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Throughout this paper, we focus on the quadratic dis-
tortion measures. Particularly, the senders observe a two-
dimensional source (X,S) ∼ fX,S(·, ·) with a known joint
density function over X and S, where X and S can be
interpreted as the state and bias variables. There is one
honest sender type, and K − 1 types of strategic senders,
each trying to minimize E{(X + S − Y )2}, with different
assumptions on the estimator (receiver), where Y is the ac-
tion taken by the receiver upon observing the quantization
index Z = Q(X,S) sent by the sender.

The receiver’s objective is to estimate the true state
in the minimum mean squared error (MME) sense, i.e.,
the receiver minimizes η(x, y) = (x − y)2 by choosing

an action X̂ which is the optimal MMSE estimate of
x given the quantization index from the sender z =
Q(x, s), hence X̂ = E{X|Z = z}. In sharp contrast with
the conventional quantization problem where the sender
chooses Q that minimizes E{(X − X̂)2}, in this setting

1 Throughout the paper, we use the terms quantizer and classifier
interchangeably.

problem in Economics. 1 This class of problems, notable
studied by Kamenica and Gentzkow (2011); Rayo and
Segal (2010) explore the use of information by an agent
(sender) to influence the action taken by another agent
(receiver), where the aforementioned action determines
the payoffs for both agents. Our prior work explored
strategic quantization problem settings where the sender
and the receiver were assumed to be fully rational agents.
In this paper, we extend our strategic quantization work
to settings with boundedly-rational sender (quantizer), via
employing the cognitive hierarchy model of Camerer et al.
(2004).

Consider designing a survey to gauge public reception of
a new plastic product, with responses influenced by re-
spondents’ attitudes toward climate change. Respondents’
scores range from 1 (‘will definitely not use’) to 4 (‘will
definitely use’), and the survey needs to account for po-
tential biases as well as varying levels of rationality among
respondents. We model this problem using the hierarchical
cognitive type model as studied by Camerer et al. (2004),
considering three types of respondents:

• Type 0 (Honest-Nonstrategic Respondents): These
respondents provide truthful information based on
their actual opinions about the product, unaffected
by their considerations of climate change or any desire
to bias the survey.

• Type k, k ∈ [0 : K − 1]: These respondents wish
to influence the survey outcome correlated with their
attitudes. They best respond to a mix of the lower
types, assuming that the estimator (designer) is also
only aware of the lower types.

The designer of the survey is aware of the existence of these
types of respondents as well as their true statistics. The
question explored in this paper is: What is the designer’s
optimal “de-biasing” procedure, i.e, optimally (in Bayesian
sense) estimating the unbiased scores that reflect the true
public reception of the plastic product?

We approach this problem via the recently introduced
strategic quantization framework, see Akyol and Anand
(2023), which is a special case of the information design
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the sender’s choice of quantization mapping Q minimizes
a biased estimate, i.e., E{(X+S−X̂)2}. The objectives and
the source distribution are common knowledge, available
for all agents. We note that similar signaling problems with
quadratic measures have been analyzed in the Economics
literature, see e.g., Bénabou and Tirole (2006); Crawford
and Sobel (1982); Fischer and Verrecchia (2000).

This paper is organized as follows: In Section II we
state the notation. In Section III we present the problem
formulation. In Section IV, we present a design algorithm
to compute the classifier implemented by the boundedly
rational agent. We provide numerical results in Section V,
and conclude in Section VI.

2. PRELIMINARIES

2.1 Notation

In this paper, random variables are denoted using capital
letters (say X), their sample values with respective lower-
case letters (x), and their alphabet with respective calli-
graphic letters (X ). Vectors are denoted in bold font. The
set of real numbers is denoted by R. The 2-dimensional
jointly Gaussian probability density function with mean
[t1 t2]

′
and respective variances σ2

1 , σ
2
2 with a correlation ρ

is denoted by N
([

t1
t2

]
,

[
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

])
, t1, t2 ∈ R. The

expectation operator is written as E{·}. The operator | · |
denotes the cardinality with the argument as a set.

3. PROBLEM FORMULATION

Consider the following classification problem:K classifiers,
sender k, k ∈ [0 : K − 1] observe realizations of the
two sources X ∈ X ⊆ [aX , bX ], S ∈ S ⊆ [aS , bS ],
aX , bX , aS , bS ∈ R with joint probability density (X,S) ∼
fX,S(·, ·). One of the classifier’s, sender k, is chosen with
probability pk. The chosen sender k maps (X,S) to a
message Z ∈ Z, where Z is a set of discrete messages with
a cardinality constraint |Z| ≤ M using a non-injective
mapping Q(k) : (X × S) → Z, Q(k) ∈ Q, where Q is the
set of possible classifiers with the cardinality constraint
|Z| ≤ M . After receiving the message Z, the receiver
applies a mapping ϕ : Z → Y on the message Z and takes
an action Y = ϕ(Z).

The set X is divided into mutually exclusive and exhaus-

tive sets by each classifier k as V(k)
1 ,V(k)

2 , . . . ,V(k)
M .

The probability pk of sender k being chosen follows a
normalized Poisson distribution

pk =
eλ λk

k!∑K−1
i=0 eλ λi

i!

, (1)

where the parameter λ ∈ R+ indicates the cognitive levels
of the overall population. As λ increases, the population
consists of higher cognitive levels.

The belief of sender k about the probability distribution

over sender t, t ∈ [0 : k − 1] is represented as µ
(k)
t ,

µ
(k)
t =

eλ λt

t!∑k−1
i=0 eλ λi

i!

, t ∈ [0 : k − 1],

µ
(k)
t = 0 for t ≥ k and µ

(0)
0 = 1.

Remark 1. Note that this belief µ(k) is not the true
statistics of the population, µ(k) ̸= p. A level-k sender
can only estimate the relative proportions of the lower

levels accurately, i.e., it can estimate µ
(k)
t1 /µ

(k)
t2 = pt1/pt2 =

λt1/t1!
λt2/t2!

, t1, t2 ∈ [0 : k − 1].

The sender k’s distortion measure is η
(k)
E (x, s, y),

η
(k)
E (x, s, y) =

{
(x− y)2, if k = 0

(x+ s− y)2, otherwise.

We take the receiver’s distortion measure as ηD(x, y) =
(x− y)2.

We consider senders with K hierarchical cognitive types
and define the senders’ and their respective perceived

receiver distortions as D
(k)
E , D

(k)
D , k ∈ [0 : K − 1] below:

D
(k)
E =

M∑
m=1

∫

(x,s)∈V(k)
m

η
(k)
E (x, s, y(k)m )fX,S(x, s)dxds,

D
(k)
D =

k−1∑
i=0

µ
(k)
i

M∑
m=1

∫

(x,s)∈V(k)
m

ηD(x, y(k)m )fX,S(x, s)dxds,

where y(k) are the estimates that sender k assumes are
optimized by the receiver with respect to the respective

perceived receiver distortion D
(k)
D , obtained by enforcing

KKT conditions of optimality, ∂D
(k)
D /∂y

(k)
m = 0,m ∈ [1 :

M ]. 2

Remark 2. The perceived receiver distortion D
(k)
D is only

a function of the quantizers of the lower cognitive levels

{V(i)
m , i ∈ [0 : k − 1],m ∈ [1 : M ]}, i.e., the perceived

receiver action y(k) does not depend on the k−th level
quantizer.

Our problem simplifies to the following optimization at
each sender of cognitive level k:

Q(k) = argmin
Q∈Q

E{η(k)E (X,S, Y (Q(0), . . . , Q(k−1)))},

where Y is a function of {Q(t), t ∈ [0 : k−1]}, and is hence
independent of changes in Q(k).

The different cognitive level type senders, and their clas-
sifiers are as follows:

(1) Non-strategic sender 0: similar to level L0 cognitive
type, the sender assumes all senders are of level 0,
and that the receiver assumes all senders are of level
0. Sender 0 considers the receiver’s distortion as the
same as the sender’s, D

(0)
E = D

(0)
D (provides the

information required by the receiver honestly)

D
(0)
D =

M∑
m=1

∫

(x,s)∈V(0)
m

ηD(x, s, y(0)m )fX,S(x, s)dxds.

(2) Level-k strategic sender k: similar to level Lk cogni-
tive type, the sender assumes all other senders are dis-
tributed over the lower cognitive types t, t ∈ [0 : k−1]

2 Note that ∂D
(k)
D /∂y

(k)
m here is the first order derivative of sender

k’s distortion with respect to y
(k)
m , and not the k−th order derivative.
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Source (X,S) ∈ (X × S)

(X,S) ∼ fX,S(x, s)
Classifier Ek

Type k

Q : (X × S) → Z

Estimator

ϕ : Z → Y
Estimate X̂

Fig. 1. Communication diagram: with probability pk, sender type k sends a message Z which is a function of the source
(X,S) over a noiseless channel.

with probability µ
(k)
t and that it is uniquely of type

k. The sender assumes the receiver thinks that all
sender types are of types t, t ∈ [0 : k−1] as well. This
results in the estimates perceived by sender k being a
function of only {Q(t), t ∈ [0 : k − 1]}, i.e., y(k) does
not change as Q(k) changes. The sender k assumes a
fixed y(k) as a function of {Q(t), t ∈ [0 : k − 1]}, and
the resulting quantizer is found by enforcing KKT
optimality conditions.

The receiver’s distortion is given by

D∗
D = min

y

K−1∑
i=0

pi

M∑
m=1

∫

(x,s)∈V(i)
m

η
(i)
t (x, s, ym)fX,S(x, s)dxds,

and y that minimizes the above expression is the actual
receiver’s action, y∗.

Each sender type k, k ∈ [1 : K − 1] optimizes its classifier

Q(k) to minimize D
(k)
E , assuming the receiver is aware of

only i, i < k sender types. Sender k, k ∈ [0 : K−1] designs
Q(k) ex-ante, i.e., without the knowledge of the realization

of (X,S), using only the objectives D
(k)
E and D

(k)
D , and the

statistics of the source fX,S(·, ·).
The receiver is fully rational and has full information
about the classification setup. The shared prior (fX,S),
the probability mass function over the sender types (p =
[p0, p1, . . . , pK−1]) and the mappings (Q = {Q(k), k ∈
[0 : K − 1]}) are known to the receiver. The problem,
as depicted in Fig. 1, is to design the classifiers Q for
the equilibrium, i.e., each sender type k minimizes its
own objective, assuming that the receiver minimizes its

corresponding perceived objective D
(k)
D . Since the senders

choose the classifiers Q first, followed by the receiver
choosing the perceived estimates (y(k), k ∈ [0 : K − 1]),
we look for a Stackelberg equilibrium.

The classifier design involves computing classifiers for each

realization of S by classifier i as U (i)
s,m, s ∈ S, where

∪
s∈S

U (i)
s,m = V(i)

m . Throughout this paper, we make the

following assumption on the sets {U (i)
s,m}.

Assumption 1. U (i)
s,m is convex for all m ∈ [1 : M ], s ∈

S, i ∈ [0 : 2].

Then, U (i)
s,m = [q

(i)
s,m, q

(i)
s,m+1], q

(i)
s,m < q

(i)
s,m+1, and Q(i) =

{q(i)
s , s ∈ S}, where q

(i)
s = [q

(i)
s,0, . . . , q

(i)
s,M+1].

Since sender 0’s distortion function η
(0)
E (x, s, y) = (x− y)2

is not a function of s, Q(0) : (X × S) → Z simplifies

to Q(0) : X → Z. Let the marginal probability density
function of X be fX(x). Sender 0 responds honestly,

D
(0)
E = D

(0)
D (equivalent to the non-strategic classification

setting), hence its classifier q
(0)
s and perceived estimates

y(0) are,

q(0)
s = argmin

n∈Q

M∑
m=1

nm∫

nm−1

(x− y(0)m )2fX(x)dx, ∀s ∈ S

y(0)m = argmin
y∈Y

nm∫

nm−1

(x− y)2fX(x)dx = E{X|x ∈ V0
m}.

Sender k, k > 0 assumes the other agents are of levels
i, i ∈ [0 : k − 1] with probability mass function µ(k), and
that the receiver also perceives the agents as the same, of
levels i, i ∈ [0 : k − 1] with a probability mass function
µ(k), with receiver distortion

D
(k)
D =

k−1∑
i=0

µ
(k)
i

M∑
m=1

bS∫

aS

q(i)s,m∫

q
(i)
s,m−1

(x− y(k)m )2fX,S(x, s)dxds,

resulting in sender k’s perceived estimates y
(k)
m ,

y(k)m =

k−1∑
i=0

µ
(k)
i

bS∫
aS

q(i)s,m∫
q
(i)
s,m−1

xfX,S(x, s)dxds

k−1∑
i=0

µ
(k)
i

bS∫
aS

q
(i)
s,m∫

q
(i)
s,m−1

fX,S(x, s)dxds

. (2)

The classifier distortions for sender k, k ∈ [1 : K − 1]

D
(k)
E =

M∑
m=1

bS∫

aS

qks,m∫

qk
s,m−1

(x+ s− y(k)m )2fX,S(x, s)dxds.

The receiver’s distortion and estimates are

D∗
D =

K−1∑
i=0

pi

M∑
m=1

bS∫

aS

q(i)s,m∫

q
(i)
s,m−1

(x− y∗m)2fX,S(x, s)dxds, (3)

y∗m =

K−1∑
i=0

pi
bS∫
aS

q(i)s,m∫
q
(i)
s,m−1

xfX,S(x, s)dxds

K−1∑
i=0

pi
bS∫
aS

q
(i)
s,m∫

q
(i)
s,m−1

fX,S(x, s)dxds

. (4)
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Fig. 2. Probability mass function p with respect to λ.

4. MAIN RESULTS

In this section, we present our design algorithm for the
computation of Q(k), k ∈ [0 : K − 1].

In Anand and Akyol (2024), we proposed a gradient-
descent based algorithm to solve the problem of quanti-
zation of a 2-dimensional source (X,S) for fully rational
sender and receiver with full information by extending
our algorithm in Akyol and Anand (2023) for a scalar
source to the 2-dimensional setting by a simple method
of computing quantizers for each value of s ∈ S.
Here, as in Anand and Akyol (2024) we compute classifiers

for each realization of S. However, because D
(k)
D does not

depend on Q(k), the optimization simplifies to a nearest
neighbor classification as shown in the Appendix A.

A sketch of the proposed method is summarized in the Al-
gorithm. The algorithm takes the non-strategic quantizer
Q(0) as an input, which can be computed by any classical
quantization method like lloyd-max, gradient descent, etc.
The MATLAB codes are provided at https://github.
com/strategic-quantization/bounded-rationality for
research purposes.

The classifers implemented by senders k, k ∈ [0 : K − 1]
are as follows:

(1) Sender 0 implements a non-strategic (classical) clas-
sifier for the source X.

(2) Sender k, k ∈ [1 : K − 1] implements a nearest
neighbor classifier for X + s for each s ∈ S with
respect to y(k) as shown in the Appendix A.

This analysis can be extended to a general distortion mea-

sure, {η(k)E (x, s, y), ηD(x, y)} where η
(0)
E (x, s, y) = ηD(x, y)

as shown in Appendix B.

Algorithm 1 Proposed strategic quantizer design

Parameters: λ
Input: fX,S(·, ·),X ,S,M, {η(k)E , ηD, k ∈ [0 : K −
1]}, Q(0),y(0), {µ(t), t ∈ [0 : K − 1]},p
Output: {Q(k), y(k), k ∈ [1 : K − 1]}, y∗, D∗

D
for k ∈ [1 : K − 1] do

Compute y(k) from (2)
Compute Q(k) from (A.1)

Compute D∗
D from (3) with y∗ from (4).

5. NUMERICAL RESULTS

We consider a jointly Gaussian 2-dimensional source 3

(X,S) ∼ N
([

0
0

]
,

[
1 σSρ

σSρ σ2
S

])

and present results for different settings with parameters
source variance σ2

X = 1, bias variance σ2
S ∈ {0.1, 1, 1.5},

correlation ρ ∈ {0.1, 0.5, 0.7}, and probability distribution
of senders p following (1) with λ ∈ [0.001, 700] for an
M ∈ {1, 2, 4, 8, 16} classifier with K ∈ {3, 5, 10, 20}
highest cognitive level of senders. We consider discretized
S due to its computational feasibility. The probability
mass function over the sender types p for different values
of λ is plotted in Fig. 2.

5.1 Varying the cognitive parameter λ

From Fig. 2 we note that as λ → 0, the population
mostly consists of level-0 cognitive level. As λ increases,
the population shifts towards higher cognitive types, and
we expect the receiver distortion to increase with λ, as we
observe in Fig. 3. For λ → 0, the receiver distortion does
not change significantly with varying bias variance σ2

S since
the population is mostly of level-0 type, and they respond
honestly. For λ > 100, the statistics of the population
remain fairly constant, and hence the receiver distortion
varies negligibly.

5.2 Varying the bias variance σ2
S

For a given correlation ρ, we observe in Fig. 3 that as
σ2
S decreases, the receiver distortion decreases. As the

variance of the bias σ2
S decreases, the objectives of the

sender and the receiver become more aligned. If S is
deterministic, the sender is honest or non-strategic for this
setting, as shown in Akyol and Anand (2024).

For small bias (σS → 0), the objectives of all the senders
are similar, resulting in a small change in the receiver
distortion with λ, which we observe in Fig. 3 for σ2

S = 0.01.

5.3 Varying the types of senders

In Fig. 4, the receiver distortion for the following four
different types of senders is plotted for a specific setting
with σ2

X = σ2
S = 1, ρ = 0.5:

(1) non-strategic (Sn): All agents are non-strategic and
send their honest reply (senders are of cognitive level
0). The distortion in this case is solely from the
quantization aspect.

(2) full information (Ss): All agents are fully rational and
have full information. The classifier here is that in
Anand and Akyol (2024).

(3) bounded rational (Sb): The agents follow the setting
described in this paper.

(4) level-1 strategic (SL1
): All agents minimize E{(X +

S−Y )2}, but they assume the receiver is not strategic
and hence implements a naive estimator, y(0). The
classifier is the same as that for sender 1.

3 Although we consider a jointly Gaussian source for numerical
results here, this algorithm can be applied to any source distribution.
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(a) ρ = 0.1 (b) ρ = 0.5 (c) ρ = 0.7

Fig. 3. Receiver distortion D∗
D for M = 4 classification of (X,S) ∼ N

([
0
0

]
,

[
1 σSρ

σSρ σ2
S

])
for a given correlation ρ with

respect to bias variance σ2
S .

Fig. 4. Receiver distortion D∗
D for M = 4 classification of

(X,S) ∼ N
([

0
0

]
,

[
1 0.5
0.5 1

])
for a full information

fully rational estimator with five different types of
senders.

Fig. 5. Receiver distortion D∗
D for M = 4 classification of

(X,S) ∼ N
([

0
0

]
,

[
1 0.5
0.5 1

])
for a full information

fully rational estimator withK ∈ {3, 5, 10, 20} highest
cognitive levels of senders.

(5) level-2 strategic (SL2): All agents are level-2 strategic
and assume the lower levels are normalized Poisson
distributed, µ(2) with parameter λ. The classifier is
the same as that for sender 2.

The receiver is fully rational with full information about
the types of sender, the source distribution, and sender
and receiver objectives.

As expected, the non-strategic sender results in the lowest
receiver distortion. For small λ, the population is mostly

Fig. 6. Receiver distortion D∗
D for M ∈ {1, 2, 4, 8, 16}

classification of (X,S) ∼ N
([

0
0

]
,

[
1 ρ
ρ 1

])
, ρ ∈

{0.1, 0.5, 0.7} for a full information fully rational es-
timator with K = 3 highest cognitive level of senders
and λ = 1.

of level-0 cognitive type, as mentioned before. Since they
respond honestly, Sb is closer to Sn as λ → 0.

Although we expect that Ss results in the maximum
receiver distortion among the above four senders, we
observe from Fig. 4 that the receiver may prefer a fully
rational sender with full information to other types of
partially strategic senders, SL1

and SL2
. We also observe

that the receiver benefits from a boundedly rational setup
compared to the setting where all senders are partially or
fully strategic (SL1

, SL2
, or Ss).

5.4 Varying the highest cognitive level K

In Fig. 5 the receiver distortion is plotted for K ∈
{3, 5, 10, 20} for the specific setting of (X,S) jointly Gaus-
sian with σ2

X = σ2
S = 1, ρ = 0.5. As expected, the receiver

distortion increases as K increases. We observe that for
negligible λ, change in K does not change D∗

D much since
most of the population is composed of lower types, but as
λ increases, the receiver distortion changes with K. We
also observe that D∗

D does not vary much for a high value

of K. This is due to the convergence of beliefs µ(k) at high
values of k as shown in Chong et al. (2005), which results
in a convergence of classifiers.
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5.5 Varying the rate M

In Fig. 6, the receiver distortion is plotted for K = 3 for
a specific setting with σ2

X = σ2
S = 1, ρ ∈ {0.1, 0.5, 0.7},

λ = 1 and M ∈ {1, 2, 4, 8, 16}. We observe that while the
distortion decreases with the rate, it does not vanish at
high rates, as expected due to the strategic aspect of the
problem (see e.g., Akyol et al. (2015)). We also observe
that the decoder distortion decreases with correlation ρ.
These observations are similar to our results in Anand and
Akyol (2024) on strategic quantization of a 2-dimensional
source with full information fully rational sender, where
it is shown that the optimal sender is non-revealing for
ρ = 0 and fully revealing at ρ = 1, i.e., the sender’s ability
to persuade the receiver decreases with ρ.

6. CONCLUSIONS

In this paper, we have analyzed the problem of strategic
classification of a 2-dimensional source (X,S) with K
types of senders with hierarchical cognitive types: level-
0 non-strategic (honest), level-k strategic, k ∈ {1 : K −
1}. In conjunction with the quadratic objectives for the
sender and the receiver, we have presented a method
of computing the optimal classifiers for this hierarchical
cognitive model of bounded-rationality. Our future work
includes a theoretical analysis of the problems that we
studied numerically in this paper.

Appendix A. COMPUTATION OF Q(k)

We present the classifier computation implemented by
sender k as follows. The sender k distortion

D
(k)
E =

M∑
m=1

bS∫

aS

q(k)
s,m∫

q
(k)
s,m−1

(x+ s− y(k)m )2fX,S(x, s)dxds,

where y
(k)
m are from (2). We obtain q

(k)
s,m, s ∈ S,m ∈ [1 : M ]

by enforcing the optimality conditions:

∂D
(k)
E

∂q
(k)
s,m

= fX,S(q
(k)
s,m, s)(q(k)s,m + s− y(k)m )2

− fX,S(q
(k)
s,m, s)(q(k)s,m + s− y

(k)
m+1)

2,

q(k)s,m =
y
(k)
m + y

(k)
m+1

2
− s. (A.1)

Appendix B. COMPUTATION OF Q(k) FOR
GENERAL DISTORTION MEASURES

Consider sender and receiver distortions η
(k)
E (x, s, y),

ηD(x, y), where η
(0)
E (x, s, y) = ηD(x, y). The distortion to

sender k,

D
(k)
E =

M∑
m=1

bS∫

aS

q(k)
s,m∫

q
(k)
s,m−1

η
(k)
E (x, s, y(k)m )fX,S(x, s)dxds,

where y
(k)
m are from minimizing

y(k)m = argmin
y∈Y

k−1∑
i=0

µ
(k)
i

bS∫

aS

q(i)s,m∫

q
(i)
s,m−1

ηD(x, y(k)m )fX,S(x, s)dxds.

Enforcing KKT optimality conditions,

∂D
(k)
E

∂q
(k)
s,m

= fX,S(q
(k)
s,m, s)η

(k)
E (q(k)s,m, s, y(k)m )

− fX,S(q
(k)
s,m, s)η

(k)
E (q(k)s,m, s, y

(k)
m+1),

we obtain q
(k)
s,m as the solution to

η
(k)
E (q(k)s,m, s, y(k)m ) = η

(k)
E (q(k)s,m, s, y

(k)
m+1).
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