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ABSTRACT: The Alkene-Carboxylate Transposition (ACT) of allyl carboxylates is one of the most atom-economic and syntheti-
cally reliable transformations in organic chemistry, as allyl carboxylates are versatile synthetic intermediates. Classic ACT transfor-
mations, including 3,3-sigmatropic rearrangement and transition metal-catalyzed allylic rearrangement, typically yield 1,2-al-
kene/1,3-acyloxy shifted products through a two-electron process. However, position-altered ACT to produce distinct 1,3-alkene/1,2-
acyloxy shifted products remains elusive. Here, we report the first cobalt-hydride catalyzed ACT of allyl carboxylates, enabling
access to these unprecedented 1,3-alkene/1,2-acyloxy shifted products via a 1,2-radical migration (RaM) strategy. This transformation
demonstrates broad functional group tolerance, is suitable for late-stage modification of complex molecules, and is amenable to gram-
scale synthesis. It also expands the reaction profiles of both allyl carboxylates and cobalt catalysis. Preliminary experimental and
computational studies suggest a mechanism involving metal-hydride hydrogen atom transfer (MHAT) and 1,2-RaM process. This
reaction is expected to serve as the basis for the development of versatile Co-H catalyzed transformations of allyl carboxylates,

generating a wide array of valuable building blocks for synthetic, medicinal, and materials chemistry.

Allyl carboxylates are essential synthetic intermediates,
known for their versatility and capacity to undergo a wide range
of reliable derivatizations.! Given their importance, harnessing
the new reactivity of allyl carboxylates is crucial for advancing
organic synthesis. Among the transformations available, the Al-
kene-Carboxylate Transposition (ACT) of allyl carboxylates
stands out as one of the most atom-economical and synthetically
reliable methods in organic chemistry. The classical 3,3-sigma-
tropic rearrangement of allyl carboxylates is widely applied in
industries such as fragrances and pharmaceuticals, where it
serves as a key building block for complex molecular architec-
tures.” Additionally, transition metal-catalyzed allylic rear-
rangement, which includes ACT, further enriches the repertoire
of these transformations by yielding thermodynamically stable
1,2-alkene/1,3-acyloxy shifted products through a two-electron
process (Figure 1A).> However, the development of position-
altered ACT of allyl carboxylates to produce distinct 1,3-al-
kene/1,2-acyloxy shifted products remains elusive.

Cobalt catalysis has become a dynamic field in organic syn-
thesis, driven by cobalt's unique reactivity and abundance in the
Earth's crust.* Notably, cobalt hydride species, common active
catalytic intermediates, have shown remarkable efficacy in re-
dox-neutral catalysis, particularly in olefin isomerization via 3-
hydride elimination/migratory insertion or metal-hydride hy-
drogen atom transfer (MHAT).* > These processes generate
synthetically valuable olefins, expanding the chemist's toolkit.
Typically, cobalt-hydride transfers an H-atom to an olefin, cre-
ating a C-H bond at a less electronically stabilized position and
forming a radical center. A subsequent H-atom abstraction at a
more stabilized position results in the isomerized olefin. More
recently, elegant contra-thermodynamic positional olefin isom-
erization has been achieved by merging cobalt catalysis with
photochemical irradiation.® Despite these advances, Co-H cata-
lyzed alkene isomerization accompanied by functional group
migration, such as an acyloxy shift, has not been reported.

Inspired by the Surzur-Tanner rearrangement—where a f3-
(acyloxy)alkyl radical undergoes 1,2-radical migration (RaM)
via an acyloxy shift to yield a more stable radical intermedi-
ate’— we wonder if we could merge MHAT with 1,2-RaM to
achieve position-altered ACT of allyl carboxylates, producing
1,3-alkene/1,2-acyloxy shifted products distinct from those
formed by 3,3-sigmatropic rearrangement or transition metal-
catalyzed alkene/carboxylate transposition. Our mechanistic
hypothesis involves Co-H catalyzed MHAT to form radical in-
termediate I, followed by 1,2-radical migration (RaM) and site-
selective Co-catalyzed HAT, yielding the desired products
while regenerating the Co-H catalyst (Figure 1C). Successfully
achieving this transformation will be significant because it (i)
expands the reaction profiles of allyl carboxylates and cobalt-
catalyzed redox-neutral transformations, (ii) enables the ACT
of allyl carboxylates to access products distinct from conven-
tional two-electron processes, (iii) allows new bond disconnec-
tion in organic synthesis, and (iv) establishes a general platform
for 1,3-hydrofunctionalization of allyl carboxylates through the
homolytic activation of C-O bonds in carboxylates.
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Figure 1. Reactions of allyl carboxylates and cobalt-catalyzed ole-
fine isomerization.

To test our hypothesis, we commence our study using 4-vi-
nyltetrahydro-2H-pyran-4-yl benzoate 1a as the model sub-
strate (Table 1). Through a systematic exploration of reaction
parameters, we found that employing CoSalen as the catalyst
(20 mol%), along with PhSiH; (0.75 equiv) and Selectfluor
(0.75 equiv) in a solvent mixture of DCE/tert-BuOH (0.04 M,
4:1), at a reaction temperature of 90 °C for 48 hours, yielded the
desired ACT product 2a in an 87% yield (entry 1). The essential
role of the cobalt catalyst in facilitating the desired reactivity
was demonstrated by the complete lack of reaction in its ab-
sence (entry 2). The reaction shows insensitivity to the stereo-
chemistry of the diamine ligand [Co(cis-Salen)], but switching
to different cobalt catalysts like CoSalen-1 and CoSalen-2 re-
duced the yield to 43%-52% (entries 3-5). Furthermore,
Co(OAc),-4H,0 was ineffective, failing to produce the desired
product (entry 6), indicating that the ligand scaffold signifi-
cantly influences the reactivity. PhSiH; was crucial for initiat-
ing the reaction, acting as the hydrogen source to form the ac-
tive Co-H species. The reaction did not proceed when PhSiH3
was omitted or replaced with Et;SiH or PhsSiH (entries 7-9).
Additionally, the use of Selectfluor was vital for converting Co™
to Co'“F, whereas employing NFSI (N-

Fluorobenzenesulfonimide) as an oxidant led to decreased
yields (entries 10-11).® Replacing DCE with MeCN reduced the
reaction efficiency (entry 12). Consistent with many Co-H cat-
alytic systems, the addition of a polar, protic solvent, --BuOH,
was crucial for maintaining high catalytic efficiency by gener-
ating an alkoxysilane in situ (entry 13).>™° Intriguingly, water
also served as an effective additive, yielding a comparable
amount of the desired product (entry 14).° An elevated temper-
ature of 90 °C was necessary to facilitate 1,2-radical migration,
leading to a more stable radical intermediate (entry 15). Nota-
bly, the reaction is insensitive to air and afforded the desired
product in comparable yield, demonstrating its robustness and
operational simplicity (entries 16).

Table 1. Selected optimization experiments”
CoSalen (20 mol%)

BzO — PhSiH, (0.75 equiv) BzO Me
Selectfluor (0.75 equiv)
fg DCE/-BUOH (0.02 M, 4:1) -
(e) 90 °C,48 h 0
1a, 0.020 mmol "standard conditions" 2a
Entry Deviation from the standard conditions Yield (%)
1 none 87
2 without CoSalen N.R.
3 Co(cis-Salen) instead of CoSalen 85
4 CoSalen-1 instead of CoSalen 51
5 CoSalen-2 instead of CoSalen 43
6 Co(OAc),#4H,0 instead of CoSalen 0
7 without PhSiH3 N.R.
8 Et;SiH instead of PhSiH; N.R.
9 Ph3SiH instead of PhSiH; N.R.
10 without selectfluor 64
1 NFSl instead of selectfluor 59
12 MeCN instead of DCE 31
13 without --BuOH 62
14 H,0 instead of t-BuOH 76
15 rt 36
16 air 80
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“See Supporting Information (SI) for experimental details. Reac-
tion yields were determined by 'H-NMR using CH2Br: as an inter-
nal standard. Bz, benzoyl; DCE, 1,2-dichloroethane; N.R., no reac-
tion; NSFI, N-Fluorobenzenesulfonimide.
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aSee SI for experimental details, 1 (0.200 mmol, 1.00 equiv), CoSalen (20.0 mol%), PhSiH3 (0.75 equiv), selectfluor (0.75 equiv), DCE (8.00

mL), ~-BuOH (2.00 mL), 90 °C, 48 h.

With the optimized reaction conditions in hands, we ex-
plored the reaction scope of allyl carboxylates, as summarized
in Table 2. A diverse array of substituted allyl carboxylates, in-
cluding both cyclic and linear frameworks, reacted smoothly,
delivering the corresponding products 2a-2r in satisfactory

Table 3. Late-Stage Modification of Complex Molecules”

yields ranging from 56% to 91%. Substrates featuring cyclic
ether and thioether moieties (2a & 2b), diverse cyclic ring sys-
tems including 5, 6, and 12-membered rings (2¢-2f), and those
with the ethylene ketal group (2g) were compatible under the
standard reaction
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See SI for experimental details. 1 (0.200 mmol, 1.00 equiv), CoSalen (20.0 mol%), PhSiH3 (0.75 equiv), selectfluor (0.75 equiv),

DCE (8.00 mL), --BuOH (2.00 mL), 90 °C, 48 h.

conditions. The reaction scope can be further extended to acy-
clic system. For example, a dimethyl-substituted allyl carbox-
ylate reacted smoothly, forming the arranged allyl carboxylate
2i in 80% yield. For non-symmetric allyl carboxylates, such as
the methylcyclohexanyl-substituted substrate, where competi-
tion in the HAT step occurs between primary and tertiary hy-
drogen atoms, the Co exclusively abstracts the primary hydro-
gen atom, forming the kinetic, terminal alkene product 2j in ex-
cellent yield. Conversely, when HAT competes between sec-
ondary and primary hydrogen atoms, cobalt catalyst preferen-
tially abstracts from the secondary carbon, yielding

thermodynamically more stable products 2k-2r. These findings
demonstrate that the CoSalen catalysts are highly sensitivity to
substrate sterics. Moreover, a diverse array of functional
groups, such as phenyl, chloro, bromo, siloxyl, acyloxyl, hy-
droxyl, ester, and phthalimide, were well-tolerated, furnishing
the corresponding products 2Kk-2r in good to excellent yields.

Further exploration revealed a wide range of effective mi-
grating groups under standard conditions, including acetate, 2-
chloroacetate, and 2-methoxylacetate (2s-2u). Additionally, do-
decanoate and cyclohexanecarboxylate proved to be proficient



migrating groups, yielding 66% and 80% of the desired prod-
ucts, respectively (2v-2w). Notably, both electron-donating and
electron-withdrawing substituents at various positions of the ar-
omatic ring underwent ACT, affording the corresponding prod-
ucts (2x-2af) in yields ranging from 59% to 94%. The versatil-
ity of the developed protocol was further demonstrated by suc-
cessful migration of allyl carboxylates featuring ortho-, meta-,
and para-substituted benzoate groups. Moreover, 2-naph-
thanenyl carboxylates and heteroaryl carboxylates, including
thiophene-2-carboxylate, 1,3-dimethyl-1H-pyrazole-5-carbox-
ylate, 2-bromothiazole-5-carboxylate, 4-methylthiazole-5-car-
boxylate, and 4-methyl-1,2,3-thiadiazole-5-carboxylate, all un-
derwent efficient migration, yielding the corresponding prod-
ucts (2ag-2al) in good yields.

The development of therapeutic medications often relies on
late-stage modification of complex or bioactive molecules.'' To
demonstrate the versatility of our method, we subjected a series
of natural product- and drug-conjugated substrates to standard
reaction conditions (Table 3). Notably, D-Glucose, D-Valine,
Probenecid, Ibuprofen, Oxaprozin, and Pentoxifylline-derived
allyl carboxylates reacted well, providing the desired products
(2am-2ar) with yields ranging from 43% to 83%. Furthermore,
derivatives of Cholic acid and Estrone showed good reactivity,
producing products (2as-2at) with yields of 66% and 70%, re-
spectively.

To demonstrate the scalability and synthetic utility of the
cobalt-catalyzed ACT process, we performed a gram-scale re-
action that scaled to 5 mmol, achieving a 77% yield of the de-
sired product 2h (Scheme 1). Subsequent transformations illus-
trated the versatility of the rearranged allyl carboxylate prod-
ucts: hydrogenation yielded the saturated ester 3 with a 95%
yield; epoxidation of the newly formed alkene was successful
using meta-chloroperoxybenzoic acid (m-CPBA); ozonolysis
produced a 2-carboxylate ketone 5 with an 81% yield, showcas-
ing diverse synthetic pathways. Additionally, an organo-photo-
catalyzed hydrothiolation reaction demonstrated potential ap-
plications in ligation and material science.'? The Tsuji-Trost re-
action with diethyl malonate as the nucleophile produced allyla-
tion products 7 and 8 with a 66% yield. Finally, dibromination
with bromine generated the 1,2-dibromo product 9, further
demonstrating the versatility of the products.

Scheme 1. Large-Scale Reaction and Post-Functionaliza-
tion”

A. Gram-scale Synthesis
CoSalen (20 mol%)
820 PhSiH; (0.75 equiv) OBz
Z! Selectfluor (0.75 equiv)
>(\ A Me

M€ Me DCE/'BUOH (0.05 M, 4:1)

Me
90 °C, 5 days
1h 2h
5.0 mmol 0.739,77%
B. Post-functionalization of Product 2h
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o]
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H Me Me
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EtO OEt 1o OFt
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Me
Me |
Me
7 8
66%, 1.5:1

aSee SI for experimental details. (i) Pd/C (10 wt%), H2, MeOH
(0.100 M), rt, 12h. (ii) m-CPBA (1.50 equiv), DCM (0.100 M), 0
°C —rt, 3h. (iii) Os, PPh3 (2.00 equiv), DCM (0.001 M), -78 °C, 10
min. (iv) BnSH (1.00 equiv), Mes-Acr-Me"BFs (5.00 mol%),
MeCN (0.500 M), 24 W blue LED, rt, 16h. (v) Diethyl malonate
(1.50 equiv), NaH (1.50 equiv), Pd(PPh3)s (1.00 mol%), THF
(0.100 M), rt, 16h. (vi) Brz (1.50 equiv), CHCI3 (0.100 M), 0 °C —
rt, 12h.

To elucidate the mechanism of the cobalt-catalyzed ACT
reaction, we conducted a series of experimental and computa-
tional studies. The introduction of a radical scavenger, 2,2,6,6-
tetramethylpiperidine 1-oxyl (TEMPO), significantly inhibited
the reaction (Fig. S1). A radical-clock reaction led to a ring-
opening alkene product (2au) (Figure 2A). These radical trap
and radical clock experiments suggested a radical-mediated
mechanism. Crossover experiments with substrates 1h and 1ag
resulted in exclusive formation of non-crossover products 2h
and 2ag, indicating an intramolecular acyloxy shift mechanism
(Figure 2B). Further studies using deuterated substrates re-
vealed a deuterium-shifted product 2aw (Figure 2C), and cross-
over experiments with deuterated and non-deuterated substrates
produced crossover products 2a-d, supporting an intermolecu-
lar MHAT process (Figure 2D). Kinetic isotope effect (KIE)
studies showed a KIE value of 2.9, implying a primary kinetic
isotope effect (Figure 2E). Additionally, '30-labeling experi-
ments with substrate *O-1h yielded products '*0-2h-1 and '*O-
2h-2 in a 5.4:1 ratio, suggesting both [1,2]- and [2,3]-acyloxy
group shift pathways are operational (Figure 2F).
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A[S] refers to the singlet spin state, and [AFM-S] represents the antiferromagnetically coupled singlet state of the corresponding Co

complexes. The 3D representation was prepared using CYLview. "3

Density functional theory (DFT) analysis showed that the
transfer of a hydrogen atom from [Co™]-H to the y position of
allyl carboxylate (T'S-1a) is 5.10 kcal/mol more favorable than
to the B position (TS-1b), resulting in the formation of radical
intermediate II (Figure 2G).!* The transition state energy for the
1,2-RaM in the 3-membered ring ([1,2]-TS) is 1.5 kcal/mol
lower than in the 5S-membered ring ([2,3]-TS), indicating a pref-
erence for the [1,2] pathway, resemble with experimental selec-
tivity (Figure 2F). Additionally, the abstraction of a hydrogen
atom from radical intermediate III by the [Co"] catalyst (TS-
2a) is the rate-determining step, with an energy barrier of 13.7
kecal/mol, consistent with the KIE studies (Figure 2E). This step
is more favorable than abstracting the hydrogen atom from the
B-carbon (TS-2b, AAG*= 11.4 kcal/mol), explaining the regi-
oselective formation of product 2."

Based on our mechanistic studies and literature reports, >

5216 we propose a catalytic cycle as depicted in Figure 3. The
reaction begins with [Co"], Selectfluor, and phenyl silane form-
ing the active catalyst [Co™]-H. This catalyst then performs
HAT on allyl carboxylate 1a, generating [Co™] and the second-
ary radical intermediate II. Upon heating, intermediate IT un-
dergoes 1,2-RaM through both [1,2] and [2,3] transition states,
forming the more stable radical intermediate IIL.'” Finally, HAT
from intermediate III to [Co™] produces the desired product and
regenerates the [Co™]-H catalyst, thus completing the catalytic
cycle.
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Figure 3. Proposed reaction mechanism.

In summary, we have developed a cobalt-catalyzed ACT re-
action of allyl carboxylate, accessing structurely distinct 1,3-al-
kene/1,2-acyloxy shifted product. The reaction features a broad
substrate scope, accommodating various functional groups, and
enables late-stage modifications of complex molecules as well
as gram-scale synthesis. Preliminary mechanistic studies sug-
gest a radical mechanism involving 1,2-RaM and MHAT pro-
cesses. We anticipate that this protocol will serve as the basis
for developing various 1,3-hydrofunctionalization reactions,
thereby expanding the reaction profile of allyl carboxylates.
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