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Abstract

Quantum gravity has been baffling the theoretical physicist for decades now, both

for its mathematical obscurity and phenomenological testing. Nevertheless, the new

era of precision cosmology presents a promising avenue to test the effects of quan-

tum gravity. In this study, we consider a bottom-up approach. Without resorting to

any candidate quantum gravity, we invoke a generalized uncertainty principle (GUP)

directly into the cosmological Hamiltonian for a universe sourced by a phantom scalar

field with potential to study the evolution of the universe in a very early epoch. This

is followed by a systematic analysis of the dynamics, both qualitatively and quantita-

tively. Our qualitative analysis shows that the introduction of GUP significantly alters

the existence of fixed points for the potential considered in this paper. In addition, we

confirm the existence of an inflationary phase and analyze the behavior of relevant

cosmological parameters with respect to the strength of the GUP distortion.
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1 Introduction

The advent of Einstein’s general theory of relativity has given birth to many fields of

research. Since gravity is the only dominant force at large distances, general relativity

(GR) provides a viable mathematical framework to construct models of cosmology.

Over a period of hundred years, GR has seen profound successes. A few classical

examples include the explanation of the perihelion precession of Mercury [1], the

deflection of light rays when passing close by massive bodies [2], and the gravitational

redshift of light [3].

In particular, to cosmology, in the year 1929 the discovery of the Hubble’s expansion

law laid the foundation of modern cosmology. This observational evidence of uniform

and isotropic expansion of the universe as incorporated by the Friedmann–Lemaitre–

Robertson–Walker (FLRW) universe gives rise to the standard model of cosmology

(SMC). The FLRW metric is a maximally symmetric geometry of spacetime that

supports the Copernican principle. One of the remarkable successes of SMC is the

prediction of cosmic microwave background radiation (CMB). Although successful,

however, the SMC has been confronted with some serious drawbacks. An example

is the so-called horizon problem, that is, the causal explanation for two otherwise

spatially disconnected regions of space is lacking within the scope of the SMC. Others

are flatness and entropy problem [4–8].

The inflationary paradigm proposed by Guth [5] rescues the situation by providing

a mechanism to solve the puzzles of the SMC with the help of a nearly exponential

expansion of the universe at a very early stage. A scalar field with a proper potential

serves as a good candidate for the inflationary scenario.

The inflationary epoch not only rescues SMC but also predicts the formation of the

large-scale structure of the universe. Although the universe looks almost homogeneous

and isotropic at large scale [9], the tiny fluctuation of the order of 10−5 has been
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observed in CMB. This tininess of the scale allows us to employ perturbation theory,

wherein the zeroth order, the background of the spacetime, is still FLRW and any

inhomogeneity is given by the leading order correction. The physical reason for the

perturbation of spacetime is the quantum fluctuation of matter content, which is the

inflaton in the current situation. Of course, any perturbation of the matter field would

induce a perturbation in the gravitational field, resulting in the clumping of energy and

matter density, leading to the formation of the large-scale structure we see today. In

the process, inflation expands the tiny causally connected quantum fluctuations into

the super-Hubble modes, which re-enter the Hubble radius at later epochs, giving us

a causal mechanism for the large-scale structure [10–12].

In the context of inflation, the homogenous and isotropic universe is still treated

classically while quantizing only the first-order corrections in the linearized theory

of gravity. However, as the scale approaching to the Planck regime [13, 14], one

would expect the quantum nature of the background to play a significant role. This

incomplete picture of the theory of cosmology, at present, is due to the continued

lack of a consistent candidate for quantum gravity. In fact, this is one of the most

challenging issues in modern physics. The main challenge comes from our current

understanding of the nature, based on two mathematically incompatible frameworks:

GR and quantum mechanics (QM) [15–18].

In the literature, there exist different candidates based on different philosophical

approaches to quantize gravity, each with its own advantages and issues. The two

major streams of quantum gravity (QG) are string/M theory and loop quantum gravity

(LQG). While string/M theory is based on the unification of gravity with three other

fundamental forces, LQG is the quantization of the Riemannian geometry of GR only

[19–21, 21, 22]. LQG is background independent and non-perturbative. The techniques

of LQG, when applied to cosmological spacetime, gives rise to various models of

quantum corrected cosmology, also called loop quantum cosmology (LQC) [23]. One

of the striking features of LQC is the supplant of initial singularity by quantum bounce

owing to the quantization of geometry [24–27]. In lieu of its endeavor to empirically

grasp the semi-classical physics near the Planck region, LQC is also consistent with

observations, and may provide some mechanism to alleviate the anomalies observed

currently in cosmology [28, 29].

Nevertheless, in view of the continued absence of a consistent theory of QG, radi-

cally different paths have been adopted. The generalized uncertainty principle (GUP)

is one such attempt that can generate quantum corrected dynamics when applied to

cosmology to study the very early universe. In this approach, we consider the space-

time as a probability density associated with basis vectors with additional fluctuations

in geometry, giving rise to the extended generalized uncertainty principle (EGUP) [30,

31].

The departure point from classical mechanics to the standard quantum mechanics

is the Heisenberg’s uncertainty principle (HUP), which states the incompatibility of

position and momentum operators, reflecting the inherent imprecision of the measure-

ment of one when the other is known precisely. However, at scales approaching the

Planck length, theories of quantum gravity suggest that the geometry of a space-time

cannot be measured below the Planck scale. Certainly, different physics gives rise to

different minimal lengths. For example, the minimal length scale string/M theory is

123



  139 Page 4 of 33 G. Bhandari et al.

the string length itself [32–40]. This immediately implies that HUP is not applicable

at the Planck scale as it puts no limit to precisely measure length provided momentum

is undetermined. The inconsistency in HUP indicates the need to modify the existing

canonical HUP by incorporating gravitational correction.

The consideration of quantum fluctuation in the space-time geometry leads to GUP,

which describes the limitation of measurement of position and momentum. The uncer-

tainties of position and momentum depend on the fluctuation of spacetime. The greater

the uncertainty in the geometry of space, the greater the uncertainty in the position

and momentum of the particles [41, 42]. The notion that gravity might influence the

uncertainty principle was first proposed by Mead [43]. Later, candidate theories of

QG such as string/M Theory [44], Doubly Special Relativity (DSR) Theory and Black

Hole Physics [45], introduced modifications to the commutation relations between

position and momentum, which are known as the GUP [46, 47].

In view of the current status of quantum cosmology, the GUP-modified cosmolog-

ical dynamics require more attention than before to extract the low-energy regime of

QG. In particular, in this article, we consider a toy model consisting of phantom scalar

field, first with a positive cosmological constant and then with an arbitrary potential

for the given GUP. Phantom inflation leads to a cosmological scenario of the Big Rip,

where the universe undergoes a catastrophic expansion that leads to tearing apart all the

bound structures, including planets, galaxies, stars, and even fundamental particles.

However, investigating these consequences helps in understanding the possible fate of

our universe. Lately, there has been significant attention to phantom cosmology, see,

for example, Refs. [48–55].

In this paper, in Sect. 2.1 we start with reviewing the formulation of GUP-corrected

Hamiltonian, starting with the Einstein–Hilbert action together with a minimally

coupled phantom scalar field and a positive cosmological constant. We obtain the

GUP-corrected Friedmann, Raychaudhuri and Klien–Gordon equations. In Sect. 2.2,

these are extended to include an arbitrary potential of the scalar field. The techniques

of dynamical system analysis have been employed to extract qualitative information

about the system in Sect. 3. We limit ourselves to quadratic and exponential poten-

tials. In Sect. 4.1, we study inflationary dynamics by calculating the Equation of State

(EoS) and the slow climb parameters and plot them out explicitly for quadratic and

exponential potentials in Sect. 4.2.

2 GUP-modified background dynamics

SMC is based on the “Copernican Principle", which says that the universe is homo-

geneous and isotropic on a large scale. This is encoded in the maximally symmetric

flat FLRW universe

ds2 = −N 2(t)dt2 + a2(t)
[

dr2 + r2d�2
]

. (2.1)
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Since GR is a field theory, its dynamics can be obtained from the Euler–Lagrange

equation by varying the metric and the matter field of the Einstein–Hilbert action:

SE H = 1

2κ

∫

d4x
√

−gR + Lm, (2.2)

to give the Einstein’s equations Gμν = κTμν , Where Gμν is the Einstein Tensor, Tμν

the energy momentum tensor, and κ ≡ 8πG/c4 is set equal to one for the rest of the

paper owing to the usage of the natural units.

The discovery of late time acceleration of the universe has led to two major

approaches to address the issue of the acceleration. One is based on modifying the

gravity sector and the other is on the matter sector [56–59]. In this paper, we focus on

the second approach, that is, to modify the matter content to address the early epoch of

the universe. To this effect, we adopt a phantom scalar field. This has been extensively

studied in the context of the late-time era of evolution. The fact that the phantom

field produces a phase of accelerated expansion of the universe makes it interesting to

investigate its implication in inflationary dynamics as well.

One of our prime focus is to explore the tail-end dynamics of the universe where

QG effects are still important but not necessarily dominant. In the domain of LQC,

this has been reported as transition phase from quantum to the classical universe in

pre-inflationary dynamics [60–62]. However, this paper will take a radically different

approach by directly invoking a GUP in the cosmological Hamiltonian. This is an

effective way of modeling the quantum corrected background evolution of the universe.

In this section and in what follows, we review the construction of the GUP-deformed

background equation of motion for a phantom scalar field.

2.1 Phantom scalar field with cosmological constant

2.1.1 Classical dynamics

In this section, we consider the Einstein–Hilbert action with a minimally coupled

phantom scalar field and a positive cosmological constant,

SEH =
∫ √

−g

[

1

2κ
(R − 2�) + 1

2
gμν∂μφ∂νφ − V (φ)

]

d4x, (2.3)

on the background of a maximally symmetric spacetime described by Eq. (2.1), where

V (φ) is the potential of the scalar field φ. Given the flat FLRW background, our action

takes the following form

SEH = V0

∫

dt

[

−3aȧ2

N
− a3

(

φ̇2

2N
+ N (� + V )

)]

, (2.4)

where V0 is the volume of a fiducial cell, introduced to facilitate our calculations in a

non-compact flat FLRW spacetime. Later, we can take the limit lim V0 → ∞, as the

final results will be independent of its values. Therefore, for the sake of simplicity,
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it can be set to 1 without loss of generality. Recall that in this paper we choose the

natural units so that κ = 1.

Thus, from Eq. (2.4) we can see that the the Lagrangian density is given by

L = −3aȧ2

N
− a3

(

φ̇2

2N
+ N (� + V )

)

, (2.5)

from which we can see that L does not depend on Ṅ (t). Hence there is no dynamics

in the lapse function N (t), as now we have PN ≡ ∂L

∂ Ṅ
= 0. Therefore, the dynamics

of the system are completely contained in the equations of motion for (a, Pa, φ, Pφ)

governed by the Hamiltonian

H = −N

(

P2
a

12a
+

P2
φ

2a3
− a3 (� + V )

)

, (2.6)

which is obtained from Eq. (2.5) through the Legendre transformation, where Pa ≡ δL
δȧ

and Pφ = δL

δφ̇
are the conjugate momentum to a and φ, respectively, with the symplectic

structure,

{a, Pa} = 1, {φ, Pφ} = 1. (2.7)

Then, the corresponding Friedmann, Raychaudhuri and Klein-Gordon equations

(see appendix B) are given respectively by

3H2 = − φ̇2

2
+ � + V (φ), (2.8)

2
ä

a2
+

(

ȧ

a

)2

= φ̇2

2
+ � + V (φ), (2.9)

φ̈ + 3φ̇

(

ȧ

a

)

− dV (φ)

dφ
= 0. (2.10)

.

2.1.2 GUP deformed dynamics

In this subsection, we review the inclusion of higher-order correction of the uncertainty

principle in the cosmological Hamiltonian without the potential V (φ). To achieve our

goal, we first perform a canonical transformation of the phase space in x and y variables

such that our Hamiltonian gets simplified and making it easier to incorporate the effects

of GUP as follows:

x = a3/2

μ
sin(μφ), y = a3/2

μ
cos(μφ), (2.11)

123



GUP deformed background... Page 7 of 33   139 

while preserving the dynamics. From Eq. (2.11), with μ = √
3/8 we obtain the fol-

lowing

ẋ2 sin2(μφ) + ẏ2 cos2(μφ) + 2ẋ ẏ sin(μφ) cos(μφ) = 6aȧ2,

ẋ2 cos2(μφ) + ẏ2 sin2(μφ) − 2ẋ ẏ cos(μφ) sin(μφ) = a3φ̇2, (2.12)

and

x2 + y2 = a3

μ2
sin2(μφ) + a3

μ2
cos2(μφ) = 8a3

3
. (2.13)

Now, from Eq. (2.13) we observe that the physical volume of the universe under study

can be elegantly expressed as the radius of the circle, with (0, 0) as the center in the

plane containing the configuration variable (x, y). Since the Friedmann equation is

nothing but the fractional rate of change of volume, intuitively, one can speculate that

the knowledge of the dynamics of the pair (x, y) suffices to predict the evolution of

the universe.

Having set the stage in terms of the Cartesian pair (x,y), we now return to the ques-

tion of dynamics. We obtain the final form of the Lagrangian in terms of configuration

coordinates (x, y, ẋ, ẏ) to be

L = −
[

ẋ2 + ẏ2

2N
+ 3

8
(x2 + y2)�N

]

. (2.14)

A quick look at the form of the Lagrangian suggests that dynamics is symmetric w.r.t

the origin of the circle in the plane of (x, y).

Given this, it is straightforward to obtain the canonically transformed Hamiltonian

using the Legendre transformation. Thus, the final form of the Hamiltonian takes the

form

H0 = N

[

P2
x

2
+

P2
y

2
+ ω2

2
(x2 + y2)

]

, (2.15)

where we set ω2 = − 3
4
�, which, formally, represents the frequency of two independent

harmonic oscillators. The utility of the canonical transformation of Eq. (2.11) is clear

from the elegant expression of Eq. (2.15), and the dynamics of a universe with a

phantom scalar and a positive cosmological constant can be expressed as a system of

two decoupled simple harmonic oscillators in the new phase space representation.

However, Eq. (2.15) is still classical, though expressed in a different form. The

minimal uncertainty in position at the Planck scale is a feature present in many QG

theories [63]. On the other hand, the HUP, one of the pillars of QM, allows for an

arbitrary value of uncertainty in position as long as the product of the position and

momentum uncertainties is larger than �

2
[64–66]. With the existing HUP, we have

an arbitrary choice of uncertainty, and hence precision in position, which motivates

modifying the Heisenberg relation. One of the most notable and heuristic approaches
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is the GUP, first introduced by Kempf, Mangano, and Mann (KMM) in 1995, where

the uncertainty relation in one dimension is obtained via the deformed commutator

bracket

[x, p] = i�(1 + ³2 p2). (2.16)

Later, a more general form of GUP was proposed by Ali, Das, and Vagenas [67] in

2011, which incorporates linear and quadratic dependence on momentum in different

QG theories. The presence of the quadratic term is dictated by String/M Theory [68,

69] and black hole physics [70–73], while the linear momentum-dependent term is

motivated by Doubly Special Relativity (DSR) [74]. The GUP deformed commutator

bracket is expressed as

[qi , p j ] = i�

{

δi j − ³

(

pδi j + pi p j

p

)

+ ³2[p2δi j + 3pi p j ]
}

, (2.17)

where³ = ³0/MPlc = ³0lPl/�, MPl = Planck mass, lPl ≈ 10−35m = Planck length,

and MPlc
2 ≈ 1019GeV = Planck energy.

To write down the dynamics due to momentum deformation owing to GUP, we

introduce the semi-classical canonical variables qi and Pi and GUP in the WDW

equation in our cosmological model as followed by [75, 76]. The modified commutator

relation incorporating the linear and quadratic dependence of momentum [63, 67] is

[qi , Pj ] = i�δi j (1 − 2´µ P0 + 4εµ 2 P2
0 ). (2.18)

Using this commutator relation, we find that the canonical variable is approximately

expressed as

qi = q0i , Pi = P0i

(

1 − ´µ P0 + 2µ 2 ´2 + 2ε

3
P2

0

)

, (2.19)

where P2
0 = P0 j P0 j , µ is related to the scales where quantum-gravitational effects

became relevant, typically defined by a value proportional to the inverse of the Planck

momentum as µ ≡ µ0

MPl c
with µ0 ∼ 1. The parameters ´ and ε are dimensionless

and highlight the terms originating from linear and quadratic contribution to GUP. For

´ = 0, we recover the KMM GUP model.

Now we calculate the GUP distorted Hamiltonian up to the order of µ 2 [77], which

is

H = H0 − ´µ (P2
0x + p2

0y)
3/2 + µ 2(P2

0x + p2
0y)

2

(

´2

6
+ 2ε

3

)

+ O(µ 3),

(2.20)
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where

H0 ≡
P2

0x

2
+

P2
0y

2
+ ω2

2
(x2 + y2), (2.21)

is the unperturbed Hamiltonian before introducing GUP. From now on, the subscript

0 will be used to denote the unperturbed version of Eq. (2.15). For example, the

unperturbed x, y are represented as (q0x , q0y) while the unperturbed pair (Px , Py)

as (P0x , P0y).

In the final step, we re-express the GUP deformed Hamiltonian Eq. (2.20) in terms

of the cosmological phase-space variables. This is achieved by applying the inverse

transformation to express Eq. (2.20) in the cosmological variables, namely, the expan-

sion factor, the scalar field, and their corresponding conjugate momenta, where

P0x ≡ ẋ = 3

2

a1/2ȧ

μ
sin(μφ) + (a3/2φ̇) cos(μφ), (2.22)

P0y = ẏ = 3

2

a1/2ȧ

μ
cos(μφ) − (a3/2φ̇) sin(μφ). (2.23)

Because there are no dynamics in the lapse function, without loss of generality we

choose N (t) = 1. Then, we find that

Pa ≡ ∂L

∂ ȧ
= −6ȧa, Pφ ≡ ∂L

∂φ̇
= −a3φ̇. (2.24)

Substituting Pa and Pφ into Eq. (2.22) we obtain

P0x = − Pa

4a1/2μ
sin(μφ) − Pφ

a3/2
cos(μφ), (2.25)

P0y = − Pa

4a1/2μ
cos(μφ) + Pφ

a3/2
sin(μφ). (2.26)

Then, applying P0x and P0y in the momentum-deformed Hamiltonian due to GUP

correction in Eq. (2.20), we get

HGU P = −N

⎡

£

ω2

2
a3 + P2

a

12a
+

P2
φ

2a3
− ´µ

(

P2
a

6a
+

P2
φ

a3

)3/2

+µ 2

(

P2
a

6a
+

P2
φ

a3

)2
(

´2

6
+ 2ε

3

)

+ O(µ 3)

¤

⎦ , (2.27)

Now, the full dynamics as dictated by the Hamiltonian of Eq. (2.27) involve all the

three parameters ´, ε, and µ . To simplify the analysis and obtain physically relevant

dynamics, we focus on the µ -axis of the quantum parameter phase space, although
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the three quantum parameters ´, ε, and µ are in principle independent. So, the GUP-

modified Hamiltonian is

HGU P = −N

[

ω2

2
a3 + P2

a

12a
+

P2
φ

2a3
+ 2µ 2

(

P4
a

108a2
+

P4
φ

3a6
+

P2
a P2

φ

9a4

)]

.

(2.28)

This is the required GUP distorted Hamiltonian in the cosmological phase space

dominated by a phantom scalar field with a positive cosmological constant up to

second-order perturbation. The corresponding Raychaudhuri equation reads

2
ä

a
+

(

ȧ

a

)2

= φ̇2

2
− ω2

2
+ µ 2

(

16a3 H4 + 4a3φ̇4

3
+ 32a3 H2φ̇2

3

)

, (2.29)

while the modified Friedmann equation is given by

3H2 = −
(

φ̇2

2
+ ω2

2

)

− 2µ 2

(

12H4a3 + a3φ̇4

3
+ 4a3 H2φ̇2

)

. (2.30)

It is interesting to note that and the KG equation is

φ̈ + 3φ̇H = 0. (2.31)

We notice that Eqs. (2.29) and (2.30) directly incorporate quantum corrections,

whereas for the Klein–Gordon Eq. (2.31), there is no explicit dependence on quan-

tum corrections. Any quantum deformation entering Eq. (2.31) arises only implicitly

through the Hubble parameter. This situation is similar to the models of LQC [78–85].

In this paper, we consider only the quadratic momentum deformed GUP and use the

modified Hamiltonian in Eq. (2.28) to study the deformed dynamics of cosmology

with a cosmological constant and an arbitrary potential.

2.1.3 GUP corrected Friedmann equation with cosmological constant

In this subsection we simplify the Friedmann Eq. (2.30). Defining a new parameter

³ ≡ 2µ 2, we find that Eq. (2.30) can be written as a quadratic equation in terms of

H̃ = H2 as

3H̃2 +
(

φ̇2 + 3

4³a3

)

H̃ − C0 = 0, (2.32)

where

C ≡ −
(

φ̇2

2
+ ω2

2
+ ³a3φ̇4

3

)

, C0 ≡ C

4³a3
. (2.33)
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Solving the quadratic equation gives us

H̃ =
−

(

φ̇2 + 3
4³a3

)

±
√

(

φ̇2 + 3
4³a3

)2
+ 12C0

6
. (2.34)

Since H̃ = H2, the right-hand side of the Eq. (2.34) must be greater than zero. This

implies

√

(

φ̇2 + 3

4³a3

)2

+ 12C0 >

(

φ̇2 + 3

4³a3

)

, (2.35)

which is equivalent to

C0 > 0, (2.36)

or

φ̇2

2
+ ³a3φ̇4

3
<

3�

8
. (2.37)

Rewriting Eq. (2.34)

H2 = − φ̇2

6
− 1

8³a3
+

(

φ̇2

6
+ 1

8³a3

)

√

√

√

√

1 + 12C0
(

φ̇2 + 3
4³a3

)2
, (2.38)

and applying the conditions Eq. (2.35), where M ≡ φ̇2 + 3
4³a3 , we have

√

1 + 12C0

M2
> 1. (2.39)

and

12C0

M2
=

6φ̇2 − 9
2
� + 4³a3φ̇4

6φ̇2 + 9
4³a3 + 4³a3φ̇4

<< 1. (2.40)

Comparing the numerator and denominator of the Eq. (2.40), we find that the first

term and the last term are the same, while in the second term, the denominator has a

³−1-dependence. Since ³, which represents the GUP correction, is taken to be very

small and during the early epoch the scale factor a(t) is also very small, which makes

the denominator very large.

Applying binomial expansion of the Eq. (2.38) we get,

H2 = − φ̇2

6
− 1

8³a3
+

(

φ̇2

6
+ 1

8³a3

)
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[

1 + 1

2

(

12C0

M2

)

− 1

2

(

1

2
− 1

) (

1

2!

) (

12C0

M2

)2

+ O(3)

]

. (2.41)

Considering term up to the first order in 12C0/M2, we find

H2 = 1

4³a3φ̇2 + 3

(−φ̇2

2
+ 3�

8
− ³a3φ̇4

3

)

, (2.42)

which is the required Friedmann equation with GUP modification for a phantom scalar

field with a positive cosmological constant.

2.2 Phantom scalar field with an arbitrary potential

Now, we construct the GUP-modified Friedmann equation for arbitrary potential by

applying the change in variables shown in the previous section. The Lagrangian can

be written in terms of (x ,y,ẋ ,ẏ) by applying the procedure prescribed in 2.1.2, so we

find

L = −
[

ẋ2 + ẏ2

2
+ 3

8
(x2 + y2)V (φ)

]

. (2.43)

In addition, the unperturbed Hamiltonian can be obtained by the Legendre transfor-

mation of Eq. (2.43)

H0 = −
[

P2
x

2
+

P2
y

2
− 3

8
(x2 + y2)V (φ)

]

. (2.44)

Introducing GUP, as given in Sect. 2.1.2 to the unperturbed Hamiltonian Eq. (2.44),

we find

HGU P = −N

[

P2
a

12a
+

P2
φ

2a3
− a3V (φ) + 2µ 2

(

P4
a

108a2
+

P4
φ

3a6
+

P2
a P2

φ

9a4

)]

.(2.45)

From the above GUP corrected Hamiltonian one can easily obtain the Raychaudhuri

equation, given by

2
ä

a
+

(

ȧ

a

)2

= φ̇2

2
+ V (φ) + µ 2

(

16a3 H4 + 4a3φ̇4

3
+ 32a3 H2φ̇2

3

)

. (2.46)

Following the same procedure given in Sect. 2.1.3, after some algebraic manipulations,

the Friedmann equation for an arbitrary potential can be written as

H2 = 1

4³a3φ̇2 + 3

(

− φ̇2

2
+ V (φ) − ³a3φ̇4

3

)

, (2.47)
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and the KG equation as

φ̈ + 3φ̇H − dV (φ)

dφ
= 0. (2.48)

With the same reasons as explained previously, now the KG equation also remains

the same. We note that despite the inclusion of the potential term there is no explicit

quantum correction to the above KG equation. In addition to the reason explained

in Sect. 2.1.2 concerning GUP correction only for kinetic part of the phantom scalar

field, however, in the present section, the potential is treated classically in the light of

the models of LQC [78–85] The justification of this treatment is based on the fact that

as the potential begins to dominate on the onset inflationary era the quantum effects

of spacetime starts diluting. Thus it validates the employment of effective dynamics.

In SMC, the factor ³a3φ̇4/3 is absent in the numerator of Eq. (2.47), retaining

only the energy density term. The additional terms arise solely from the quantum

corrections due to GUP. In addition, Eq. (2.47) reveals the possibility of singularity

resolution. The occurrence of non-singular bounce in phantom models has already

been studied in [86–90]. The possibility of a non-singular bounce is further enhanced

by the presence of a negative quantum corrected term, −³a3φ̇4/3. Though ȧ = 0 is a

necessary condition for the occurrence of a bounce, the solution must meet ä > 0 at

the bounce for the contracting universe to reverse its trajectory and begin expanding.

This condition is satisfied by the Raychaudhuri Eq. (2.46), as its right-hand side is

positive.

3 Dynamical system analysis

A nonlinear system is generally difficult to study analytically. However, the method of

dynamical system analysis (DSA) serves as a powerful tool for extracting qualitative

information. Einstein’s equations, when applied to the flat FLRW spacetime, become

a set of coupled second-order ordinary differential equations. However, with a suitable

choice of variables, they can be transformed to the first-order autonomous differential

equations.

In this method the system’s dynamics is cast as a set of first-order autonomous

differential equations, and the fixed points are defined as the points where the vector

flow of the dynamical variables vanishes. The precise nature of the fixed points is

obtained by examining the behavior of the leading order perturbation around the fixed

points. Mathematically, the signs of the eigenvalues of the Jacobian matrix evaluated

at the fixed points indicate the nature of the fixed points. For an extensive review of

DSA, we refer readers to [91–94].

Phase portraits, on the other hand, are visual representations of the trajectories

of a dynamic system. It provides insights into the qualitative behavior of the system

pictorially. This is achieved by drawing a tangent at each point given by the flow vectors

of the autonomous differential equations. When applied to cosmology, it offers an

intuitive understanding of the fate of the Universe even without solving the equations.
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In the subsequent subsections, we construct the autonomous equations and hence-

forth perform DSA for the background with the GUP modification introduced in the

above sections.

We know that Einstein’s equations are second order in nature. However, to perform

a DSA, they must be transformed into a set of first-order differential equations. A

widely practiced method is to begin by normalizing the Friedmann equation by the

square of the Hubble parameter to make each term dimensionless. In the process,

it brings all the components contributing to the Hubble rate on equal footing. The

next step is to write the EoM for each independent dimensionless dynamical variable

obtained with the help of the Raychaudhuri and Klien–Gordon equations. The final

set of the equations, when expressed entirely in terms of newly defined dimensionless

variables, constitutes the required autonomous system.

In the following, let us consider some dynamical cases with different potentials

V (φ), separately.

3.1 For V(�) = V0�
2

Following the above-mentioned recipe, we perform DSA by constructing autonomous

equations for the chosen potential. This will allow us to perform fixed point analysis

and study the behavior of phase portraits. From Eq. (2.47), the expansion normalized

Friedmann equation can be written as

4³a3φ̇2 + 3 = − φ̇2

2H2
+ V (φ)

H2
− 2³a3φ̇2

3

φ̇2

2H2
. (3.1)

A suitable choice of dimensionless dynamical variables, also called the expansion

normalised (EN) variables, are

x ≡

√

φ̇2

6H2
, y ≡

√

V0φ2

3H2
, z ≡

√

³a3φ̇2. (3.2)

Then, the expansion-normalized Friedmann equation reads

x2 + y2 − 2

3
z2x2 − 4

3
z2 = 1. (3.3)

It is observed that the GUP corrections denoted by ³ is presented only in the variable

z in Eq. (3.3) as can be seen from Eq. (3.2). In addition, from Eq. (2.10) we find that

the KG equation reads

φ̈ + 3φ̇H − 2V0φ = 0. (3.4)

From Eq. (2.46), on the other hand, we obtain

Ḣ

H2
= 3

2
(x2 + y2 − 1) + (2 + 6x4 + 8x2)(−1 − x2 + y2)

(2x4 + 4x2)
. (3.5)
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It should be noted that the EN variables alone fail to close the autonomous system

for the power law potential. For example, a new dynamic variable depending on φ

appears in the form of λ ≡ − V ,φ
V

. The physical phase space for a power law system

is always represented by a positive y half-cylinder stretching from λ = 0 to +∞ due

to the symmetry [95–98], which means that the phase space is not compact. To make

phase space compact, we choose a new dynamic variable u, which is

u = λ

λ + 1
. (3.6)

This transformation makes our phase space compact with the range 0 f u f 1. finally

we can write our system of equations in terms of u. Then, the autonomous set of

dynamical equations for quadratic potential with the GUP correction finally read

f (x, y) ≡ dx

d N
= −3(1 − u)x − u

(√
6y2

)

− (1 − u)x

{

3

2
(x2 + y2 − 1) + (2 + 6x4 + 8x2)(−1 − x2 + y2)

(2x4 + 4x2)

}

, (3.7)

g(x, y) ≡ dy

d N
=

√
6yxu − y(1 − u)

{

3

2
(x2 + y2 − 1) + (2 + 6x4 + 8x2)(−1 − x2 + y2)

(2x4 + 4x2)

}

, (3.8)

h(x, y) ≡ du

d N
= −

√
6(� − 1)(1 − u)xz2, � = V V,φφ

V 2
,φ

. (3.9)

The cosmological dynamics for the universe with a quadratic potential and the GUP

corrections are completely contained in the three Eqs. (3.7), (3.8) and (3.9). We also

observe that the GUP corrections appear only in the third autonomous equation, for

h(x, y).

Now, we perform a thorough analysis of the fixed points of the cosmological system

dictated by a phantom scalar field with quadratic potential in a GUP-modified scenario.

Later, we compare the results with those without GUP.

Fixed points are obtained by setting dF/d N = 0 simultaneously, where F ≡
(x, y, u). This physically means that the system becomes stationary at the points.

Then, the fixed points along with their behavior are tabulated in Table 2. To compare

our results with the original dynamics, we turn off the quantum perturbation by setting

³ = 0 in Eqs. (3.7–3.9), and the results are summarized in Table 1.

Comparison of Tables 1 and 2 reveals the dynamics without GUP are richer than

the dynamics after GUP modifications are taken into account. This is clear as Table

1 contains a greater number of fixed points than Table 2 with the GUP corrections.

However, introducing distortion due to the GUP effects does not change the fixed

points as the eigenvalues in both tables contain zero.
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Table 1 Fixed points and the stability analysis for the potential V (φ) = V0φ2 without GUP

x y u E1 E2 E3 Stability

A 0 0 c −3(1 − c)/2 3(1 − c)/2 0 Saddle point

B 0 0 0 −3/2 3/2 0 Saddle point

C 0 0 1 0 0 0 Neutral point

D c 0 1 2
√

6c −
√

6c 0 Saddle point

E 0 -1 0 −3 −3 0 Stable point

F 0 1 0 −3 −3 0 Stable point

Table 2 Fixed points and the stability analysis for the potential V (φ) = V0φ2 with GUP

x y u E1 E2 E3 Stability

A +c(other than 0) 0 1 0 2
√

6c −
(

2
√

6c3+
√

6c5

c2(2+c2)

)

Saddle point

B −c(other than 0) 0 1 0 −2
√

6c
(

2
√

6c3+
√

6c5

c2(2+c2)

)

Saddle point

3.2 Exponential potential

In this subsection, we consider a potential of the form

V (φ) = V0e−kφ, (3.10)

to study the GUP modified background dynamics, where V0 and k are constants. Then,

the EN variables are

x ≡

√

φ̇2

6H2
, y ≡

√

V0e−kφ

3H2
, z ≡

√

³a3φ̇2. (3.11)

it can be shown that now the expansion-normalized Friedmann equation in the form

of the EN variables reads

x2 + y2 − 2

3
z2x2 − 4

3
z2 = 1, (3.12)

and from Eq. (2.10) the Klein Gordon equation reads

φ̈ + 3φ̇H + V0ke−kφ = 0. (3.13)

Furthermore, the Raychaudhuri equation (2.46) in terms of the EN variables is given

by

Ḣ

H2
= 3

2
(x2 + y2 − 1) + (2 + 6x4 + 8x2)(−1 − x2 + y2)

(2x4 + 4x2)
. (3.14)
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Table 3 Fixed points and corresponding eigenvalues of the potential V (φ) = V0e−kφ without GUP

x y E1 E2 Stability

A −Q/
√

6
√

(Q2 + 6)/6 −(6 + Q2)/2 −(3 + Q2) Stable point

B −Q/
√

6 −
√

(Q2 + 6)/6 −(6 + Q2)/2 −(3 + Q2) Stable point

C 0 0 −3/2 3/2 Saddle point

Table 4 Fixed points and the corresponding eigenvalues of the potential V (φ) = V0e−kφ with GUP

x y E1 E2 Stability

A − Q√
6

√

(Q2 + 6)/6
−72Q2−18Q4−Q6

2Q2(12+Q2)
− 72+84Q2+21Q4+Q6

Q2(12+Q2)
Stable point

B − Q√
6

√

−(Q2 + 6)/6
−72Q2−18Q4−Q6

2Q2(12+Q2)
− 72+84Q2+21Q4+Q6

Q2(12+Q2)
Stable point

Because our potential is exponential, we can get � = V V,φφ

V 2
,φ

equal to 1. While con-

structing the autonomous equation, we obtain a factor of Q ≡ − V,φ

V
= k. With these,

we can write the autonomous differential equations as

f̃ (x, y) = dx

d N
= −3x −

√

3

2
Qy2

−x

{

3

2
(x2 + y2 − 1) + (2 + 6x4 + 8x2)(−1 − x2 + y2)

(2x4 + 4x2)

}

,

(3.15)

g̃(x, y) = dy

d N
= −

√

3

2
Qyx

−y

{

3

2
(x2 + y2 − 1) + (2 + 6x4 + 8x2)(−1 − x2 + y2)

(2x4 + 4x2)

}

.

(3.16)

The original dynamics without the quantum corrections can be easily obtained as a

limiting case by setting ³ = 0.

3.2.1 Fixed points

The fixed points of the system with the eigenvalues of the Jacobian are summarized

in Tables 3 and 4, respectively, with and without GUP.

The rigorous fixed point analysis shows that the introduction of GUP corrections

completely alters the fixed points and hence their stability in the case of exponential

potential. It is found that the dynamics without GUP have two stable fixed points and

one saddle point, whereas the GUP-modified dynamics for the exponential potential

leave us only with two stable fixed points.
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Fig. 1 Phase portrait for potential V (φ) = V0e−kφ for value of Q = 1. Left without GUP fluctuation

where the stable fixed points are at A=(−0.40,1.08), B=(−0.40,−1.08) and a saddle fixed point at C=(0,0)

and Right with GUP where the stable fixed point are A=(−0.40,1.08), B=(−0.40,−1.08)

3.2.2 Phase portrait

However, from the physical perspective only the upper half of the plane y g 0 is of

meaning. This is because y f 0 is not physically achievable for a positive potential.

Thus, we discard the set of the points, including the fixed points, with y f 0. The

dynamic variable x is proportional to the velocity. In both cases, with and without

GUP, the phase portraits of the system are presented in Fig. 1 for Q = 1. the saddle

point C = (0, 0) disappears upon the introduction of the GUP distortion. However, the

physically relevant point A = (−0.40, 1.08) remains even after quantum corrections

are taken into account. Physically, the stable fixed point A = (−0.40, 1.08) implies

that at a later time, the scalar field settles down to a negative velocity value with a

positive field value.

4 GUP-modified inflationary scenario

In this section, we present inflationary dynamics under the influence of GUP for

quadratic and exponential potentials. To understand the change in the behavior of the

background dynamics of our cosmology in the presence of GUP distortions, we need

to study the behavior of cosmologically relevant parameters, such as, the expansion

factor a(t), the scalar field φ(t), the EoS (we f f ), and the slow-climb parameters ε and

η with and without GUP deformations [99]. In what follows, we do this case by case

for each potential considered in this article.

4.1 Quadratic potential V(�) = �2�2

During cosmic inflation, the behavior of a phantom field differs from that of a normal

scalar field. While a normal scalar field undergoes a slow roll along its potential, a
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Fig. 2 Left panel : Plot of a(t) along the Y-axis versus time(t) along the X-axis for three values of ³ =
0, 0.01, 0.9 respectively in V = μ2φ2 potential with initial condition as a(0) = 1 and φ(0) = 1 and

φ̇(0) = 0.1. Right panel : Magnified view

Fig. 3 Left panel : Plot of a(t) along the Y-axis versus time(t) along the X-axis for three values of ³ =
0, 0.01, 0.9 respectively in V = μ2φ2 potential with initial condition as a(0) = 0.1 and φ(0) = 0.1.

Right panel : Magnified view

phantom field exhibits a slow climb along its potential. This distinction is evident both

mathematically and graphically, as demonstrated in [100] for power-law potentials.

After introducing GUP corrections to the Friedmann equations, the slow climb

parameters defined as

ε ≡ − Ḣ

H2
, η ≡ V "

3H2
, (4.1)

and δ ≡ η − ε can be expressed as follows

ε = 3

2

(

φ̇2

6H2
+ V0φ

2

3H2
− 1

)

+ 4³a3 H2 + ³a3φ̇4

3H2
+ 8

3
³a3φ̇2, η = 2V0

3H2
,

(4.2)

for V (φ) = V0φ
2.

In the cosmological context, EoS is a useful parameter to understand and classify the

acceleration and deceleration phases of our universe. For w = 0, it corresponds to non-

relativistic matter such as cold dark matter (CDM) or non-relativistic baryonic matter

and for w = 1/3 it refers to radiation dominated. For w = −1,−1 < w < −1/3

and w < −1 refer to the cosmological constant, Quintessence, and Phantom eras,

respectively.
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Fig. 4 Left panel : Plot of φ(t) along the Y-axis versus time(t) along the X-axis for three values of

³ = 0, 0.01, 0.9 respectively in V = μ2φ2 potential with initial condition as a(0) = 1 and φ(0) = 1.

Right panel : Magnified view

Fig. 5 Left panel : Plot of φ(t) along the Y-axis versus time(t) along the X-axis for three values of ³ =
0, 0.01, 0.9 respectively in V = μ2φ2 potential with initial condition as a(0) = 0.1 and φ(0) = 0.1.

Right panel : Magnified view

The Raychaudhuri equation in SMC can be written in terms of EoS as follows

ä

a
= −(1 + 3w)

ρ

6
, (4.3)

while the GUP modified Raychaudhuri Eq. (2.46) reads

ä

a
= −

[

1 + 3

( −φ̇2

2
− V (φ) − 2³a3φ̇4

3
− 4³a3φ̇2V (φ)

3

− φ̇2

2
+ V (φ) − ³a3φ̇4

3

)]

ρ

6
. (4.4)

Hence, we get

w =
−φ̇2

2
− V (φ) − 2³a3φ̇4

3
− 4³a3φ̇2V (φ)

3

− φ̇2

2
+ V (φ) − ³a3φ̇4

3

. (4.5)

Then, for the quadratic potential, we have

w =
−φ̇2

2
− V0φ

2 − 2³a3φ̇4

3
− 4³a3φ̇2V0φ

2

3

− φ̇2

2
+ V0φ2 − ³a3φ̇4

3

. (4.6)
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Fig. 6 Comparison of EoS

versus time for potential

V = μ2φ2 for different values

of ³

Fig. 7 Left panel: Plot of ε(t) versus time(t) for the initial condition as a(0) = 1, ȧ(0) = 1 and φ̇(0) = 0.1

for three different values of ³ where, ³ = 0 shows no GUP fluctuation. Right panel: For initial condition

as a(0) = 4, ȧ(0) = 4 and φ̇(0) = 0.1

Fig. 8 η(t) versus t for the

square potential

Figure 5 represents the dynamics of the expansion factor, illustrating a nearly expo-

nential rise, and hence indicating inflation. However, the effect of GUP is not readily

discernible from the left side of Fig. 5. To observe this effect, it is necessary to magnify

the range presented on the right-hand side of Fig. 5. The blue line represents the origi-

nal expansion factor without GUP modifications. As we increase the strength of ³, the

value of the original expansion factor becomes dramatically distorted. In addition, we

present the behavior of the expansion factor for different initial conditions in Fig. 3.

The behavior of φ w.r.t the cosmic time t for different initial conditions is shown

in Figs. 4 and 5. A magnified view of the effect of the GUP deformation for different

values of ³ is provided on the right-hand side of the figures. On the left-hand sides

of the figures, the scalar field starts from a very low value and then increases linearly

upward for different initial conditions. As we can observe from the graph of φ, the
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Fig. 9 Left panel: Plot of a(t) along Y-axis versus time(t) along X-axis for three values of ³ = 0, 0.01, 0.9

respectively in V = e−kφ potential with initial condition as a(0) = 1 and φ(0) = 1. Right panel: Magnified

view

Fig. 10 Left panel: Plot of a(t) along Y-axis versus time(t) along X-axis for three values of ³ = 0, 0.01, 0.9

respectively in V = e−kφ potential with initial condition as a(0) = 0.1 and φ(0) = 0.1. Right panel:

Magnified view

inclusion of a higher value of the GUP strength, ³ in the dynamics causes the evolution

to distort upwards from the original dynamics without GUP.

Figure 4 depicts the behavior of the EoS parameter with the introduction of a small

strength of GUP distortions. We observe that the EoS for the phantom remains always

less than −1 in the absence of GUP fluctuations due to the negative pressure term.

Even in this case, the behavior of the EoS remains the same for most of the evolution.

Only at the later phase the EoS increases w.r.t the unperturbed case.

In Figs. 2 and 3, we present the slow climb parameters |ε| and |η| as a function

of time with different initial conditions and we clearly observe that the values of |η|,
|ε| << 1 indicate inflation.

4.2 Exponential potential V(�) = V0e
−k�

In this subsection, we study the GUP-modified background dynamics for exponential

potential. We determine the slow roll parameters and equation of state and subsequently

present them for different initial conditions. Then, the slow climb parameters are
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Fig. 11 Left panel: Plot of logarithm of a(t) along Y-axis versus time(t) along X-axis for three values of

³ = 0, 0.01, 0.9 respectively in V = e−kφ potential with initial condition as a(0) = 1 and φ(0) = 1.

Right panel: Magnified view

Fig. 12 Left panel: Plot of logarithm of a(t) along Y-axis versus time(t) along X-axis for three values of

³ = 0, 0.01, 0.9 respectively in V = e−kφ potential with initial condition as a(0) = 0.1 and φ(0) = 0.1.

Right panel: Magnified view

ε = 3

2

(

φ̇2

6H2
+ V0e−kφ

3H2
− 1

)

+ 4³a3 H2 + ³a3φ̇4

3H2
+ 8

3
³a3φ̇2, η = V0k2e−kφ

3H2
.

(4.7)

The effective equation of state (EoS) for V (φ) = V0e−kφ is

w =
−φ̇2

2
− V0e−kφ − 2³a3φ̇4

3
− 4³a3φ̇2e−kφ

3

− φ̇2

2
+ V0e−kφ − ³a3φ̇4

3

. (4.8)

We analyze the effect of the GUP modification on the background dynamics for

the exponential potential in Figs. 9, 10, 11, 12. The figures depict the line representing

the small strength of ³, and ³ = 0.01 is closer to the original dynamics. However, as

we increase the strength of the GUP modification, the dynamics deviate further from

the original dynamics.

The behavior of the EoS parameter in the phantom field with and without the effect

of GUP is represented in Fig. 13. The EoS starts with a value of -1, indicating proximity

to the cosmological constant era, and transitions toward the phantom-dominated era

for both with and without GUP dynamics.
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Fig. 13 Comparison of EoS

versus time graph for potential

V = e−kφ for different values of

³

Fig. 14 Left panel: Plot of φ(t) along Y-axis versus time(t) along X-axis for three values of ³ = 0, 0.01, 0.9

respectively in V = e−kφ potential with initial condition as a(0) = 1 and φ(0) = 1. Right panel: Magnified

view

Fig. 15 Left panel: Plot of φ(t) along Y-axis versus time(t) along X-axis for three values of ³ = 0, 0.01, 0.9

respectively in V = e−kφ potential with initial condition as a(0) = 0.1 and φ(0) = 0.1. Right panel:

Magnified view

Fig. 16 Left panel: For V (φ) = V0e−kφ with initial condition as a(0) = 1, ȧ(0) = 1 and φ̇(0) = 0.1

plot of ε(t) along Y-axis vs time(t) along X-axis for three different values of ³ where, ³ = 0 with no GUP

fluctuation. Right panel: For initial condition as a(0) = 0.1, ȧ(0) = 0.1 and φ̇(0) = 0.1
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Fig. 17 η(t) versus t for exponential potential

Fig. 18 Left panel : Plot of logarithm of a(t) along the Y-axis vs time(t) along the X-axis for three values

of ³ = 0, 0.01, 0.9 respectively in V = μ2φ2 potential with initial condition as a(0) = 1 and φ(0) = 1.

Right panel : Magnified view

Fig. 19 Left panel : Plot of logarithm of a(t) along the Y-axis vs time(t) along the X-axis for three values of

³ = 0, 0.01, 0.9 respectively in V = μ2φ2 potential with initial condition as a(0) = 0.1 and φ(0) = 0.1.

Right panel : Magnified view

The behavior of φ for exponential potentials with different initial conditions are

shown in Figs. 14 and 15. In addition, a magnified view of the GUP deformation for

different values of ³ is shown on the right-hand side of Figs. 14 and 15. On the left-

hand side of the scalar field, it starts from the highest value and then decreases linearly

downward for different initial conditions. We observe from the graph of φ that the

inclusion of a comparable level of GUP in the dynamics causes the line to distort
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downward from the original blue line, which represents the dynamics without GUP.

Furthermore, the plots of |ε| and |η| in Figs. 16 and 17 indicate inflation in the case of

exponential potential.

5 Conclusion

In this paper, we constructed the GUP-corrected effective Hamiltonian from the clas-

sical Einstein–Hilbert action. In particular, we first considered a minimally coupled

phantom scalar field with the cosmological constant as the toy model. Following this,

we performed the same exercise with the presence of an arbitrary potential of the

scalar field. We focused on introducing momentum deformation to the dynamics due

to GUP. Having derived the effective Hamiltonian, we obtained all the background

equations of motion in terms of the Raychaudhuri, Friedmann, and Klien–Gordon

equations. Interestingly, we showed that the Klien–Gordon equation is free from any

explicit quantum correction due to GUP. On the other hand, the Raychaudhuri and

Friedmann equations indeed receive quantum correction explicitly. This situation is

quite similar to the cosmological models constructed in the framework of LQC.

The system of equations obtained is highly nonlinear. This demands qualitative

analysis using the tools of DSA to extract information about the system. We achieved

this by performing a detailed DSA using the tools of linear stability analysis. We

observed that the introduction of GUP affects the local behavior of the system, although

the overall dynamics remain similar. This is confirmed from Fig. 1 and Tables 1, 2,

3 and 4. In the case of quadratic potential, we observed from Tables 1 and 2 that,

after introducing GUP distortions, certain fixed points disappear. In the case of the

exponential potential, Tables 3 and 4 indicate that, after introducing GUP corrections,

the saddle point disappeared. Consequently, this leaves us with two stable points in

the GUP modified scenario.

As our final goal, we returned to the question of the cosmological implications of the

considered model in Sect. 4. We discussed inflationary scenarios after GUP corrections

as shown in Figs. 5, 3, 18 and 19 for the quadratic potential and in Figs. 9, 10, 11 and

12 for the exponential potential. We observed a nearly-exponential expansion for both

potentials, indicating inflation occurs in these models. Finally, we calculated the slow-

climb parameters for both potentials and plotted them in Figs. 2, 3, 16 and 17, which

clearly show the existence of the inflationary phase.

Furthermore, we calculated the GUP-induced EoS parameter and plotted it in Figs. 4

and 13, starting nearly from −1 and then decreasing to more negative values. To be

more precise, in the case of the quadratic potential, when we incorporate the GUP

corrections, the graph of the EoS parameter rapidly approaches the value −1 compared

to the case without GUP corrections. We also observed a deviation from the original

dynamics.

However, one serious criticism faced by the phantom field is its instability regarding

perturbation analysis [101, 102]. It would be very interesting to investigate if such

instabilities are somewhat diluted due to noncommutativity corrections due to GUP.

In addition, it would be also very interesting to extend our analysis for quintom fields

[103, 104], which are free from instabilities. We leave these as our future projects.
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Finally we note that in this paper we restricted ourselves to the quadratic form of

the GUP by setting the dimensionless parameter ´ = 0. However, a more general

form of the GUP-modified Hamiltonian in Eq. (2.27) can be obtained by setting ´ and

ε to 1. This sets as a natural extension of our present work to be pursued in the future.

Appendix A: The GUP cosmological model

In this appendix, we apply canonical quantization to the GUP-modified Hamiltonian to

derive the GUP-modified Wheeler–DeWitt (WDW) equation [77]. We then explore the

semi-classical effects of GUP deformation, ultimately obtaining the classical Hamil-

tonian, which is used for dynamical system analysis.

On substituting the deformed canonical variables Eq. (2.19) in Eq. (2.15) we obtain

Eq. (2.20) which is the GUP deformed Hamiltonian. And, using the canonical quanti-

zation, we obtain the corresponding WDW-equation as, Ĥψ = 0. Observing that the

Hamiltonian is in the form of a harmonic oscillator, we can proceed with quantization

using ladder operators. We consider the perturbation in the Hamiltonian to be of the

order of µ 2, so the usual ladder operators ã, ã†, and the number operator N are appli-

cable only to the unperturbed case. For the perturbed case, new ladder and number

operators are required [105], and impose the same conditions as in the unperturbed

case,

ã|φn〉 =
√

n|φn−1〉, Ñ |φn〉 = n|φn〉, ã†|φn〉
=

√
n + 1|φn+1〉, Ñ = ã†ã, [ã, ã†] = 1 (A1)

where |φn〉 = |ψ (0)
n 〉+µ |ψ (1)

n 〉+· · · , and |ψ (0)
n 〉 is the eigenfunction of the unperturbed

Hamiltonian, and |ψ (m)
n 〉 is the m-th order correction to the eigenstate. Since the

correction µ is very small, we can express the operators as

ã = a +
∞
∑

n=1

µ n³n, ã† = a†

+
∞
∑

n=1

µ n³†
n, Ñ = N +

∞
∑

n=1

µ nνn, (A2)

we apply the above operator Eq. (A2) to the wave function

ã|φn〉 =
(

a +
∞
∑

m=1

µ m³m

) (

|ψ (0)
m 〉 +

∞
∑

m=1

µ m |ψ (m)
n 〉

)

, ã†|φn〉

=
(

a† +
∞
∑

m=1

µ m³m

) (

|ψ (0)
m 〉 +

∞
∑

m=1

µ m |ψ (m)
n 〉

)

, (A3)
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and using the procedure given in [105] we can expand the operators up to the order of

µ we get,

ã = a − ´µ

2

(

3|�|
2

)1/4
(

a†3 − 6Na† + 2a3
)

, ã†

= a† + ´µ

4

(

3|�|
2

)3/4
(

a†3 − 6Na† + 2a3
)

. (A4)

Substituting these into Eq. (2.19), after incorporating them into the expressions for

momentum and coordinates, we obtain

p0k = i

(

3|�|
32

)1/4

(a
†
k − ak), q̃k = q0k, k̃

=
(

2

3|�|

)1/4

(a† + a), pk = p0k + i

8

(

3|�|
2

)3/4

µ 2ε

(

a†3 − 6Na† + 2a3
)

,

(A5)

the expectation values are 〈q̃k〉 = 0 and 〈 p̃k〉 = 0. Finally, using the inverse trans-

formation, the volume of the universe is given by the cube of the expansion factor as

V = a3(t) = 3|�|
8

(x2 + y2). Thus, we calculate the spectrum for the volume, at the

order of µ 2, as the expected value of this expression,

V (n) =
√

3

2|�| (2n + 1) + 9´µ

8

(

3

8|�|

)1/4
(

4
√

3 −
√

2|�|
)

(1 + 2n + 2n2)

+ 3´2µ 2

64

(

8 − 4
√

6|�| + 3|�|
)

(6 + 13n + 3n2 + 2n3). (A6)

To derive the GUP modified Wheeler–DeWitt (WDW) equation, we apply canonical

quantization to the Hamiltonian described by Eq. (2.20), resulting in

ĤGUPψ = Ĥ0ψ + i´µ Ĥ1ψ + µ 2

(

´2

6
+ 2ε

3

)

Ĥ2ψ

+2i´µ 3

(

´2 + 2ε

3

)

Ĥ3ψ − µ 4

(

´2 + 2ε

3

)

Ĥ4ψ = 0, (A7)

where

Ĥ0 = −1

2

(

∂2

∂x2
+ ∂2

∂ y2

)

, Ĥ1 =
(

∂2

∂x2
+ ∂2

∂ y2

)3/2

, Ĥ2 =
(

∂2

∂x2
+ ∂2

∂ y2

)2

,

Ĥ3 =
(

∂2

∂x2
+ ∂2

∂ y2

)5/2

, Ĥ4 =
(

∂2

∂x2
+ ∂2

∂ y2

)

. (A8)
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To simplify our analysis, we will limit our considerations to the case where ´ = 0

and focus on terms up to the order of µ 2. To explore the semiclassical effects of the

GUP deformation, we assume the wavefunction is of the form ψ = ei(S(x)+G(y)). We

then apply the operators Ĥ0 and Ĥ2 as defined in Eq. (A8), and finally, perform a

WKB-approximation, we obtain

Ĥ0ψ ≈ 1

2

[

(

S′)2 +
(

G ′)2
]

ψ + 1

2
ω2

[

x2
0 + y2

0

]

ψ, (A9)

Ĥ2ψ ≈
[

(

G ′)4 +
(

S′)4
]

ψ + 2
[

(

G ′)2 (

S′)2
]

ψ, (A10)

where S′ = d S
dx

and G ′ = dG
dy

. Now, using the usual definitions ∂S
∂x

= Px and ∂G
∂ y

= Py ,

we get the classical Hamiltonian

H = 1

2

(

P2
x + P2

y

)

− 3�

8

(

x2 + y2
)

+ 2

3
µ 2ε

(

P4
x + 2P2

x P2
y + P4

y

)

. (A11)

This equation is same as Eq. (2.20) for ´ = 0 and taking only the second order of µ ,

which is later used to determine the GUP-deformed Friedmann, Raychaudhuri, and

Klein-Gordon Equations.

Appendix B: proof of the Friedmann, Raychaudhuri and Klein–Gordon
equation

In this appendix, we show the derivation of the Friedmann, Raychaudhuri and Klein–

Gordon equation starting with the phantom Lagrangian. Using Eqs. (2.5) and (2.6),

and applying the Hamilton equations, we can derive the equations of motion for the

system as

Pa = ∂L

∂ ȧ
= −6aȧ, Pφ = ∂L

∂φ̇
= −a3φ̇, Ṗa = −∂H

∂a
, Ṗφ = −∂H

∂φ

and by substituting the form of Pa and Pφ so obtained from the Lagrangian equation

in Eq. (2.6).

6ȧ2 + 6aä = 3ȧ2 + 3a2φ̇2

2
+ 3a2V (φ) + 3a2�,

the Raychaudhuri equation is

2
ä

a2
+

(

ȧ

a

)2

= φ̇2

2
+ V (φ) + �. (B1)

The Lagrangian in Eq. (2.5) does not depend on Ṅ (t), which implies that there is

no dynamics associated with the lapse function N (t). Consequently, we have PN ≡
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∂L

∂ Ṅ
= 0. Now, using Eq. (2.6), we obtain

3aȧ2 + φ̇2a3

2
− a3(� + V ) = 0,

this gives the Friedmann equation as

3H2 = − φ̇2

2
+ � + V (φ). (B2)

Similarly, the Klein–Gordon equation is

3a2ȧφ̇ + a3φ̈ = a3V ′(φ),

or,

φ̈ + 3φ̇
ȧ

a
− dV (φ)

dφ
= 0. (B3)
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