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Abstract— This paper studies the problem of strategic
quantization, where an encoder and a decoder with misaligned
objectives communicate over a rate-constrained noiseless
channel. Specifically, we focus on a 2-dimensional source,
state and bias variables, and quadratic distortion measures.
We provide a design algorithm for this particular case of
strategic quantization, as well as an upper and lower bounds
on the encoder distortion via employing linear communication
strategies. Finally, we present comparative numerical
results obtained via the proposed method. We provide our
numerical results and the code for research purposes at
https://github.com/strategic-quantization/
quadratic-distortion-measures.

I. INTRODUCTION

Consider the following problem: Two smart cars by com-
peting manufacturers, e.g., Tesla and Honda, are commu-
nicating, without sample delay, over a noiseless fixed bit
rate channel. Tesla (the decoder) asks for traffic congestion
information from Honda (the encoder), which is ahead in
traffic, to decide on its route. Honda’s objective might be
to make Tesla take a specific action, e.g., change its current
route, while Tesla wants to estimate the traffic conditions
accurately. Since Honda’s objective is different from Tesla’s,
Honda needs an incentive to convey a truthful congestion
estimation. Tesla is aware of Honda’s motives but would
still like to use Honda’s information. How would these
cars communicate? Problems of this nature can be handled
using the strategic quantization model (coarse persuasion)
given in [1], [2], or more broadly, strategic communication
models [3], [4]. Note that here, Honda has three different
behavioral choices: it can choose not to communicate (non-
revealing strategy), can precisely communicate what Tesla
wants (fully-revealing strategy), or can craft a message
that would make Tesla change its route (partially revealing
strategy). Tesla can choose not to use Honda’s message if
it is statistically too far from the truth. Hence, crafting an
optimal message for Honda that would serve its objective,
knowing that Tesla’s objective differs from it, is a formidable
research challenge.

This research area has been well studied in Economics
literature without the quantization cardinality constraint as
the information design or the Bayesian persuasion problem
[3], [5]. Such problems explore the use of information
by a communication system designer (sender) to influence
the action taken by a receiver [6], [7]. In a related but
distinctly different class of signaling games called cheap talk
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[8], authors noted that quantizers can arise as equilibrium
strategies endogenously, without an external constraint. In
[8], the encoder chooses the mapping from the realization
of the source X to message Z after observing it, ex-post, as
different source realizations indicate optimality of different
mappings for the encoder. This results in a Nash equilibrium
since both agents form a strategy that best responds to each
other’s mapping because of the encoder’s lack of commit-
ment power in the cheap talk setting. In contrast, in the
strategic quantization problem (and the information design
problems in general as in [3], [5]), the encoder designs Q ex-
ante, before seeing the source realization, and is committed
to the designed Q afterward. This difference in commitment
manifests in the notion of equilibrium since the encoder may
not necessarily form the best response to the decoder due to
its commitment to Q.

Strategic quantization was analyzed from a computational
perspective in [2]. Aybaş and Türkel [1] studied the same
problem via an information Economics lens, employing the
mathematical tools developed in the Economics prior work,
e.g., [3] and derived several theoretical properties of optimal
strategic quantizers in general probability spaces. In [9],
authors consider a Bayesian persuasion problem with an
imperfect channel and a limited number of messages and
provide an upper bound on the pay-off of the sender. In [10],
authors study Bayesian signaling games and characterize
the minimum number of distinct source symbols that can
be correctly recovered by a receiver in any equilibrium of
this game, which they call the informativeness of the sender.
In [11], authors study dynamic variations of the cheap talk
signaling games.

In our prior work [12]–[15], we used the rich collection
of prior quantizer design and optimization work to study
this practically significant problem via an engineering lens.
More specifically, in [13], we derived several properties of
strategic quantization and proposed a straightforward gradi-
ent descent-based design strategy that yields a locally optimal
strategic quantizer. We showed that the encoder behaves in
one of three ways:

• Non-revealing: the encoder does not send any informa-
tion.

• Fully-revealing: the strategic quantizer is identical to the
one in non-strategic quantization of X .

• Partially-revealing: the encoder sends some information,
but the quantizer differs from a nonstrategic quantizer.

In [12], we proposed a dynamic programming solution
that achieves global optimality at the cost of increased
complexity. In [14]–[16], we explored strategic quantization20
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in noisy scenarios.
This paper focuses on the setting where both communi-

cating agents use quadratic distortion measures. Particularly,
the encoder observes a two-dimensional source X, θ ∼
f(x, θ) with a known joint distribution over X and θ,
where X and θ can be interpreted as the state and bias
variables. The decoder’s objective is to estimate the state
in the minimum mean squared error (MMSE) sense, i.e.,
the decoder minimizes E{(X − X̂)2} by choosing an action
X̂ which is the optimal MMSE estimate of x given the
quantization index from the encoder y = Q(x, θ), hence
X̂ = E{X|Y = y}. In sharp contrast with the conventional
quantization problem where the encoder chooses Q that
minimizes E{(X−X̂)2}, in this setting the encoder’s choice
of quantization mapping Q minimizes a biased estimate, i.e.,
E{(X+θ−X̂)2}. The objectives and the source distribution
are common knowledge available for both agents. Similar
signaling problems with quadratic measures have been ana-
lyzed in the Economics literature [8], [17], [18].

We then provide a lower and an upper bound on the
encoder’s distortion. The lower bound simply follows from
the observation that the encoder cannot outperform the
performance of the encoder in the perfect channel (without
any rate constraints) case, which we refer to as the ”strategic
communication” setting. The tractable expressions for setting
reported in [4] yield a lower bound on the encoder distortion.
The upper bound is obtained by quantizing a particular linear
function of the bias and source variables.

The basic design problem, as studied in [13], focuses on
the scalar settings. The optimal strategic quantization of a
two-dimensional source considered in this paper poses a
challenge in developing an algorithmic solution similar to
the one in [13]. We circumvent this issue by designing a
separate quantizer for each realization of θ for the encoder1.

This paper is organized as follows: In Section II we
present the problem formulation. In Section III, we present
a gradient-descent based algorithm to compute the strategic
quantizer, and an upper bound on the encoder distortion.
We provide numerical results in Section IV, and conclude
in Section V.

II. PRELIMINARIES

A. Notation

In this paper, random variables are denoted using cap-
ital letters (say X), their sample values with respective
lowercase letters (x), and their alphabet with respective
calligraphic letters (X ). The set of real numbers is denoted
by R. The uniform distribution over an interval [t1, t2], and
the 2-dimensional jointly Gaussian distribution with mean[
t1 t2

]′
and respective variances σ2

1 , σ
2
2 with a correlation

ρ are denoted by U [t1, t2], and

N
([

t1
t2

]
,

[
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

])
, −1 ≤ ρ < 1,

1In cases where θ is not purely discrete, we discretize it over a uniform
grid to facilitate the numerical analysis.

t1, t2 ∈ R, respectively. The expectation operator is written
as E{·}. The operator | · | denotes the absolute value if the
argument is a scalar real number and the cardinality if the
argument is a set.

B. Problem Formulation

An encoder observes realizations of the two stochas-
tic sources X ∈ X ⊆ [aX , bX ], θ ∈ T ⊆ [aθ, bθ],
aX , bX , aθ, bθ ∈ R with joint probability distribution
(X, θ) ∼ f(x, θ), and maps (X, θ) to a message Z ∈ Z ,
where Z is a set of discrete messages with a cardinality
constraint |Z| ≤ M using a non-injective mapping parame-
terized by θ, qθ : X → Z . After receiving the message Z,
the decoder applies a mapping ϕ : Z → Y on the message
Z and takes an action Y = ϕ(Z).

The encoder and decoder minimize their respective ob-
jectives DE = E{ηE(X, θ, Y )} = E{(X + θ − Y )2} and
DD = E{ηE(X,Y )} = E{(X−Y )2}, which are misaligned
(ηE ̸= ηD). The encoder designs Q = {qθ, θ ∈ T } ex-
ante, i.e., without the knowledge of the realization of (X, θ),
using only the objectives DE and DD, and the statistics
of the source f(·, ·). The objectives (DE and DD), the
shared prior (f ), and the mapping (Q) are known to the
encoder and the decoder. The problem is to design Q for
the equilibrium, i.e., the encoder minimizes its distortion if
used with a corresponding decoder that minimizes its own
distortion. This communication setting is given in Fig. 1, and
the problem is summarized in the box. Since the encoder
chooses the quantization decision levels Q first, followed by
the decoder choosing the quantization representative levels
(y), we look for a Stackelberg equilibrium.

The set X is divided into mutually exclusive and ex-
haustive sets parameterized by the realization of θ as
Vθ,1,Vθ,2, . . . ,Vθ,M . The m−th quantization region is de-
noted by V:,m = {Vθ,m, ∀θ ∈ T }. The encoder chooses the
set of quantizers Q = {qθ, θ ∈ T } to minimize its distortion,

DE =
M∑

m=1

∫
θ∈T

∫
x∈Vθ,m

(x+ θ − y∗m(Q))2df(x, θ) (1)

where the optimal reconstruction points y∗m are determined
by the decoder as a best response to Q to minimize its
distortion,

y∗m = argmin
y∈Y

M∑
m=1

E{(X − y)2|x ∈ V:,m}

=

∫
θ∈T

∫
x∈Vθ,m

xdf(x, θ)∫
θ∈T

∫
x∈Vθ,m

df(x, θ)
. (2)

The decoder determines a single set of actions y since it is
unaware of the realization of θ.

Throughout this paper, we make the following “mono-
tonicity” assumption on the sets {Vθ,m}.
Assumption 1. Vθ,m is convex for all θ ∈ T ,m ∈ [1 : M ],.
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Problem. For a given rate R, 2−dimensional source (X, θ) with a probability distribution function f(x, θ) find the
decision boundaries Q ∈ Q, Q ∈ R|T |×(M+1), Q = {qθ, θ ∈ T }, qθ = [xθ,0, xθ,1, . . . , xθ,M ], ∀θ ∈ T as a function
of boundaries that satisfy:

Q∗ = argmin
Q∈Q

M∑
m=1

E{(X + θ − y∗m(Q))2|X ∈ ∪
θ∈T

[xθ,m−1, xθ,m]},

where actions y(Q) are given as

y∗m(Q) = argmin
y∈Y

E
{
(X − y)2|X ∈ ∪

θ∈T
[xθ,m−1, xθ,m]

}
∀m ∈ [1 : M ],

and the rate satisfies logM ≤ R.

Source X ∈ X , θ ∈ T

(X, θ) ∼ f(x, θ)
Encoder (Quantizer)

Q : (X × T ) → Z

Noiseless Channel

|Z| ≤ M

Decoder

φ : Z → Y

Action Y ∈ Y

Fig. 1. Communication diagram: (X, θ) over a noiseless channel

Fig. 2. Quantization of X parameterized by θ for M = 5 illustrated.

Remark 1. Assumption 1 is the first of the two regularity
conditions commonly employed in the classical quantization
literature, cf. [19]. Note that the second regularity condition,
ym ∈ Vm, is not included in Assumption 1.

Note that implementing a quantizer Q : (X , T )→ Z can
be simplified to computing a set of quantizers corresponding
to each θ ∈ T as in Fig. 2 without loss of generality. If the
quantizer does not include a region m for some realization of
θ, the encoder never sends the message m i.e., the encoder
chooses a lower rate and is less revealing for that value of
θ. In Fig. 2, we see that the quantizer qθ1 only includes
m = 1, 2, 4 regions, while the quantizer qθ2 contains all five
regions.

III. MAIN RESULTS

In this section, we first present the gradient-descent based
optimization algorithm. We also present a straightforward
method of quantization along with linear estimation that

results in an upper bound on the encoder distortion.

A. Proposed algorithm

In [13], we proposed a gradient-descent-based algorithm
to solve the problem of quantization of a scalar source with
misaligned encoder and decoder objectives communicating
over a fixed rate noiseless channel. We extend this algorithm
to a 2-dimensional source (X, θ) by a simple method of
computing quantizers for each value of θ as Q = {qθ, θ ∈
T }. The gradient descent optimization is performed with
the objective as the encoder distortion optimized over the
encoder’s choice of quantizer decision levels Q = {qθ, θ ∈
T }. Although the encoder distortion depends on decoder
reconstruction levels y, since y is a function of Q, the
optimization can be implemented as a function of solely Q.

Remark 2. The proposed method inherits the convergence
guarantees of gradient-descent-based algorithms. Hence, lo-
cal optimality is guaranteed, but the resulting quantizer may
not necessarily be globally optimal.

Like any gradient-descent-based algorithm, the proposed
method may get stuck at a local optimum. This issue
can be mitigated with several methods in the literature
[20]–[22]. As a simple remedy, we perform gradient descent
with multiple initializations and choose the best among
them. A sketch of the proposed method is presented in
Algorithm 1. The MATLAB codes are provided at https:
//github.com/strategic-quantization/
quadratic-distortion-measures for research
purposes.

B. Lower Bound

In this section, we provide a lower bound on DE for
the case of jointly Gaussian (X, θ). We first reproduce the
following theorem from [4]:

Theorem 2. The problem of strategic communication where
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Algorithm 1 Proposed Design Algorithm
Parameters: ϵ, λ
Input: f(·, ·),X , T ,M, ηE , ηD
Output: {q∗θ}, {y∗m}, DE , DD

Initialization: assign a set of monotone {qθ,0} randomly,
compute associated encoder distortion DE(0), set iteration
index i = 1;
while ∆D > ϵ or until a set amount of iterations do

compute the gradients {∂DE/∂xθ,:}i,
compute the updated quantizer qθ,i+1 ≜ qθ,i −
λ{∂DE/∂xθ,:}i for θ ∈ T ,
compute actions y({qθ,i+1}) via (2),
compute encoder distortion DE(i + 1) associated with
quantizer values qθ,i+1 and actions y({qθ,i+1}) via (1),
compute ∆D = DE(i)−DE(i+ 1).

return quantizer {q∗θ} = {qθ,i+1}, actions {y∗m} = y({q∗θ}),
encoder and decoder distortions DE and DD computed for
optimal quantizer and decoder actions {q∗θ},y({q∗θ}) via (1).

an encoder with distortion measure ηE = (X + θ − Y )2

communicates with a decoder with distortion measure ηD =
(X − Y )2 over a noiseless channel with no rate constraints
is specified by an encoder mapping g : (X , θ) → Z , and a
decoder mapping h : Z → Y . For a jointly Gaussian source

(X, θ) ∼ N
([

0
0

]
, σ2

X

[
1 ρ
ρ r

])
, the encoder and decoder

mappings are of the form:

g(X, θ) = X + αθ, h(Z) = κZ,

where α, κ are given by:

α =
A− 1

2(r + ρ)
, κ =

1 + αρ

1 + α2r + 2αρ

and A =
√
1 + 4(r + ρ). The encoder and decoder distor-

tions for this strategic communication setting are given by

DESC
= σ2

X

(
1 +

(A− 3)(r + ρ)

A− 1

)
, (3)

DDSC
= σ2

X

(
(r − ρ2)(A− 1)

A(2r +Aρ+ ρ)

)
. (4)

In the next theorem, we present a lower bound on the
encoder’s distortion DE in our problem, specialized to the
Gaussian sources.

Theorem 3. The encoder distortion in strategic quantization
of a jointly Gaussian source (X, θ) with ηE = (X + θ −
Y )2, ηD = (X − Y )2 is lower bounded by the distortion in
strategic communication of the jointly Gaussian source, i.e.,
DE ≥ DE where DE = DESC

given in Theorem 2.

Proof: The mappings g(X, θ) and h(Z) in Theorem
2 achieve DESC

without any rate constraints. Additional
constraints (such as the rate constraint in our problem) can
only increase DE , hence DE ≥ DESC

.

C. Upper Bound

We next present an upper bound for the encoder distortion
where (X, θ) follows a general distribution (not necessarily
jointly Gaussian). We first consider the linear minimum mean
squared error (LMMSE) estimate of X given observation T ,

X̂ = LMMSE(X|T ) = h(T ) = κT, (5)

and a linear encoding strategy:

T = g(X, θ) = (X + αθ). (6)

where the parameters α and κ are

α =
A− 1

2(r + ρ)
, κ =

1 + αρ

1 + α2r + 2αρ
, (7)

and A, r, and ρ are given by

A =
√

1 + 4(r + ρ), r =
σ2
θ

σ2
X

, ρ =
E{Xθ}
σ2
X

. (8)

The encoder distortion DE can be written as,

DE = E{(X + θ −Q(X̂(T )))2}
= E{(X + θ − X̂(T ) + X̂(T )−Q(X̂(T )))2}
a
= E{(X + θ − X̂(T ))2}+ E{(X̂(T )−Q(X̂(T )))2}
+ 2E{θ(X̂(T )−Q(X̂(T )))}. (9)

Equality a in the above equation is due to the orthogonality
of the estimation error (X − X̂(T )) to any function of the
observation T ,

E{(X − X̂(T ))(X̂(T )−Q(X̂(T )))} = 0.

Remark 3. Similar decompositions were also used in [23],
[24], where they exploit the orthogonality of the estimation
error.

Let us define the optimal quantizer that minimizes (1) as
Q∗,
Q∗ = argmin

Q
DE

= argmin
Q

{
E{(X + θ − X̂(T ))2}+ 2E{θX̂(T )}

+ E{(X̂(T )−Q(X̂(T )))2} − 2E{θQ(X̂(T ))}
}

b
= argmin

Q

{
E{(X̂ −Q(X̂))2} − 2E{θQ(X̂)}

}
(10)

where equality b is due to the fact that the first two terms
E{(X + θ − X̂(T ))2} and 2E{θX̂(T )} do not include Q.

In general, it is hard to compute Q∗. Instead, we consider
Q∗∗ which we define as

Q∗∗ = argmin
Q

E{(X̂ −Q(X̂))2}. (11)

In other words, Q∗∗ is the mean squared error (MSE) optimal
non-strategic quantizer for X̂ = LMMSE(X|T ) = κT,
T = (X + αθ).
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Source X ∈ X , θ ∈ T Encoder

(X, θ) ∼ f(x, θ)
g(X, θ)

g : (X , T ) → R

h(g(X, θ))

h : R → R

Q∗∗(h(g(X, θ)))

Q∗∗ : R → Z

Noiseless Channel

|Z| ≤ M

Decoder

φ : Z → Y

Action Y ∈ Y

Fig. 3. Computation of an upper bound for the encoder distortion.

We note that Q∗∗ is relatively straightforward to compute,
e.g., if (X, θ) is jointly Gaussian, X̂ is also Gaussian for
which the optimal quantizer is well-known, e.g., [25].

Since Q∗∗ ̸= Q∗ in general, the resulting distortion of
Q∗∗, denoted by DE is an upper bound, i.e., DE ≥ DE .

We formalize the preceding discussion in the following
theorem:

Theorem 4. DE ≥ DE , where

DE = E{(X + θ − X̂(T ))2}+ E{(X̂ −Q∗∗(X̂))2}
+ 2E{θ(X̂ −Q∗∗(X̂))},

and T = X + αθ, X̂ = LMMSE(X|T ) = κT ,

α =
A− 1

2(r + ρ)
, κ =

1 + αρ

1 + α2r + 2αρ

r =
σ2
θ

σ2
X

, ρ =
E{Xθ}
σ2
X

, A =
√
1 + 4(r + ρ),

and Q∗∗ is given in (11).

Proof: The set of quantizers over which the encoder
optimizes its distortion includes this specific scheme, hence
DE ≥ DE .

In summary, for the computation of an upper bound,
we consider a system where the encoder computes X̂ =
h(g(X, θ)) = κ(X +αθ), quantizes X̂ as Z = Q∗∗(X̂) and
sends the message Z to the decoder, as depicted in Fig. 3.
The upper bound is computed as the sum of the estimation
error, quantization error, and the term 2E{θ(X̂−Q∗∗(X̂))},
as in (9). A sketch of the computation of this upper bound
is in Algorithm 2 below.

Algorithm 2 Computation of an upper bound of encoder
distortion
Input: f(·, ·),X , T ,M, ηE , ηD
Output: Q∗∗, DE

Compute r, ρ,A from (8).
α← (A− 1)/(2(r + ρ))
κ← (1 + αρ)/(1 + α2r + 2αρ)
Compute probability distribution function of X̂ = κ(X +
αθ), fX̂ .
Compute non-strategic quantizer Q∗∗ with MSE encoder and
decoder objectives E{(X̂ −Q∗∗(X̂))2}, and X̂ ∼ fX̂ .
Compute the upper bound as DE in Theorem 4.
return quantizer Q∗∗, upper bound DE

IV. NUMERICAL RESULTS

We present results for a jointly Gaussian setting with
encoder and decoder distortions ηE(x, θ, y) = (x+ θ− y)2,
ηD(x, y) = (x − y)2 for correlation ρ ∈ {−0.5, 0, 0.5}
in Fig.4. The support of θ is discretized by sampling for
computational feasibility for the jointly Gaussian source.

We first note that the encoder distortion at zero rate
is greater than at other rates for each correlation value,
that is, the encoder is not non-revealing. The associated
decoder distortion is also greater than that of other rates for
each correlation value, i.e., the decoder does not ignore the
encoder’s message.

While the distortions decrease with rate, the encoder
distortion does not become negligibly small at high rates
as in classical quantization. Instead, they are lower bounded
by the distortion in the strategic communication setting [4].
In this problem setting, we compute the lower bounds as:

DE =


0.1340, if ρ = −0.5
0.3820, if ρ = 0

0.6771, if ρ = 0.5.

When ρ = −1, the encoder distortion simplifies to E{Y 2},
which for this setting is minimized when the encoder is
non-revealing, and the decoder’s estimate is y = 0. When
ρ = 1, the encoder distortion simplifies to E{(2X − Y )2},
which results in a fully-revealing encoder as shown in [4].
The encoder changes from being non-revealing to fully-
revealing as ρ increases. In other words, the encoder’s ability
to persuade the decoder decreases with increasing ρ. Hence,
we observe that the encoder distortion increases, and the
decoder distortion decreases with increasing correlation ρ.

V. CONCLUSIONS

In this paper, we analyzed the problem of strategic quan-
tization of a 2-dimensional source (X, θ) with the encoder
and the decoder objectives DE = E{(X + θ − Y )2} and
DD = E{(X − Y )2}, respectively. We extended our prior
work on design, a gradient-descent-based algorithm for scalar
sources, to the setting considered in this paper. We then
presented a lower bound for jointly Gaussian sources and
an upper bound for general distributions based on linear
communication strategies. The numerical results obtained via
the proposed algorithm suggest several intriguing research
problems, which we leave as part of our future work.
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[1] Y. C. Aybaş and E. Türkel, “Persuasion with Coarse Communication,”
arXiv preprint arXiv:1910.13547, 2019.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 30,2025 at 23:42:13 UTC from IEEE Xplore.  Restrictions apply. 



(a) Encoder distortion (b) Decoder distortion

Fig. 4. Encoder distortion, the associated upper bound, and decoder distortion for a jointly Gaussian source (X, θ) ∼ N
([

0
0

]
,

[
1 ρ
ρ 1

])
with

ηE(x, θ, y) = (x+ θ − y)2, ηD(x, θ, y) = (x− y)2.

[2] S. Dughmi and H. Xu, “Algorithmic Bayesian Persuasion,” SIAM
Journal on Computing, vol. 50, no. 3, pp. STOC16–68–STOC16–97,
2021. [Online]. Available: https://doi.org/10.1137/16M1098334

[3] E. Kamenica and M. Gentzkow, “Bayesian Persuasion,” American
Economic Review, vol. 101, no. 6, pp. 2590–2615, 2011.

[4] E. Akyol, C. Langbort, and T. Başar, “Information-Theoretic Approach
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