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the difference of the QNMs between LQBHs and classical ones, so that they can be observed
for the current and forthcoming gravitational wave observations, whereby place the LQBH
theory directly under the test of observations.
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1 Introduction

Black holes (BHs) are one of the most mysterious phenomena in the universe. The existence of
BHs provides us a perfect way to test gravitational effects under extremely strong gravitational
fields, such as the formation of gigantic jets and disruption of neighboring stars. On the other
hand, from the theoretical point of view, BHs are also excellent labs to test theories of gravity
that are different from general relativity (GR) (see, e.g., [1-8]). It is true that BHs were initially
only discovered as mathematical solutions of GR [9]. Nonetheless, observations have already
confirmed their existence, including those from gravitational wave (GW) observations [10],
which marks the beginning of a new era — the GW astronomy.

Following the first observation of GW, more than 90 GW events, which are all from
coalescences of compact bodies, black holes and/or neutron stars, have been identified
by the LIGO/Virgo/KAGRA (LVK) scientific collaborations [12-14, 16]. In the future,
more advanced ground- and space-based GW detectors will be constructed [17, 18], such as
Cosmic Explorer [19], Einstein Telescope [20], LISA [21], TianQin [22, 23], Taiji [24], and
DECIGO [25]. These detectors will enable us to probe signals with a much wider frequency
band and long distances. This has triggered the interest in the observation of quasi-normal
mode (QNM) of black holes [26, 27], extreme mass ratio inspirals (EMRIs) [28, 29], the effect
of dark matter on GWs [30, 31|, to name only a few of them.

GWs emitted during the ringdown stage of a coalescence, where a massive black hole is
just formed, can be considered as the linear combination of the QNMs of the just formed BH,*
and are in general studied with the perturbation theory [38-44]. QNMs of such perturbations,
including scalar, vector (electromagnetic), and tensor (gravitational), have been extensively
studied in GR as well as in various modified theories of gravity. From the theoretical point
of view, QNMs are eigenmodes of dissipative systems and usually contain two parts, the
real part and the imaginary part. Its real part gives the frequency of vibration while its

!The BH just formed from the merge stage of two compact objects is highly nonlinear, and the linear
perturbation theory cannot be applied to the initial stage of such just formed BH. Thus, how to connect the
ringdown waveform determined by QNM:s is still an open question [36, 37]. In this paper, we shall not consider
such a matching, and simply consider only the times during which the GWs can be well expressed as linear
combinations of QNMs.



imaginary part provides the damping time. The information contained in QNMs provide the
keys in revealing whether BHs are ubiquitous in our universe, and more important whether
GR is the correct theory to describe gravity even in the strong field regime. As a matter
of fact, according to the no-hair theorem of GR, BHs are described uniquely by only three
parameters, mass, charge and angular momentum. Thus, in GR QNMs are functions of only
these three parameters. Hence, observing such modes can directly test such relations. For
more details, we refer readers to [26, 27, 45, 46].

On the other hand, from the observational point of view, the sensitivities of the current
detectors limit the detection of QINMs mainly to the dominant modes, and it is still an
ongoing debate on whether other modes can be observed by LIGO, Virgo and KAGRA [47-
54]. However, with the technological advances, it is strongly believed that the upcoming
third-generation detectors, either the ground-based or the space-based ones, will be able to
detect various sub-leading modes, see for example, [55] and references therein.

In this paper, we shall focus on the QNMs of a large class of quantum BHs in the context
of effective loop quantum gravity (LQG) [56, 57]. It should be noted that QNMs of loop
quantum black holes (LQBHs)? have been already studied extensively [29, 66-78]. However,
in most of these models, the observational effects are negligible for macroscopic BHs. The
LQBHs to be studied in this paper are distinguishable from the previous ones in the senses:
(a) They can be directly formed from the gravitational collapse of a spherically symmetric
dust cloud; and (b) the solutions usually contain three free parameters, one is the mass of the
BH, and the other two characterize the quantum geometric effects. Among the two quantum
parameters, one is completely fixed by the black hole thermodynamics, whose observational
effects are always negligible for macroscopic BHs. On the other hand, the second quantum
parameter is free [57]. Our major goal here is to study its effects to QNMs, in order to obtain
observational constraints on this second quantum parameter.

The rest of the paper is organized as follows: section 2 describes briefly the LQBH
solutions we are going to study in this paper and the equations for a scalar field moving
in such backgrounds. The latter leads to the master equation for the study of QNMs.
Knowing this, in section 3 we calculate the QNMs for both the time- and frequency-domains
since the former reflects a comprehensive effect of various different modes (to be introduced
below), while the latter provides a more quantitative evidence for the confinement to the
coupling-parameter phase space with future GW missions. Some of our concluding remarks
and future outlooks are given in section 4.

Before proceeding further, we would like to note that linear perturbations of spherically
symmetric LQBH spacetimes have not been worked out yet in the framework of LQG,
although some important steps were already taken [79]. In particular, the QNMs of the
scalar perturbations studied in this paper cannot be compared directly with the QNMs of
spin-2 gravitons of black holes studied in GR, which are directly related to the gravitational
waveforms emitted in the ringdown phase [26, 27, 45, 46]. So, in this paper, what we are
comparing with are the QNMs of a scalar field moving in the backgrounds of LQBHs and the
QNMs of the same scalar field moving in the Schwarzschild BH background of GR, as we

2Loop quantum black holes have been studied extensively in the past decades or so. For details, see [58-65]
and references therein.



believe that the deviations of the scalar perturbations between these two theories are of the
same order as that of the deviations of the spin-2 gravitons between the two same theories.

In addition, in this paper we are adopting the unit system so that ¢ = G = h = 1, where
¢ denotes the speed of light, G is the gravitational constant, and & the Planck constant
divided by 27. All the Greek letter in indices run from 0 to 3. The other usages of indices
will be described at suitable places.

2 LQBH background and scalar perturbation

In this section, we shall first introduce briefly the background of a spherically symmetric loop
quantum black hole formed from the gravitational collapse of a homogeneous and isotropic
dust fluid in the framework of effective theory of loop quantum gravity [56, 57], and then
consider the linear perturbations of a scalar field in such backgrounds [80]. In doing so, we
ignore the back-reactions of the scalar field.

2.1 Loop Quantum black holes formed from gravitational collapse

The LQBH solution we are studying is given by [57]

1
ds? = —f(r)dt* + f(r)dﬂ + r2d02, (2.1)
where )
2M o (M B
—1_ A 2.2
5 : +ﬂ<r+2), (2:2)

and dQ? = df? + sin? Odyp?. Here B is a dimensionless coupling parameter. Considering the
above solution as describing the external spacetime of a collapsing ball, while inside the ball
the spacetime is described by the FLRW universe

ds® = —dT? 4 a? (dR2 n Xi(R)dQQ) , (2.3)
it was found that the junction conditions lead to [57]
—sin?(Ry), k=1,

B = —kxi(Ro) =40, k=0, (2.4)
sinh®(Ry), k= —1,

where Ry denotes the junction surface. The factor «, which has the dimension of 72, is
given by [57, 81]

a = 16V3my 02, (2.5)

where /) denotes the Planck length, and v is known as the Barbero-Immirzi parameter whose
value is set to v &~ 0.2375 using black hole thermodynamics in LQG [82].

To calculate QNMs of the above BHs, let us first introduce the dimensionless coor-
dinates ¢ and 7

t=rst, T =1, (2.6)



where r, = 2M. Then, in terms of £ and 7, the metric reduces to

ds® = r? (— f(F)dE* + &7 +f2d2§2>
o f(7)

= r2d3?, (2.7)

where

2
a = % = V3173 <€p1> . (2.8)

Note that for solar-mass BHs, we have M =~ 103 ¢}, so that (the dimensionless) & ~
O (10_77>. That is, for macroscopic BHs, the quantum gravitational effects from the «
terms are negligible, unless the combination of @B is large, a condition that we will assume
in order to compare the resultant QNMs of LQBHs with GW observations. Considering
eq. (2.4), we find that this is possible only when k = —1. As a result, the values of B to
be considered will be a non-negative number.

On the other hand, since dsi and d3? are related conformally with a constant conformal
factor [cf., (2.7)], the physics of the spacetimes of ds% can be obtained directly from that
of the spacetimes of d32. In particular, by following the same manner of definition, we
have R = R/r? and

W= rw, (2.9)

where w and the dimensionless @ are the QNMs of ds%r and d32, respectively, and R and
R are their corresponding curvatures.® Therefore, in the rest of the paper we shall work
with the spacetime described by d32, i.e.

ds* = — f(7)df* + &7
f(7)

when we calculate the QNMs of the quantum BHs. Then, using eq. (2.9) we can easily

+ 7#2d*Q, (2.10)

read off w for a given BH with mass M.

Moreover, by looking at eq. (2.2), we immediately notice that a positive radius of the
metric horizon 7y, which is defined through f(r = rarg) = 0, is absent at the M — 0 limit.
Therefore, by requiring rp7pr > 0, we have to look at the cases where M is large enough.
Keeping this in mind, in this paper we shall consider the cases of A = M /Mg € (3,100)*
in this current paper, where M. denotes the solar mass.

30ne should avoid confusing the curvature R in here with the R coordinate appearing in (2.3).

4In order to study their observational results, in this paper we mainly consider BHs with masses in the
order of the solar mass or larger. In particular, the current GW observations set the lower limit to about 3Mg
(See., e.g., [83]), which makes it reasonable for us to consider the range M/Mg € (3,100). As will be seen
later, the difference on QNMs between a LQBH and a Schwarzschild BH sensitively depends on the ratio
M /Mg when that is relatively small. After it has reached to about 100 (and even before that), the difference
is observationallly negligible. That is why we set the upper limit to 100 in here.
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Figure 1. The behavior of the dimensionless quantity ;g /(2M) as a function of B for different
values of M.

Knowing this, we are on the position of determining an approximate upper limit for B by
requiring 77 > 0 for A € (3,100). By plotting out the behavior of rp; as a function of B
for the range of M under consideration in figure 1, we can notice an approximate upper limit
of B. A more careful study to the equation f(r = rp/g) = 0 shows that, for a positive ryg
to exist for any A € (3,100), the upper limit of B is about Bpax ~ 7.176 x 1038, It is worth
mentioning here that, to avoid confusions arising by using different unit systems, in figure 1
we are focusing on the dimensionless quantity ry/(2M) (instead of the quantity ryrz itself).
Therefore, the curves of figure 1 will not be changed when considering different unit systems.

In addition, by observing figure 1, we also notice that the value of rjrr/(2M) will soon
deviate from that of GR when B reaches a critical point (For the M /Mg = 3 case, that
critical point is located around B = 1038, which is very close to the upper limit of B). Before
getting close to such a critical point, it is very hard to distinguish the value of ry;p/(2M)
from its GR counterpart. This implies that one may find the observable difference between a
LQBH and a Schwarzschild one only for sufficiently large B’s (which should be quite close to
Brax)- Yet, such a critical point is getting larger and larger as M increases. Therefore, given
an overall B,y (obtained from the M /Mg = 3 case), we expect to barely see deviations
between a LQBH and the corresponding Schwarzschild one for very large M’s. We shall
come back to these points later.

2.2 Perturbations of a scalar field

Since in the rest of this paper we shall work only with the background described by the
metric (2.10) and the dimensionless coordinates ¢ as well as 7, without causing any confusion,
we shall drop the tildes from the dimensionless coordinates (,7) and the corresponding



quantities. Then, following [69] we consider the scalar perturbations that obey the Klein-
Gordon equation®

e
V=

where ® = ®(t, 7,0, p) denotes the scalar field. By decomposing it through the spherical

O (V=99"0,®) =0, (2.11)
harmonics Y}, (0, ¢) as ® = Y}, ¥(¢,r)/r, a master equation of ¥ is obtained as

0? 0?
@‘I’ + <_at2 =+ %ff(?”)) \Ij = O, (212)

where the effective potential Veg is given by

L 1 df?
Ver =f 5+ 5 (2.13)
with L = [(l + 1), and x the tortoise coordinate defined through
dr
— = . 2.14
T i (214)

Notice that, since r is dimensionless, x is actually also dimensionless. Also notice that, when
the background has spherical symmetry, the perturbations are independent of the choice
of the angular index m [44]. Thus, without loss of the generality, we shall set m = 0. For
a given function f(r) and choosing a suitable value of [, we can solve (2.12) for ¥ (which
contains the information of QNMs) for a BH.

In fact, the behavior of V.g is directly related to the results of QNMs. Therefore, to
take a glance to the influence of {B, A} on the consequence, we first check their influence
on Veg(r). The behavior of Vg is plotted in figure 2 by setting | = 2. In the upper panel
we fix A = M /Mg = 3 and plot out different curves with a varying B factor. In contrast, in
the lower panel we fix B = Bpax = 7.176 x 103® and plot out different curves with a varying
A € (3,100). Notice that, the Veg from GR is added to there as a comparison.

The upper panel of figure 2 implies that an observable deviation between a LQBH and a
Schwarzschild one requires an extremely large B, which is consistent with what we observed
from figure 1. On the other hand, as expected (again by observing figure 1), the lower
panel reflects that the deviation on Veg from its GR counterpart will soon fade away once
A becomes relatively large (e.g., when it is larger than 20), even with B = Bpax. From
the qualitative point of view, figure 2 provides us with a good reference on choosing the
parameters from the phase space of { B, A} when calculating for QNMs in the next section.
Although we are not going to follow figure 2’s choices precisely, that gives some hints to
the choice of the parameters.

5In this paper, we consider only the relativistic dispersion relation. In principle, higher-order corrections
can be also included. But, these high-order terms are of order of O(K"/MIZ_Q) with n > 4, where K denotes
the curvature of the macroscopic BHs, which is quite lower than the Planck scale, M;; > K outsides of such
macroscopic BHs. Therefore, for the QNMs of macroscopic BHs, these corrections are negligible. For more
details, see, for example, ref. [90] and references therein.
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Figure 2. The behavior of Vg as a function of r (which is in its dimensionless form). Upper panel: for
the A = M /Mg = 3 and [ = 2 case by varying the parameter B. Lower panel: for the B = 7.176 x 1038
and [ = 2 case by varying the parameter A\. The GR case is also exhibited in here as a comparison.

3 Quasi-normal modes of LQBHs

First of all, we try to solve eq. (2.12) in the time-domain with the finite difference method
(FDM) [7, 30, 84]. One advantage of such a method is that, for any chosen I, the final result
from it can reflect comprehensively the influence of a bunch of different modes (represented
by {m,n}, although m can be always set to zero in the spherical case without loss of the
generality, as mentioned earlier. It must not be confused this m with the mass parameter
M of the LQBHs.). To apply the FDM, we first introduce two new variables y =t — x and
v=t+ax [sothat t = (v +p)/2 and x = (v — pu)/2].5 Therefore, on a (N + 1) x (N + 1)
lattice (where N is a positive integer that will be chosen properly according to our usage),

5An important feature of the FDM is that in using it, we need the exact form of z(r), in addition to its
derivative with respect to r. Therefore, according to the definition (2.14), we have to assign = an integral
constant to absolutely fix it. In fact, such a constant could be chosen arbitrarily and it’s independent of our
results for calculating QNMs. Thus, we made a simple choice by letting z(r = 2) = 2, which is consistent with
the general choice in GR (See e.g., [41]).
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panel: for the B = 7.176 x 1038 and [ = 2 case with the variation of the parameter A\. The GR case is
also exhibited in here as a comparison.

we perform the calculation of W(u,v) by using the recursion formula

U(p+ dh,v +6h) = Y (pu, v+ 6h) + V(pu+ 6h,v) — VU (p,v)

- éalfveﬁ (r) [W (1, v + 6h) + U (p + 6k, )] (3.1)

where dh is the step size (which will be chosen properly in reality by measuring our tolerance of
accuracy). The boundary conditions are given by ¥(pu, v =0) =0 (u # 0) and U(u =0,v) =
exp[—(v — 1)2/2]. Thus, after N? iterations, we find all the ¥(ndh,néh)’s for n € [0, N] N Z.
From that we can calculate ¥ (¢, z = 0) by using the relation U(t,z = 0) = ¥(u, ).

Then, the results are shown in the upper panel of figure 3. For the case with A =
M/Mg = 3 and [ = 2, the behavior of In|U(¢,2 = 0)| (which encodes the information of
various QNM frequencies) is plotted out as a function of ¢ for different values of B (with
these values chosen by referring figure 2). It should be noted that the variable ¢ here is
dimensionless, which was previously written as f = t/rs. The GR case is also added as a
comparison. Just like what we have observed from figure 2, the result is not very sensitive



GR A =20 A=10 A=5
I n wWGR w R(bw) S(dw) w R(bw) S(dw) w R(Sw) S(dw)
2 0]0.96728 — 0.193534 | 0.97096 — 0.19377¢ 0.4%  0.1% | 0.98235 — 0.19445¢ 1.6%  0.5% |1.03475 — 0.19666: 7.0% 1.6%
2 1[0.92769 — 0.59125% | 0.93154 — 0.59191% 0.4%  0.1% | 0.94349 — 0.59380¢ 1.7% 0.4% |0.99872 — 0.59958: 7.6% 1.4%
2 2(0.86077 — 1.017407 | 0.86491 — 1.018337 0.5% 0.1% | 0.87779 — 1.02096: 2.0% 0.4% |0.93776 — 1.02794: 8.9% 1.0%
3 01.35073 — 0.193007 | 1.35585 — 0.193247 0.4% 0.1% | 1.37173 — 0.19393: 1.6% 0.5% |1.44474 — 0.19618: 7.0% 1.6%
3 1[1.32134 — 0.58458:¢ | 1.32659 — 0.58526¢ 0.4%  0.1% | 1.34287 — 0.58725¢ 1.6% 0.4% |1.41799 — 0.59356:¢ 7.3% 1.5%
3 2[1.26718 — 0.992027¢ | 1.27267 — 0.993087 0.4% 0.1% | 1.28971 — 0.99612¢ 1.8% 0.4% |1.36870 — 1.00519: 8.0% 1.3%
6 0 2.50377 —0.19261% | 2.51324 — 0.19285¢ 0.4% 0.1% | 2.54262 — 0.19354¢ 1.6% 0.5% |2.67774 — 0.19582¢ 6.9% 1.7%
6 1 [2.48750 — 0.57947% | 2.49705 — 0.580187 0.4%  0.1% | 2.52665 — 0.582247 1.6% 0.5% |2.66293 — 0.58895: 7.0% 1.6%
6 2 [2.45569 — 0.9712017 | 2.46537 — 0.972367 0.4%  0.1% | 2.49542 — 0.97572¢ 1.6% 0.5% |2.63397 — 0.98646: 7.3% 1.6%

Table 1. Various modes of w (in its dimensionless form, for which we dropped the “tilde” as mentioned
earlier) for LQBHs with different masses that characterized by A. The GR limit of w for each mode
is provided and the percent difference with the GR limit is shown. The factor B is fixed to be
B =17.176 x 1038,

to the value of B, especially when it is not large enough, so that the deviation between
the curves of GR (represented by the red dashed line) and that of the case B = 3 x 1038
(represented by the green solid line) is still moderate. In contrast, once B reached certain
critical values, the difference becomes obvious. That is why we observe a relatively large
deviation between the curves of the B = 4.5 x 10%® case (represented by the blue dashed
line) and that of the B = 7 x 103 case (represented by the purple solid line). On the other
hand, by observing the upper panel of figure 3 we also notice that the frequency of vibration
is getting bigger as the factor B increases.

Similarly, we show the corresponding results when changing A in the lower panel of
figure 3 (with its values chosen by referring figure 2). By setting B = 7.176 x 103® and
[ = 2, the behavior of In |¥(¢t,z = 0)| is plotted out as a function of t. We also add the
GR case in order to make a comparison. As we expect from figure 1, we can barely see
the deviations between the curve of a LQBH with large masses (e.g., the one represented
by the green solid line) and that of GR (represented by the red dashed line), even if the
parameter B is chosen to be Bpax. In contrast, given a relatively small A (e.g., the one
represented by the blue dashed line), we can observe a significant deviation. On the other
hand, by observing the lower panel of figure 3 we also notice that the frequency of vibrations
is getting bigger with the decrease of the factor .

On the other hand, eq. (2.12) can be written in its frequency-domain as [30]

2
9y

p (3.2)

(wQ + Veff(r)) U =0,

where w, representing the dimensionless quantity @ introduced in eq. (2.9), is the QNM
frequency to be calculated. To solve for w from (3.2), among various existing methods
(see, e.g., [85-87]), here we introduce the WKB method [30]. The QNM frequency can be
calculated up to the 6th order by using

(3.3)

- 1 : "
w= |—1 <n+2>+k§:2[\k \/ 2V + Vo,



where
V// _ d‘/eff
T=Tmax ’ 0 = dr2 ’

T=Tmax

Vo = Vegr| (3.4)

with Veg(r = rmax) gives the maximum of Veg for r € (rprm/rs, 00). The expressions
of Ax’s could be found in [40, 42, 43, 88]. Note that n = 0,1,2,....

For the mode {l,n} (recall that we have set m = 0 so that it is not mentioned), some of
the results of w are shown in table 1. In this table we fix the factor B as B = 7.176 x 10%. In
addition, the GR limit, which is denoted as wgg, is also added as a comparison. Notice that,
to compare with the results given in [69], the modes with [ = 2,6 are included in table 1.
To see clearly the difference between a LQBH and a classical Schwarzschild BH with the
same mass, we have introduced the percent difference defined by

dw= 2 CR S 100%, (3.5)
WGR
with (dw) and F(dw) denote the real and imaginary parts of dw, respectively.

From table 1 we find that the value of dw is sensitive to the choice of A. Just like
what we have observed in the lower panel of figure 3, a huge A often results in negligible
deviations on QNMs between a LQBH and a classical Schwarzschild one. More importantly,
given a sufficiently large B and a reasonable A, the percent difference dw can well locate
in the observational window once the LIGO-Virgo-KAGRA detector network reaches its
designed sensitivity [47], whereby some constraints on these LQBHs can be found from
GW observations.

In addition, it is worth mentioning here that the corresponding value of 7y for each w
appearing in table 1 effectively reflects its deviation from that of GR (as implied by figure 1).
Let us take the | = 2 case as an example. Setting A = 5 leads to rj;g ~ 0.90003 while setting
A =20 leads to ryrg ~ 0.99434. Clearly, the latter is quite close to that of GR, for which we
have ryrg = 1 [cf., eq. 2.8], in comparing to the former. It thus makes sense to us that the
former tends to bring us an potentially observable deviation from that of GR as mentioned
earlier. Actually, if we enlarge our scope, we shall find that setting A = 3 will further putting
rym into approximately 0.50800, which is obviously far away from the GR case. Although
we did not show it explicitly in here, one can easily find out that the corresponding w’s for
A = 3 are indeed tremendously different from their counterparts of GR.

4 Conclusions

In this paper we have investigated QNMs of perturbations of a scalar field on the backgrounds
of a large class of LQBHs, which can be formed from gravitational collapse of realistic
matter [56, 57]. These solutions are characterized by three parameters, M, o and B [cf.
egs. (2.4) and (2.5), where M is the mass parameter, and « and B are the two quantum
parameters, characterizing the quantum geometric effects of the LQBHs. To see the effects of
these two quantum parameters, it is suggestive to introduce the dimensionless coordinates
(t,7), as defined by eq. (2.6), for which the spacetime can be cast in the form of eq. (2.10) with

f2

- 2
f(f):l—i+o‘<;+3> : (4.1)
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where

2
a= 4(;% = V3my? <f\zl> ~0 (10*77) , (4.2)
for a solar massive LQBH, M ~ 1038lpl. Therefore, when B ~ 0, the corresponding LQBHs
have negligible effects to the observations of such BHs. From eq. (2.4) it can be seen that
this is indeed the case for k = 0, +1. On the other hand, for k = —1, we have B = sinh?(Ry),
where Ry is the geometric radius of the collapsing dust ball. Therefore, depending on R,
the parameter B can be arbitrarily large, so that the leading term &B?/#? appearing in f(7)
can have observational effects for macroscopic LQBHs.

Motivated by the above considerations, we have calculated the QNMs of perturbations
of a scalar field in the backgrounds of the above LQBHs. In particular, we have found that
they sensitively depend on the ratio A = M /Mg, when B reaches a critical value, say, B,
which is of the order of B, ~ M, /I, ~ 1038, as shown in figure 2. Therefore, with B ~ B,
one can find significant deviations between a LQBH and a Schwarzschild one, for some values
of M (or A = M/Mg) as one can see from figures 1 and 2.

To be comparable with observations, in this paper we have mainly focused on the cases
A € (3,100). For such an interval of the LQBH masses, there exists an upper bound B,y of B,
only under which LQBHs exist. We have found that this maximal value is Byayx ~ 7.176 x 1038,
On the other hand, we have also found that, working with the dimensionless coordinates
(t,7) can significantly simplify the calculations of the QNMs of the LQBHs. With this in
mind, we have first studied the perturbations of the time-domain master equation (2.12).
Using the FDM method [cf., (3.1)], we have solved the equation and plotted the behavior of
In |¥(t,z = 0)| as a function of # in figure 3 (in which simply written as t) for the dominant
mode [ = 2. In the upper panel of this figure, we have fixed A\ = 3, while varying the
parameter B. On the other hand, in the lower panel, we have fixed B = 7.176 x 103® but
now varying A. Then, we have shown that only in the neighborhood of (B, \) ~ (B¢, 3) in
the phase space, can the deviations of the QNMs between LQBHs and the corresponding
classical BH become significant.

To find out more details, we have further calculated explicitly the values of w by solving
the master equation in the frequency-domain [cf., (3.2)]. The corresponding results are
exhibited in table 1. By examining the percent difference between the classical and LQG
BHs, defined by (3.5), we have shown that the percent difference as large as 2% (or larger)
can be obtained for various choices of {B,\}. These differences could be well within the
detectability of the forthcoming third-generation detectors of GWs [49, 55|, whereby one can
either rule out some regions of the phase space of the LQBHs or confirm them.

Finally, we note that our current work can be extended to several different directions.
For instance, one may study the QNMs of other LQBHs considered in [60-62]. On the other
hand, one may study the QNMs of metric perturbations of LQBHs recently developed in [79].
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