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Abstract: In this paper, we study the quasi-normal modes (QNMs) of a scalar field in the

background of a large class of quantum black holes that can be formed from gravitational

collapse of a dust fluid in the framework of effective loop quantum gravity. The loop quantum

black holes (LQBHs) are characterized by three free parameters, one of which is the mass

parameter, while the other two are purely due to quantum geometric effects. Among these

two quantum parameters, one is completely fixed by black hole thermodynamics and its

effects are negligible for macroscopic black holes, while the second parameter is completely

free (in principle). In the studies of the QNMs of such LQBHs, we pay particular attention to

the difference of the QNMs between LQBHs and classical ones, so that they can be observed

for the current and forthcoming gravitational wave observations, whereby place the LQBH

theory directly under the test of observations.
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1 Introduction

Black holes (BHs) are one of the most mysterious phenomena in the universe. The existence of

BHs provides us a perfect way to test gravitational effects under extremely strong gravitational

fields, such as the formation of gigantic jets and disruption of neighboring stars. On the other

hand, from the theoretical point of view, BHs are also excellent labs to test theories of gravity

that are different from general relativity (GR) (see, e.g., [1–8]). It is true that BHs were initially

only discovered as mathematical solutions of GR [9]. Nonetheless, observations have already

confirmed their existence, including those from gravitational wave (GW) observations [10],

which marks the beginning of a new era — the GW astronomy.

Following the first observation of GW, more than 90 GW events, which are all from

coalescences of compact bodies, black holes and/or neutron stars, have been identified

by the LIGO/Virgo/KAGRA (LVK) scientific collaborations [12–14, 16]. In the future,

more advanced ground- and space-based GW detectors will be constructed [17, 18], such as

Cosmic Explorer [19], Einstein Telescope [20], LISA [21], TianQin [22, 23], Taiji [24], and

DECIGO [25]. These detectors will enable us to probe signals with a much wider frequency

band and long distances. This has triggered the interest in the observation of quasi-normal

mode (QNM) of black holes [26, 27], extreme mass ratio inspirals (EMRIs) [28, 29], the effect

of dark matter on GWs [30, 31], to name only a few of them.

GWs emitted during the ringdown stage of a coalescence, where a massive black hole is

just formed, can be considered as the linear combination of the QNMs of the just formed BH,1

and are in general studied with the perturbation theory [38–44]. QNMs of such perturbations,

including scalar, vector (electromagnetic), and tensor (gravitational), have been extensively

studied in GR as well as in various modified theories of gravity. From the theoretical point

of view, QNMs are eigenmodes of dissipative systems and usually contain two parts, the

real part and the imaginary part. Its real part gives the frequency of vibration while its

1The BH just formed from the merge stage of two compact objects is highly nonlinear, and the linear

perturbation theory cannot be applied to the initial stage of such just formed BH. Thus, how to connect the

ringdown waveform determined by QNMs is still an open question [36, 37]. In this paper, we shall not consider

such a matching, and simply consider only the times during which the GWs can be well expressed as linear

combinations of QNMs.
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imaginary part provides the damping time. The information contained in QNMs provide the

keys in revealing whether BHs are ubiquitous in our universe, and more important whether

GR is the correct theory to describe gravity even in the strong field regime. As a matter

of fact, according to the no-hair theorem of GR, BHs are described uniquely by only three

parameters, mass, charge and angular momentum. Thus, in GR QNMs are functions of only

these three parameters. Hence, observing such modes can directly test such relations. For

more details, we refer readers to [26, 27, 45, 46].

On the other hand, from the observational point of view, the sensitivities of the current

detectors limit the detection of QNMs mainly to the dominant modes, and it is still an

ongoing debate on whether other modes can be observed by LIGO, Virgo and KAGRA [47–

54]. However, with the technological advances, it is strongly believed that the upcoming

third-generation detectors, either the ground-based or the space-based ones, will be able to

detect various sub-leading modes, see for example, [55] and references therein.

In this paper, we shall focus on the QNMs of a large class of quantum BHs in the context

of effective loop quantum gravity (LQG) [56, 57]. It should be noted that QNMs of loop

quantum black holes (LQBHs)2 have been already studied extensively [29, 66–78]. However,

in most of these models, the observational effects are negligible for macroscopic BHs. The

LQBHs to be studied in this paper are distinguishable from the previous ones in the senses:

(a) They can be directly formed from the gravitational collapse of a spherically symmetric

dust cloud; and (b) the solutions usually contain three free parameters, one is the mass of the

BH, and the other two characterize the quantum geometric effects. Among the two quantum

parameters, one is completely fixed by the black hole thermodynamics, whose observational

effects are always negligible for macroscopic BHs. On the other hand, the second quantum

parameter is free [57]. Our major goal here is to study its effects to QNMs, in order to obtain

observational constraints on this second quantum parameter.

The rest of the paper is organized as follows: section 2 describes briefly the LQBH

solutions we are going to study in this paper and the equations for a scalar field moving

in such backgrounds. The latter leads to the master equation for the study of QNMs.

Knowing this, in section 3 we calculate the QNMs for both the time- and frequency-domains

since the former reflects a comprehensive effect of various different modes (to be introduced

below), while the latter provides a more quantitative evidence for the confinement to the

coupling-parameter phase space with future GW missions. Some of our concluding remarks

and future outlooks are given in section 4.

Before proceeding further, we would like to note that linear perturbations of spherically

symmetric LQBH spacetimes have not been worked out yet in the framework of LQG,

although some important steps were already taken [79]. In particular, the QNMs of the

scalar perturbations studied in this paper cannot be compared directly with the QNMs of

spin-2 gravitons of black holes studied in GR, which are directly related to the gravitational

waveforms emitted in the ringdown phase [26, 27, 45, 46]. So, in this paper, what we are

comparing with are the QNMs of a scalar field moving in the backgrounds of LQBHs and the

QNMs of the same scalar field moving in the Schwarzschild BH background of GR, as we

2Loop quantum black holes have been studied extensively in the past decades or so. For details, see [58–65]

and references therein.
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believe that the deviations of the scalar perturbations between these two theories are of the

same order as that of the deviations of the spin-2 gravitons between the two same theories.

In addition, in this paper we are adopting the unit system so that c = G = ℏ = 1, where

c denotes the speed of light, G is the gravitational constant, and ℏ the Planck constant

divided by 2Ã. All the Greek letter in indices run from 0 to 3. The other usages of indices

will be described at suitable places.

2 LQBH background and scalar perturbation

In this section, we shall first introduce briefly the background of a spherically symmetric loop

quantum black hole formed from the gravitational collapse of a homogeneous and isotropic

dust fluid in the framework of effective theory of loop quantum gravity [56, 57], and then

consider the linear perturbations of a scalar field in such backgrounds [80]. In doing so, we

ignore the back-reactions of the scalar field.

2.1 Loop Quantum black holes formed from gravitational collapse

The LQBH solution we are studying is given by [57]

ds2
+ = −f(r)dt2 +

1

f(r)
dr2 + r2dΩ2, (2.1)

where

f(r) = 1 − 2M

r
+

³

r2

(

M

r
+

B

2

)2

, (2.2)

and dΩ2 = d¹2 + sin2 ¹dφ2. Here B is a dimensionless coupling parameter. Considering the

above solution as describing the external spacetime of a collapsing ball, while inside the ball

the spacetime is described by the FLRW universe

ds2
− = −dT 2 + a2

(

dR2 + Ç2
k(R)dΩ2

)

, (2.3)

it was found that the junction conditions lead to [57]

B = −kÇ2
k(R0) =























− sin2(R0), k = 1,

0, k = 0,

sinh2(R0), k = −1,

(2.4)

where R0 denotes the junction surface. The factor ³, which has the dimension of r2, is

given by [57, 81]

³ = 16
√

3Ãµ3ℓ2
pl, (2.5)

where ℓpl denotes the Planck length, and µ is known as the Barbero-Immirzi parameter whose

value is set to µ ≈ 0.2375 using black hole thermodynamics in LQG [82].

To calculate QNMs of the above BHs, let us first introduce the dimensionless coor-

dinates t̃ and r̃

t = rst̃, r = rsr̃, (2.6)
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where rs ≡ 2M . Then, in terms of t̃ and r̃, the metric reduces to

ds2
+ = r2

s

(

−f(r̃)dt̃2 +
d2r̃

f(r̃)
+ r̃2d2Ω

)

≡ r2
sds̃2, (2.7)

where

f(r̃) = 1 − 1

r̃
+

³̃

r̃2

(

1

r̃
+ B

)2

,

³̃ ≡ ³

4r2
s

=
√

3Ãµ3

(

ℓpl

M

)2

. (2.8)

Note that for solar-mass BHs, we have M ≃ 1038 ℓpl, so that (the dimensionless) ³̃ ≃
O
(

10−77
)

. That is, for macroscopic BHs, the quantum gravitational effects from the ³

terms are negligible, unless the combination of ³̃B is large, a condition that we will assume

in order to compare the resultant QNMs of LQBHs with GW observations. Considering

eq. (2.4), we find that this is possible only when k = −1. As a result, the values of B to

be considered will be a non-negative number.

On the other hand, since ds2
+ and ds̃2 are related conformally with a constant conformal

factor [cf., (2.7)], the physics of the spacetimes of ds2
+ can be obtained directly from that

of the spacetimes of ds̃2. In particular, by following the same manner of definition, we

have R = R̃/r2
s and

É̃ ≡ rsÉ, (2.9)

where É and the dimensionless É̃ are the QNMs of ds2
+ and ds̃2, respectively, and R and

R̃ are their corresponding curvatures.3 Therefore, in the rest of the paper we shall work

with the spacetime described by ds̃2, i.e.

ds̃2 = −f(r̃)dt̃2 +
d2r̃

f(r̃)
+ r̃2d2Ω, (2.10)

when we calculate the QNMs of the quantum BHs. Then, using eq. (2.9) we can easily

read off É for a given BH with mass M .

Moreover, by looking at eq. (2.2), we immediately notice that a positive radius of the

metric horizon rMH , which is defined through f(r = rMH) = 0, is absent at the M → 0 limit.

Therefore, by requiring rMH > 0, we have to look at the cases where M is large enough.

Keeping this in mind, in this paper we shall consider the cases of ¼ ≡ M/M» ∈ (3, 100)4

in this current paper, where M» denotes the solar mass.

3One should avoid confusing the curvature R in here with the R coordinate appearing in (2.3).
4In order to study their observational results, in this paper we mainly consider BHs with masses in the

order of the solar mass or larger. In particular, the current GW observations set the lower limit to about 3M»

(See., e.g., [83]), which makes it reasonable for us to consider the range M/M» ∈ (3, 100). As will be seen

later, the difference on QNMs between a LQBH and a Schwarzschild BH sensitively depends on the ratio

M/M» when that is relatively small. After it has reached to about 100 (and even before that), the difference

is observationallly negligible. That is why we set the upper limit to 100 in here.
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M=100M
M=3M

3.2×10
17

1.0×10
30

0.7

0.8

0.9

1.0

1.1

B

r M
H

2
M

Figure 1. The behavior of the dimensionless quantity rMH/(2M) as a function of B for different

values of M .

Knowing this, we are on the position of determining an approximate upper limit for B by

requiring rMH > 0 for ¼ ∈ (3, 100). By plotting out the behavior of rMH as a function of B

for the range of M under consideration in figure 1, we can notice an approximate upper limit

of B. A more careful study to the equation f(r = rMH) = 0 shows that, for a positive rMH

to exist for any ¼ ∈ (3, 100), the upper limit of B is about Bmax ≈ 7.176 × 1038. It is worth

mentioning here that, to avoid confusions arising by using different unit systems, in figure 1

we are focusing on the dimensionless quantity rMH/(2M) (instead of the quantity rMH itself).

Therefore, the curves of figure 1 will not be changed when considering different unit systems.

In addition, by observing figure 1, we also notice that the value of rMH/(2M) will soon

deviate from that of GR when B reaches a critical point (For the M/M» = 3 case, that

critical point is located around B = 1038, which is very close to the upper limit of B). Before

getting close to such a critical point, it is very hard to distinguish the value of rMH/(2M)

from its GR counterpart. This implies that one may find the observable difference between a

LQBH and a Schwarzschild one only for sufficiently large B’s (which should be quite close to

Bmax). Yet, such a critical point is getting larger and larger as M increases. Therefore, given

an overall Bmax (obtained from the M/M» = 3 case), we expect to barely see deviations

between a LQBH and the corresponding Schwarzschild one for very large M ’s. We shall

come back to these points later.

2.2 Perturbations of a scalar field

Since in the rest of this paper we shall work only with the background described by the

metric (2.10) and the dimensionless coordinates t̃ as well as r̃, without causing any confusion,

we shall drop the tildes from the dimensionless coordinates (t̃, r̃) and the corresponding

– 5 –
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quantities. Then, following [69] we consider the scalar perturbations that obey the Klein-

Gordon equation5

1√−g
∂µ

(√−ggµν∂νΦ
)

= 0, (2.11)

where Φ = Φ(t, r, ¹, φ) denotes the scalar field. By decomposing it through the spherical

harmonics Ylm(¹, φ) as Φ = YlmΨ(t, r)/r, a master equation of Ψ is obtained as

∂2

∂x2
Ψ +

(

− ∂2

∂t2
+ Veff(r)

)

Ψ = 0, (2.12)

where the effective potential Veff is given by

Veff ≡ f
L

r2
+

1

2r

df2

dr
, (2.13)

with L ≡ l(l + 1), and x the tortoise coordinate defined through

dr

dx
= f(r). (2.14)

Notice that, since r is dimensionless, x is actually also dimensionless. Also notice that, when

the background has spherical symmetry, the perturbations are independent of the choice

of the angular index m [44]. Thus, without loss of the generality, we shall set m = 0. For

a given function f(r) and choosing a suitable value of l, we can solve (2.12) for Ψ (which

contains the information of QNMs) for a BH.

In fact, the behavior of Veff is directly related to the results of QNMs. Therefore, to

take a glance to the influence of {B, ¼} on the consequence, we first check their influence

on Veff(r). The behavior of Veff is plotted in figure 2 by setting l = 2. In the upper panel

we fix ¼ = M/M» = 3 and plot out different curves with a varying B factor. In contrast, in

the lower panel we fix B = Bmax = 7.176 × 1038 and plot out different curves with a varying

¼ ∈ (3, 100). Notice that, the Veff from GR is added to there as a comparison.

The upper panel of figure 2 implies that an observable deviation between a LQBH and a

Schwarzschild one requires an extremely large B, which is consistent with what we observed

from figure 1. On the other hand, as expected (again by observing figure 1), the lower

panel reflects that the deviation on Veff from its GR counterpart will soon fade away once

¼ becomes relatively large (e.g., when it is larger than 20), even with B = Bmax. From

the qualitative point of view, figure 2 provides us with a good reference on choosing the

parameters from the phase space of {B, ¼} when calculating for QNMs in the next section.

Although we are not going to follow figure 2’s choices precisely, that gives some hints to

the choice of the parameters.

5In this paper, we consider only the relativistic dispersion relation. In principle, higher-order corrections

can be also included. But, these high-order terms are of order of O(Kn/Mn−2
pl ) with n g 4, where K denotes

the curvature of the macroscopic BHs, which is quite lower than the Planck scale, Mpl k K outsides of such

macroscopic BHs. Therefore, for the QNMs of macroscopic BHs, these corrections are negligible. For more

details, see, for example, ref. [90] and references therein.
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GR B=10
38

B=4×10
38

B=6×10
38

B=7.176×10
38

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

r

V
e
ff

GR λ=20 λ=5 λ=3.5 λ=3

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

r

V
e
ff

Figure 2. The behavior of Veff as a function of r (which is in its dimensionless form). Upper panel: for

the ¼ = M/M» = 3 and l = 2 case by varying the parameter B. Lower panel: for the B = 7.176×1038

and l = 2 case by varying the parameter ¼. The GR case is also exhibited in here as a comparison.

3 Quasi-normal modes of LQBHs

First of all, we try to solve eq. (2.12) in the time-domain with the finite difference method

(FDM) [7, 30, 84]. One advantage of such a method is that, for any chosen l, the final result

from it can reflect comprehensively the influence of a bunch of different modes (represented

by {m, n}, although m can be always set to zero in the spherical case without loss of the

generality, as mentioned earlier. It must not be confused this m with the mass parameter

M of the LQBHs.). To apply the FDM, we first introduce two new variables µ ≡ t − x and

¿ ≡ t + x [so that t = (¿ + µ)/2 and x = (¿ − µ)/2].6 Therefore, on a (N + 1) × (N + 1)

lattice (where N is a positive integer that will be chosen properly according to our usage),

6An important feature of the FDM is that in using it, we need the exact form of x(r), in addition to its

derivative with respect to r. Therefore, according to the definition (2.14), we have to assign x an integral

constant to absolutely fix it. In fact, such a constant could be chosen arbitrarily and it’s independent of our

results for calculating QNMs. Thus, we made a simple choice by letting x(r = 2) = 2, which is consistent with

the general choice in GR (See e.g., [41]).
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GR B=3×1038 B=4.5×1038

B=7×1038 B=7.176×1038

0 10 20 30 40 50

-15

-10

-5

0

t

ln
|Ψ(t,x

=
0
)|

GR λ=20 λ=8 λ=5 λ=3
0 10 20 30 40 50

-15

-10

-5

0

t

ln
|Ψ(t,x

=
0
)|

Figure 3. The behavior of ln |Ψ(t, x = 0)| as a function of t (which is in its dimensionless form).

Upper panel: for the ¼ = M/M» = 3 and l = 2 case with the variation of the parameter B. Lower

panel: for the B = 7.176 × 1038 and l = 2 case with the variation of the parameter ¼. The GR case is

also exhibited in here as a comparison.

we perform the calculation of Ψ(µ, ¿) by using the recursion formula

Ψ(µ + ¶h, ¿ + ¶h) ∼= Ψ(µ, ¿ + ¶h) + Ψ(µ + ¶h, ¿) − Ψ(µ, ¿)

− 1

8
¶h2Veff (r)

[

Ψ(µ, ¿ + ¶h) + Ψ(µ + ¶h, ¿)
]

, (3.1)

where ¶h is the step size (which will be chosen properly in reality by measuring our tolerance of

accuracy). The boundary conditions are given by Ψ(µ, ¿ = 0) = 0 (µ ≠ 0) and Ψ(µ = 0, ¿) =

exp[−(¿ − 1)2/2]. Thus, after N2 iterations, we find all the Ψ(n¶h, n¶h)’s for n ∈ [0, N ] ∩ Z.

From that we can calculate Ψ(t, x = 0) by using the relation Ψ(t, x = 0) = Ψ(µ, µ).

Then, the results are shown in the upper panel of figure 3. For the case with ¼ =

M/M» = 3 and l = 2, the behavior of ln |Ψ(t, x = 0)| (which encodes the information of

various QNM frequencies) is plotted out as a function of t for different values of B (with

these values chosen by referring figure 2). It should be noted that the variable t here is

dimensionless, which was previously written as t̃ = t/rs. The GR case is also added as a

comparison. Just like what we have observed from figure 2, the result is not very sensitive

– 8 –
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GR λ = 20 λ = 10 λ = 5

l n ωGR ω ℜ(δω) ℑ(δω) ω ℜ(δω) ℑ(δω) ω ℜ(δω) ℑ(δω)

2 0 0.96728 − 0.19353i 0.97096 − 0.19377i 0.4% 0.1% 0.98235 − 0.19445i 1.6% 0.5% 1.03475 − 0.19666i 7.0% 1.6%

2 1 0.92769 − 0.59125i 0.93154 − 0.59191i 0.4% 0.1% 0.94349 − 0.59380i 1.7% 0.4% 0.99872 − 0.59958i 7.6% 1.4%

2 2 0.86077 − 1.01740i 0.86491 − 1.01833i 0.5% 0.1% 0.87779 − 1.02096i 2.0% 0.4% 0.93776 − 1.02794i 8.9% 1.0%

3 0 1.35073 − 0.19300i 1.35585 − 0.19324i 0.4% 0.1% 1.37173 − 0.19393i 1.6% 0.5% 1.44474 − 0.19618i 7.0% 1.6%

3 1 1.32134 − 0.58458i 1.32659 − 0.58526i 0.4% 0.1% 1.34287 − 0.58725i 1.6% 0.4% 1.41799 − 0.59356i 7.3% 1.5%

3 2 1.26718 − 0.99202i 1.27267 − 0.99308i 0.4% 0.1% 1.28971 − 0.99612i 1.8% 0.4% 1.36870 − 1.00519i 8.0% 1.3%

6 0 2.50377 − 0.19261i 2.51324 − 0.19285i 0.4% 0.1% 2.54262 − 0.19354i 1.6% 0.5% 2.67774 − 0.19582i 6.9% 1.7%

6 1 2.48750 − 0.57947i 2.49705 − 0.58018i 0.4% 0.1% 2.52665 − 0.58224i 1.6% 0.5% 2.66293 − 0.58895i 7.0% 1.6%

6 2 2.45569 − 0.97120i 2.46537 − 0.97236i 0.4% 0.1% 2.49542 − 0.97572i 1.6% 0.5% 2.63397 − 0.98646i 7.3% 1.6%

Table 1. Various modes of É (in its dimensionless form, for which we dropped the “tilde” as mentioned

earlier) for LQBHs with different masses that characterized by ¼. The GR limit of É for each mode

is provided and the percent difference with the GR limit is shown. The factor B is fixed to be

B = 7.176 × 1038.

to the value of B, especially when it is not large enough, so that the deviation between

the curves of GR (represented by the red dashed line) and that of the case B = 3 × 1038

(represented by the green solid line) is still moderate. In contrast, once B reached certain

critical values, the difference becomes obvious. That is why we observe a relatively large

deviation between the curves of the B = 4.5 × 1038 case (represented by the blue dashed

line) and that of the B = 7 × 1038 case (represented by the purple solid line). On the other

hand, by observing the upper panel of figure 3 we also notice that the frequency of vibration

is getting bigger as the factor B increases.

Similarly, we show the corresponding results when changing ¼ in the lower panel of

figure 3 (with its values chosen by referring figure 2). By setting B = 7.176 × 1038 and

l = 2, the behavior of ln |Ψ(t, x = 0)| is plotted out as a function of t. We also add the

GR case in order to make a comparison. As we expect from figure 1, we can barely see

the deviations between the curve of a LQBH with large masses (e.g., the one represented

by the green solid line) and that of GR (represented by the red dashed line), even if the

parameter B is chosen to be Bmax. In contrast, given a relatively small ¼ (e.g., the one

represented by the blue dashed line), we can observe a significant deviation. On the other

hand, by observing the lower panel of figure 3 we also notice that the frequency of vibrations

is getting bigger with the decrease of the factor ¼.

On the other hand, eq. (2.12) can be written in its frequency-domain as [30]

∂2

∂x2
Ψ +

(

É2 + Veff(r)
)

Ψ = 0, (3.2)

where É, representing the dimensionless quantity É̃ introduced in eq. (2.9), is the QNM

frequency to be calculated. To solve for É from (3.2), among various existing methods

(see, e.g., [85–87]), here we introduce the WKB method [30]. The QNM frequency can be

calculated up to the 6th order by using

É =

√

√

√

√

√−i





(

n +
1

2

)

+
6
∑

k=2

Λk





√

−2V ′′
0 + V0, (3.3)
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where

V0 ≡ Veff |r=rmax
, V ′′

0 ≡ dVeff

dr2

∣

∣

∣

∣

∣

r=rmax

, (3.4)

with Veff(r = rmax) gives the maximum of Veff for r ∈ (rMH/rs, ∞). The expressions

of Λk’s could be found in [40, 42, 43, 88]. Note that n = 0, 1, 2, . . ..

For the mode {l, n} (recall that we have set m = 0 so that it is not mentioned), some of

the results of É are shown in table 1. In this table we fix the factor B as B = 7.176 × 1038. In

addition, the GR limit, which is denoted as ÉGR, is also added as a comparison. Notice that,

to compare with the results given in [69], the modes with l = 2, 6 are included in table 1.

To see clearly the difference between a LQBH and a classical Schwarzschild BH with the

same mass, we have introduced the percent difference defined by

¶É ≡ É − ÉGR

ÉGR

× 100%, (3.5)

with ℜ(¶É) and ℑ(¶É) denote the real and imaginary parts of ¶É, respectively.

From table 1 we find that the value of ¶É is sensitive to the choice of ¼. Just like

what we have observed in the lower panel of figure 3, a huge ¼ often results in negligible

deviations on QNMs between a LQBH and a classical Schwarzschild one. More importantly,

given a sufficiently large B and a reasonable ¼, the percent difference ¶É can well locate

in the observational window once the LIGO-Virgo-KAGRA detector network reaches its

designed sensitivity [47], whereby some constraints on these LQBHs can be found from

GW observations.

In addition, it is worth mentioning here that the corresponding value of rMH for each É

appearing in table 1 effectively reflects its deviation from that of GR (as implied by figure 1).

Let us take the l = 2 case as an example. Setting ¼ = 5 leads to rMH ≈ 0.90003 while setting

¼ = 20 leads to rMH ≈ 0.99434. Clearly, the latter is quite close to that of GR, for which we

have rMH = 1 [cf., eq. 2.8], in comparing to the former. It thus makes sense to us that the

former tends to bring us an potentially observable deviation from that of GR as mentioned

earlier. Actually, if we enlarge our scope, we shall find that setting ¼ = 3 will further putting

rMH into approximately 0.50800, which is obviously far away from the GR case. Although

we did not show it explicitly in here, one can easily find out that the corresponding É’s for

¼ = 3 are indeed tremendously different from their counterparts of GR.

4 Conclusions

In this paper we have investigated QNMs of perturbations of a scalar field on the backgrounds

of a large class of LQBHs, which can be formed from gravitational collapse of realistic

matter [56, 57]. These solutions are characterized by three parameters, M , ³ and B [cf.

eqs. (2.4) and (2.5), where M is the mass parameter, and ³ and B are the two quantum

parameters, characterizing the quantum geometric effects of the LQBHs. To see the effects of

these two quantum parameters, it is suggestive to introduce the dimensionless coordinates

(t̃, r̃), as defined by eq. (2.6), for which the spacetime can be cast in the form of eq. (2.10) with

f(r̃) = 1 − 1

r̃
+

³̃

r̃2

(

1

r̃
+ B

)2

, (4.1)
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where

³̃ ≡ ³

4r2
s

=
√

3Ãµ3

(

ℓpl

M

)2

≃ O
(

10−77
)

, (4.2)

for a solar massive LQBH, M ≃ 1038lpl. Therefore, when B ≃ 0, the corresponding LQBHs

have negligible effects to the observations of such BHs. From eq. (2.4) it can be seen that

this is indeed the case for k = 0, +1. On the other hand, for k = −1, we have B = sinh2(R0),

where R0 is the geometric radius of the collapsing dust ball. Therefore, depending on R0,

the parameter B can be arbitrarily large, so that the leading term ³̃B2/r̃2 appearing in f(r̃)

can have observational effects for macroscopic LQBHs.

Motivated by the above considerations, we have calculated the QNMs of perturbations

of a scalar field in the backgrounds of the above LQBHs. In particular, we have found that

they sensitively depend on the ratio ¼ = M/M», when B reaches a critical value, say, Bc,

which is of the order of Bc ≃ M»/lpl ≃ 1038, as shown in figure 2. Therefore, with B ≃ Bc

one can find significant deviations between a LQBH and a Schwarzschild one, for some values

of M (or ¼ ≡ M/M») as one can see from figures 1 and 2.

To be comparable with observations, in this paper we have mainly focused on the cases

¼ ∈ (3, 100). For such an interval of the LQBH masses, there exists an upper bound Bmax of B,

only under which LQBHs exist. We have found that this maximal value is Bmax ≈ 7.176×1038.

On the other hand, we have also found that, working with the dimensionless coordinates

(t̃, r̃) can significantly simplify the calculations of the QNMs of the LQBHs. With this in

mind, we have first studied the perturbations of the time-domain master equation (2.12).

Using the FDM method [cf., (3.1)], we have solved the equation and plotted the behavior of

ln |Ψ(t, x = 0)| as a function of t̃ in figure 3 (in which simply written as t) for the dominant

mode l = 2. In the upper panel of this figure, we have fixed ¼ = 3, while varying the

parameter B. On the other hand, in the lower panel, we have fixed B = 7.176 × 1038 but

now varying ¼. Then, we have shown that only in the neighborhood of (B, ¼) ≈ (Bc, 3) in

the phase space, can the deviations of the QNMs between LQBHs and the corresponding

classical BH become significant.

To find out more details, we have further calculated explicitly the values of É by solving

the master equation in the frequency-domain [cf., (3.2)]. The corresponding results are

exhibited in table 1. By examining the percent difference between the classical and LQG

BHs, defined by (3.5), we have shown that the percent difference as large as 2% (or larger)

can be obtained for various choices of {B, ¼}. These differences could be well within the

detectability of the forthcoming third-generation detectors of GWs [49, 55], whereby one can

either rule out some regions of the phase space of the LQBHs or confirm them.

Finally, we note that our current work can be extended to several different directions.

For instance, one may study the QNMs of other LQBHs considered in [60–62]. On the other

hand, one may study the QNMs of metric perturbations of LQBHs recently developed in [79].
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