. Effects of flight and food stress on energetics, reproduction, and lifespan in the butterfly
462 *Melitaea cinxia*. Oecologia 191:271–83.

463 Niitepõld K, Boggs CL. 2015. Effects of increased flight on the energetics and life history of the butterfly
464 *Speyeria mormonia*. PLoS One 10.

465 Niitepõld K, Parry HA, Harris NR, Appel AG, de Roode JC, Kavazis AN, Hood WR. 2022. Flying on empty:
466 reduced mitochondrial function and flight capacity in food-deprived monarch butterflies. J Exp Biol
467 225:jeb244431.

468 Niitepõld K, Perez A, Boggs CL. 2014. Aging, Life span, And energetics under adult dietary restriction in
469 lepidoptera. Physiol Biochem Zool 87:684–94.

470 Niitepõld K, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin AP, Marden JH, Ovaskainen O, Hanski I.
471 2009. Flight metabolic rate and Pgi genotype influence butterfly dispersal rate in the field. Ecology
472 90:2223–32.

473 Niven JE, Scharlemann JPW. 2005. Do insect metabolic rates at rest and during flight scale with body mass?
474 Biol Lett 1:346–49.

475 Orsini L, Wheat CW, Haag CR, Kvist J, Frilander MJ, Hanski I. 2009. Fitness differences associated with Pgi

476 SNP genotypes in the Glanville fritillary butterfly (*Melitaea cinxia*). *J Evol Biol* 22:367–75.

477 478 Portugal SJ, Green JA, Halsey LG, Arnold W, Careau V, Dann P, Frappell PB, Grémillet D, Handrich Y, Martin GR, Ruf T, Guillemette MM, Butler PJ. 2016. Associations between resting, activity, and daily

479 metabolic rate in free-living endotherms: No universal rule in birds and mammals. *Physiol Biochem*

480 *Zool* 89:251–61.

481 482 Pough FH, Gans C. 1982. The vocabulary of reptilian thermoregulation. In: Gans C, Pough FH, editors. *Biology of Reptilia* New York: Academic Press. p. 17–23.

483 484 Reinhold K. 1999. Energetically costly behaviour and the evolution of resting metabolic rate in insects. *Funct Ecol* 13:217–24.

485 Roff DA. 1994. The evolution of flightlessness: Is history important? *Evol Ecol* 8:639–57.

486 487 Saastamoinen M, Hanski I. 2008. Genotypic and environmental effects on flight activity and oviposition in the Glanville fritillary butterfly. *Am Nat* 171:701–12.

488 489 Schulte PM. 2015. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. *J Exp Biol* 218:1856–66.

490 491 Snelling EP, Seymour RS, Matthews PGD, White CR. 2012. Maximum metabolic rate, relative lift, wingbeat frequency and stroke amplitude during tethered flight in the adult locust *Locusta migratoria*. *J Exp Biol*

492 215:3317–23.

493 494 Suarez RK. 2000. Energy metabolism during insect flight: Biochemical design and physiological performance. *Physiol Biochem Zool* 73:765–71.

495 496 Swanson DL, Thomas NE, Liknes ET, Cooper SJ. 2012. Intraspecific correlations of basal and maximal metabolic rates in birds and the aerobic capacity model for the evolution of endothermy. *PLoS One*

497 7:e34271.

498 Tenger-Trolander A, Julick CR, Lu W, Green DA, Montooth KL, Kronforst MR. 2023. Seasonal plasticity in

499 morphology and metabolism differs between migratory North American and resident Costa Rican
500 monarch butterflies. *Ecol Evol* 13:e9796.

501 Tsuji JS, Kingsolver JG, Watt WB. 1986. Thermal physiological ecology of *Colias* butterflies in flight.
502 *Oecologia* 69:161–70.

503 Van Dyck H, Baguette M. 2005. Dispersal behaviour in fragmented landscapes: Routine or special
504 movements? *Basic Appl Ecol* 6:535–45.

505 Van Dyck H, Holveck MJ. 2016. Ecotypic differentiation matters for latitudinal variation in energy
506 metabolism and flight performance in a butterfly under climate change. *Sci Rep* 6:9.

507 Van Dyck H, Matthysen E. 1998. Thermoregulatory differences between phenotypes in the speckled wood
508 butterfly: Hot perchers and cold patrollers? *Oecologia* 114:326–34.

509 van Noordwijk AJ, de Jong G. 1986. Acquisition and allocation of resources: Their influence on variation in
510 life history tactics. *Am Nat* 128:137–42.

511 Watt WB. 1968. Adaptive significance of pigment polymorphisms in *Colias* butterflies. I. Variation of
512 melanin pigment in relation to thermoregulation. *Evolution* 22:437.

513 White CR, Seymour RS. 2004. Does basal metabolic rate contain a useful signal? Mammalian BMR allometry
514 and correlations with a selection of physiological, ecological, and life-history variables. *Physiol
515 Biochem Zool* 77:929–41.

516 Wong SC, Oksanen A, Mattila ALK, Lehtonen R, Niitepõld K, Hanski I. 2016. Effects of ambient and preceding
517 temperatures and metabolic genes on flight metabolism in the Glanville fritillary butterfly. *J Insect
518 Physiol* 85:23–31.

519 Woods HA, Dillon ME, Pincebourde S. 2015. The roles of microclimatic diversity and of behavior in
520 mediating the responses of ectotherms to climate change. *J Therm Biol* 54:86–97.

521 Zera AJ, Denno RF. 1997. Physiology and ecology of dispersal polymorphism in insects. *Annu Rev Entomol*

522 Vol 42 42:207–30.

523 Zhan S, Zhang W, Niitepõld K, Hsu J, Haeger JF, Zalucki MP, Altizer S, De Roode JC, Reppert SM, Kronforst

524 MR. 2014. The genetics of monarch butterfly migration and warning colouration. *Nature* 514:317–21.

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542 Figure captions

543

544 Figure 1A) Resting metabolic rate at 23°C (RMRcool) plotted against body mass. Males are represented as
545 black dots, females open circles. Body mass explained 91% of the total variation in RMRcool. Regression
546 equations are presented for the sexes separately. Body mass explained 58% of the variation in the male
547 subsample, and 64% in the female subsample. The body mass by sex interaction was not significant. B)
548 Resting metabolic rate at 32°C (RMRwarm) plotted against body mass. Body mass explained 82% of the
549 variation in RMRwarm in the pooled sample, and 32% and 57% in males and females, respectively. The
550 body mass by sex interaction was not significant.

551

552 Figure 2A) Peak metabolic rate plotted against body mass Glanville fritillaries. Body mass explained 22% of
553 the variation in Peak MR in the pooled sample. Body mass explained 29% of the variation in the male
554 subsample (black dots), and 39% in females (open circles). B) Total volume of CO₂ emitted during the 7-
555 minute flight experiment plotted against body mass. Body mass explained 29% in the variation in the
556 pooled sample, and 27% and 40% in males and females, respectively.

557

558 Figure 3) The relationship between mass-independent RMRcool and mass-independent RMRwarm. The
559 correlation was significant ($r = 0.44$; $P = 0.005$). Black squares represent males, open squares females.

560

561 Figure 4) The relationship between mass-independent RMRcool and mass-independent Peak MR in A)
562 males and B) females. There was no significant correlation in the pooled sample, and no correlation when
563 the two sexes were analyzed separately. C) The relationship between mass-independent RMRwarm and
564 mass-independent Peak MR in males. D) The relationship between mass-independent RMRwarm and mass-

565 independent Peak MR in females. No significant correlations were found between these traits in the pooled
566 sample or in each sex.

Tables

Table 1. Correlation coefficients between mass-independent resting metabolic rates and mass-independent flight metabolic rates. No significant correlations were found.

		Peak MR			Total CO ₂ production	
	Pooled	Males	Females	Pooled	Males	Females
RMRcool	$r = -0.006$ $P = 0.97$	$r = 0.006$ $P = 0.98$	$r = -0.02$ $P = 0.95$	$r = 0.07$ $P = 0.66$	$r = 0.20$ $P = 0.35$	$r = -0.13$ $P = 0.67$
RMRwarm	$r = -0.04$ $P = 0.797$	$r = 0.12$ $P = 0.57$	$r = -0.36$ $P = 0.20$	$r = 0.02$ $P = 0.90$	$r = 0.22$ $P = 0.31$	$r = -0.43$ $P = 0.12$

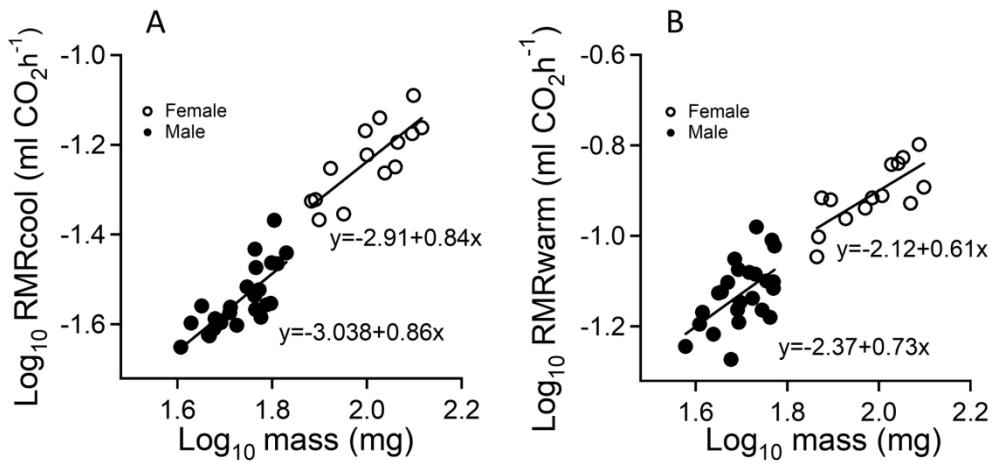


Figure 1A) Resting metabolic rate at 23°C (RMRcool) plotted against body mass. Males are represented as black dots, females open circles. Body mass explained 91% of the total variation in RMRcool. Regression equations are presented for the sexes separately. Body mass explained 58% of the variation in the male subsample, and 64% in the female subsample. The body mass by sex interaction was not significant. B) Resting metabolic rate at 32°C (RMRwarm) plotted against body mass. Body mass explained 82% of the variation in RMRwarm in the pooled sample, and 32% and 57% in males and females, respectively. The body mass by sex interaction was not significant.

180x90mm (300 x 300 DPI)

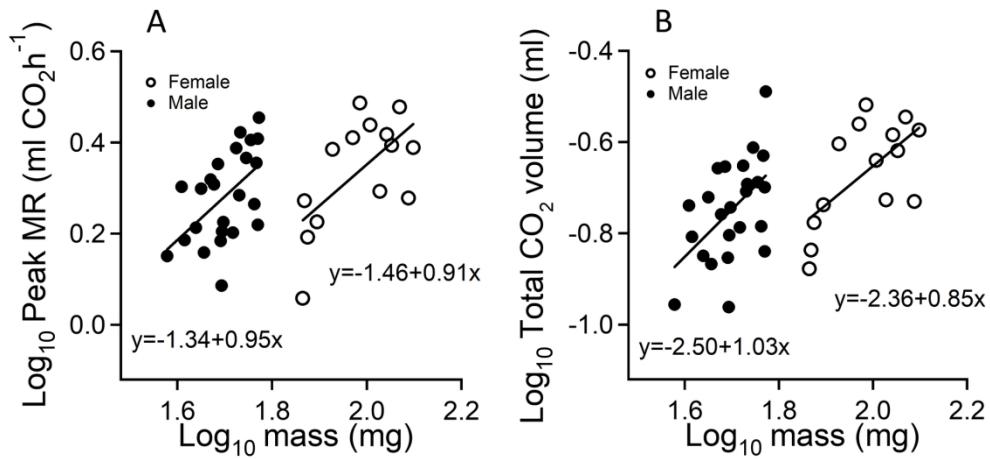


Figure 2A) Peak metabolic rate plotted against body mass Glanville fritillaries. Body mass explained 22% of the variation in Peak MR in the pooled sample. Body mass explained 29% of the variation in the male subsample (black dots), and 39% in females (open circles). B) Total volume of CO₂ emitted during the 7-minute flight experiment plotted against body mass. Body mass explained 29% in the variation in the pooled sample, and 27% and 40% in males and females, respectively.

180x90mm (300 x 300 DPI)

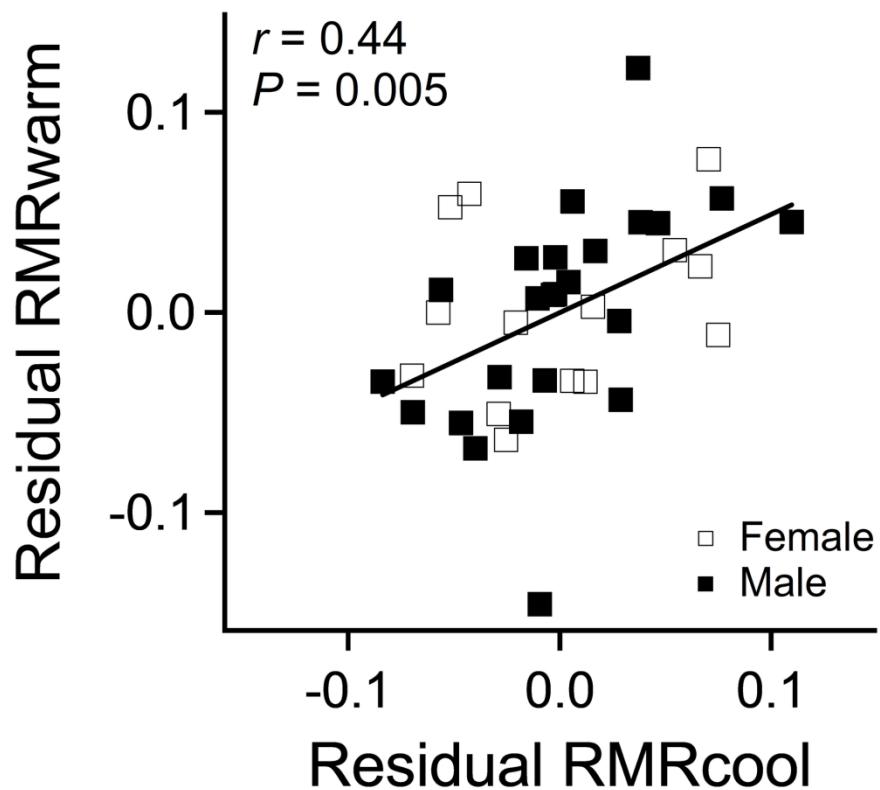


Figure 3) The relationship between mass-independent RMRcool and mass-independent RMRwarm. The correlation was significant ($r = 0.44$; $P = 0.005$). Black squares represent males, open squares females.

179x159mm (300 x 300 DPI)

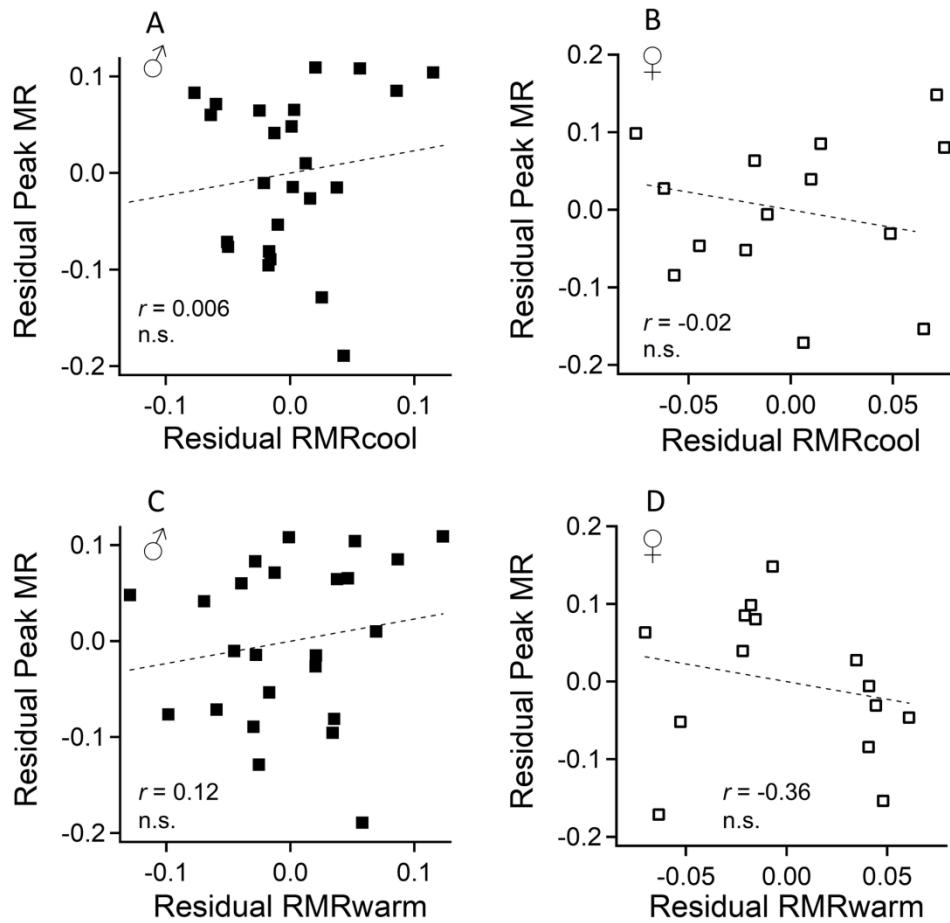


Figure 4) The relationship between mass-independent RMRcool and mass-independent Peak MR in A) males and B) females. There was no significant correlation in the pooled sample, and no correlation when the two sexes were analyzed separately. C) The relationship between mass-independent RMRwarm and mass-independent Peak MR in males. D) The relationship between mass-independent RMRwarm and mass-independent Peak MR in females. No significant correlations were found between these traits in the pooled sample or in each sex.

180x170mm (300 x 300 DPI)

ID	Sex	PeakMR	Log10PeakMR	TotalCO2	Log10TotalCO2	Temp	RMRwarm	Log10RMRwarm
1	Male	1.65852	0.21972	0.14477	-0.8393	31.5242	0.07917	-1.1014
2	Male	1.21931	0.08611	0.10927	-0.9615	30.8237	0.0843	-1.0742
3	Male	1.53443	0.18595	0.15578	-0.8075	30.5045	0.06782	-1.1686
4	Male	1.60331	0.20502	0.15711	-0.8038	30.8558	0.06443	-1.1909
5	Male	2.54499	0.40569	0.20526	-0.6877	30.9987	0.07949	-1.0997
6	Male	1.59411	0.20252	0.16335	-0.7869	30.8881	0.08305	-1.0807
7	Male	1.8407	0.26498	0.16433	-0.7843	30.6878	0.06609	-1.1799
8	Male	1.44184	0.15892	0.1357	-0.8674	31.0024	0.07516	-1.124
9	Male	2.08352	0.3188	0.22021	-0.6572	30.8948	0.07893	-1.1028
10	Male	1.52875	0.18434	0.14015	-0.8534	30.465	0.06867	-1.1632
11	Male	1.63446	0.21337	0.1415	-0.8492	30.8208	0.06065	-1.2172
12	Male	2.64482	0.4224	0.20336	-0.6917	30.8494	0.10466	-0.9802
13	Male	1.98968	0.29878	0.19016	-0.7209	30.6559	0.07479	-1.1262
14	Male	1.68032	0.22539	0.18071	-0.743	30.569	0.07137	-1.1465
31	Male	2.00977	0.30315	0.18244	-0.7389	31.3065	0.0638	-1.1952
32	Male	2.44318	0.38796	0.22305	-0.6516	31.3543	0.0728	-1.1379
33	Male	2.03403	0.30836	0.1745	-0.7582	31.0204	0.05332	-1.2731
34	Male	2.84916	0.45472	0.32438	-0.4889	31.2144	0.09497	-1.0224
35	Male	2.26725	0.3555	0.2346	-0.6297	31.2509	0.09788	-1.0093
36	Male	1.92536	0.28451	0.19587	-0.708	31.2323	0.0823	-1.0846
37	Male	1.41637	0.15118	0.11071	-0.9558	30.9516	0.057	-1.2441
38	Male	2.32528	0.36648	0.24442	-0.6119	30.3661	0.06858	-1.1638
39	Male	2.25493	0.35313	0.22197	-0.6537	31.5566	0.08888	-1.0512
40	Male	2.56214	0.4086	0.20003	-0.6989	31.4443	0.07664	-1.1155
138	Female	1.9634	0.29301	0.1876	-0.7268	31.7522	0.14382	-0.8422
139	Female	2.47609	0.39377	0.24062	-0.6187	32.5762	0.14899	-0.8268
140	Female	2.74615	0.43872	0.22907	-0.64	31.7592	0.12271	-0.9111
141	Female	3.00758	0.47822	0.28504	-0.5451	31.7054	0.11811	-0.9277
142	Female	1.55773	0.19249	0.16728	-0.7766	31.9918	0.1214	-0.9158
143	Female	2.4271	0.38509	0.24901	-0.6038	32.0158	0.10916	-0.9619
144	Female	1.14363	0.05829	0.13253	-0.8777	31.3345	0.0899	-1.0462
152	Female	2.61584	0.41761	0.26049	-0.5842	32.0708	0.14467	-0.8396
154	Female	1.87218	0.27235	0.14568	-0.8366	31.4148	0.09946	-1.0024
156	Female	1.68274	0.22602	0.1831	-0.7373	31.5285	0.12023	-0.92
157	Female	2.5735	0.41052	0.27518	-0.5604	31.6971	0.11512	-0.9388
158	Female	1.89776	0.27824	0.18614	-0.7302	31.425	0.15919	-0.7981
159	Female	2.44945	0.38907	0.2669	-0.5737	31.3218	0.12806	-0.8926
160	Female	3.06824	0.48689	0.30328	-0.5182	30.8785	0.12137	-0.9159

TempRMR	Mass	Log10 Mass	RMRcool Mass	Log10RMR CoolMass	RMRcool2	Log10RMR cool2	RMRctemp2
31.899	58.86	1.7698	62.88	1.7985125	0.034459	-1.462697	22.335
31.6226	49.33	1.6931	58.28	1.7655195	0.033612	-1.473506	22.3203
30.4038	41.22	1.6151	42.51	1.6284911	0.025294	-1.596982	22.3173
31.1198	49.46	1.6943	53.12	1.7252581	0.025009	-1.601904	22.2886
30.6729	56.87	1.7549	61.4	1.7881684	0.027754	-1.556674	22.3264
31.4711	52.11	1.7169	57.95	1.7630534	0.029105	-1.536032	22.0611
30.5036	57.86	1.7624	58.23	1.7651468	0.027118	-1.566742	22.1756
31.9231	45.3	1.6561	47.55	1.6771505	0.024572	-1.609559	22.0575
31.6427	46.77	1.67	47.81	1.6795187	0.025857	-1.587422	22.0584
30.1354	49.13	1.6913	49.16	1.6916119	0.025348	-1.596056	22.0653
30.8176	43.55	1.639	46.29	1.6654872	0.02378	-1.623788	22.0458
31.3354	54.04	1.7327	67.58	1.8298182	0.036241	-1.4408	22.0615
31.4623	44.66	1.6499	46.5	1.667453	0.023672	-1.625765	22.1541
30.3338	49.76	1.6969	51.35	1.7105404	0.026678	-1.573847	22.0645
31.1757	40.62	1.6087	44.78	1.6510841	0.027605	-1.559012	22.9461
31.4753	52.97	1.724	59.7	1.7759743	0.026038	-1.584392	22.5455
31.6802	47.56	1.6772	51.5	1.7118072	0.027436	-1.561679	22.5958
31.5777	59.15	1.772	63.73	1.8043439	0.042848	-1.368069	22.527
31.763	58.42	1.7666	64.67	1.8107029	0.034278	-1.464985	22.5569
31.6887	53.74	1.7303	55.82	1.7467898	0.030442	-1.516527	22.9633
31.163	37.85	1.5781	40.47	1.6071332	0.022339	-1.650936	22.981
30.9092	55.6	1.7451	59.23	1.7725417	0.029979	-1.523183	22.5144
32.0686	48.46	1.6854	58.01	1.7635029	0.036925	-1.432679	22.5882
31.6748	58.85	1.7697	62.67	1.7970597	0.027979	-1.553168	22.5293
31.6371	106.6	2.0278	109.11	2.0378646	0.054611	-1.26272	24.0542
33.2422	112.84	2.0525	116.15	2.0650192	0.0639	-1.194499	24.3628
31.8867	101.6	2.0069	106.39	2.0269008	0.0725	-1.139662	24.173
31.7196	117.3	2.0693	124.6	2.095518	0.0668	-1.175224	24.3261
32.2562	74.96	1.8748	79.24	1.8989445	0.043	-1.366532	24.1362
32.5239	84.66	1.9277	89.29	1.9508028	0.04423	-1.354283	24.047
31.4108	73.23	1.8647	77.84	1.8912028	0.047636	-1.322065	24.0536
32.9344	110.15	2.042	114.76	2.0597905	0.056312	-1.249399	24.064
31.5248	73.83	1.8682	76.37	1.8829228	0.047283	-1.325295	24.0567
32.5586	78.48	1.8948	83.82	1.9233477	0.055897	-1.252612	24.0554
32.4433	93.39	1.9703	100	2	0.059889	-1.222653	24.3586
31.0663	122.46	2.088	125.41	2.0983322	0.081279	-1.090022	24.0458
31.8056	125.33	2.0981	130.6	2.1159432	0.0688	-1.162412	24.3076
31.1864	96.67	1.9853	99.22	1.9965992	0.0678	-1.16877	24.2801