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Abstract

Peak metabolic rate reflects maximal performance and may have direct fitness consequences, whereas
resting metabolic rate (RMR) represents the maintenance cost of the whole animal. These traits may be
linked, which has significant implications for the evolution of both traits. In vertebrates, a positive
correlation between resting metabolic rate and aerobic capacity has been proposed to explain the origin of
endothermy. However, as studies on the relationship between resting metabolic rate and aerobic capacity
have focused on vertebrates, we know much less about these traits in ectothermic insects. | measured RMR
in the Glanville fritillary butterfly (Melitaea cinxia) using two configurations: one optimized for measuring
flight metabolic rate, the other optimized for resting metabolic rate. The relationship between RMR and
body mass was similar for the two configurations. Body mass explained 82% of the variation in RMR when it
was measured using the "flight" configuration at 32°C, and 91% when using the "rest" configuration at
23°C. The Qqq coefficient calculated based on the two RMR measurements was 2.8. Mass-independent RMR
was positively correlated between measurements obtained using the two instrument configurations.
However, neither measure of RMR was correlated with peak metabolic rate, which indicates that RMR
cannot be used as a surrogate measure for aerobic capacity in the Glanville fritillary. Ectothermic insects
may be able to combine high metabolic capacity with no apparent increase in maintenance cost. Even
though RMR is among the most frequently measured physiological variables, it may have limited predictive
power when it comes to questions related to activity or aerobic capacity, or in the case of butterflies, flight

performance.
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49  Box 1: Glossary

50 BMR: Basal metabolic rate, the metabolic rate of an endothermic, homeothermic vertebrate that is
51 inactive, postabsorptive, adult, nonreproductive and measured during the inactive period of the day in a

52  thermal environment where the animal uses a minimum amount of energy for thermoregulation.

53  Peak MR: Peak metabolic rate, in the present study, the highest rate of CO, production during flight. A

54  likely proxy for aerobic capacity in butterflies.

55 Q. coefficient: Factor describing the increase in metabolic rate with a 10-degree C increase in

56 temperature.

57 RMR: Resting metabolic rate, the metabolic rate of an inactive endotherm or ectotherm measured at a

58 specific temperature.

59 RMRcool: In the present study, resting metabolic rate in postabsorptive, nonreproductive Glanville

60 fritillaries measured at 23°C during the inactive period of the day.

61 RMRwarm: In the present study, resting metabolic rate in postabsorptive, nonreproductive Glanville

62 fritillaries measured at 32°C during the active period of the day.

63  SMR: Standard metabolic rate, the metabolic rate of an ectothermic animal that is inactive, postabsorptive,
64  adult, nonreproductive and measured during the inactive period of the day at a specific temperature. Often

65 used in the context of ectothermic vertebrates.

66

67

68

69



70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

Integrative and Comparative Biology Page 4 of 32

Introduction

Resting metabolic rate (RMR) is the energy expenditure rate of a quiescent, postabsorptive animal and
represents the maintenance cost of the physiological machinery. In life-history ecology, allocation of
resources among various processes related to growth, survival and reproduction is critical for determining
fitness (van Noordwijk and de Jong 1986; Boggs 2009; Lailvaux and Husak 2014). As RMR determines the
minimum amount of energy needed for supporting the biological functions of the individual, it sets the
foundation for the entire energy budget. Variation in RMR reflects different life-history strategies, and
there is considerable interest in to what extent it can be used to predict other behaviorally important or
fitness-related traits (Reinhold 1999; White and Seymour 2004; Biro and Stamps 2010; Careau and Garland
2012; Metcalfe et al. 2016; Arnold et al. 2021). A key assumption is that RMR is connected with metabolic
phenotype or personality, which may explain differences in performance in a given environment (Careau et
al. 2008). Indeed, RMR has been linked to variation in survival or fitness in many taxa, although such effects
may be positive or negative and often depend on the environment (Burton et al. 2011). The term RMR can
be used for describing maintenance metabolic rate in both endotherms and ectotherms (see Box 1 for
exact definitions), whereas basal metabolic rate (BMR) is usually reserved for endothermic vertebrates
(McNab 1997) and standard metabolic rate (SMR) for ectothermic vertebrates. In vertebrates, a positive
connection between BMR and maximal aerobic capacity has been proposed to explain the origin of
endothermy (Bennett and Ruben 1979; Hayes and Garland 1995). The aerobic capacity model postulates
that endothermy evolved due to a mechanistic link between aerobic capacity and BMR, as selection acted
on the former trait (Nespolo and Roff 2014; Nespolo et al. 2017). Correlations between RMR and various
measures representing the upper end of the metabolic spectrum such as aerobic capacity, summit
metabolic rate (M, cold-induced maximum metabolic rate in endothermic vertebrates, usually in birds),
and daily energy expenditure (DEE) have been examined empirically both at the intraspecific and

interspecific level, and the general pattern appears to be that RMR and maximum metabolic rate are



Page 5 of 32 Integrative and Comparative Biology

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

positively correlated in vertebrates (Auer et al. 2017). In their meta-analysis Auer et al.(2017) found larger
effect sizes at the interspecific level than at the intraspecific level, and that the relationships between RMR
and M, or DEE were more consistently positive than the relationship between RMR and aerobic capacity
(VO,max). There are, however, some mixed results, such as no significant correlation between mass-
independent BMR, M, and maximum metabolic rate in several bird species at the intraspecific level
(Swanson et al. 2012). The lack of correlation between RMR and maximum metabolic rate may reflect the
fact that different organs contribute to metabolism at different activity levels (Weibel 2002). In addition,
physiological adaptations such as brown adipose tissue in small mammals may result in different patterns
among taxonomic groups (Auer et al. 2017).

As most of the studies on the connection between RMR and aerobic capacity have been performed
in the context of the evolution of endothermy, much less is known about these traits in ectotherms, and
even less in insects. Flying insects reach extremely high mass-specific metabolic rates (Suarez 2000), and
flight capacity is critical for many insects, as flight allows exploring and exploiting resources in three
dimensions over large spatial scales. Flight is used for migration and dispersal, and flight allows carrying out
tasks such as mate location, oviposition, foraging and escaping from predators (Van Dyck and Baguette
2005). Due to the high energetic cost, there may exist selection pressures against high flight capacity or
flight capability (Roff 1994; Zera and Denno 1997). Insect flight appears to be powered by aerobic
metabolism (Harrison and Lighton 1998), suggesting that measurements of peak metabolic rate may closely
represent aerobic capacity. In support of this, experimental manipulations have shown that Lepidoptera did
not increase their peak metabolic rate when weights were added to their bodies (Marden et al. 2008).
Among insects, both RMR and flight metabolic rate scale positively with body mass (Niven and Scharlemann
2005), which is in accordance with the general rule of a positive relationship between metabolic rate and
body mass found among all animals (Glazier 2010; Gillooly et al. 2017), but we still lack understanding of
the interdependence of the two traits. Studies on butterflies, a well-studied group of wing-monomorphic
insects that use flight for practically all activities, have shown that flight metabolic rate is affected by the

population of origin (Zhan et al. 2014; Kvist et al. 2015; Van Dyck and Holveck 2016; Tenger-Trolander et al.
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2023), genotype (Haag et al. 2005; Marden et al. 2013), environmental conditions (Niitepdld et al. 2009;
Mattila 2015; Fountain et al. 2016; Wong et al. 2016), mitochondrial performance (Niitepdld et al. 2022),
and dietary conditions (Marden et al. 2008; Lebeau et al. 2016; Niitepdld et al. 2022). Nevertheless, in the
Glanville fritillary butterfly (Melitaea cinxia L.) attempts to find positive correlations between RMR and
flight metabolic rate provided mixed results (Niitepdld 2010). In addition, variation in RMR did not explain
any significant proportion of the variation in the distance flown by Glanville fritillaries that were tracked in

the field using a harmonic radar (Niitepdld et al. 2009).

Unlike endotherms that have a thermoneutral zone, defined as the range of temperatures where
the amount of energy needed for thermoregulation (heat production or cooling) is at its lowest, ectotherms
do not have a clear temperature point where measurements of metabolic rate should be done. As there is a
positive relationship between RMR and body temperature, depicted for example by the Q4 coefficient
(Chown and Nicolson 2004), the selected measurement temperature has practical, behavioral and
physiological implications. Room temperature is an often-used choice but most likely due to practical rather
than biological reasons. A more informed approach is to use experimental methods to identify the
preferred temperature for the species (Pough and Gans 1982). Experimental assessments suggest that
preferred temperatures (Tpref) in ectotherms are often lower than physiologically optimal temperatures
(Topt), possibly reflecting adaptations to thermally variable environments and other environmental factors
(Woods et al. 2015; Crickenberger et al. 2020; Hui et al. 2022). Measurements of flight metabolic rate on
the other hand require experimental temperatures that allow ectothermic insects to fly, and body
temperatures of flying insects are often significantly higher than ambient temperatures due to
thermoregulation such as metabolic heat production or basking (Harrison and Roberts 2000; Mattila 2015).
In the case of butterflies, body temperatures of flying individuals tend to be in the range of 25 to 39°C, and
optimal body temperatures for flight are often in the upper part of the range (Watt 1968; Heinrich 1986;
Tsuji et al. 1986; Van Dyck and Matthysen 1998; Saastamoinen and Hanski 2008; Mattila 2015).
Measurements of RMR at a high temperature in conjunction with measurements of flight metabolic rate

have revealed interesting dynamics in the maintenance costs of butterflies exposed to different stressors
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(Niitepdld et al. 2014; Niitepdld and Boggs 2015; Niitepdld 2019), but we do not know how measurements
of RMR at conditions optimized for flight compare to more conventional measurements of RMR at room

temperature.

Here, | performed an experiment using Glanville fritillary butterflies and measured RMR at two
temperatures, as well as flight metabolic rate. There were two specific aims: first, to validify measurements
of RMR done at a temperature corresponding to body temperatures of active butterflies by comparing the
measurements against RMR measurements done at ‘gold standard’ conditions (room temperature, small
measurement chamber, early morning) to establish if RMR represents a metabolic phenotype that is robust
across a range of temperatures. Second, | wanted to see, if either measurement of RMR predicted
individual variation in flight metabolic rate, i.e. can RMR be used as a proxy for aerobic capacity in an

ectothermic butterfly?

Material and Methods

Rearing

The Glanville fritillaries originated from the Aland Islands in Southwest Finland. The parent generation was
collected as larvae in the field in the autumn of 2015. The parents were reared in the laboratory and
released in a large outdoor cage in 2016. The eggs were collected, and the larvae were reared on Petri
dishes with fresh leaves of the host plant Plantago lanceolata available ad libitum. The larvae entered
diapause and were kept at 4°C until January. Diapause was broken by exposing the larvae to light and
higher temperature. The larvae were reared in the laboratory under 12 h light / 12 h dark conditions, and
the temperature cycled between 28°C at midday and 15°C at night. Fresh leaves of Plantago lanceolata
were always available. When individuals pupated, they were transferred to an individually marked plastic
cup with a mesh cover. After emergence, each individual was sexed, weighed and individually marked with

a felt tip pen on the hindwings. Males and females were placed in separate large cylindrical cages (40 by 50
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171 cm). The cages were kept in a brightly lit room during the day and the butterflies could gain flight practice.
172 Food was provided in the form of 20% honey-water absorbed in a sponge. The total sample consisted of 24

173 males and 14 females.

174

175 Measurement of resting metabolic rate at 23°C

176 In the evening of the first full day after emergence, butterflies were transferred into individual plastic cups
177 and placed in a dark cupboard without access to food. Early next morning, before daylight, each individual
178  was placed in a 110 ml respirometry chamber that was kept in the dark during the measurement of resting
179 metabolic rate. A maximum of seven individuals could be measured in each trial. Drierite (W.A. Hammond,
180  Xenia, OH, USA) and Magnesium perchlorate (Alfa Aesar, Karlsruhe, Germany) were used to dry the

181 incoming air, and CO, was scrubbed using Medisorb (GE Healthcare, Chalfont St. Giles, UK) and Ascarite I
182 (Thomas, Swedesboro, NJ, USA). A Sable Systems RM-8 multiplexer (Sable Systems International, Las Vegas,
183 NV, USA) was used to direct the dried and CO,-free air through one chamber at a time. The flow rate was
184  kept at 300 ml min? with the help of a Sable Systems SS-4 pump and a Sierra Instruments 840 mass-flow
185 controller (Sierra Instruments, Monterey, CA, USA). The CO, production rate of each butterfly was

186 measured twice for the duration of 5 minutes using a Li-Cor 7000 infrared H,0/CO, analyzer (LI-Cor

187 Biosciences, Lincoln, NE, USA). The last recording was used for analyses and the metric ‘RMRcool’ was

188 calculated from the mean CO, production rate during the final two minutes of the recording. Individuals
189 spent between 30 to 90 minutes in the chamber prior to the last recording, depending on the number of
190 individuals in the trial and the order of chambers. Standard equations were used to convert CO,

191 concentrations to rates (Lighton 2008). The mean measurement temperature was 23.0 + SD 0.9°C. After the
192 measurement, the individual was weighed in a glassine envelope using a Mettler Toledo XS 105 balance
193 (Mettler Toledo, Greifensee, Switzerland; readability 0.01 mg), given water from a piece of moist cotton

194  wool, and gently placed in an individual plastic cup.

195
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Measurement of resting metabolic rate at 32°C and flight metabolic rate

The butterfly was placed into a 1- measurement chamber that was covered with a dark cloth. The chamber
was kept in a temperature-controlled cabinet with an open front. The mean temperature across RMR
measurements was 31.5+£0.69°C. After a ca 25-minute wait period, the recording of CO, production was
started and two minutes of stable resting metabolic rate was measured. If the individual became restless
during the measurement, it was given additional time to settle, and the recording was continued until a
steady baseline was reached. In the analysis, the mean of 90 seconds of steady CO, production rate was
used for the calculation of ‘RMRwarm’. Once RMR had been recorded, the dark cloth was removed, and the
chamber was exposed to light. After 30 seconds, the chamber was shaken using rapid yet precise hand
movements with the intention of stimulating flight by flipping the butterfly in the air. Every time the
butterfly attempted to land, the chamber was shaken again. If the butterfly hovered in the air, the chamber
was moved only gently. The procedure was repeated for a total of seven minutes. At the end of the
experimental period the chamber was covered again, the CO, concentration in the chamber was allowed to
return to the baseline, and the measurement was terminated. The butterfly was removed from the
chamber and weighed with a Mettler Toledo balance (see above). In the analysis, two parameters were
extracted: the highest rate of CO, production (Peak MR) and the total volume of CO, emitted during the
flight experiment (total CO, production). Peak MR was typically reached during the first minutes of the
flight trial and is likely to reflect aerobic capacity. The total volume of CO, contains a behavioral component

as it is affected by the willingness to fly.

Statistical analyses

All metabolic rates and body masses were log;o-transformed to facilitate examining metabolic scaling
(Glazier 2021). | used generalized linear models to examine factors that affected resting metabolic rate and
flight metabolic rates. The models contained body mass, sex, measurement temperature, and the

interaction between body mass and sex as independent effects. Temperature was included as a covariate
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to account for variation in temperature among measurements in the same treatment, and the body mass
by sex interaction term was included for detecting potential sex-specific differences in the relationship
between metabolic rate and body mass. | examined correlations between RMR and flight metabolic rates
using Pearson Product-Moment correlation analysis. In these analyses, instead of the raw metabolic rates, |
used mass-independent metabolic rates. Mass-independent metabolic rates were obtained by extracting
the residuals from linear models thus accounting for variation in body mass. For this purpose, | reran the
models presented above with only significant variables included in the model. Body mass was included in
all models and temperature was included in the models with RMR as the dependent variable. As there was
no overlap in the body masses of males and females, and visual inspection of the data suggested that male
and female data points did not necessarily follow the same regression line, | performed the correlation
analyses for males and females separately, and for both sexes pooled together. All analyses were

performed with SAS Studio (SAS Institute, Cary, NC, USA).

| calculated Qg temperature coefficients for resting metabolic rates measured at two temperatures
using the formula (RMRwarm/RMRcool)*(10/(Twarm-Teool)), Where Tyam is the measurement temperature at
which RMRwarm was measured and T, the temperature at which RMRcool was measured. The Qg
coefficient represents the factor by which RMR increases with a 10°C increase in temperature (Chown and

Nicolson 2004).

Results

Resting metabolic rate

Resting metabolic rate measured at 23°C (RMRcool) was positively affected by body mass (F; 33=52.05; P <

0.0001). Body mass explained 91% of the variation in RMRcool (Fig. 1A). The effect of measurement
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temperature was not significant (F; 33=2.02; P = 0.17). The effect of sex was not significant (F;33=0.10; P =

0.76), and the body mass by sex interaction was also not significant (F; 33= 0.09; P = 0.76).

Resting metabolic rate measured at 32°C (RMRwarm) was affected by body mass (F;33=23.59; P <
0.0001). Body mass explained 82% of the variation in RMRwarm (Fig. 1B). There was a significant effect of
temperature (F;33=5.11; P = 0.03). The effect of sex was not significant (F;3;=0.06; P = 0.81), and the body

mass by sex interaction was not significant (F; 33 =0.05; P = 0.82).

The mean Qg coefficient based on RMR measurements at the two temperatures (23°C and 32°C)

was 2.8.

Flight metabolic rates

Peak flight metabolic rate was positively affected by body mass (F; 33= 14.80; P = 0.0005) (Fig. 2A). Body
mass explained 22% of the variation in Peak MR. The effect of temperature was not significant (F; 33 = 1.01;
P =0.32). Sex had no significant effect on Peak MR (F;33=0.06; P = 0.80) and the body mass by sex

interaction was not significant (F;33=0.00; P = 0.98).

The total volume of CO, emitted during the flight experiment was affected by body mass (F; 33 =
14.21; P = 0.0006) (Fig. 2B). Body mass explained 29% of the variation in the total volume of
CO,.Temperature had no significant effect on the total volume of CO, (F;33=0.30; P = 0.59). The effect of
sex was not significant (F; 33= 0.01; P = 0.91), and the body mass by sex interaction was not significant (F; 33

=0.11; P=0.74).

Correlations between metabolic rates

Mass-independent RMRcool and mass-independent RMRwarm were significantly correlated (r = 0.44; P =

0.005) (Fig. 3). The residual metabolic rates used in the analysis were extracted from the linear models
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267 above and had also been corrected for measurement temperature. In males, the correlation coefficient
268 between mass-independent RMRcool and mass-independent RMRwarm was 0.55 (P = 0.005). In the female

269 subsample, there was no significant correlation (r=0.26; P = 0.37).

270 Correlation statistics for mass-independent RMRcool, RMRwarm, Peak MR, and total volume of CO,
271 are given in Table 1. In brief, mass-independent RMRcool and RMRwarm were not significantly correlated

272  with mass-independent Peak MR (Figure 4A-D) or with mass-independent total volume of CO.,.

273

274  Discussion

275

276  The present study compared resting metabolic rates measured at a low temperature in early morning

277 (RMRcool) to measurements performed at a temperature corresponding to the body temperature of an
278 active butterfly during the active phase of the day (RMRwarm). Both measurements confirmed that body
279 mass explains the majority of variation in RMR when individuals are in a postabsorptive state and not

280  actively reproducing or engaging in other energetically intensive activities. Indeed, body mass explained a
281 total of 91% of the variation in RMRcool, indicating that the individuals were in a rather undisturbed state.
282  According to expectations, at the higher measurement temperature, physiological activity increased, and
283  the percentage of variation explained by body mass decreased somewhat to 82%. An effect of temperature
284  was also seen within the high-temperature conditions, as measurement temperature (treated as a

285  covariate) had a positive effect on RMRwarm.

286 The increase in CO, production rate with temperature between the two measurement

287  temperatures was quantified using the Qo coefficient. A Qo value of 2.8 indicated that RMR more than
288 doubled with the increase of 10°C, which is within the typical range for insects (Nespolo et al. 2003; Chown
289 and Nicolson 2004) and close to or somewhat higher than previously measured Qg values in the Glanville

290 fritillary, 2.1 and 2.6, in two different experiments (Niitepdld 2010). Despite the increase in RMR with
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temperature, there was a significant correlation between mass-independent RMRcool and RMRwarm. The
result confirms that both measurements of RMR convey a signal of individual phenotypic variation that is
independent of body mass. The finding validates the use of resting metabolic rate recordings that have
been measured with the flight configuration at a temperature that is higher than in typical measurements
of RMR. That the correlation between RMRcool and RMRwarm was in fact not stronger may depend on the
very high proportion of variation explained by body mass in the case of RMRcool, as there simply was not
much residual variation left, and part of the biological variation would be masked by measurement error. In
addition, as RMR tends to follow temperature in an exponential pattern at sub-optimal temperatures, it is
possible that the increase in temperature activated physiological processes that were mostly shut off at the
relatively low temperature of 23°C, such as activity of the endocrine system, reproductive maturation or
increased mitochondrial proton leak (Schulte 2015). It could therefore be argued that individuals may not
have been in the same physiological state between the two measurements, which makes finding a
significant correlation even more valuable. The result suggests that RMR is a robust trait that conveys
individual phenotypic variation despite poikilothermic butterflies being subjected to considerable variation

in body temperature.

Lack of correlation between RMR and peak metabolic rate

No correlations were found between mass-independent resting metabolic rates and flight metabolic rates.
Here, the pattern differs from findings in vertebrates where minimum and maximum metabolic rates have
often been found to correlate (Auer et al. 2017). However, there tends to be a difference between
interspecific and intraspecific studies, such that many intraspecific studies covering amphibians, birds, fish,
mammals and reptiles have failed to find a correlation between RMR and aerobic capacity (Auer et al.
2017). For example, RMR was not correlated with aerobic capacity in an ectothermic lizard, the garden
skink (Lampropholis delicata) (Merritt et al. 2013). In a similar way, a study on RMR and flight metabolic

rate in another butterfly, the Speckled wood (Pararge aegeria), also found no significant correlation (Van
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316 Dyck and Holveck 2016). These intraspecific studies are in contrast with studies that have compared RMR
317 between taxa that are capable of flight or flightless, where the presence of the flight apparatus is

318  associated with higher RMR (Reinhold 1999). Indeed, the general pattern seems to be that RMR is

319  connected to differences between species, but it is not necessarily correlated with other traits within the
320  species. Not finding a correlation is not surprising in itself, as different organs are responsible for the

321 majority of energy consumption in flight and at rest. In insects, flight muscle tissue is highly active in flight
322 and may use up to 95% of the total oxygen consumed by the individual (Snelling et al. 2012). Future studies
323  indifferent insect taxa will confirm if the lack of a correlation between RMR and maximum metabolic rates
324 is the norm among insects, but it is worth noting that several differences between vertebrates and insects
325 exist at the physiological level. Among insects, too, one would expect to find physiological differences

326 between taxa that are to certain degree endothermic, such as bees, bumblebees and hawkmoths, and pure
327 ectotherms, such as sun-basking butterflies, as these taxa exhibit strikingly different behaviors (Heinrich

328 1975, 1986).

329 In general terms, the apparent decoupling of maximum metabolic rate from RMR, which represents
330 the costs of maintenance, suggests that individual insects can reach high metabolic capacity without an
331  additional energetic cost at rest. Empirical evidence, however, shows that butterflies subjected to repeated
332 flight treatments display chronically elevated RMR (Niitepdld and Boggs 2015; Niitepdld 2019), which may
333 represent increased investment in repair and maintenance and hint that high metabolic expenditure does
334  come with a cost after all. Nevertheless, morphological features such as the tracheal network used for gas
335  exchange in insects may serve as adaptations that allow high energetic throughput when active, while

336 requiring only minimal energetic investments when sedentary. Dynamics related to metabolic enzymes
337 may also differ between rest and flight. For example, in the Glanville fritillary, the Pgi locus which encodes
338  the glycolytic enzyme phosphoglucose isomerase has been linked with variation in flight metabolic rate
339 (Haag et al. 2005; Orsini et al. 2009). However, there are no differences between Pgi genotypes in RMR
340  (Niitepdld et al. 2009; Niitepdld 2010), suggesting that different physiological processes regulate RMR and

341  flight metabolic rate. Results from heritability experiments, too, point to different mechanisms
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underpinning variation in minimum and maximum metabolic rates. Flight metabolic rate was found to be

significantly heritable while RMR was not (Mattila and Hanski 2014).

While RMR is to a very high degree explained by body mass, Peak MR is inherently more variable.
Undoubtedly, the motivation to fly may have an effect on flight performance and the individual may not fly
at its absolute maximum level. Nevertheless, measurements of Peak MR and total CO, production seem to
capture variation in flight performance that carries a biological signal, as seen in previous studies. Flight in
the respirometry chamber requires repeated take off bouts, and take off-flight is considered energetically
challenging (Berwaerts et al. 2002), suggesting that butterflies fly close to their maximum capacity. We also
know that total CO, production is correlated with variation in flight performance of female Glanville
fritillaries in the field (Niitepdld et al. 2009). Finding out how different measures of flight performance are
correlated remains an important question in the context of energetics (Ducatez et al. 2012). As the
relationships between energetic traits may not be universal (Careau et al. 2008; Portugal et al. 2016),

incorporating behavioral, ecological and evolutionary insight in physiological studies will be beneficial.
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Figure captions

Figure 1A) Resting metabolic rate at 23°C (RMRcool) plotted against body mass. Males are represented as
black dots, females open circles. Body mass explained 91% of the total variation in RMRcool. Regression
equations are presented for the sexes separately. Body mass explained 58% of the variation in the male
subsample, and 64% in the female subsample. The body mass by sex interaction was not significant. B)
Resting metabolic rate at 32°C (RMRwarm) plotted against body mass. Body mass explained 82% of the
variation in RMRwarm in the pooled sample, and 32% and 57% in males and females, respectively. The

body mass by sex interaction was not significant.

Figure 2A) Peak metabolic rate plotted against body mass Glanville fritillaries. Body mass explained 22% of
the variation in Peak MR in the pooled sample. Body mass explained 29% of the variation in the male
subsample (black dots), and 39% in females (open circles). B) Total volume of CO, emitted during the 7-
minute flight experiment plotted against body mass. Body mass explained 29% in the variation in the

pooled sample, and 27% and 40% in males and females, respectively.

Figure 3) The relationship between mass-independent RMRcool and mass-independent RMRwarm. The

correlation was significant (r = 0.44; P = 0.005). Black squares represent males, open squares females.

Figure 4) The relationship between mass-independent RMRcool and mass-independent Peak MR in A)
males and B) females. There was no significant correlation in the pooled sample, and no correlation when
the two sexes were analyzed separately. C) The relationship between mass-independent RMRwarm and

mass-independent Peak MR in males. D) The relationship between mass-independent RMRwarm and mass-
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565 independent Peak MR in females. No significant correlations were found between these traits in the pooled

566  sample orin each sex.
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Table 1. Correlation coefficients between mass-independent resting metabolic rates and mass-independent
flight metabolic rates. No significant correlations were found.

Peak MR Total CO,
production
Pooled Males Females Pooled Males Females
RMRcool r=-0.006 r=0.006 r=-0.02 r=0.07 r=0.20 r=-0.13
P=0.97 P=0.98 P=0.95 P=0.66 P=0.35 P=0.67
RMRwarm r=-0.04 r=0.12 r=-0.36 r=0.02 r=0.22 r=-0.43
P=0.797 P=0.57 P=0.20 P=0.90 P=0.31 P=0.12
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Figure 1A) Resting metabolic rate at 23°C (RMRcool) plotted against body mass. Males are represented as
black dots, females open circles. Body mass explained 91% of the total variation in RMRcool. Regression
equations are presented for the sexes separately. Body mass explained 58% of the variation in the male
subsample, and 64% in the female subsample. The body mass by sex interaction was not significant. B)
Resting metabolic rate at 32°C (RMRwarm) plotted against body mass. Body mass explained 82% of the
variation in RMRwarm in the pooled sample, and 32% and 57% in males and females, respectively. The

body mass by sex interaction was not significant.
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Figure 2A) Peak metabolic rate plotted against body mass Glanville fritillaries. Body mass explained 22% of
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minute flight experiment plotted against body mass. Body mass explained 29% in the variation in the pooled
sample, and 27% and 40% in males and females, respectively.
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58.85
106.6
112.84
101.6
117.3
74.96
84.66
73.23
110.15
73.83
78.48
93.39
122.46
125.33
96.67

Logl0 RMRCool

Mass

1.7698
1.6931
1.6151
1.6943
1.7549
1.7169
1.7624
1.6561
1.67
1.6913
1.639
1.7327
1.6499
1.6969
1.6087
1.724
1.6772
1.772
1.7666
1.7303
1.5781
1.7451
1.6854
1.7697
2.0278
2.0525
2.0069
2.0693
1.8748
1.9277
1.8647
2.042
1.8682
1.8948
1.9703
2.088
2.0981
1.9853

Mass

62.88
58.28
42.51
53.12
61.4
57.95
58.23
47.55
47.81
49.16
46.29
67.58
46.5
51.35
44.78
59.7
51.5
63.73
64.67
55.82
40.47
59.23
58.01
62.67
109.11
116.15
106.39
124.6
79.24
89.29
77.84
114.76
76.37
83.82
100
125.41
130.6
99.22

LoglORMR
CoolMass

1.7985125
1.7655195
1.6284911
1.7252581
1.7881684
1.7630534
1.7651468
1.6771505
1.6795187
1.6916119
1.6654872
1.8298182
1.667453
1.7105404
1.6510841
1.7759743
1.7118072
1.8043439
1.8107029
1.7467898
1.6071332
1.7725417
1.7635029
1.7970597
2.0378646
2.0650192
2.0269008
2.095518
1.8989445
1.9508028
1.8912028
2.0597905
1.8829228
1.9233477
2
2.0983322
2.1159432
1.9965992

RMRcool2 LoglORMR RMRctemp2

0.034459
0.033612
0.025294
0.025009
0.027754
0.029105
0.027118
0.024572
0.025857
0.025348
0.02378
0.036241
0.023672
0.026678
0.027605
0.026038
0.027436
0.042848
0.034278
0.030442
0.022339
0.029979
0.036925
0.027979
0.054611
0.0639
0.0725
0.0668
0.043
0.04423
0.047636
0.056312
0.047283
0.055897
0.059889
0.081279
0.0688
0.0678

cool2

-1.462697
-1.473506
-1.596982
-1.601904
-1.556674
-1.536032
-1.566742
-1.609559
-1.587422
-1.596056
-1.623788
-1.4408
-1.625765
-1.573847
-1.559012
-1.584392
-1.561679
-1.368069
-1.464985
-1.516527
-1.650936
-1.523183
-1.432679
-1.553168
-1.26272
-1.194499
-1.139662
-1.175224
-1.366532
-1.354283
-1.322065
-1.249399
-1.325295
-1.252612
-1.222653
-1.090022
-1.162412
-1.16877

22.335
22.3203
22.3173
22.2886
22.3264
22.0611
22.1756
22.0575
22.0584
22.0653
22.0458
22.0615
22.1541
22.0645
22.9461
22.5455
22.5958

22.527
22.5569
22.9633

22.981
22.5144
22.5882
22.5293
24.0542
24.3628

24.173
24.3261
24.1362

24.047
24.0536

24.064
24.0567
24.0554
24.3586
24.0458
24.3076
24.2801
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