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Multivariate Phase Space Warping-Based
Degradation Tracking and Remaining Useful
Life Prediction of Rolling Bearings

Hengyu Liu
Hewenxuan Li

Abstract—Effective utilization of signals collected by distributed
sensor networks is crucial for tracking degradation and forecasting
the remaining useful life (RUL) of rolling bearings. The phase space
warping (PSW) algorithm constructs the hierarchical dynamics to
physically describe damage evolution. However, the PSW algorithm
is unable to handle multivariate signals. To enable synchronous
tracking of degradation in multivariate signals, the proposed solu-
tion is the multivariate phase space warping (MPSW) algorithm.
First, the multivariate signals are embedded in the reconstructed
phase space. Second, the local polynomial receives the current
phase space trajectory (PST) to predict the reference PST, after
which damage indicators are extracted by comparing the current
PST with the reference PST. Third, robust principal component
analysis with tensor smooth constraint was proposed on the DIs
tensor to extract the main degradation pattern. Finally, the degra-
dation is input to the exponential degradation model to predict the
RUL. The run-to-failure experimental datasets for rolling bearings
are applied to validate the effectiveness of the proposed MPSW.
Experimental results demonstrate that the proposed MPSW effec-
tively tracks the multivariate degradation, and accurately predicts
the RUL with distributed sensor networks.
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1. INTRODUCTION

HE prognostics and health management (PHM) of me-
T chanical systems are vital for ensuring production effi-
ciency and safety. Extensive research in PHM has led to the
evolution of maintenance strategies for mechanical systems,
shifting from traditional breakdown maintenance to predic-
tive maintenance [1], [2]. Predictive maintenance relies on the
condition monitoring of mechanical systems to predict future
degradation trends and guide maintenance strategies [3]. Ac-
celerometers are commonly installed on mechanical equipment
to collect vibration signals, which are then analyzed to deter-
mine equipment health conditions [4]. Nevertheless, location
of faults in complex mechanical systems is usually unknown,
and incorrect places for sensor installation obscure the fault
signatures. Therefore, distributed sensor networks are utilized
to collect more comprehensive damage indicators (DIs) about
health conditions [5]. To achieve predictive maintenance with
multi-sensors, simultaneous extraction of the damage state from
multivariate signals and predict the remaining useful life (RUL)
are necessary.

The RUL accuracy is related to the accuracy of the DIs
extracted from vibration signals of mechanical systems. In the
study of degradation tracking, many researchers have proposed
algorithms based on the time domain, frequency domain, and
machine learning algorithms. Wang and Tsui [6] proposed a
new health index based on the square envelope algorithm,
which sensitively reflected early bearing defects. Ding et al.
[7] proposed a new Bayesian approximation enhanced proba-
bilistic meta-learning algorithm, which has a good calibration
uncertainty effect in fault prediction. Zhang et al. [8] extracted
main signal features to generate health indicators through hidden
Markov model and principal component analysis. Most of the
algorithms reviewed above were developed for single-sensor
signal processing. The fault location cannot be known in advance
of fault diagnosis. Improper sensor placement can decrease
the efficacy of the degradation tracking as the vibration signal
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collected from a wrongly placed sensor is insufficient to identify
damage.

To make full use of the multiple sensors, many researchers
have proposed damage extraction algorithms combined with
information fusion. Liu et al. [9] proposed an approach with
vector dynamic weighted fusion algorithm to evaluate the feature
degradation sensitivity. The algorithm achieved feature fusion
and improved the sensitivity of degradation tracking. Ayhan
et al. [10] proposed a new bearing RUL adaptive prediction
method, which reduces the risk of unstable results through
parallel-running RUL predictors. Zhao et al. [11] proposed a
model-assisted multi-source fusion hypergraph convolutional
neural network to solve the problem of small-sample intelligent
fault diagnosis of electrohydrostatic actuator. Xiong et al. [12]
proposed an adaptive prediction framework for RUL prediction
based on failure model recognition. The algorithm adaptively
trained the model according to the recognition results and im-
proved the RUL accuracy. Li et al. [13] referred to the Wiener
process and particle filter to select the optimal sensor group
from multiple sensors for information fusion. Compared with
algorithms based on single sensor signals, the approaches in-
troduced above have a stronger capability of the information
fusion. However, most of them applied deep learning algorithms,
which led to unclear physical properties of DIs extracted from
signals.

For tracking mechanical system damage, several physical
feature-based signal processing algorithms have been proposed.
Lv et al. [14] proposed the multivariate empirical mode decom-
position approach to diagnose rolling bearings, and successfully
extract the fault characteristic frequencies from multivariate
signals. Zhang et al. [15] proposed a multivariate dynamic mode
decomposition algorithm to simultaneously extract fault features
from multivariate signals, which improved the algorithm’s ro-
bustness and effectiveness. Yuan et al. [16] improved the mul-
tivariate variational mode decomposition algorithm for applica-
tion in condition monitoring of bolted connections. Cusumano
and Chelidze [17] proposed the phase space warping (PSW)
algorithm for general damage evolution and degradation track-
ing. Chelidze and Li [18] combined vibration signals with the
physical evolution of machinery damage. The proposed PSW al-
gorithm was successfully applied for tracking damage evolution
of beam structures [19]. To predict the RUL, Qian et al. [20]
employed a multidimensional autoregressive model in combi-
nation with a particle filter to enhance the PSW. Luo et al. [21]
studied the optimal phase space (PS) reconstruction parameters
of the PSW. The improved PSW applied correlation analysis to
effectively track the degradation of bearings in variable speed. Li
and Chelidze [22] successfully applied the PSW algorithm to the
degradation tracking of three-dimensional (3-D) printed beam
structures. The PSW algorithm effectively distinguishes damage
signals from vibration signals through a hierarchical dynamical
system. This framework establishes a theoretical foundation for
the damage tracking based on vibration signals.

While some deep learning algorithms have achieved multi-
variate information fusion in machinery damage tracking, they
necessitate a large amount of historical data for learning. In
addition, the underlying mechanism of damage evolution is
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difficult to interpret [23]. Meanwhile, the physics-based PSW al-
gorithms do not entirely utilize the multivariate signals collected
by sensor networks. To overcome these deficiencies, in this
article, a multivariate phase space warping (MPSW) algorithm
is proposed to fully track the degradation information from
multivariate signals. In the proposed MPSW, the damage evo-
Iution dynamics are considered, while the degradation patterns
are simultaneously tracked in the fusion of the DIs extracted
from multivariate signals. The contributions of this article are as
follows.

1) The proposed MPSW algorithm provides a more suitable
description of the phase space trajectory (PST) in dam-
age tensor. The local quadratic polynomial algorithm is
applied in the prediction of reference PST for multivari-
ate signals, thereby enhancing the accuracy in tracking
degradation.

2) The proposed MPSW algorithm extracts the common
degradation patterns from multivariate signals. Tensor
smooth constrain (TSC) algorithm is proposed in the
time dimension while performing low-rank approxima-
tion. Thus, redundant information in the tensor is elimi-
nated.

3) The proposed MPSW algorithm extracts DIs syn-
chronously, significantly improving the accuracy of the
RUL prediction. The multi-sensor information is inte-
grated into the common degradation patterns to help en-
hance the RUL prediction accuracy.

The rest of this article is organized as follows. The original
PSW algorithm is described in Section II. Section III introduces
the principles of the proposed MPSW algorithm for tracking
main degradation patterns. In Section IV, the RUL prediction
approach based on the exponential degradation model is de-
scribed. To validate the effectiveness of the MPSW algorithm,
run-to-failure experimental datasets of bearings are utilized in
Section V. Finally, Section VI concludes this article.

II. PHASE SPACE WARPING ALGORITHM

Vibration in rolling bearings is typically characterized by
the response of dynamic models. When damage occurs in such
machinery, it alters the parameters of these dynamic models, re-
sulting in different responses and distinct vibration signals [24],
[25]. Therefore, it becomes feasible to monitor the evolution of
damage from vibration signals. Compared with the vibration,
changes of dynamic model parameters caused by damage are
assumed to be slow. To separate the slowly changing damage
from rapidly changing vibration, Chelidze et al. [26] proposed
the PSW algorithm, which separated fast and slow variables in
the state space. The state space of the hierarchical model in PSW
is expressed as follows:

&= [z, p1(0),1)

o =cg(z,0,1)

s =h(x) (1)
where x € R™ represents the fast variables in the dynamical
system, ¢ € R™ denotes the slowly changing damage process,
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1(¢) denotes the parameter effected by ¢, a small time scale
coefficient ¢ is designed to connect the fast and slow variables,
t denotes the time, s € R" denotes the discrete acceleration
signals collected by sensors, g(-) is a slowly varying function,
h(-) is measure function that links discrete signals and fast
variables.

Assuming that starting from the initial moment ¢, after a
short time interval ¢, the expression of the fast variable in the
damaged state is

x (to +tp) 1 (¢o)) 2

where F'(-) is the damage evolution function, x, represents the
fast variable at ty. To measure the effects of health and fault
states on fast variables, the reference fast variables xp in the
health state are formulated as

=F (ant(Ja s M

xR (to +tp) = F (zo,to, tp, pt (Pr)) €))

where ¢ denotes the reference damage state. Combining (2)
and (3), the damage expression is extracted as follows:

ezx(toth )75CR(t0+t )
1 (o)) — p(er)) 4

where e is the damage tracking function, which reflects the
change of fast variables under the damage. Slow variable dam-
age is represented as A¢p = ¢g — ¢r. Att =ty and ¢ = ¢,
computing the Taylor expansion for ¢ of (2) yields

—F(x(),t(), p7 (£C07t()7 pa

l’(to + 1 ) = F(Io,tg, py M (¢0))
= F (zo,to,tp, 1t (PR))
OF Ou 2
+ e on Ao +ollAd).  ®

Substituting (3) and (5) into (4) and it gives
e=uz(to+t,) —xr(to+1tp)
zO(x07t07tpa¢R)¢+C(x07t07tp;¢R) (6)

where C' = (OF/0u)(0p/0¢), and ¢ = —C'¢ . Since the time
interval ¢, is short, and A¢ is con51dered to be very small, the
higher-order infinitesimal term o(|| A¢||*) is ignored in (6). The
damage trend is estimated by the reference damage in (6).

III. MULTIVARIATE PHASE SPACE WARPING ALGORITHM

A. Multivariate Phase Space Reconstruction and Reference
Phase Space Trajectory Prediction

The vibration caused by damage always travels a complex
transmission path before it can be received by sensors. As a
result of incorrect placement of sensors, fault signatures are
obscured in the acquired signal. Therefore, distributed sensor
networks are applied in engineering to gather more comprehen-
sive information. The multivariate signals are collected to extract
complementary and sufficient information.

The multivariate signals are reconstructed into the high-
dimensional PS by the time-delay algorithm [27], and the dam-
age tracking function is solved in the PS to track degradation.
Takens has proved that the reconstructed PS and the state space
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of the original system are topologically equivalent, indicating
qualitative similarity in dynamical properties [28], [29]. In this
article, the time delay algorithm is applied to embed the vibra-
tion signals collected by m sensors into the reconstructed PS,
respectively. The expression of the d dimensional state point
generated by the signal {s }7L, collected by the mth sensor is
as follows:

7 7 i+T
Ym = [SmrSm v+

, ’;;Lk(d 1)7’ (7)
where the embedding dimension, denoted as d, is determined
using the false nearest neighbor algorithm [30], while the time
delay is computed through the average mutual information
algorithm [31], yfn S Rd“, and rl denoted the data length of
the signals. For multivariate signals, the reconstructed PS is
expressed as

Yo = [yiy?n - 7y3;i’(d’1)7} (8)

where Y, € R ("=47+7) The PS tensor of the multi-channel
signal can be obtained by constructing a 3-D matrix

y:[Y1;}/Q7"'7Ym] (9)

where y c Rdx(rlfd‘l-#»r)xm.

Failures of mechanical equipment change the parameters of
the dynamic model, and the PST of the response is also warped
[32]. Due to the limited sampling frequency, the PST only
qualitatively reflects the original dynamic systems, which leads
to inaccuracy in linear PST prediction. To obtain an accurate
description of the reference PST in the current state, a local
quadratic polynomial model is constructed. The mapping P is
constructed to describe the trajectories of the reconstructed PS,
which is expressed as follows:

yn = P*(y;,, ¢) (10)

where ¢, denotes the high-dimensional PS point, 3% denotes
the PS point after k iterations. The PST between two points
satisfies multiple iterations of the mapping P and is affected by
the damage ¢. The reference PS point y (i) is estimated by the
current PS point 3, through the polynomial model

= A; (y:n)2 + Biyh, + Ci
where 7% is composed of high-dimensional PS points of each
~ . i N2, 4 .
order, 9., (1) = [(y%,) syl 1], and 0(7) = [A4, By, Cy).
In the PS, r local neighboring points 3, (1) of the current
damage PS are used to estimate the parameters of the polynomial

model. The least squares algorithm [33] is applied to minimize
the weighted loss function .J;(6)

= wh () |yht* = 0 (D, (r)

reN

k(i)

—E)
where w!, () denotes the weight assigned to the neighborhood
points of the target, a value determined through the computation
with the Epanechnikov kernel function [34]

ut ) = (L D=501) -

a
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—t?), |t <1

otherwise (14)

3 (1
—Ja
oo = {§
where o is the neighborhood range controlled by the standard
deviation. Minimize the weighted loss function .J;(6) and it
yields

-1

O (1) = Yisn (WYZ)T(YI (WY)T> (15)
where
Y= (b, (1), b, (2),. .. ik, (7)]
Yigr = [y (0, ub 2) 5y ()] . (16)

Afterwards, the damage tracking function in (6) can be rewrit-
ten as

a7

B. Tensor Smooth Constrain in the MPSW Algorithm

The damage tensor is derived from the reconstructed mul-
tivariate PS obtained from m sensors using (17). Given the
high dimensionality of the multivariate PS, the accuracy of (17)
is enhanced by employing the kd-trees algorithm to partition
the space into multiple subspaces. Equation (17) is applied to
extract damage within these subspaces individually and yields
a more precise damage tensor. Tensor ) is divided into nb
subspaces to extract the damage information more accurately
from multivariate signals. In each subspace, the vector average
algorithm is applied to extract the damage, and the average
damage of the subspace is expressed as follows:

90 = = 3 e )

yi€B

(18)

where m denotes the number of channels, i represents the number
of the high-dimensional phase point, and B is the domain of the
subspace. g7 (¢) is the average damage, ¢ represents the current
damage, e,,(+) is the damage tracking function in (17). The
damage extracted in all subspaces is composed into the damage
vector, the expression is as follows:

GT' = [97"(6): 95" (0)s - -, gy (D))

where G7' € R"™*! and ¢ represents the current damage. The
multivariate signals are collected in real-time, and the damage
vectors are extracted at the same time to assess the degradation
of the machinery. The damage vectors are composed into the
damage matrix, which is expressed as follows:

Hm:[ ;nv gla""GrTr}

where H,, € R"""_ The damage matrix is constructed as the
damage tensor as follows:

H: [Hl,ng.‘

where H € R"P*"™*™ ig a third-order tensor. This article main-
tains a consistent tensor notation throughout. The third-order
tensor in (21) is denoted in Euler letter font, H € R™?*7m>m

19)

(20)

s Hin] 2D
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The format of the column fiber in tensor is H(:, j, k), the row
fiber is H(i,:, k), and the tube fiber is H (i, 7, :). Similarly, the
horizontal slice is H(,:,:), the lateral slice is H(:, j,:), and
the frontal slice is H(:, :, k). Column fibers in damage tensor
composed of damage vectors H(:,m,nr) = G7'. The damage
matrix of the same channel forms the lateral slice of the tensor
H(:ym,:) = Hyy,.

The damage tensor not only contains information about the
damage evolution, but also contains multi-subspace damage.
While this information is complementary, it also results in
redundancy. To extract common degradation from the damage
tensor, we propose a tensor-robust principal component analysis
algorithm that incorporates smoothness constraints.

The tube fiber H(nb, m, :) € R**"" in damage tensor denotes
the damage tracked in the nbth subspace of the mth channel. To
isolate the smooth damage trend, this article projects the damage
tensor along the time dimension to maximize the variance of
the lateral slice #(:, m, :) while concurrently minimizing local
variance

m?X||H(:,m,:)q||2 subject to mqin ||D’H(:,m,:)q||2

(22)
where DH(:,m,:) is the difference matrix of H(:,m,:), q is
the basis vector for smooth projection. Equation (22) can be

simplified to
DH (: : 2

— 23
: 7 o, @y

Equation (23) is then transformed into the problem of solving
eigenvalue decomposition

CpuP = CpyPA (24)

where C'y and Cppy represent the covariance matrices of
H(:,m,:) and DH(:, m, :) respectively. A is the basis vector for
smooth constraints. We proposed the TSC algorithm to achieve
smoothness constraints on the damage tensor. We define the
tensor decomposition related functions that will be used later.
The frontal slice H(:, :, k) of the damage tensor H € R">*"*m
are used to define the unfold(-) [35], [36]

unfold () = [Hy; Ho; ... Hy). (25)

It should be noted that (25) is the transposed form of (21)
under smooth constraints. The same characters are used here
because they have similar meanings. Then the beirc(-) is defined
to implement the calculation of the block circulatory matrix

H, H, - H
H, H, - H;

beirc (H) = . . (26)
Hm Hmfl U Hl

The inverse operation of the unfold function and bcirc func-
tion is defined as follows:

fold (unfold (H)) (27)

=H
beire ™! (brirc (1)) = H. (28)
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Since the information in the damage tensor comes from dif-
ferent sensors and different subspaces, the fusion of information
relies on (26). The discrete Fourier transform (DFT) can realize
the diagonalization of (26)

(Fp, ® L) +beire (H) - (F, @ 1,,,) = H (29)

where ® represents the Kronecker product, - denotes the stan-
dard matrix product, F,, € C™*™ is the DFT matrix, F},
is the conjugate transpose of F,,, F,,F; =F; F,, =ml,,
H = diag(Dy,...,D,,). Miao et al. [37] have proved that the
matrix D,, in (29) are diagonal if and only if the matrix H,, are
diagonal

Hi = Zw(jil)(iil)Di, L= ]., .
j=1

(30)

,m

where w = e~2™/™ is a primitive mth root of unity. Then the
definition of tensor product (T-product) is given [35], [36]

A x B = fold (bcirc (\A) -unfold (B)) . 31

At the same time, the inverse operation of tensor is also defined
38, AxB=Zand Bx A=1.

The TSC algorithm extends generalized singular value de-
composition (SVD) to 3-D tensors to achieve smooth constraints
on the tensors. 7 € R™>"™™ and DH € R"*™"*™ can be
factored as

H=UxCxP

DH=V*xS*xP (32)
where U € C™P*"P*™ and Y e CPPmX are unitary, C €
(OB R U TY f-diagonal tensor, and S € Crxmdxm iq o tensor
whose frontal slices S(, :, k) are lower-triangular matrices.

Therefore, the smoothness constraint problem of the damage
tensor in (24) is transformed into the tensor quotient SVD. P
represents the tensor of smooth pattern, Q = H * P~ denotes
the damage tensor with smoothness constraints.

C. Low-Rank Approximation in the MPSW Algorithm

The tube fibers of the smoothed damage tensor originate
from various distributed sensors, resulting in different tube
fibers sharing identical damage information. In other words, the
forward slice of the damage tensor exhibits low rank. However,
owing to variations in sensor distribution, the collected vibration
signals contain interference information, which is considered
sparse within the damage tensor. Consequently, we perform
a low-rank approximation on the smooth-constrained damage
tensor to conform the minimum tube fiber rank and eliminate
redundant interference components.

The tensor robust principal component analysis (TRPCA)
algorithm is applied to implement low-rank approximation of the
damage tensor [39]. Damage tensor H can be robustly separated
into a sparse tensor YW € R™*™*"" and the low Tubal rank
tensor X' € R™>™ " which represents the degradation. The
extraction process is transformed into solving the following

IEEE TRANSACTIONS ON RELIABILITY, VOL. 73, NO. 3, SEPTEMBER 2024

minimization optimization problem [39]

arg min : | Xy F2IW|1,8t. H=X+W
X0

)

(33)

where ||+|| ;5 denotes the tensor nuclear norm, p is the reg-
ularization parameter, and A = 1/
the optimal recovery of the tensor .

The damage tensor is smoothly constrained along the time
dimension. The frontal slices of the damage tensor are circu-
larly convolved to fuse the multichannel degradation informa-
tion [15]. The MPSW algorithm extracts the main degradation
pattern, thereby allowing the simultaneous extraction of the
degradation.

max(nyng)ns guarantees

IV. REMAINING USEFUL LIFE PREDICTION BASED ON THE
MULTIVARIATE PHASE SPACE WARPING

A. Construction of Exponential Degradation Model

Upon obtaining the real-time health status of the bearing,
the exponential degradation model is subsequently employed
to estimate the RUL [40]. The exponential degradation models
have been successfully applied by researchers to predict the
RUL of batteries, bearings, and gearboxes [41], [42], [43]. To
verify the tracking effect of the proposed MPSW algorithm
in experiments, the exponential degradation model suitable for
rolling bearings is adopted. By simulating the degradation of
mechanical equipment as a random process, the constructed
exponential model is expressed as follows [40]:

ht)=a+ e (34)

where h(t) denotes the damage state at time #, «v is a constant,
o and (3 represents two random variables that characterize the
random part of the model, o denotes the deterministic part of
the stochastic process, and e represents the random error. The
estimates of stochastic parameters in exponential models are
updated via Bayesian methods [40].

B. Framework of the Multivariate Phase Space Warping

The MPSW approach consists of three steps, damage ex-
traction, degradation tracking, and RUL prediction. To better
demonstrate the proposed MPSW algorithm, the flowchart of
the proposed MPSW algorithm is presented in Fig. 1.

The first step of the proposed MPSW algorithm is to extract
the damage from multivariate signals. The multivariate signal
st is individually embedded into the reconstructed PS by the
time delay algorithm. Subsequently, the MPSW employs a local
quadratic polynomial model to enhance the accuracy of pre-
dicting the PST. In late-stage degradation, the original PSW
algorithm must readjust reconstruction parameters to prevent
significant changes in the PST and potential algorithmic failure
[44]. Within a specified number of subspaces nb, the MPSW then
identifies the warpage. These warpage values are consolidated
into a damage matrix.

The second step is degradation tracking. The damage matrix
evolves over time, giving rise to the development of the damage
tensor. The MPSW algorithm imposes smoothness constraints
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Fig. 1. Flowchart of the proposed multivariate phase space warping.
on the damage tensor along the time dimension, thereby en-
hancing the ability to discern degradation. Simultaneously, the
MPSW algorithm executes low-rank tensor approximations and
selectively extracts low-rank tube fibers to fuse the information
from multiple subspaces and channels. @
In the third step, the historical damage curve is utilized to fit
the exponential degradation model. The model is then applied to
predict the future development of real-time damage and estimate Accelerometers H Thermocouples
\ \ /
the RUL. \\ /
\ M@ D/
— \e) @ 6 d
» (S} o g
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the effectiveness of the proposed MPSW [45], and the structure oo
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Four Rexnord ZA-2115 double-row bearings are installed on (il
the platform, with a shaft speed of 2000 r/min and a bearing load
of 6000 Ibs. Four acceleration sensors are positioned to capture  Fig. 2.  Test platform of the NSF I/UCR. (a) Photograph. (b) Schematic.

vibration signals, utilizing a sampling frequency of 20 kHz, a
1-s sampling time, and a 10-min sampling interval. The MPSW
processes the vibration signals in real-time to assess equipment
degradation and predict RUL.

The dataset comprises three sets. In set no.1, 8 sensors were
employed, gathering signals over 21560 min. Bearing three
exhibited inner race defect, while bearing four displayed rolling
element defects. The locations of the eight sensors are numbered
in Fig. 2(b). In set no.2, four sensors were utilized, detecting an
outer race failure in bearing 1 after 9840 min. The arrangement
of the four sensors is marked at places numbered 1, 3, 5, and 7 in

Fig. 2. The no. 3 dataset involvefour sensors recording signals
for 44 480 min, revealing outer race failure in bearing 3. In this
article, the no. 2 dataset is utilized to showcase the benefits of the
proposed MPSW algorithm for damage tracking in multisensor
monitoring scenarios. The no. 1 dataset, featuring eight channels
and various fault conditions, presents additional challenges for
the MPSW. The no. 3 dataset is disregarded due to its matching
sensor count with the no. 2.
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Fig. 3. Time waveforms of the signals in dataset no. 2.
TABLE 1
PARAMETERS OF THE MPSW IN DATASET NO.2
m d nm nb nn rl A
5 7 216 28 25 20480 0.006

A. Damage Tracking for the Set No. 2

The time-domain waveforms of the vibration signals collected
by the four distributed sensors are plotted in Fig. 3. It can be seen
from Fig. 3 that four signals are different from each other due to
different transmission paths. Additionally, there is redundancy
among the signals from different sensors.

The reconstruction parameters are computed by the false
nearest neighbor algorithm [30] and the mutual information
algorithm [31]. The parameters are given in Table I.

In Table I, m is the time delay coefficient of the reconstructed
PS, which is computed by the mutual information algorithm. d
represents the embedding dimension coefficient of the recon-
structed PS, which is computed by the false nearest neighbor
algorithm. nm represents the number of points used for reference
PS construction. nb is the number of subspaces divided in the
reconstructed PS. nn is the number of nearest neighbors. rl
is the number of data points monitored in real time. X is the
low-rank approximation parameters of the damage tensor. The
PS is divided into 28 subspaces. Notably, the MPSW algorithm
autonomously determines the nb while constructing the kd tree.
Li and Chelidze [22] gave the empirical selection range of these
parameters.

The time-varying warpage in the subspaces is then computed
to track the damage evolution. It is difficult to display all
subspaces, thus the first eight subspaces are plotted in Fig. 4
for a clearer observation. The damage extracted from different
subspaces of the same channel is similar, and the damage of the
equipment gradually increases with time. While the different
sensor locations lead to increased disturbance of the information
extracted from channels 3 and 4, which are far from the faulty
bearing. Interference still exists in the degradation curve in the
same subspace, posing challenges in accurately predicting the
RUL.
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The performance of the MPSW algorithm is compared to
that of the PSW algorithm, the SVD algorithm and the TRPCA
algorithm. To ensure fairness in the experiment, both the PSW
and MPSW algorithm utilized same reconstruction parameters.
Similarly, the TRPCA and MPSW algorithm employed (33) for
parameter calculation. In the case of the SVD, the first-order
singular value is chosen for reconstructing degradation curve.
Figs. 5-8 show the damage extraction results for each of these
three algorithms.

Damage tensors extracted from multivariate signals contain
redundant information. The SVD and TRPCA are applied to
decrease redundant information in the signals. However, both
the PSW and SVD algorithms fail to extract complementary
information in the multichannel damage matrix. The MPSW ex-
tracts complementary and common components while reducing
redundancy.

Fig. 5 illustrates the effectiveness of the SVD algorithm
in degradation tracking. The SVD effectively tracks damage
evolution in channels 1 and 2. However, the results for channels
3 and 4 performed poorly.

Fig. 6 illustrates the tracking results of the PSW. The PSW
yields a clearer multi-channel degradation curve than the SVD.
Nonetheless, it still lacks the capability to determine damage at
later stages.

Comparatively, Fig. 7 displays the results of each chan-
nel from the TRPCA, but the fluctuation is still large. In
addition, the TRPCA exhibits an erroneous trend attributed
to interference in multivariate signals of the later damage
stages.

Fig. 8 presents the degradation tracking results of the MPSW
algorithm, featuring a smoother degradation curve. Moreover,
the degradation curve exhibits a remarkable degree of con-
sistency, implying that the information gathered through the
MPSW contains common degradation patterns of multivari-
ate signals while eliminating interference. For a more effec-
tive comparison of tracking results across various algorithms,
the degradation curves are normalized and illustrated in Fig. 9.

In Fig. 9, the multivariate damage trends extracted by the
SVD fluctuate greatly with noise, making it difficult to show the
degradation. Furthermore, the tracking results extracted from the
signals of each channel are quite different. The SVD algorithm
does not extract common patterns, which makes it difficult to
evaluate the RUL. Although the PSW and TRPCA algorithm
has better multichannel degradation tracking performance than
the SVD, the extracted degradation patterns are inadequate. In
contrast, the proposed MPSW algorithm generates a smoother
degradation curve, which indicates its better ability to extract
common and primary degradation pattern from multivariate
signals.

Monotonicity is used as quantitative evaluation criterion for
comparing degradation tracking algorithms. Based on the as-
sumption that the damage process is irreversible, the mono-
tonicity of the extracted degradation curve indicates that the
degradation trend more closely matches the real damage trend
[44],[46]. This evaluation method can determine the degradation
tracking effect without knowing the real damage [47], and is
commonly used in practical applications. The formula of the
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monotonicity criterion is expressed as follows:
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where Y; represents the damage, n denotes the number of the
damage and sgn(-) is the symbolic function, the expression is

1 >0
sgn(z)=¢ 0 z=0. (36)
-1 <0

Fig. 10 plots the monotonicity of degradation curves obtained
by different algorithms.
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The MPSW algorithm shows better degradation tracking
monotonicity than the comparative algorithms in Fig. 10. Mono-
tonicity results indicate that the MPSW algorithm has a suitable
degradation trend across all channels. Compared to the PSW,
TRPCA and the SVD, the proposed MPSW algorithm produces
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TABLE I
PARAMETERS OF THE MPSW IN DATASET NoO. 1

m d nm nb nn rl A
5 11 216 44 23 20480 0.0035

smoother degeneration tracking curves and reduces outlier inter-
ference. The outcomes demonstrate that the MPSW algorithm
is more effective in tracking multivariate signal degradation.

B. Damage Tracking for the Set No. 1

To ascertain the damage tracking efficacy of the MPSW
algorithm across the distributed sensors, the no. 1 dataset is
employed in this section. This dataset comprises 8 channels
of run-to-failure data. Following a methodology similar to that
applied to dataset no. 2 in Section V-A, the MPSW algorithm
proposed here conducts real-time signal processing through
identical procedures. The time domain signals collected by 8
sensors are plotted in Fig. 11.

The parameters used by the proposed MPSW algorithm are
given in Table II.

Fig. 12 shows the damage tracking results of different al-
gorithms on different channels. It is evident from Fig. 12 that
the proposed MPSW algorithm exhibits superior accuracy in
tracking the degradation curve. Moreover, when considering
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distributed multisensor networks, the MPSW algorithm also
shows greater advantages in all eight channels.

Analyzing the amplitude fluctuations of channels 5-8 in
Fig. 11,itcanbe judged that bearing 3 exhibiting signs of damage
at around 18000 min, while bearing 4 showed indications of
damage around 15000 min. When integrating the information
from Figs. 11 and 12, it is apparent that in scenarios involv-
ing multiple channels and multiple faults, the SVD algorithm
can only effectively monitor equipment degradation in its later
stages. The TRPCA algorithm tracks the main degradation pat-
terns, but with larger fluctuations. Although the original PSW
algorithm can track the degradation of bearing 4 in channels 7
and 8, the degradation of bearing 4 is not visible in the other
channels. When the place of damage is unknown, the sensor
arrangement might be distant from the affected component,
rendering the PSW algorithm unable to monitor degradation.

However, it can be seen from Fig. 12 that the degradation curve
tracked by the MPSW algorithm shows an upward trend around
the 14000th min, which can be found in the results of each
channel. Furthermore, around 18 000 min, the degradation curve
tracked by the MPSW algorithm also changed, signifying its
capability to identify degradation in distinct device components.
Notably, the MPSW algorithm effectively extracts common
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Fig. 13.  Monotonicity values of the damage curves extracted by different
algorithms in dataset no. 1.

degradation patterns, emphasizing critical damage information
while reducing redundancy across multiple channels.

Fig. 13 shows the monotonicity values for each degradation
curves. Fig. 13 illustrates the superior performance of the MPSW
algorithm compared to the comparison algorithm in the mono-
tonicity values within each channel signal. The original PSW
algorithm excels only in tracking damage within channels 7
and 8, but exhibits subpar performance in other channels. The
TRPCA algorithm performs better in channels 7 and 8, but is
still not as good as the proposed MPSW algorithm.

C. RUL Prediction for the Set No. 2

Multivariate signals collected by the distributed sensor net-
works are processed by the MPSW algorithm in real time.
Historical degradation data is utilized as prior information to
compute parameters of the exponential model for predicting
future health status and damage evolution.

This article defines the real working life as the duration of the
run-to-failure experiment. Upon equipment damage, the exper-
iment concludes, using the damage state at that moment as the
threshold for predicting RUL. The stable working environment
of the bearing, as evident from the experiment, indicates a lack
of severe sudden collapse. Consequently, the RUL of the bearing
is presumed to decrease linearly, serving as a reference for
algorithm performance.

Fig. 14 displays four subgraphs, each revealing the RUL
prediction outcomes of various algorithms. The abscissa axis
in the subgraph represents the current working time, and the
ordinate axis denotes the RUL. The scatter points represent the
RUL predicted by different algorithms at the corresponding time.
Based on the assumption that equipment degradation is linear,
the red dotted line indicates the actual RUL.

Fig. 14(a) plots the RUL results of the degradation tracked by
the SVD algorithm in the exponential degradation model. Un-
fortunately, this algorithm has a disparity between its predictions
and reality.

In Fig. 14(b), the RUL of the PSW algorithm perform well
in the later stage of the damage. However, the early DIs tracked
by the PSW algorithm often produces outliers that interfered
with RUL prediction results. The PSW and SVD algorithms
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only extract the damage from single-channel signals instead of
multivariate signals, therefore leading to inaccurate RUL.

Fig. 14(c) plots the RUL results of the degradation pattern of
the TRPCA algorithm. It can be seen from Fig. 14 that although
the RUL prediction in the later damage stage is accurate, but the
deviation in the early stage is large.

In Fig. 14(d), the proposed MPSW algorithm results exhibit
better linearity and improved fitting of the real RUL. Notably,
the multivariate degradation extraction capacity of the MPSW
algorithm enables it to detect common degradation patterns
in multivariate signals, thus yielding higher accuracy in RUL
prediction. The signals from the remaining three channels are
tracked and predicted RUL in real time. The results are plotted
in Figs. 15-17.

Among the results in Figs. 14—17, the predicted RUL based on
SVD is far from the actual RUL. The reason for this discrepancy
can be attributed to the fact that the SVD is unable to capture
the main degradation patterns in multivariate signals.

From Figs. 14-17, it is evident that the predictions based on
the PSW and TRPCA algorithms are accurate during the later
stages of damage. Their results from different channels also
exhibit similarities. Combining with Fig. 9, it can be inferred
that the fluctuation of the curve conceals the slight damage
evolution, which leads to errors in the training of the exponential
degradation model.

The RUL values of the MPSW jump at the beginning, which
is due to the running-in of machinery. By effectively extracting
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common degradation patterns from multivariate signals, the
degradation model based on the MPSW yields more accurate
predictions of RUL. The 35% interval of the real RUL is plotted
in Fig. 18 to demonstrate the prediction accuracy based on
different algorithms.

To express the impact of the degradation tracked by the
algorithms on the RUL prediction, the R-square (R?) is applied
to test the effect of the RUL prediction of different algorithms
[48], [49]. The expression of the R? is as follows:
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TABLE III
R? VALUES OF THE RESULTS ON RUL PREDICTION

Channel Algorithms
AMES TMPSW  PSW  SVD  TRPCA
Channel 1 0.7206 0.0068 0.0087 0.3703
Channel 2 0.8560 0.0031 0.0248 0.3427
Channel 3 0.4823 0.0072 0.3027 0.4237
Channel 4 0.7192 0.0147 0.0087 0.4736
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Fig. 19. RUL results of different algorithms in dataset no. 1.

where h; denotes the true RUL value at time i, h represents
the mean value of the true RUL value, and le represents the
predicted RUL value at time i. A larger value of R? indicates that
the predicted RUL is closer to the real RUL. The RUL prediction
process of different algorithms is analyzed using the R? indicator,
and the results are given in Table III.

In Table III, the MPSW algorithm predicts the RUL with
higher accuracy than the comparative algorithms. By incorporat-
ing the characteristics of multiple signals, the MPSW algorithm
fits the exponential degradation model better.

D. RUL Prediction for the Set No. 1

Same as the operation in Section V-C, the damage tracking
results from the eight sensors in dataset no.l are input into
the exponential model to predict the evolution trend. The RUL
prediction results of the degradation curves tracked by different
algorithms are plotted in Fig. 19.

As can be seen from Fig. 19, the RUL result of the MPSW
algorithm is more consistent with the linear decreasing trend.
In addition, there is an increase at the beginning of the curve of
the MPSW algorithm, which is considered to be caused by the
equipment running-in period. For clarity of presentation, Fig. 20
is the zoom in view of part of the Fig. 19.

Fig. 20 illustrates a rapid decline in RUL at approximately the
15 000th min, aligning with the failure of bearing 3 as indicated
by the time domain signal. However, the original PSW algorithm
fails to effectively capture the degradation of bearing 3. Compar-
atively, the SVD, PSW, and TRPCA algorithms struggle to fulfill
the requirements of predictive maintenance. When mechanical
equipment experiences degradation of multiple fault types, the
MPSW algorithm extracts the common degradation patterns in
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multivariate signals, thereby enhancing the reliability of RUL
predictions.

Fig. 21 shows the R? values comparing the predicted RUL
with the actual RUL, serving as an indicator of prediction
accuracy. The R? values for each channel in the MPSW algorithm
outperform those of the comparative method, underscoring the
superior representation of shared damage patterns in the MPSW
prediction model.

The RUL prediction accuracy results indicate that the pro-
posed MPSW algorithm can track the damage evolution in
multivariate signals simultaneously when coupled with the ex-
ponential degradation model. As a result, the MPSW algorithm
is more suitable for predictive maintenance applications due to
the higher-precision RUL.

VI. CONCLUSION

This article was primarily concerned with the problem of
degradation tracking and RUL prediction of mechanical equip-
ment monitored by distributed sensor networks, while also
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considering the relationship between damage dynamic behavior
and damage evolution. The MPSW algorithm was proposed for
monitoring the primary degradation of rolling bearings. Exper-
imental run-to-failure tests on bearings are adopted to validate
the effectiveness of the proposed MPSW.

1) The results of the MPSW algorithm exhibit reduced fluc-
tuations compared to the original PSW results. This im-
provement was attributed to the enhanced prediction of
the reference PST.

2) The MPSW algorithm provides the consistent informa-
tion in tracking multivariate degradation. In contrast, the
curves tracked by the comparison method contain more
redundant information, which interferes with the progno-
sis.

3) The MPSW algorithm significantly enhances the accu-
racy of RUL prediction by effectively identifying com-
mon degradation patterns within multivariate signals. This
leads to an efficient parameter estimation of RUL model.

In future work, the MPSW algorithm will be extended to

RUL prediction of multivariate signals from different devices. In
addition, we will further reduce the algorithm complexity while
improving feature extraction capabilities.
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