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Abstract—We give the first almost-linear total time algorithm
for deciding if a flow of cost at most F still exists in a directed
graph, with edge costs and capacities, undergoing decremental
updates, i.e., edge deletions, capacity decreases, and cost in-
creases. This implies almost-linear time algorithms for approx-
imating the minimum-cost flow value and s-t distance on such
decremental graphs. Our framework additionally allows us to
maintain decremental strongly connected components in almost-
linear time deterministically. These algorithms also improve
over the current best known runtimes for statically computing
minimum-cost flow, in both the randomized and deterministic
settings.

We obtain our algorithms by taking the dual perspective,
which yields cut-based algorithms. More precisely, our algorithm
computes the flow via a sequence of m1+o(1) dynamic min-ratio
cut problems, the dual analog of the dynamic min-ratio cycle
problem that underlies recent fast algorithms for minimum-cost
flow. Our main technical contribution is a new data structure
that returns an approximately optimal min-ratio cut in amortized
mo(1) time by maintaining a tree-cut sparsifier. This is achieved
by devising a new algorithm to maintain the dynamic expander
hierarchy of [Goranci-Räcke-Saranurak-Tan, SODA 2021] that
also works in capacitated graphs. All our algorithms are deter-
ministc, though they can be sped up further using randomized
techniques while still working against an adaptive adversary.
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I. INTRODUCTION

The study of dynamic graph algorithms involves designing
efficient algorithms for graphs undergoing edge updates. In
this paper, we focus on solving the challenging minimum-
cost flow problem on directed graphs in the decremental
setting, where the graph undergoes updates that guarantee that
the optimal cost is non-decreasing. Henceforth, decremental
updates consist of edge deletions, cost increases, and capacity
decreases. The minimum-cost flow problem generalizes the s-t
shortest path and the more general single-source shortest-path
(SSSP) problem that have received significant attention in the
decremental setting [1]–[6], which are all not known to admit
almost-linear-time algorithms, even against oblivious adver-
saries. In this paper, we give almost-linear-time algorithms for
several problems in decremental graphs, which are primarily
derived by solving the more general problem of decremental
thresholded min-cost flow.

Definition I.1. The thresholded min-cost flow problem is
defined on a directed graph G = (V,E) with capacities u and
costs c, undergoing decremental updates (edge deletions, edge
capacity decreases, and cost increases) along with a threshold
F and demands d ∈ RV . A dynamic algorithm solves the
problem if, after each update, the algorithm outputs whether
there is a feasible flow f routing demand d with cost c⊤f at
most F , or answers that no such flow exists.
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The thresholded min-cost flow problem in incremental
graphs (undergoing edge insertions) was recently shown to
have an almost-linear-time algorithm in [7]. In this paper,
we show that the decremental version can also be solved in
almost-linear-time (see Theorem I.6 for a formal statement).

Informal Theorem I.2. There is a deterministic algorithm
that solves the decremental thresholded min-cost flow problem
on graphs with m edges initially, undergoing Q updates in
total time (m+Q)mo(1), provided that costs, capacities, and
demands are integral and polynomially bounded in m.

This result and its extensions give almost-linear-time de-
terministic algorithms for decremental approximate min-cost
flow value, single-source reachability, strongly connected com-
ponent maintenance, and s-t distance.

Towards proving this result, let us recall the approach of
[7], which builds on the almost-linear-time min-cost flow
algorithm of [8]. The algorithm of [8] used an ℓ1-based interior
point method (IPM) to solve min-cost flow via a sequence
of dynamic min-ratio cycle problems, with approximation
quality α = mo(1). Later, [9] showed that giving an algorithm
with amortized mo(1) update time for approximate dynamic
min-ratio cycle against adaptive adversaries (which was not
achieved in [8]) suffices for incremental thresholded min-cost
flow. Such a data structure for dynamic min-ratio cycle was
developed in [7].

There is one key difference between the incremental and
decremental settings: a feasible flow f continues to be feasible
under edge insertions, but not under edge deletions. To handle
this, we instead work with a dual version of the min-cost flow
problem. More precisely, there is a standard reduction between
min-cost flow and transshipment: minB⊤f=d ,f≥0 c

⊤f , where
B is the edge-vertex incidence matrix of the underlying graph
G. The dual of this problem, computed via strong duality, is

max
c−By≥0

d⊤y . (1)

Note that in this dual formulation, if a solution y is feasible,
i.e., c − By ≥ 0, then it continues to be feasible after an
edge deletion or cost increase. It turns out that ⟨d ,y⟩ is
also monotone increasing in the transshipment instance under
capacity decreases. Thus, it is natural to work with the dual
problem in the decremental setting.

To give an almost-linear-time algorithm for solving (1), we
broadly follow the approach set forth by [8]. We first design an
ℓ1-IPM which solves (1) via a sequence of m1+o(1) dynamic
min-ratio cut problems (see Section VI), defined below.

Definition I.3 (α-approximate dynamic min-ratio cut). The
dynamic min-ratio cut problem is defined on an undirected
graph G with capacities u ∈ RE

≥0, and vertex gradient g ∈
RV . At each time step, the gradient of a single vertex or the
length of a single edge may be updated, in a fully-dynamic
manner. We let B be the edge-vertex incidence matrix of G
after assigning an arbitrary orientation to each edge.

A dynamic algorithm solves the problem, if after the i-th
update, it identifies a cut z ∈ {0, 1}V , such that

⟨g , z ⟩
∥UBz∥1

≤ 1

α
min
ϕ̸=0

⟨g ,ϕ⟩
∥UBϕ∥1

.

It is worth pointing out that minϕ̸=0
⟨g ,ϕ⟩

∥UBϕ∥1
is a non-

positive quantity by symmetry. We also stress that the min-
ratio cut problem does not depend on the orientations chosen
for edges when defining the edge-vertex incidence matrix B .
Our main technical contribution is an algorithm that solves dy-
namic min-ratio cut in amortized mo(1) time with α = mo(1)

approximation, under fully-dynamic updates against adaptive
adversaries.

To solve the min-ratio cut problem approximately, we fully-
dynamically maintain an ℓ∞-oblivious routing for G which is
realized by a single tree T , often referred to as a tree cut
sparsifier. We then show that on this tree, we can solve the
min-ratio cut problem, and these cuts are good approximate
solutions to the min-ratio cut problem on G. We give a formal
definition of these tree cut sparsifiers, since they are crucial to
our result.

Definition I.4 (Tree Cut Sparsifier). Given graph G =
(V,E,u), a tree cut sparsifier T = (V ′, E′,u ′) of quality
q is a tree graph with V ⊆ V ′ such that for every pair
of disjoint sets A,B ⊆ V , we have that mincutG(A,B) ≤
mincutT (A,B) ≤ q ·mincutG(A,B).

Tree cut sparsifiers, in turn, are associated with dynamic
expander hierarchies as introduced in [10]. Loosely speaking,
an expander hierarchy computes an expander decomposition
of an underlying graph, contracts each expander piece to
a single vertex, and recursively computes more expander
decompositions, contractions, etc. This naturally induces a tree
structure, which [10] proves is a tree cut-sparsifier of quality
q = mo(1) in unit capacity graphs. We give the first non-trivial
algorithm for maintaining dynamic expander hierarchies and
thus tree cut sparsifiers in capacitated graphs. In fact, our
algorithm is optimal up to subpolynomial factors.

Informal Theorem I.5. Given an m-edge graph G =
(V,E,u) with polynomially bounded capacities that under-
goes Õ(m) edge insertions/deletions, then there is a deter-
ministic algorithm that maintains a tree cut sparsifier T of
quality mo(1) in total update time m1+o(1).

A. Comparison to Earlier Minimum-Cost Flow Algorithms

Our results build on the ℓ1-interior point method introduced
in the first almost-linear time minimum-cost flow algorithm
[8]. The primal ℓ1-IPM of [8] and later works [7], [9], [11]
requires solving a dynamic min-ratio cycle problem. This
problem is solved using data structures that fundamentally
center around distance approximation in undirected graphs.
Our dual ℓ1-IPM requires us to solve a dynamic min-ratio cut
problem, which instead requires cut approximation in undi-
rected graphs. The dual perspective turns out to be very natural
in retrospect, and has two striking consequences: Firstly, our
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dual approach enables us to solve decremental graph problems,
similar to how incremental graph problems were solved in
[7], [9], [11] using primal algorithms, essentially because
dual solutions stay feasible under edge deletions while primal
solutions stay feasible under edge insertions. Secondly, the
dual approach yields methods based on cut geometry instead of
distance geometry, motivating us to develop fully-dynamic tree
cut sparsifiers for weighted graphs, a powerful data structure
for answering cut queries. Notably, our cut data structures are
substantially simpler than earlier approaches. We expand on
this comparison in Section I-B below.

In seeking to develop our dynamic cut approximation data
structures, we encounter challenges that are morally similar
to those of [7], [8], [12] which developed extensive new
machinery for maintaining fully-dynamic low-stretch trees and
ℓ1-oblivious routings in weighted graphs. While fast dynamic
algorithms to maintain LSSTs for unit capacity graphs existed
previously [13]–[15], a central technical contribution in each
of [7], [8], [12] is a dynamic algorithm to maintain LSSTs
or ℓ1-oblivious routings respectively in capacitated graphs.
This turns out to require a very different set of tools, and the
resulting algorithms deviate heavily from algorithms designed
for unit capacity graphs, and instead build on ideas from [16]–
[19].

We are faced with a similar challenge in constructing fully-
dynamic tree cut sparsifiers. A striking prototype data structure
for the unit capacity case was built via the expander hierarchy
in [10], but their methods face major obstacles in extending
to the weighted case. Our construction is motivated by their
result but takes as its starting point a later generation of
expander decomposition methods [20], [21]. These methods
yield particularly clean expander hierarchies in unweighted
decremental graphs, and we show how to extend these methods
to weighted graphs using a new reduction from weighted to
unweighted graphs in this setting. Using core graph techniques
motivated by [7], [8], [22], we finally reduce the fully-dynamic
tree cut sparsifier problem to the decremental case.

B. Applications

a) Application #1: Faster static min-cost flow.: Some-
what surprisingly, the expander hierarchy data structure has
fewer recursive levels than those for min-ratio cycle. This
results in a faster runtime for static min-cost flow for both
randomized and deterministic algorithms. In particular, we
give a randomized algorithm that statically solves exact min-
cost flow on graphs with polynomially bounded costs and
capacities in time m·eO((logm)3/4 log logm), and a deterministic
version that runs in time m·eO((logm)5/6 log logm). This should
be compared to randomized m · eO((logm)7/8 log logm) time
[8], and deterministic m · eO((logm)17/18 log logm) time [12]
respectively.

Our algorithm initially solves the dual (1) and is able to
use the final IPM dual solution to extract an optimal flow
(see the full version). Our approach is arguably the simplest
almost-linear time algorithm for computing minimum-cost
flows yet: Our data structure only needs one main component,

namely a fully-dynamic tree cut sparsifier, obtained from our
dynamic expander hierarchy. In the randomized setting, the
tools required to implement this expander hierarchy primarily
involve a direct reduction from capacitated expander decom-
position to the unit capacity setting. Finally, on top of this,
we build a data structure for detecting the best tree cut, using
standard techniques. In contrast, the data structure for solving
min-ratio cycle in the first almost-linear time min-cost flow
algorithm of [8] is quite involved. It relies on complex fully-
dynamic spanners, core graphs, all-pairs shortest path data
structures, and a delicate restarting procedure to manage the
interaction between a non-fully-adaptive data structure and its
‘adversary’ coming from the interior point method. This need
for reasoning about the interaction between a data structure
and an adversary was removed in [7], which gave a (deter-
ministic) fully-adaptive data structure for solving min-ratio
cycle problems, but introduced other complexities by using
extensive machinery to maintain fully-dynamic ℓ1-oblivious
routings using dynamic terminal spanners and low-diameter
trees [23].

b) Application #2: Decremental min-cost flow: By de-
signing an ℓ1-IPM for (1), and an efficient data structure for
min-ratio cuts (Definition I.3), we show the following.

Theorem I.6. There is a randomized algorithm that given
a decremental graph G = (V,E,u , c) with integer ca-
pacities u in [1, U ] and integer costs c in [−C,C], with
U,C ≤ mO(1), where m is the initial number of edges
in G, a demand d ∈ ZV , and parameter F ∈ R re-
ports after each edge deletion, capacity decrease, or cost
increase, whether there is a feasible flow f with cost c⊤f
at most F . Over Q updates, the algorithm runs in total time
(m+Q)·eO((logm)3/4 log logm), and can be made deterministic
with time (m+Q) · eO((logm)5/6 log logm).

A corollary of Theorem I.6 is an algorithm for approx-
imately maintaining the flow value. Because Theorem I.6
solves a thresholded problem, it succeeds against adaptive
adversaries. Because Theorem I.7 reduces to the thresholded
problem, it also succeeds against adaptive adversaries.

Theorem I.7. There is a randomized algorithm that given a
decremental graph G = (V,E,u , c) with integer capacities
u in [1, U ] and integer costs c in [1, C], with U,C ≤ mO(1),
where m is the initial number of edges in G, a demand
d ∈ ZV , maintains a (1 + ϵ)-approximation to the cost of
the current min-cost flow. Over Q updates, the algorithm runs
in total time ϵ−1(m + Q) · eO((logm)3/4 log logm), and can be
made deterministic in time ϵ−1(m+Q) ·eO((logm)5/6 log logm).

Proof. We run a thresholded decremental min-cost flow al-
gorithm (Theorem I.6) for thresholds F = (1 + ϵ)i. Note
that the cost the min-cost flow is monotonically increasing
because the graph is decremental. The cost is lower bounded
by 1, and upper bounded by mCU , so it suffices to set
i = 0, 1, . . . , O(ϵ−1 log(mCU)). The result thus follows from
Theorem I.6.
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This also implies approximation and threshold algorithms
for maintaining the value of the decremental maximum flow
and the size of a weighted bipartite matching. It is worth
noting that the dependence on ϵ is optimal under the online
matrix-vector (OMv) conjecture [24]. Indeed, exact decre-
mental matching in unweighted graphs requires time at least
mn1−o(1) under OMv. Our result should be compared to
previous algorithms [6], [25], [26], with runtimes1 Õ(mϵ−4),
Õ(mϵ−3), and m1+o(1)ϵ−2 respectively.

c) Application #3: Deterministic decremental single-
source reachability and strongly connected components: A
long line of work resulted in near-linear time algorithms
for decremental single-source reachability (SSR) and strongly
connected components (SCC) [1], [2], [5], [27], [28]. All these
algorithms are randomized. They technically work against
adaptive adversaries because the SCC decomposition or reach-
ability structure does not reveal any randomness. However,
they do not work against “non-oblivious” adversaries that
can see all internal randomness of the algorithm. In general,
non-oblivious or even deterministic algorithms are often more
desirable so that they can be used within an optimization
framework (such as IPMs or multiplicative weights). To the
best of our knowledge, the current fastest deterministic algo-
rithms for SSR and SCC require time mn1/2+o(1), achieved
by [29].2 We improve this runtime to m1+o(1).

Theorem I.8. There is a deterministic algorithm that given
a directed graph G = (V,E) undergoing edge deletions,
explicitly maintains the strongly connected components of G
in total time m · eO((logm)5/6 log logm).

There is a simple reduction from SSR to SCCs.

Corollary I.9. There is a deterministic algorithm that, given
a directed graph G = (V,E) undergoing edge deletions and
vertex s ∈ V , explicitly maintains the set of vertices reachable
from s in G in total time m · eO((logm)5/6 log logm).

Proof. For a graph G = (V,E) and vertex s ∈ V , consider
the graph Ĝ which contains the edges in E, plus (t, s) for
t ∈ V . The SCC containing s in Ĝ is exactly the set of vertices
reachable from s. If G is decremental, then so is Ĝ. Thus, the
result follows from Theorem I.8.

It is worth mentioning that the previous deterministic result
in [29] allows for querying paths between vertices in the same
SCC, in time proportional to the length of the returned path.
We do not currently see how to use our methods to achieve
this.

d) Application #4: Decremental s-t distance: The s-t
shortest path problem is of particular interest, partly because
a classic algorithm of Garg and Köneman [30] shows that a
data structure which solves approximate s-t shortest path in
decremental directed graphs (against an adaptive adversary,

1We use Õ(·) to hide polylog(m) factors.
2 [29] claims a runtime of mn2/3+o(1). Using the almost-linear-time

deterministic max-flow algorithm from [12] to speed up a routine to embed
directed expanders in [29], improves the runtime to mn1/2+o(1).

with path reporting) can be used to design a high-accuracy
maximum flow algorithm with nearly the same runtime. Their
algorithm is based on multiplicative weights, and hence ini-
tially only achieves a constant factor approximation. However,
it works in directed graphs, so one can take the residual graph
and repeat the argument to boost to high accuracy. Versions
of this MWU framework have been instantiated in several
settings [6], [22]. Even though we now know an almost-
linear-time maximum flow algorithm, such an approach may
provide an alternate algorithm not based on IPMs. Recently
Chuzhoy and Khanna achieved a n2+o(1) runtime for bipartite
matching via this approach [31], [32], by leveraging specific
properties of the residual graphs encountered in a bipartite
matching algorithm. Curiously, Theorems I.6 and I.7 indeed
give an almost-linear-time algorithm for reporting the distance
of the decremental s-t shortest path, though not a witness
approximate shortest path itself. However, the algorithm uses
an IPM, so even having access to a witness path would not lead
to a more “combinatorial” maximum flow algorithm based
only on MWU.

Before our result, the previous best-known runtimes against
oblivious adversaries were Õ(n2) in dense graphs [4] and
Õ(mn3/4) in general [33], and deterministically/adaptively
only runtimes of n2+2/3+o(1) and O(mn) are known [29], [34]
Our result is deterministic and hence works against adaptive
adversaries. It should be noted that these prior works solve
the more general problem of single-source shortest path, i.e.,
approximate shortest path lengths from a source s to every
other vertex. They also support reporting approximate shortest
paths. We do not know how to achieve either currently, for
reasons similar to the ones discussed above regarding why we
cannot report paths for SSR and SCC. However, we are mildly
optimistic that it may be achievable with additional insights.

e) Application #5: Dynamic flow algorithms: Our data
structure to maintain the expander hierarchy and tree cut
sparsifier runs in graphs undergoing edge insertions and
deletions with polynomially bounded edge capacities with
randomized amortized update time and approximation quality
eO(log3/4 log logm). We further give a deterministic algorithm
that achieves amortized update time and approximation quality
eO(log5/6 log logm). These bounds match the respective runtimes
claimed in [10] but extend their result also to capacitated
graphs.

By the same reductions as in [10], we obtain the first
algorithm with subpolynomial update time and approximation
ratio for various important flow and cut problems.

Theorem I.10. There is a deterministic algorithm on a capac-
itated m-edge graph undergoing edge insertions and deletions
with amortized update time mo(1) that can return an mo(1)-
approximation to queries for the following properties:

• s-t maximum flow, s-t minimum cut for any input pair
(s, t) ∈ V 2;

• lowest conductance cut, sparsest cut; and
• multi-commodity flow, multi-cut, multi-way cut, and ver-

tex cut sparsifiers.
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The former two queries are answered in worst-case time Õ(1),
the last type of queries are answered in time Õ(k) where k
is the number of multi-commodity flow pairs; k is the number
of required sets in the multi-cut; k is the number of terminals
in the multi-way cut; or k is the number of terminal vertices
over which the vertex sparsifier is required.

Previously, similar results were obtained in unit capacity
graphs by [10]. [35] gave algorithms for the first problem that
achieve nearly-logarithmic quality while achieving sub-linear
update time Õ(n2/3) in an n-vertex graph against an oblivious
adversary and Õ(m3/4) time against an adaptive adversary.
In [36], a deterministic algorithm with mo(1)-approximation
quality and update time was given which works in capacitated
graphs undergoing edge insertions only.

C. Related Work

a) Dual-based flow algorithms: The work [37] provided
a cut toggling alternative to the cycle toggling Laplacian
solver of [38]. For the problem of decremental approximate
bipartite matching, [25] provided an MWU algorithm on dual
vectors that run in nearly-linear time. Additionally, [39] (see
also [40]) gave a framework for undirected transshipment
that was partially based on adjusting dual variables. The dual
perspective is also crucial for the communication complexity
of transshipment [41].

b) Previous min-cost flow algorithms: Following a long
line of work [6], [17], [18], [42]–[50], the work [8] gave an
almost-linear time algorithm for solving minimum-cost flow
exactly in graphs with polynomially bounded integral costs
and capacities. A series of works since then [7], [9], [11],
[12] has made the algorithm deterministic and has given an
algorithm for maintaining a minimum-cost flow in incremental
graphs [7]. Earlier works primarily used electrical flows to
make progress, and recent works use approximate minimum-
ratio cycles. Our work provides an alternative approach that
instead solves minimum-ratio cut problems. Our algorithm has
fewer recursive layers and results in a faster runtime for exact
minimum-cost flow in both the randomized and deterministic
settings.

c) Decremental graph algorithms: One of the first decre-
mental graph algorithms was given in the 80’s, when Even
and Shiloach gave an algorithm to maintain decremental BFS
trees [34]. Since then, there has been significant work on
maintaining fundamental properties of decremental graphs.
Decremental s-t or single source shortest path (SSSP) is
particularly important problems that have applications such as
efficient implementation of numerical methods on graphs [6],
[22], [30], [51]. On undirected decremental graphs, it is known
how to achieve a (1+ ϵ)-approximation ratio in m1+o(1) total
time deterministically [3], [6], [23], [52]–[56]. For directed
graphs, achieving an almost-linear runtime remains open and
the state of the art is either n2+2/3+o(1) deterministically,
Õ(m3/4n5/4) assuming adaptive adversaries, or Õ(m2/3n4/3)
assuming oblivious adversaries [1], [2], [4], [29], [33], [57].
With a large mo(1) approximation factor, deterministic almost-

linear total time is achievable for even fully-dynamic all-pair
shortest path (APSP) on undirected graphs [6], [56], [58], [59].

Matchings are another graph property that have attracted
significant attention from the dynamic graph algorithms com-
munity. In decremental graphs, it is possible to maintain (1+
ϵ)-approximate maximum (weighted or cardinality) matching
on either bipartite [26], [29] or general graphs [60]–[62].

Most of the aforementioned results are purely combinatorial
and are focused on maintaining discrete structures such as
graph decompositions, neighborhood coverings, and search
trees. On the other hand, our work maintains the solution
through the lens of feasibility and optimality of a continuous
optimization problem. Such idea also appears in some previous
works such as incremental matchings [63], decremental match-
ings [26], [62], partially dynamic LPs [64], and decremental
max eigenvectors [65].

d) Dynamic flow algorithms: As a direct implication of
the Ford-Fulkerson’s maxflow algorithm, one can maintain
exact max flow on fully dynamic unweighted graphs with
O(m) update time (see [66] for a discussion on the matter).
On planar graphs, an improved update time of Õ(n2/3) can be
achieved [67], [68]. However, under the strongly exponential
time hypothesis (SETH), there is no sublinear update time
algorithm for partially dynamic general graphs [69]. As a
result, much attention is devoted to maintaining approximate
solutions.

In the fully dynamic case, mo(1)-approximation ratio with
mo(1) update time can be achieved via expander hierarchy
on unit capacity, undirected graphs [10]. [35] shows how to
maintain a Õ(1)-approximation on capacitated graphs. Our
dynamic tree cut sparsifier improves these results to mo(1)-
approximation in mo(1)-amortized time on capacitated graphs.
In the incremental case, (1 + ϵ)-approximate solutions can be
maintained with m1+o(1)ϵ−1 total time for undirected p-norm
flows as well as directed min-cost flows [7], [9], [11]. For
unweighted graphs, a runtime of m3/2+o(1)ϵ−1/2 total time
was previously achieved by [70]. The algorithm of [70] can
also maintain exact max flows on incremental unweighted
graphs in a n5/2+o(1) total time, which corresponds to a
sublinear update time when the graph is sufficiently dense.

e) Lower bounds: In this paragraph, we give a more
detailed discussion of related lower bounds. Since the current
lower bounds do not distinguish between the incremental and
decremental settings, we refer the reader to [7] for an analo-
gous and slightly more expansive discussion in the incremental
setting.

• Flows and Matchings: Under the online matrix-vector
(OMv) conjecture [24], there are bipartite graphs where
performing Θ(n2) deletions and Θ(n) size queries re-
quires Ω(n3−δ) total time for any fixed constant δ > 0 to
maintain exact matching size [69]. Therefore, Ω(n2−δ)
amortized update time is necessary for Θ(n) updates and
one size query under OMv. Thus, our dependence on ϵ is
optimal for algorithms with sub-polynomial update time
because a (1− 1

n+1 )-approximate matching is a maximum
cardinality matching.
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Furthermore, under the strongly exponential time hy-
pothesis (SETH), every decremental algorithm for the
weighted and directed exact maximum flow value prob-
lem on a sparse graph with n vertices requires O(n1−δ)
amortized update time [69].

• SCCs: We discuss the hardness of deciding if a directed
graph contains a cycle in the fully-dynamic and worst-
case decremental settings. In the fully-dynamic setting
Θ(n2) updates and Θ(n) cycle detection queries take
Ω(n3−δ) time for an arbitrary constant δ > 0 under OMv
[24].
By a straightforward reduction to deciding if the s-t
shortest path has length 3 or 5, there are graphs for
which Θ(n) edge deletions and a single cycle detection
query take total time Ω(n2−δ) under OMv [24]. This rules
out sub-linear worst-case update time for decremental
algorithms.

• Decremental s-t Shortest Path: Under the OMv conjec-
ture the exact decremental s-t shortest distance problem
requires amortized update time m0.5−δ on an unweighted
graph with n vertices and m = O(n2) edges for any
fixed δ > 0 [24]. We remark that our dependence on
ϵ is optimal for algorithms with sub-polynomial update
time because a (1+ 1

n )-approximate shortest distance on
a unweighted graph is an exact shortest distance. Further-
more, algorithms with sub-polynomial worst-case update
time are ruled out for obtaining a 3/5− δ approximation
under OMv, again via distinguishing s-t distances 3 and
5 [24].
f) Paper Organization: In Section II, we give an

overview of our algorithm. Then, we describe our algorithm
for maintaining a tree cut sparsifier in Section IV. In Section V,
we show that tree cut sparsifers can be used to detect min-ratio
cuts. Finally, in Section VI, we show that such a min-ratio cut
data-structure suffices to solve decremental threshold min-cost
flow.

II. OVERVIEW

To convey the workings of our algorithm, it is natural to
present the sections in a top-down manner to better highlight
and motivate why we need to solve certain subproblems. The
later main text will give the formal proof in the bottom-
up order, as our proofs build on the precise properties and
guarantees of the subroutines derived before.

A. Min-Cost Flow, Transshipment and its Dual

Our algorithm for min-cost flow first reduces the min-cost
flow problem to transshipment on a sparse bipartite graph G =
(V,E, c) with some vertex demands d . The transshipment
problem

min
B⊤f=d ,f≥0

c⊤f (2)

is a special case of min-cost flow where all the capacities
are unbounded. Because our ultimate goal is to handle edge
deletions, the reduction to this form does not address the cen-
tral issue that arises for algorithms in flow space: Deleting an

edge causes the current flow to no-longer route the demands.
Therefore, we take the dual of (2) which translates the problem
to voltage space (i.e. vertex potentials)

max
c−By≥0

d⊤y . (3)

This form is more amenable to edge deletions, since the vertex
potentials y remain feasible under edge deletions. Finally, we
consider the thresholded version of (3) and simply aim to
decide if maxc−By≥0 d

⊤y ≥ F instead of maximizing the
dual.

We summarize the technical results as the following lemma:

Lemma II.1. Suppose there is an algorithm A that, given any
(decremental) transshipment instance and some threshold F ,
outputs either a feasible flow of cost at most F + ϵ or certifies
that the minimum cost is at least F after the initialization
and each edge deletion in T (n,m) total time. Then, there
is a thresholded min-cost flow algorithm A′ (Definition I.1)
that runs in T (O(m), O(m)) total time. Furthermore, if A
successes with probability p, so does A′.

The proof of this is deferred to the full version.

B. Solving the Thresholded Transshipment Dual via Min-Ratio
Cuts

In this section, we outline how to solve the transship-
ment dual problem by repeatedly solving the min-ratio cut
problem on a fully dynamic graph G = (V,E,u , g), where
u ∈ RE

≥0 are best interpreted as edge capacities (different
from the capacities in the original min-cost flow instance) and
g ∈ RV ⊥ 1 are referred to as vertex gradients. We denote
U = diag(u). Then, the min-ratio cut problem is given by

min
∆∈RV

⟨g ,∆⟩
∥UB∆∥1

. (4)

Notice, that the solution of (4) is always negative and that
it therefore maximizes the absolute value of the ratio. We
show that there is always a optimal solution ∆ = ±1C ,
i.e. there exist optimal ∆ which indicate cuts in the graph.
Furthermore, despite being used to solve the transshipment
dual on a directed graph, this problem is undirected in that
only the signs of the gradients depend on the side of the cut.

To show that (4) can be used to solve the transshipment
dual problem (3), we closely follow the ℓ1-IPM framework
introduced by [8] for the first almost-linear time algorithm
for minimum-cost flow, adapted to dual space, and apply it to
the transshipment dual. Following [8] we introduce a potential
Φ : RV → R

Φ(y)
def
= 100m log(F−⟨d ,y⟩)+

∑
e=(u,v)∈G

(c(e)−(By)(e))−α

(5)
for α ≈ 1/ log(mC) where m denotes the initial number of
edges in G and all costs are integers in the interval [−C,C].
If a solution of cost F exists, then the potential Φ(y) is
unbounded and goes to −∞ as ⟨d ,y⟩ approaches F .
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The barrier (·)−α can be thought of as the more stan-
dard log(·) barrier to ensure that y remains feasible, but
it penalizes approaching the boundary more harshly and
thus ensures that (c(e) − (By)(e)) ≥ 1/nÕ(1) as long as
(c(e) − (By)(e))−α ≤ Õ(m). This ensures that the bit-
complexity remains bounded by Õ(1), which directly follows
from the following description of vertex gradients and edge
capacities respectively. We let

g
def
= ∇Φ(y) =

−100m
F − ⟨d ,y⟩

d + αB⊤(c − (By))−1−α

and u(e)
def
= (c(e) − (By)(e))−1−α where the −1 − α

exponent is applied to every element in the vectors separately.
The Taylor-expansion

Φ(y +∆) ≈ Φ(y) + ⟨g ,∆⟩+ ∥UB∆∥22
≤ Φ(y) + ⟨g ,∆⟩+ ∥UB∆∥21

implies that solving the min-ratio cut problem to 1/κ accuracy
yields an update reducing the potential by approximately 1/κ2

if there is a solution to (3) with cost F because the optimum
ratio is then ≈ 1.

This can be turned into an algorithm for decremental
transshipment with the following observations. First, if there
is a feasible y with ⟨d ,y⟩ ≥ F , then there exists a solution to
the min-ratio cut problem that decreases the potentials by at
least m−o(1). Thus if our min-ratio cut algorithm cannot find
a good solution, we conclude that maxc−By≥0⟨d ,y⟩ < F ,
and continue.

It is not difficult to initialize y so that the potential is
initially Õ(m), and when Φ(y) ≤ Õ(m), one can show
that ⟨d ,y⟩ ≥ F − m−O(1). Finally, edge deletions cannot
increase the potential, and each edge deletion only causes O(1)
updates to the gradients and capacities. Overall, the algorithm
only makes m1+o(1) calls to the dynamic min-ratio cut data
structure. We refer the reader to Section VI for a detailed
description of the interior point method.

C. Min-Ratio Cuts on Trees

Despite its description involving an arbitrary update vector
∆ in (4), the min-ratio cut problem always has a solution that
updates along a single cut, i.e., we have

min
C⊆V

⟨g ,1C⟩
∥UB1C∥1

= min
∆∈RV

⟨g ,∆⟩
∥UB∆∥1

which explains the nomenclature and allows us to focus our
efforts on cuts from here on out. We refer the reader to
Lemma V.5 for a short proof of this fact.

To describe how we repeatedly solve the min-ratio cut
problem approximately on a fully dynamic graph G, we
assume that the problem is posed on a dynamic tree T instead.
We will later reduce to this case using dynamic tree-cut
sparsifiers, the main data structure we develop in this paper.

In an analogue to the cycle decomposition of circulations
in flow-space, we next show by induction that it suffices to
consider cuts induced by a single tree edge. Consider a min-
ratio tree cut C that cuts k > 1 tree edges. We show that

there is a cut with at most k − 1 edges achieving at least
as good quality. Because the graph is a tree there is at least
one connected component C ′ (after removing the cut edges)
that is only incident to a single cut edge. Since shifting the
∆ = 1C vector does not change its ratio, we may assume that
this connected component receives value 1, i.e., ∆(v) = 1 for
v ∈ C ′. Now notice that 1C = 1C′ + 1C\C′ where C ′ is a
cut induced by removing a single edge, and C \ C ′ is a cut
induced by removing k − 1 edges. But then we obtain

min

(
⟨g ,1C′⟩
∥UB1C′∥

,
⟨g ,1C\C′⟩∥∥UBC\C′

∥∥
)

(6)

≤
⟨g ,1C′ + 1C\C′⟩

∥UB1C′∥+
∥∥UB1C\C′

∥∥ =
⟨g ,1C⟩
∥UB1C∥

where the inequality follows from the well known fact that
min(a/b, c/d) ≤ a+c

b+d given b, d > 0. Iterating (6) directly
yields that it suffices to consider cuts induced by single tree
edges.

Given this insight, it suffices to maintain the ratio achieved
by every tree edge under updates to the tree, edge capacities,
and gradients, where we are guaranteed that g ⊥ 1 at all times.
It turns out that the tree-cut sparsifiers we maintain have hop
diameter bounded by Õ(1)3. This allows us to maintain the
quality of each single edge cut in Õ(1) time: whenever vertices
u and v undergo an update in the form of an edge insertion,
deletion, or gradient change, only edges in the path T [u, v]
connecting u, v have their qualities change.

We refer the reader to Section V for a detailed description
of our min-ratio cut data structure on trees. This section also
contains an additional component necessary to our overall al-
gorithm. We must maintain approximations to the true gradient
and capacities to know which edges to update in the dynamic
min-ratio cut data structure, and this involves detecting edges
which have accumulated large potential differences across the
cuts we have returned. This can be done with a standard data
structure.

D. Reducing to Trees via Tree-Cut Sparsifiers

In this section, we explain our construction of tree-cut
sparsifiers T for a dynamic graph G = (V,E,u). These are
trees on a larger vertex set that capture every cut up to some
multiplicative factor q. This allows us to approximate the min-
ratio cut in G with a tree cut up to a multiplicative loss q.

Definition II.2 ((Tree/Forest) Cut Sparsifier). Given graph
G = (V,E,u), a cut sparsifier G′ = (V ′, E′,u ′) of quality
q is a graph with V ⊆ V ′ such that for every pair of
disjoint sets A,B ⊆ V , we have that mincutG(A,B) ≤
mincutG′(A,B) ≤ q · mincutG(A,B). We say that G′ is a
forest cut sparsifier if G′ is a cut sparsifier and a forest graph;
and we say G′ is a tree cut sparsifier if G′ is a cut sparsifier
and a tree graph.

3The hop-diameter of a graph is the diameter of its uncapacitated version.
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At a high level, our algorithm wishes to maintain an
expander hierarchy on a dynamic capacitated graph G, intro-
duced by [10]. Broadly, an expander hierarchy is constructed
by first finding an expander decomposition of G. In fact, a
stronger notion called boundary-linkedness (Definition IV.12)
is necessary, but this generally follows from most expander
decomposition constructions. Then each expander piece is
contracted, and the algorithm then finds an expander decom-
position on the contracted graph, and repeats. Note that this
naturally leads to a tree structure. [10] proves that this tree is a
tree-cut sparsifier of quality Õ(1)k/ϕ, where k = O(log1/ϕ m)
is the number of layers in the expander hierarchy. This is
Õ(1)k/ϕ ≤ mo(1), for ϕ = 2−

√
logm.

The work of [10] showed how to maintain an expander hier-
archy in unit capacity graphs. Our first goal is to extend this to
capacitated graphs that only undergo edge deletions. Later, we
show how to construct a tree-cut sparsifier on fully dynamic
graphs by using the core-graph technique and batching. We
start by discussing how to maintain an expander decomposition
on a capacitated graph undergoing edge deletions.

a) Capacitated Decremental Expander Decomposition.:
An expander decomposition is a partition X of the vertices
in G = (V,E,u), such that for every X ∈ X the induced
subgraph G[X] is a ϕ/Õ(1) expander with respect to con-
ductance, i.e., uG(S,X \S)/min(volG(S), volG(X \S) ≥ ϕ
for all S ⊆ X . Futhermore, the total capacity of the crossing
edges is bounded with Õ(ϕ ·U total), where we denote the total
capacity of all the edges in G with U total.

While this problem has been studied before using more
involved techniques [71], we give the simplest imaginable
reduction to the uncapacitated setting. This is important for
us because we require an additional property of the expander
decomposition we maintain: the vertex sets of the expanders
refine over time, and the total volume of all edges that are
ever cut is bounded by Õ(ϕ · U total) over all edge deletions.

We first fix a value U cutoff = ϕ · U
total

m , and let G′ be the
sub-graph of G that only contains edges with capacity at
least U cutoff, and additionally contains self loops of capacity
volG(v) for every vertex v. Notice that computing a weighted
expander decomposition for this graph G′ suffices, since the
same decomposition has at most ϕU total extra crossing edge
capacity in G, and we have volG(S) ≤ volG′(S) for every set
S ⊆ V due to the additional self loops.

We now exploit that all the non-self loop edges in G′

have high capacity to replace G′ by an unweighted multi-
graph G′′. We simply replace every edge with

⌈
u(e)/U cutoff

⌉
uncapacitated multi-edges. Notice that the capacity of every
cut in G′′ 2-approximates the capacity of the cut in G′ (after
scaling with U cutoff), and that the volume of G′′ is lower
bounded by the volume of G′. Furthermore G′′ only contains
O(m/ϕ) edges.

An uncapacitated decremental expander decomposition that
refines over time under edge deletions can then be computed
using recent works on expander decompositions, specifically
[21] adapted using ideas from [20] to enable vertex splits and
self-loop insertions. This refining property of the expander

decomposition then ensures that the total amount of capacity
on all edges cut at any point in time is Õ(ϕ · U total).

Overall, we have given an algorithm to maintain an ex-
pander hierarchy, and thus a tree-cut sparsifier of quality
2O(

√
logm log logm) in m1+o(1) time in decremental capacitated

graphs.
b) Fully Dynamic Tree-Cut Sparsifiers. : Finally, we

reduce from the fully dynamic case to the decremental case
using batching. To describe the main ideas used in our batching
scheme, we consider a current tree-cut sparsifier T of some
graph G that receives a batch of insertions I . We show that
we can compute a new tree-cut sparsifier of G ∪ I in time
proportional to |I| without losing too much quality. Batching
the updates appropriately then turns such an algorithm into a
fully dynamic tree-cut sparsifier data structure.

To compute a tree-cut sparsifier of G∪I , we instead consider
the graph T ∪I . It is not surprising that T ∪I is a cut-sparsifier
of G ∪ I given that T is a tree-cut sparsifier of G. Then,
we instantiate a set of terminals B ⊆ V (T ). Initially, every
endpoint of an edge in I is added to B. Then, B is extended
to a branch-free set, i.e. a set such that the set of paths P
containing all tree paths T [a, b] for a, b ∈ B such that it does
not intersect any other terminal is edge-disjoint. This extension
can be achieved by doubling the size of the terminal set.

Then, we remove the minimum capacity edge from each
such path and refer to the trees in the leftover forest as cores.
Thereafter, the algorithm contracts the cores (forest pieces) and
computes a tree-cut sparsifier on the contracted graph merely
containing the identified min-capacity edges and the inserted
edges in I . This graph contains approximately |I| edges, and
therefore computing the tree-cut sparsifier takes time roughly
proportional to |I|. Then, this tree is mapped back to a tree
on the whole graph via un-contracting the cores.

Since the procedure described above loses an q factor
in quality every time it is applied, we make sure that the
sequential depth k of this operation in the final batching
scheme handling insertions is very low, i.e., qk = Ô(1).

See Section IV for a full description of our tree-cut sparsifier
data structure.

III. PRELIMINARIES

a) Linear Algebra. : We denote vectors as lower case
bold letters aaa , and matrices as upper case bold letters A. Given
a vector aaa ∈ RX and a subset Y ⊆ X we let aaa[X] denote the
vector aaa restricted to the coordinates in X , and we let aaa(X) =∑

x∈X aaa(x). For a vector u ∈ Rn, we let diag(u) ∈ Rn×n

denote the diagonal matrix with entries of u on the diagonal.
b) Graphs.: We work with a capacitated input graph

G = (V,E,u) where u is the function that assigns each
edge e ∈ E a capacity u(e) ≥ 1. We define volG(v) for
every vertex v ∈ V as the weighted degree, i.e. volG(v) =∑

e∈E,v∈e u(e) and denote by degG(v) the combinatorial
degree, i.e. degG(v) =

∑
e∈E:v∈e 1. We extend this notion

to sets where X ⊆ V , volG(X) =
∑

v∈X volG(v) and
degG(X) =

∑
v∈X degG(v). For uncapacitated graphs, note

that degrees and volumes coincide.
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For directed graphs, we let the in-degree of vertex v be
equal to the number of edges (w, v) whose head is v, and we
let the out-degree of v be the number of edges (v, w) whose
tail is v.

We say that a graph G is a ϕ-expander if for every S ⊆ V
with volG(S) ≤ volG(V )/2, we have u(E(S, V \ S)) ≥ ϕ ·
volG(S).

Given a tree T , we denote with T [u, v] the unique tree path
from vertex u to vertex v.

Finally, we define the mincut between two sets of vertices
in a graph G.

Definition III.1. Given a graph G = (V,E,u) and two
disjoint sets A,B ⊆ V , we denote by mincutG(A,B) the
minimum value u(EG(A

′, V \ A′)) achieved by any set A′

with A ⊆ A′ ⊆ V \B.

IV. FULLY-DYNAMIC TREE CUT SPARSIFIERS

The main graph-theoretic object in this paper is the notion
of a tree cut sparsifier.

Definition II.2 ((Tree/Forest) Cut Sparsifier). Given graph
G = (V,E,u), a cut sparsifier G′ = (V ′, E′,u ′) of quality
q is a graph with V ⊆ V ′ such that for every pair of
disjoint sets A,B ⊆ V , we have that mincutG(A,B) ≤
mincutG′(A,B) ≤ q · mincutG(A,B). We say that G′ is a
forest cut sparsifier if G′ is a cut sparsifier and a forest graph;
and we say G′ is a tree cut sparsifier if G′ is a cut sparsifier
and a tree graph.

In this section, we show that tree cut sparsifiers can be
maintained efficiently in a fully-dynamic graph. Previously,
this result was only known for uncapacitated graphs [10]. Our
main result is summarized in Theorem IV.1.

Theorem IV.1. Given an m-edge graph G = (V,E,u)
where u ∈ [1, U = mO(1)]E . Let G be undergoing up
to Õ(m) edge deletions/edge insertions and vertex splits.
Then, there is a randomized algorithm that maintains a tree
T = (V ′, E′, c′) undergoing insertions and deletions of edges
and isolated vertices, such that T is a tree cut sparsifier of
quality γq = 2O(log3/4(m) log log(m)) with total update time
m · 2O(log3/4(m) log log(m)). The algorithm succeeds w.h.p.

We further augment the above theorem to maintain a depen-
dency graph H that allows us to track approximately which
edges are in the cut induced by each tree edge of T . This graph
H is crucial in our final min-cost flow algorithm as it allows
us to implicitly maintain flow and potentials in the IPM.

Definition IV.2. Given a tree cut sparsifier T of quality q,
a directed layer graph H = (V0 ∪ V1 ∪ · · · ∪ Vk, EH) has
k layers where V0 has a vertex for each edge e ∈ E, and
all edges eH ∈ EH have their tail in Vi+1 and head in Vi

for some 0 ≤ i < k, such that every vertex v ∈ V (H) has
in-degree d = O(logc

′
m) for some constant c′ > 0.

For every edge eT ∈ T , let EeT be the set of edges in G that
cross the cut induced by T\{eT }, i.e. let A,B be the connected
components of T \ {eT }, then EeT = EG(A∩ V,B ∩ V ). Let

E′
eT be the set of edges in G whose corresponding vertices in

V0 are reached by the vertex veT that represents the edge eT
in the graph H . Then, we have at any time that EeT ⊆ E′

eT
and uG(E

′
eT ) ≤ q · uG(EeT ).

Lemma IV.3. The algorithm in Theorem IV.1 can be extended
to explicitly maintain a directed layer graph H = (V0 ∪ V1 ∪
· · · ∪ Vk, EH) where k = O(log1/4(m) log log(m)).

The additional total runtime for maintaining the graph H is
again m · 2O(log3/4(m) log log(m)). The total number of updates
to H consisting of insertions/deletions of edges and isolated
vertices is bounded by m · 2O(log3/4(m) log logm).

Finally, we discuss how to derandomize the above result at
the cost of obtaining a slightly worse approximation guarantee
and runtime.

Theorem IV.4. Given an m-edge graph G = (V,E,u) where
u ∈ [1, U = mO(1)]E . Let G be undergoing up to Õ(m) edge
deletions/edge insertions and vertex splits. Then, there is a
deterministic algorithm that maintains a tree cut sparsifier
T = (V ′, E′, c′) of quality γq = 2O(log5/6(m) log log(m)) with
total update time m · 2O(log5/6(m) log log(m)).

Lemma IV.5. The deterministic algorithm in Theorem IV.4
can be extended to explicitly maintain a directed layer
graph H = (V0 ∪ V1 ∪ · · · ∪ Vk, EH) where k =
O(log1/6(m) log log(m)).

The additional total runtime for maintaining the graph H is
again m · 2O(log5/6(m) log log(m)). The total number of updates
to H consisting of insertions/deletions of edges and isolated
vertices is bounded by m · 2O(log5/6(m) log log(m)).

Remark IV.6. The tree cut sparsifers maintained by Theo-
rem IV.1 and Theorem IV.4 have hop diamter Õ(1).

For the rest of the section, we implicitly assume that all
(dynamic) graphs G under consideration are connected (at all
times). We obtain our main result summarized in Theorem IV.1
in three steps: first, in Section IV-A, we give a reduction that
allows us to maintain a decremental expander decomposition
of capacitated graphs by using existing techniques to maintain
an expander decomposition of a decremental, un-capacitated
graph. We then show that we can maintain a tree cut sparsifier
of a decremental graph via expander decompositions in Sec-
tion IV-B. Finally, we reduce the problem of maintaining a
tree cut sparsifier on a dynamic graph to a decremental graph
problem in Section IV-C. We then discuss how to derandomize
our result to obtain Theorem IV.4 in Section IV-D.

A. Decremental Expander Decompositions for Capacitated
Graphs

In this section, we generalize a recent result about the main-
tenance of expander decompositions to graphs with capacities.
We summarize our result in Theorem IV.7 below. We point
out that our proof techniques in this section can be used
to obtain expander decompositions of directed, capacitated
graphs, however, here we focus only on undirected graphs.
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Theorem IV.7 (Capacitated Expander Decomposition). Given
a parameter 0 < ϕ ≤ 1 and a capacitated m-edge graph
G = (V,E,u), where u ∈ [1, U ]E and U being any positive
number, undergoing a sequence of Õ(m) updates consisting
of edge deletions, vertex splits and self-loop insertions.

There is a randomized algorithm that explicitly maintains
tuple (X , Ecut) where X is a partition of the vertex set of G
that refines over time and Ecut is a monotonically increasing
set of intercluster edges with Ecut ⊆ E such that:

1) at any stage, for every cluster X ∈ X , we have that the
current graph G[X] is a (ϕ/c0)-expander for some fixed
c0 = Õ(1), and

2) at any stage, for every edge e in the current graph G,
we have that if its endpoints are not in the same cluster
X ∈ X , then the edge is intercluster and therefore in
Ecut, and at any time u(Ecut) ≤ c1 ·ϕ ·U total where U total

is the total capacity of all edges present in G at any point
in time and c1 = Õ(1).

The algorithm takes total time Õ(m/ϕ3) and succeeds w.h.p.

To prove Theorem IV.7, we give a reduction to the unca-
pacitated setting and then use the following result. We point
out that the theorem below generalizes the theorem in [21] as
it also allows for vertex splits and self-loop insertions. This
generalization can be obtained straightforwardly by combining
the framework from [21] with standard techniques from [20]
to deal with vertex splits and self-loop insertions.

Theorem IV.8 (Expander Decomposition [21]). Given a
parameter 0 < ϕ ≤ 1 and an un-capacitated m-edge
(multi-)graph G = (V,E) undergoing a sequence of Õ(m)
updates consisting of edge deletions, vertex splits and self-
loop insertions.

There is a randomized algorithm that explicitly maintains
tuple (X , Ecut) where X is a partition of the vertex set of G
that refines over time and Ecut is a monotonically increasing
set of intercluster edges with Ecut ⊆ E such that:

1) at any stage, for every cluster X ∈ X , we have that the
current graph G[X] is a (ϕ/c0)-expander for c0 = Õ(1),
and

2) at any stage, for every edge e in the current graph G,
we have that if its endpoints are not in the same cluster
X ∈ X , then the edge is intercluster and therefore in
Ecut, and at any time |Ecut| ≤ c1 · ϕm for c1 = Õ(1).

The algorithm takes total time Õ(m/ϕ2) and succeeds w.h.p.

a) The Algorithm.: For the proof of Theorem IV.7, we
first assume that the total capacity of all edges inserted since
the start of the algorithm is at most equal to the total capacity
U total of the initial graph. This is w.l.o.g. as otherwise the
algorithm can be restarted with edges in the set Ecut removed
from the graph and added to the new set of intercluster edges
produced.4

4Because capacities are not polynomially-bounded, the number of restarts
could be large, however, using the techniques introduced below, an edge can
effectively be ignored if its capacity is below ϕ ·U total/m and thus any edge
is only considered by the algorithm during O(logm) restarts.

Then, consider the dynamic graph G′ obtained from the
graph G by deleting/not inserting all edges with capacity
less than ϕ · U total

m . Throughout, let G′′ be the uncapacitated
dynamic graph obtained from graph G′ by replacing each edge
e of capacity u(e) by ⌈m·u(e)

U totalϕ ⌉ multi-edges between the same
endpoints and by additionally having ⌈m·volG(v)

U totalϕ ⌉ self-loops at
each vertex v ∈ V .

Finally, maintain the tuple (X , E′′) by running the algorithm
from Theorem IV.8 on graph G′′. Maintain the output tuple
(X , Ecut) to have the same partition and let Ecut be the union
of all edges that appear at any time in G \ G′′ and all edges
in E such that a corresponding multi-edge is in E′′.

b) Analysis.: We prove the two main properties claimed
in Theorem IV.7 and then analyze the remaining properties
claimed.

Claim IV.9. The total number of edges to ever appear in G′′

is at most Õ(m/ϕ). Thus, the total capacity of all edges in G
that become intercluster for X is at most Õ(ϕ · U total).

Proof. The total capacity of all edges that ever appear in G is
by assumption at most 2 · U total. Since we replace each edge
of capacity u(e) by ⌈m·u(e)

U totalϕ ⌉ multi-edges, we can thus upper

bound the number of such multi-edges by m·U total

U totalϕ + Õ(m) =

Õ(m/ϕ) since we can charge each edge e its capacity u(e)
and where the second term Õ(m) stems from the fact that we
are rounding up Õ(m) terms.

Let us next bound the number of self-loops added to G′′.
We have that the total volume at all vertices is at most 4 ·U total

at any time by assumption, and we have that there are at most
Õ(m) vertices. Thus, there are again at most Õ(m·U total

U total·ϕ ) +

Õ(m) = Õ(m/ϕ) self-loops added this way, as desired.

Finally, it suffices to observe that at most a Õ(ϕ)-fraction
of the edges in G′′ ever become intercluster for the partition
X by Theorem IV.8. But for each edge e in the graph G′, we
add ⌈m·u(e)

U totalϕ ⌉ corresponding multi-edges to G′′. Thus, the total
capacity of all edges in G′ that becomes intercluster for X is
at most Õ(ϕ·U total). Further, the capacity of all edges in G that
do not appear in G′ is at most Õ(m) · ϕ · U

total

m = Õ(ϕ ·U total)
by our construction of G′.

Claim IV.10. The partition X is such that at any time, for
any X ∈ X , we have that G[X] is a Ω̃(ϕ)-expander.

Proof. Consider at any time, any cluster X ∈ X . Let S ⊆ X
such that volG′′[X](S) ≤ volG′′[X](X)/2. Then, we have from
Theorem IV.8, that |EG′′[X](S,X \S)| = Ω̃(ϕ) · volG′′[X](S).

Since we have a one-to-one correspondence between non-
self-loop multi-edges e′ of multiplicity a in G′′ and edges e
in G′ such that ⌈m·u(e)

U totalϕ ⌉ = a and since all edges in G′ have

capacity at least ϕ·U
total

m , we have that ⌈m·u(e)
U totalϕ ⌉ = a ≤ 2m·u(e)

U totalϕ .
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We further have that

|EG′′[X](S,X \ S)| =
∑

e∈EG′[X](S,X\S)

⌈
m · u(e)
U totalϕ

⌉
≤ 2u(EG′[X](S,X \ S)) ·

m

U totalϕ

≤ 2u(EG[X](S,X \ S)) ·
m

U totalϕ

where we use that G′ ⊆ G in the last inequality. Thus, we
obtain

u(EG[X](S,X \ S)) ≥ |EG′′[X](S,X \ S)| ·
U totalϕ

2m

= Ω̃(ϕ) · volG′′[X](S) ·
U totalϕ

2m

= Ω̃(ϕ) · volG(S)

where we use in the last inequality that since each vertex v ∈
V has at least degree ⌈m·vol(v)

U totalϕ ⌉ in G′′ and since we add self-
loops, we also have that volG′′[X](S) ≥ m·volG(S)

U totalϕ .

Given the two claims above, it suffices for a proof of
Theorem IV.7 to observe that X is refining by Theorem IV.8,
that Ecut is monotonically increasing by adding only edges
that become intercluster for X and that the time to maintain
X on G′′ is at most Õ(m/ϕ3) by the size upper bound from
Claim IV.9 on G′′ and again by Theorem IV.8, and that all
additional operations take time at most Õ(m/ϕ3).

B. Decremental Tree Cut Sparsifiers

In this section, we prove the following result that was
previously obtained in [10] for uncapacitated graphs. Our
proof follows a similar high-level strategy, however, we require
more refined building blocks and arguments to obtain our
result.

Theorem IV.11. Given an m-edge graph G = (V,E,u)
undergoing up to Õ(m) edge deletions, vertex splits and self-
loop insertions where u ∈ [1, U = mO(1)]E .

Then, there is a randomized algorithm that maintains a tree
cut sparsifier T = (V ′, E′,u ′) of G of quality γquality =
2O(

√
logm log logm) such that T is a graph consisting of at most

Õ(m) vertices and undergoing at most Õ(m) edge weight
decreases and edge un-contractions where the latter is an
update that splits a vertex v into vertices v′ and v′′ and inserts
an edge (v′, v′′). The algorithm takes total time m·2O(

√
logm).

The algorithm succeeds w.h.p.
Furthermore, the hop diameter of T is at most O(logm)

throughout.

To obtain the above result, we maintain a decremental
boundary-linked expander hierarchy as defined in [10].

Definition IV.12 (Dynamic Boundary-Linked Expander De-
composition). Given a dynamic graph G and parameters
ϕ ∈ (0, 1], β > 0, s ≥ 1, we say that a partition X of
the vertex set of G is an (β, ϕ, s) boundary-linked expander
decomposition of G if

1) at any stage, for every edge e in the current graph G,
we have that if its endpoints are not in the same cluster
X ∈ X , then the edge is intercluster and therefore in
Ecut, and at any time u(Ecut) ≤ β ·ϕ ·U total where U total

is the total capacity of all edges present in G at any point
in time.

2) at any time, for any X ∈ X , we have that the graph
G

1/(sβϕ)
X [X] is ϕ-expander where we have a one-to-one

correspondence between edges e = (u, v) ∈ Ecut and
self-loops at u and v of capacity 1

sβϕu(e). Here, G1/(sβϕ)
X

is the graph G plus self-loops of total capacity 1
sβϕ ·

u(EG(v, V ) ∩ Ecut) at each vertex v ∈ V .

We next define the crucial concept of expander hierarchies.

Definition IV.13 (Dynamic Expander Hierarchy). Given a
dynamic graph G and parameters ϕ ∈ (0, 1], β > 0, s ≥ 1, we
define an (β, ϕ, s)-expander hierarchy recursively to consist
of levels 0 ≤ i ≤ k where for each level i, we maintain a
dynamic graph Gi and an (β, ϕ, s) boundary-linked expander
decomposition Xi of Gi. We let G0 = G, and for i ≥ 0, we
define Gi+1 to be the dynamic graph obtained from Gi after
contracting all vertices in the same partition set in Xi into a
single super node and removing all self-loops. We let k be the
first index such that Gk consists of only a single vertex.

Remark IV.14. We point out that the partitions
X0,X1, . . . ,Xk can be extended to partitions of V and
it is straightforward to see that the extension of Xi refines
the extension of Xi+1 and that Gi+1 can be obtained from
contracting Xi in Gi or from contracting the extension
of Xi in G. We use these partitions and their extensions
interchangeably when the context is clear. Further, again
when the context is clear, we refer to the sets X ∈ Xi as the
vertices of Gi+1.

In our algorithm, for ϕ = 1/2
√
logm, we maintain a

(2c1, ϕ/c0, 2) expander hierarchy for our decremental input
graph G as described in Definition IV.13 (the values c0, c1
are defined in Theorem IV.7). To maintain the boundary-
linked expander decomposition Xi for each graph Gi, we
simply run the algorithm from Theorem IV.7 on the graph
G̃i = (Gi)

1/(4c1·βϕ)
Xi

where β = 2ci with parameter ϕ.5

We denote by Ecut
Xi

the set of cut edges maintained by the
algorithm in Theorem IV.7 that is run on G̃i.

To obtain a tree cut sparsifier T from our dynamic expander
hierarchy, we finally appeal to the following theorem. We note
that the theorem below from [10] was proven only in the
uncapacitated setting, however, their proof extends seamlessly.

Theorem IV.15 (see Theorem 5.2 in [10]).
Given a (dynamic) (β, ϕ, s)-expander hierarchy
H = {(G0,X0), (G1,Xk), . . . , (Gk,Xk)}, and let X−1

5Note that technically, Theorem IV.7 requires capacities to be at least 1
while some of the self-loops might be smaller. However, since correctness is
not affected by scaling all capacities and all capacities in G̃i are polynomially
lower bounded in m, we can simply scale up all capacities by a large
polynomial factor to increase them to be at least of size 1.
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denote the partition of the vertex set of G into singleton sets.
Let TH denote the tree that has a node for each set X in
any of the partitions Xi and if i < k then the node in TH
associated with X is a child of the node Y ∈ Xi+1 where
X ⊆ Y where the capacity of the edge (X,Y ) in TH is
volGi

(X).
Then, TH is a tree cut sparsifier of G with quality

O((sβ)O(k)/ϕ).

From the definitions, maintenance of tree TH is straightfor-
ward. We note that to reduce the number of updates to the
tree cut sparsifier T that we output, we let T be a version of
TH where all edge capacities are rounded up to the nearest
power of two, and enforce that all edge capacities in T are
monotonically decreasing by using the smallest capacity value
of an edge in TH that has been observed so far. Proving that
T is still a correct tree cut sparsifier (only worse in quality by
a constant factor) is trivial since by the decremental nature of
G any fixed cut has monotonically decreasing capacity.

Proof of Theorem IV.11. We prove by induction on i that
1) it is valid to invoke Theorem IV.7 on the graph G̃i, i.e.

G̃i is undergoing only edge deletions, vertex splits and
self-loop insertions, and

2) the total capacity on all edges in Ecut
Xi

is at most
(2c1ϕ)

i+1U total
G , and

3) the number of updates to G̃i is Õ(m).
Property 1: Since for every i, G̃i is obtained from Gi by

self-loop insertions/ deletions, we can conclude that Property
1 holds, if it holds for each graph Gi. For i = 0, it is
vacuously true since G0 = G which is a decremental graph by
assumption. For i > 0, we use that Xi−1 is a refining partition
which implies that Gi which is obtained from contracting
partition sets of Xi−1 in G and removing self-loops, only
undergoes the deletions that G undergoes if the corresponding
edge in Gi, and vertex splits for when Xi−1 refines, possibly
preceded by insertions of the removed self-loop at the vertex
that is split in the current update.

Property 2: By Definition IV.12, we have that the total
volume of all self-loops added to G̃i that are not in Gi already
is at most 1

4c1ϕ
· 2u(Ecut) (since each edge e ∈ Ecut adds

a self-loop of capacity 1
4c1ϕ

u(e) to both u and v). Thus,
U total
G̃i
≤ U total

Gi
+ 1

2c1ϕ
·u(Ecut) (see Item 2 in Definition IV.12).

On the other hand, since Theorem IV.7 maintains Xi to be
an expander decomposition of G̃i with parameter ϕ, we have
that the capacity of all cut edges Ecut

Xi
is bounded by c1ϕ·U total

G̃i
.

Combining these inequalities, we obtain

U total
G̃i
≤ U total

Gi
+

1

2c1ϕ
· c1ϕ · U total

G̃i
= U total

Gi
+

1

2
· U total

G̃i
.

Subtracting 1
2 · U

total
G̃i

from both sides on the inequality thus
yields U total

G̃i
≤ 2 · U total

Gi
.

Finally, for i = 0, we have that G0 = G has total capacity
U total
G by definition, and thus the capacity of all cut edges Ecut

X0

is at most c1ϕ · 2U total
G . For i > 0, we have that Gi can only

obtain edges in Ecut
Xi−1

as can be seen from Definition IV.13.

Thus, we have U total
Gi

≤ u(Ecut
Xi−1

) ≤ (2c1ϕ)
iU total

G where
we used the induction hypothesis for the last inequality. This
yields by Theorem IV.7 and our bound U total

G̃i
≤ 2 · U total

Gi
that

u(Ecut
Xi

) ≤ 2c1ϕ · U total
Gi
≤ (2c1ϕ)

i+1 · U total
G , as desired.

Property 3: For G0 = G, we have at most Õ(m) updates.
For i > 0, we have that Gi undergoes at most Õ(m) updates
since Xi−1 is refining and thus, for Gfinal being the final
graph G, causes at most |V (Gfinal)| − 1 vertex splits and
|V (Gfinal)|−1 self-loop insertions (to compensate for earlier
removals of self-loops that go between two vertices in the
graph Gi after the vertex splits) and additionally, undergoes the
sequence of updates that G is undergoing if the corresponding
edges are present in Gi. Thus, Gi undergoes Õ(m) updates.

Finally, we have that G̃i undergoes 2 self-loop insertions
whenever an edge is added to the set Ecut

Xi
. But since Ecut

Xi
is

monotonically increasing (see Theorem IV.7), this can cause
at most twice as many updates as there are edges in Gi. Thus,
G̃i undergoes at most Õ(m) updates.

Putting it All Together: From Property 2, we can con-
clude that the number of levels of the hierarchy is
O(log1/(2c1ϕ)(U

total)) = O(
√
logm log logm) by choice of

ϕ and the fact that capacities are polynomially-bounded.
Correctness of our algorithm thus follows immediately from

Theorem IV.7.
Combining the bound on the number of levels of the

expander hierarchy with the runtime bounds obtained by
Theorem IV.7 and the bound on the number of updates to each
graph G̃i by Property 3, we obtain that the expander hierarchy
can be maintained in time Õ(m/ϕ3). From Theorem IV.15,
it can be observed that maintenance of tree TH and also of
our modified tree T is straightforward and can be done in
time Õ(m/ϕ3) as only Õ(1) operations suffice to update both
trees after any update to the dynamic expander hierarchy. This
yields the total runtime of our algorithm.

Finally, to bound the hop diameter of T follows immediately
from the fact that TH and thus T is a tree with k levels where
k = O(logm).

C. Fully Dynamic Tree Cut Sparsifiers

Finally, we present an algorithm to maintain a tree cut
sparsifier as described in Theorem IV.1 by giving a reduction
to the decremental setting.

Theorem IV.1. Given an m-edge graph G = (V,E,u)
where u ∈ [1, U = mO(1)]E . Let G be undergoing up
to Õ(m) edge deletions/edge insertions and vertex splits.
Then, there is a randomized algorithm that maintains a tree
T = (V ′, E′, c′) undergoing insertions and deletions of edges
and isolated vertices, such that T is a tree cut sparsifier of
quality γq = 2O(log3/4(m) log log(m)) with total update time
m · 2O(log3/4(m) log log(m)). The algorithm succeeds w.h.p.

Definition IV.2. Given a tree cut sparsifier T of quality q,
a directed layer graph H = (V0 ∪ V1 ∪ · · · ∪ Vk, EH) has
k layers where V0 has a vertex for each edge e ∈ E, and
all edges eH ∈ EH have their tail in Vi+1 and head in Vi

2021

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 31,2025 at 01:54:53 UTC from IEEE Xplore.  Restrictions apply. 



for some 0 ≤ i < k, such that every vertex v ∈ V (H) has
in-degree d = O(logc

′
m) for some constant c′ > 0.

For every edge eT ∈ T , let EeT be the set of edges in G that
cross the cut induced by T\{eT }, i.e. let A,B be the connected
components of T \ {eT }, then EeT = EG(A∩ V,B ∩ V ). Let
E′

eT be the set of edges in G whose corresponding vertices in
V0 are reached by the vertex veT that represents the edge eT
in the graph H . Then, we have at any time that EeT ⊆ E′

eT
and uG(E

′
eT ) ≤ q · uG(EeT ).

Lemma IV.3. The algorithm in Theorem IV.1 can be extended
to explicitly maintain a directed layer graph H = (V0 ∪ V1 ∪
· · · ∪ Vk, EH) where k = O(log1/4(m) log log(m)).

The additional total runtime for maintaining the graph H is
again m · 2O(log3/4(m) log log(m)). The total number of updates
to H consisting of insertions/deletions of edges and isolated
vertices is bounded by m · 2O(log3/4(m) log logm).

a) Core Graphs.: Before we describe our reduction, let
us introduce the concept of core graphs which have been
crucial in the design of recent dynamic graph algorithms.

Definition IV.16 (Core graph). Given a graph G = (V,E,u),
a rooted forest F (i.e. each component of F has a dedicated
root vertex) with V (F ) ⊇ V . We define the core graph C(G,F )
to be the graph obtained from graph G by contracting the
vertices of every connected component in F into a super-vertex
that is then identified with the root vertex of the corresponding
tree in F , i.e. the vertex set of C(G,F ) is the set of roots of
F . We let the capacities of edges in C(G,F ) be equal to their
capacities in G.

In our algorithm, we use induced core graphs. For the
definition, we also need to define the notion of a branch-free
set.

Definition IV.17 (Branch-Free Set). Given a tree T =
(V,E,u), we say that B ⊆ V is a branch-free set for T
if we have that PT,B , the collection of all paths T [a, b] for
a, b ∈ B that contain no internal vertex in B, consists of
pairwise edge-disjoint paths.

Definition IV.18 (Induced Core Graph). Given a graph G =
(V,E,u), a tree T with V ⊆ V (T ), and a set of roots B ⊆ V
such that B is a branch-free set for T . We let F (T,B) denote
the rooted forest obtained by removing from the tree T the
lexicographically-first edge eP of minimum capacity from each
path P ∈ PT,B . Note, that this yields a forest F (T,B) where
each connected component contains exactly one node in B. We
let the corresponding vertex in B be the root of its component
to make F (T,B) a rooted forest. We define the induced core
graph C(G,T,B) to be the core graph C(G,F (T,B)).

Finally, we state the following algorithmic result that ex-
tends any set R to a branch-free set B that is not much
larger. To unambiguously define the result, here, we require
the notion of a monotonically increasing vertex set for a graph
undergoing vertex splits.

Definition IV.19 (Monotonically Increasing Set in Graph
Undergoing Vertex Splits). Given a graph G = (V,E,u)
undergoing a sequence of vertex splits. Whenever a vertex v
is split into vertices v′ and v′′, we say that v′ and v′′ descend
from v and we further extend this notion to be transitively
closed, i.e. if v′ is further split into v′′′ and v′′′′, then v′′′ and
v′′′′ also descend from v, and so on. Then, we say that a set
X ⊆ V is monotonically increasing if for any two time steps
t′ < t, every v in X at time t′ has a descendent in X at time
t.

The following standard result is then obtained via link-cut
trees [72] (See e.g. [8]).

Theorem IV.20. Given an m-vertex tree graph T = (V,E,u)
undergoing Õ(m) edge un-contractions, i.e. updates that split
a vertex v into vertices v′ and v′′ and add an edge (v′, v′′),
and a monotonically increasing set R ⊆ V . Then, there
is a deterministic algorithm that maintains a monotonically
increasing set B such that at any time, R ⊆ B, B is branch-
free for the current tree T , and |B| ≤ 2|R|. The algorithm
outputs B explicitly after every update to T or R, and runs
in total time Õ(m).

b) A Hierarchy of Tree Cut Sparsifiers.: We are now
ready to describe our reduction (see also Figure 1). Let
m̃ = Õ(m) be a strict upper bound on the number of
updates to G. Our algorithm maintains levels 0, 1, . . . , Lmax =
⌈log1/4(m̃)⌉. We use a simple batching approach over the
update sequence where we associate with each level i ∈
[0, Lmax], at current time t, an associated time ti =
⌊t/m̃(Lmax−i)/Lmax⌋ · m̃(Lmax−i)/Lmax at which level i was
last re-built.6

We further maintain with each level i ∈ [0, Lmax], a batch
Ii consisting of all edges in the current graph G that were
inserted after time ti (note in particular that edges added and
deleted after time ti are not in Ii). We define Gi = G \ Ii for
all 0 ≤ i ≤ Lmax. We note in particular that ILmax

= ∅ since
tLmax

= t and therefore GLmax
= G.

For each level i ∈ [0, Lmax], our goal is to maintain a tree
cut sparsifier Ti of the current graph Gi, thus in particular,
TLmax is a tree cut sparsifier of the current graph G. For i = 0,
we let T0 be the tree cut sparsifier obtained by running the
data structure from Theorem IV.11 on the graph G0 = G \ I0,
that is, the initial graph where only decremental updates are
applied. For i > 0, we let Bi be the monotonically increasing
set obtained by running the algorithm in Theorem IV.20 on the
tree Ti−1 for vertices V (Ii−1 \ Ii) since time ti. Let T̂i be the
tree obtained from running the data structure in Theorem IV.11
on the graph Ĝi = C(Ti−1 ∪ (Ii−1 \ Ii), Ti−1, Bi) (as defined
in Definition IV.18) since time ti. Then, we maintain Ti =
2 · (F (Ti−1, Bi)∪ T̂i). Note here in particular that we are not
adding the pre-images of edges in T̂i to Ti but instead the real
edges in T̂i which are supported on Bi only.

As previously mentioned, we output the tree TLmax as our
tree cut sparsifier T of G.

6We assume here that m̃(Lmax−i)/Lmax is integer which is w.l.o.g.
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Fig. 1: 1) shows a tree cut sparsifier Ti−1 (for a graph Gi−1). Red vertices are the vertices in Bi. The grey components show
the connected components of F (Ti−1, Bi), edges crossing such components are of minimum capacity on a path in PTi−1,Bi .
2) shows the induced core graph C(Ti−1, Ti−1, Bi).
3) shows the induced core graph Ĝi = C(Ti−1 ∪ (Ii−1 \ Ii), Ti−1, Bi), i.e., the previous graph with all edges that are in Gi

but not in Gi−1 (in green).
4) shows a tree cut sparsifier T̂i of the graph Ĝi.
5) shows the final tree cut sparsifier Ti of Gi which is formed by the union of F (Ti−1, Bi) and the tree cut sparsifier T̂i of
the induced core graph Ĝi.

c) Analysis.: We first establish correctness of the algo-
rithm.

Claim IV.21 (Correctness). The graph T is a tree cut sparsi-
fier of G of quality 2O(log3/4(m) log log(m)) at all times.

Proof. We prove by induction on i that Ti is a tree cut
sparsifier of Gi of quality qi = (2γquality)

i+1. For i = 0,
we have, by definition of m̃, that all inserted edges since the
start of the algorithm are in I0. Thus, the data structure from
Theorem IV.11 maintains T0 correctly to be a tree cut sparsifier
of G0 of quality γquality .

For i > 0, we have by the induction hypothesis that Ti−1 is a
tree cut sparsifier of Gi−1 of quality qi−1. It is straightforward
from the definition of Gi to see that Gi = G\Ii = (G\Ii−1)∪
(Ii−1 \ Ii) = Gi−1 ∪ (Ii−1 \ Ii) since Ii−1 ⊇ Ii.

Thus, it is straightforward to verify that by the induction
hypothesis, we have that Ti−1 ∪ (Ii−1 \ Ii) is a cut sparsifier
of Gi = Gi−1 ∪ (Ii−1 \ Ii) of quality qi−1. Finally, consider
the graph Ti as maintained by the hierarchy. To see that Ti =
2 · (F (Ti−1, Bi) ∪ T̂i) is a tree, we use the standard fact that
the union of a tree in a graph contracted along a forest and
the forest itself yields a tree spanning the original graph. It
remains to verify the quality of Ti w.r.t. Gi.

min-cutGi
(A,B) ≤ min-cutTi

(A,B): Let us consider any
disjoint sets A,B ⊆ V (Gi) = V . By sub-modularity of graph
cuts in Gi, it suffices to focus on the special case that the
AB-min-cut in Ti consists only of a single edge e. To show

this by induction on the number of cut tree edges, we first
extend the AB-min-cut to a realization (A′, VTi

\ A′) in Ti.
Then, we assume that the claimed inequality holds for cuts
involving at most k tree edges. Consider a cut involving k+1
tree edges. Remove one of the k + 1 cut edges such that the
remaining k edges are in the same tree component. Then, let
A′

1 be the cut induced by the remaining k edges, and A′
2 be

the cut induced by the removed edge such that A′ ⊆ A′
1 and

A′ ⊆ A′
2. Then, we have

min-cutGi
(A′, V \A′) = min-cutGi

(A′
1 ∩A′

2, V \ (A′
1 ∩A′

2))

≤ min-cutGi
(A′

1, V \A′
1)

+ min-cutGi
(A′

2, V \A′
2)

≤ min-cutTi
(A′

1 ∩A′
2, V \ (A′

1 ∩A′
2))

where the first inequality is by sub-modularity of cuts, and
the second follows from the induction hypothesis. We then
distinguish by cases:

• if e ∈ F (Ti−1, Bi): We now give a formal proof of this
case and discuss an example of such a proof in Figure 2.
Since F (Ti−1, Bi) is a forest where each component con-
tains exactly one vertex on Bi (see Definition IV.18), we
have that F (Ti−1, Bi) \ {e} contains a single connected
component A′ that contains no vertex in Bi. Further note
that since Ti consists of F (Ti−1, Bi) and edges supported
only on Bi, we have that also Ti \{e} contains A′ as one
of its connected components. Thus, by assumption either
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A ⊆ A′ ⊆ V (Ti) \ B, or B ⊆ A′ ⊆ V (Ti) \ A. Let us
assume for the rest of the proof that A′ ⊇ A (the case
where A′ ⊇ B is analogous).
Our key claim is that for any edge e1, e2, . . . , ek in
ETi−1

(A′, V (Ti−1) \ A′) \ {e} the path Pj ∈ PTi−1,Bi

that contains edge ej also contains edge e. Note that this
implies that k ≤ 1, since all paths in PTi−1,Bi are edge-
disjoint. To see the claim, observe that for every path
Pj ∈ PTi−1,Bi

there is only a single edge on Pj removed
from Ti−1 to obtain F (Ti−1, Bi) and thus if two edges
ej and eℓ for some ℓ ̸= j appear on Pj then one of them
would still be in the cut EF (Ti−1,Bi)(A

′, V (Ti−1) \ A′)
which contradicts that the latter set consists only of
the edge e. But since all paths P1, P2, . . . , Pk must be
distinct, each path Pj enters the component A′ via edge
ej . But all paths in PTi−1,Bi

start and end in a vertex in
Bi. Since A′ ∩ Bi = ∅, the path Pj must therefore use
the edge e to reach a vertex in Bi as it is the only edge
to leave A′ that is not already on another path.
We observe that if ETi−1(A

′, V (Ti−1) \ A′) \ {e} = ∅,
then trivially

uTi−1
(e) = uTi−1

(A′, V (Ti−1) \A′)

= uF (Ti−1,Bi)(A
′, V (Ti−1) \A′).

If it contains an additional edge e1, then we have that
the path P1, defined as above, contains the edge e.
But we have from Definition IV.18 that removing e1
instead of e from Ti−1 to obtain F (Ti−1, Bi) implies
uTi−1

(e1) ≤ uTi−1
(e). And thus, we have in this case,

uTi−1
(A′, V (Ti−1) \ A′) = uTi−1

(e) + uTi−1
(e1) ≤

2 ·uTi−1(e) = 2 ·uF (Ti−1,Bi)(A
′, V (Ti−1) \A′). We can

thus finally use the induction hypothesis on Ti−1 to obtain
that 2uF (Ti−1,Bi)(A

′, V (Ti−1)\A′) ≥ uGi−1
(A′, V \A′)

from which we can conclude

uTi(A
′, V (Ti−1) \A′)

= 2 · uF (Ti−1,Bi)∪T̂i
(A′, V (Ti) \A′)

≥ 2 · uF (Ti−1,Bi)(A
′, V (Ti) \A′)

≥ uGi−1
(A, V \A)

= uGi
(A, V \A)

where the last equality follows since no edge from Gi \
Gi−1 is incident to A (since A ∩Bi ⊆ A′ ∩Bi = ∅).

• otherwise: in this case, we have e ∈ T̂i. Let A′′ ⊇ A and
B′′ ⊇ B be the connected components of Ti \ {e}. Let
A′ = A′′∩V (Ti−1) and B′ = B′′∩V (Ti−1). We clearly
have that A ⊆ A′ ⊆ A′′ and B ⊆ B′ ⊆ B′′ because
V ⊆ V (Ti−1) by induction on Ti−1. Observe further that
A,B partition V ; A′, B′ partition V (Ti−1); and A′′, B′′

partition V (Ti).
Next, let Â, B̂ be the connected components
of T̂i \ {e} such that Â ⊆ A′′, B̂ ⊆ B′′.
Then, we have by Theorem IV.11, that
u T̂i

(Â, B̂) ≥ u Ĝi
(Â ∩ Bi, B̂ ∩ Bi) where we use

that Bi = V (Ĝi). By construction, we have that

Fig. 2: Consider the example from Figure 1 where edges in
Ti−1 that are not in Ti are dashed, red vertices are the vertices
of Bi and blue edges and vertices and the vertices of Bi form
T̂i.
Let us argue for the cut induced by the orange edge e in
F (Ti−1, Bi), where Ti \ {e} is the AB-min-cut of Ti. We
have that F (Ti−1, Bi) \ {e} contains a connected component
A′ that has no vertex in Bi since it contains exactly one more
connected component than vertices in Bi. This component A′

is also a connected component of Ti \ {e} since no edges of
T̂i are incident to A′ and Ti = F (Ti−1, Bi) ∪ T̂i.
We prove that either, we are in a case where Ti−1 has no
edge leaving A′ other than e in which case we obtain a rather
straightforward lower bound on the cut size, or, at most one
such edge e1 (in our case the dotted edge incident to the orange
edge). But in this case, we have that e and e1 are on a common
path P ∈ PTi−1,Bi and since from each such path only the
edge of smallest capacity is removed, we have uTi−1

(e1) ≥
uTi−1

(e). Thus, we can again bound the capacity of the cut
(A′, V (Ti) \A′) by 2u(e).

u Ĝi
(Â ∩ Bi, B̂ ∩ Bi)) = uC(Ti−1∪(Ii−1\Ii),Ti−1,Bi)(Â ∩

Bi, B̂ ∩ Bi) = uTi−1∪(Ii−1\Ii)(A
′, B′) =

uTi−1
(A′, B′) + uIi−1\Ii(A

′, B′). By induction,
we have that uTi−1

(A′, B′) ≥ uGi−1
(A,B)

and since Ii−1 \ Ii ⊆ Gi, we have that
uIi−1\Ii(A

′, B′) = uIi−1\Ii(A,B).
It remains to use that Ti ⊇ 2 · T̂i and to combine
inequalities which yields uTi

(Â, B̂) ≥ 2u T̂i
(Â, B̂) ≥

2uGi−1
(A,B) + 2uIi−1\Ii(A,B).

min-cutTi
(A,B) ≤ qi ·min-cutGi

(A,B): For this claim, note
that it suffices to prove for all sets A ⊆ V that
min-cutTi

(A,B) ≤ qi · uGi
(A,B) for B = V \A.

Let us fix such a cut (A,B = V \ A) in Gi. We have for
Ti = 2 · (F (Ti−1, Bi) ∪ T̂i) that since F (Ti−1, Bi) ⊆ Ti−1

and Gi−1 ⊆ Gi, we have that min-cutF (Ti−1,Bi)(A,B) ≤
qi−1 · uGi

(A,B).
It thus only remains to obtain an upper bound on

min-cutT̂i
(A,B). Since all edges in T̂i are either incident to

vertices in Bi or to newly created vertices (not in V ), we
have that min-cutT̂i

(A,B) = min-cutT̂i
(A ∩Bi, B ∩Bi). We

have from Theorem IV.11 that min-cutT̂i
(A ∩ Bi, B ∩ Bi) ≤

γquality · u Ĝi
(A ∩ Bi, B ∩ Bi). But for every edge e in
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Ĝi, we either have that e ∈ Ii−1 \ Ii and thus the edge
is also present in Gi with the same quality. Or, there is a
path Pe ∈ PTi−1,Bi between the two endpoints of e in Ti−1

where each edge on the path has capacity at least u Ĝi
(e).

Since all of these paths Pe are edge-disjoint, we have that
for every edge e ∈ EĜi

(A ∩ Bi, B ∩ Bi), we have at least
one edge in ETi−1

(A ∩ Bi, B ∩ Bi) on Pe that has no less
capacity than u

Ĝi
(e). Thus, min-cutĜi

(A ∩ Bi, B ∩ Bi) ≤
uGi

(A,B) + uTi−1
(A,B). Combining these inequalities, we

obtain that

min-cutT̂i
(A,B) ≤ γquality(uGi

(A,B) + uTi−1
(A,B))

≤ γquality(uGi
(A,B) + qi−1 · uGi−1

(A,B))

≤ γquality · (qi−1 + 1) · uGi
(A,B)

where we used in the second inequality the induction hypoth-
esis on Ti−1 and in the final inequality that Gi−1 ⊆ Gi.

This yields that min-cutTi
(A,B) ≤ (γquality + 1) · (qi−1 +

1) ·uGi(A,B) where we have that (γquality+1) ·(qi−1+1) <
2γquality · qi−1 = qi, as required.

It now only remains to bound the runtime.

Claim IV.22 (Runtime). The algorithm has amortized update
time 2O(log3/4(m) log log(m)).

Proof. The set Ii−1 contains at most t − ti−1 edges at
any time which can be bounded by m̃i−1 where m̃j :=
m̃(Lmax−j)/Lmax for j = 0, . . . Lmax by definition of ti−1.

But this implies that for level i, the set V (Ii−1\Ii) is of size
at most 2m̃i−1, and thus the set Bi is of size at most 4m̃i−1

(see Theorem IV.20). Since each graph Ĝi consists only of
a forest supported on the vertices in Bi, and the images of
edges in Ii−1\Ii under the contractions (see Definition IV.18),
we can bound the number of edges in Ĝi at any time by
4m̃i−1 − 1 + m̃i−1 ≤ 5m̃i−1.

Thus, the runtime of the decremental tree cut sparsifier run
on the graph Ĝi has total update time 2O(

√
log m̃i−1) · m̃i−1

in-between rebuilds by Theorem IV.11. Since Ĝi gets re-built
after m̃i updates and there are m̃ updates in total, the total time
spend by all decremental tree cut sparsifier data structures for
Ĝi is at most m̃i−1 · 2O(

√
log m̃i−1) · m̃

m̃i
= 2O(

√
log m̃i−1) ·

m̃1+1/Lmax = 2O(log3/4 m̃) ·m̃ since Lmax =
⌈
log3/4 m

⌉
. The

time to implement the remaining operations of our algorithm
is asymptotically subsumed by this bound.

d) Extending Theorem IV.1 to Maintain Cut Edges.:
Finally, we will prove Lemma IV.3 and Lemma IV.5.

To this end, we maintain the layer graph L with levels
i ∈ [0, k] where we choose k = Lmax+1. We define Ĝ0 = G
and T̂0 = T0, and recall the definition of Ĝi for i > 0 to
be Ĝi = C(Ti−1 ∪ (Ii−1 \ Ii), Ti−1, Bi). From the runtime
analysis, we have that every graph Ĝi undergoes at most
m · 2log3/4(m) log log(m) updates over the entire course of the
algorithm.

Now, we maintain for the graph L the vertex set Vi at level
i to be in one-to-one correspondence with the edges of Ĝi.

We then add for every edge e = (u, v) ∈ E(Ĝi) and edge
e′ ∈ T̂i[u, v], an edge from the vertex ve′ ∈ Vi+1 (in one-to-
one correspondence with e′) to the vertex ve ∈ Vi (in one-to-
one correspondence with e) to the graph L.

For the analysis, let us first observe that the edges of Ĝ0

are exactly the edges in G and thus V0 is in one-to-one
correspondence with the edges in G as required. We further
use that the hop diameter of every tree T̂i is at most O(logm)
by Theorem IV.11. This implies that the out-degree of every
vertex in L is at most O(logm). Finally, we observe that each
graph Ĝi undergoes at most m · 2log3/4(m) log log(m) updates
which follows trivially from our runtime analysis and the fact
that each such graph is maintained explicitly. It remains to
observe that once an edge e ∈ E(Ĝi) is embedded into an edge
e′ ∈ T̂i, it remains embedded until the end of the algorithm or
until e is deleted. And since each edge e′ that e embeds into
can be detected in constant time:

• if e is newly inserted, then it suffices to walk towards the
root of T̂i (which we can root arbitrarily for this purpose
such that vertices in Ĝi) from both endpoints of e to
detect all edges that e currently embeds into. By walking
in parallel and aborting once the two explorations meet,
this operation can be implemented in constant time per
detected edge, or

• if T̂i is undergoing an un-contraction (see Theo-
rem IV.11), then for the newly created edge e′, it suffices
to copy the set of edges embedded into e′′, where e′′ is
the edge that is incident to e′ and closer to the root of
T̂i.

This yields both runtime and recourse bounds for the mainte-
nance of graph L, as required.

e) Bounding the hop-diameter. : Since the decremen-
tal trees have depth O(log n), composing Lmax + 1 =
O(log1/4 m) such trees as described above yields a tree of
depth Õ(1). This proves Remark IV.6.

D. A Deterministic Algorithm to Maintain Fully Dynamic Tree
Cut Sparsifiers

We finally describe how to derandomize our result. We
first note that all algorithmic reductions presented in this
paper are already deterministic. Thus, the only algorithm
that uses randomization in our data structure above is the
algorithm from Theorem IV.8. We note that a deterministic
version of Theorem IV.8 was already given in [20] with only
subpolynomially worse runtime and approximation guarantees.
Here, however, we describe how to derandomize Theorem IV.8
more directly to obtain sligthly better subpolynomial factors.
We note that both [20], [21] work even in the directed setting
while we describe a derandomization for the undirected setting
only.

The algorithm from Theorem IV.8 given in [21] in turn
is also deterministic except for Õ(1/ϕ) invocations of the
static cut-matching game algorithm from [73] (the algorithm
from [21] in fact uses a generalization of [73] to directed
graphs, however, since we only work with undirected graphs,
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using [73] in their algorithm is sufficent for our purposes).
This algorithm obtains approximation guarantees of Õ(1)
and runtime Õ(m/ϕ) on a graph with m edges. Recently,
this algorithm was derandomized in [74], however, the au-
thors obtained a slightly weaker result: their approxima-
tion guarantee is eO(log1/3(m) log logm) while their runtime is
m · eO(log2/3(m) log logm)/ϕ2 (this is implied in particular by
Theorem 5.3 in [75], the second ArXiv version of [74]).

Using this algorithm internally in the framework from
[21], we obtain a deterministic algorithm implement-
ing Theorem IV.8 with c0 = eO(log1/3(m) log logm),
c1 = eO(log1/3(m) log logm) and total update time m ·
eO(log2/3(m) log logm)/ϕ3. We thus obtain a deterministic ver-
sion of Theorem IV.7 with the same values for c0 and c1 and
total update time m · eO(log2/3(m) log logm)/ϕ4.

By carefully re-parameterizing the algorithm in Sec-
tion IV-B to use ϕ = 1/2log

2/3(m), we obtain that the
number of levels of the expander hierarchy can be bounded
by O(log1/3(m) log log(m)). We thus recover a quality of the
final tree cut sparsifier of γquality = 2O(log2/3(m) log log(m))

and a runtime of m · eO(log2/3(m) log logm). The bound on the
hop diameter of the tree cut sparsifier T is again O(logm).

Finally, we use our deterministic algorithm to maintain
a tree cut sparsifier of a decremental graph in lieu of the
randomized algorithm, and re-parametrizing the algorithm in
Section IV-C to only use Lmax = ⌈log1/6(m̃)⌉ levels. This
yields Theorem IV.4.

V. DYNAMIC MIN-RATIO CUT

In this section, we build a data structure that allows us to
toggle along approximate min-ratio cuts in a fully dynamic
graph G = (V,E,u , g). Unlike the previous section, every
vertex v now has an extra associated value: a gradient g(v) ∈
R. When we compute a tree-cut sparsifier on such a graph
G = (V,E,u , g) it simply ignores these vertex gradients. We
first define the min-ratio cut problem.

Definition V.1 (Min-Ratio Cut). For a graph G =
(V,E,u , g), we refer to min∆∈RV

⟨g ,∆⟩
∥UB∆∥1

as the min-ratio
cut problem.

Then, we define the main data structure this section is
concerned with. Together with the interior point method in
Section VI, this data structure is what enables us to solve
decremental threshold min-cost flow.

Definition V.2 (Min-Ratio Cut Data Structure). For a dynamic
graph G = (V,E,u , g) where u ∈ RE and g ∈ RV , g ⊥ 1,
such that u(e) ∈ [1, U ] and g(v) ∈ [−U,U ] for logU =
Õ(1), an initial potential vector y ∈ RV , and a detection
threshold parameter ϵ, a α-approximate min-ratio cut data
structure D supports the following operations.

• INSERTEDGE(e), DELETEEDGE(e): Inserts/deletes edge
e to/from G with capacity u(e).

• UPDATEGRADIENT(u, v, δ): Updates g(u) = g(u) + δ
and g(v) = g(v)− δ.

• INSERTVERTEX(v): Inserts isolated vertex v to G.

• POTENTIAL(v): Returns y(v).
After every update the data structure D the data structure
returns a tuple (g, u) where g ∈ R≤0 and u ∈ R≥0 such that
for some implicit cut 1C for C ⊆ V we have ⟨g ,1C⟩ = g and
∥UB1C∥1 ≤ u, and

g

u
≤ 1

α
min

∆∈RV

⟨g ,∆⟩
∥UB∆∥1

.

The data structure additionally allows updates of the following
type based on the most recently returned tuple (g, u).

• TOGGLECUT(η): Given a parameter η ≤ 1/u, the data
structure implicitly updates y with y (new) such that
By (new) = By + ηB1C .
Then, the data structure returns some edge set E′ such
that every edge e = (u, v) for which u(e)(y(u)− y(v))
has changed by at least ϵ since it was inserted/last
returned in E′.

We then state two separate theorems showing that there is
both a randomized and a deterministic algorithm implementing
a min-ratio cut data structure.

Theorem V.3. There is a randomized min-ratio cut data
structure (Definition V.2) given a graph G = (V,E,u , g) and
ϵ for α = 2O(log3/4 m log logm) such that every update/query is
processed in amortized time 2O(log3/4 m log logm) logU . Fur-
thermore, the total number of edges returned by the algorithm
after t calls to TOGGLECUT is at most 2O(log1/4 log logm) · t/ϵ.
The algorithm works against an adaptive adversary and suc-
ceeds with high probability.

Theorem V.4. There is a deterministic min-ratio cut data
structure (Definition V.2) given a graph G = (V,E,u , g) and
ϵ for α = 2O(log5/6 m log logm) such that every update/query is
processed in amortized time 2O(log5/6 m log logm) logU . Fur-
thermore, the total number of edges returned by the algorithm
after t calls to TOGGLECUT() is at most 2O(log1/6 log logm) ·
t/ϵ.

A. Toggling Min-Ratio Cuts on a Tree Cut Sparsifier

Before we prove Theorem V.3 and the deterministic version
Theorem V.4, we show that a cut is a solution to the min-ratio
cut problem, which explains the nomenclature.

Lemma V.5. minC⊂V
⟨g ,1C⟩

∥UB1C∥1
= min∆∈RV

⟨g ,∆⟩
∥UB∆∥1

Proof. First observe that since the right hand side is a mini-
mum over all ∆, thus the minimum objective value achieved
must be negative. Further, considering ∆ = 1C for all C ⊆ V
gives us that the right hand side is less than or equal to left
hand side. To establish that left hand side is less than equal
to right hand side, we consider a vector ∆⋆ minimizing the
right hand side. Without loss of generality, we assume that the
minimum entry of ∆⋆ is 0 and the maximum entry is 1 by
shifting and scaling.

Let t be a random variable uniformly distributed on [0, 1].
Let Ct denote the set {v ∈ V |∆⋆(v) > t}. Observe
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that Et [1Ct
] = ∆⋆. By linearity of expectations, we have

Et [⟨g ,1Ct
⟩] = ⟨g ,∆⋆⟩.

Moreover, Et [∥UB1Ct
∥1] =

∑
e ue Et

[∣∣χ⊤
e 1Ct

|
∣∣] . Ob-

serve that for each edge e, χ⊤
e 1Ct

has the same sign for all t.
Thus, Et

[∣∣χ⊤
e 1Ct |

∣∣] = ∣∣Et

[
χ⊤
e 1Ct |

]∣∣ = ∣∣χ⊤
e ∆

⋆
∣∣ , and hence

Et [∥UB1Ct∥1] = ∥UB∆⋆∥1 . Thus, we have,

⟨g ,∆⋆⟩
∥UB∆⋆∥1

=
Et [⟨g ,1Ct

⟩]
Et [∥UB1Ct

∥1]
.

Hence there exists a t where ∥UB1Ct
∥1 ̸= 0 and

⟨g ,1Ct ⟩
∥UB1Ct∥1

≤ ⟨g ,∆⋆⟩
∥UB∆⋆∥1

by the well known fact that

mini∈[n] aaa(i)/b(i) ≤
∑n

i=1 aaa(i)/
∑n

i=1 b(i) for aaa ∈ Rn and
b ∈ Rn

>0. This concludes our proof.

Next, we show that given a tree-cut sparsifier T of G, there
exists a tree cut that corresponds to an approximate min-ratio
cut.

Lemma V.6. Given a tree cut sparsifier T =
(V (T ), E(T ),uT ) of quality q of a graph G = (V,E,u , g)
there exists an edge eT ∈ E(T ) that induces a cut
(C, V (T ) \ C) such that

⟨g ,1C∩V ⟩
uT (eT )

≤ 1

q
min

∆∈RV

⟨g ,∆⟩
∥UB∆∥1

Proof. By the well known fact that mini∈[n] aaa(i)/b(i) ≤∑n
i=1 aaa(i)/

∑n
i=1 b(i) for aaa ∈ Rn and b ∈ Rn

>0 it suffices to
consider cuts in a single connected component. We therefore
without loss of generality assume that G and thus T are
connected.

By Lemma V.5 there exists some cut C ′ such that
⟨g ,1C′ ⟩

∥UB1C′∥1
= min∆∈RV

⟨g ,∆⟩
∥UB∆∥1

. Then, by Definition II.2 the
cut mincutT (C

′, V \C ′) ≤ q · ∥UB1C′∥1, and therefore this
cut achieves the min-ratio up to a factor of 1

q . We next show
that the quality of this tree cut can be realized by an individual
cut edge in T . To do so we arbitrarily root the tree at some
vertex r, where we denote y = 1C′ and assume y(r) = 0.
Notice that such a vertex always exists.

For every edge e = (u, v) where u is the parent of v, we
then set aaa(e) = y(v) − y(u). Notice that aaa(e) ∈ {−1, 0, 1}
and |aaa(e)| = 1 if and only if the edge e is in the cut found
by y . Furthermore, we let se denote the indicator vector of
all the vertices in the sub-tree rooted at v. We next show that
ŷ

def
=
∑

e∈T aaa(e)se = y . Let u be an arbitrary vertex. Then

ŷ(u) =
∑
e∈T

aaa(e)se(u)

=
∑

e∈T [u,r]

aaa(e)se(u)

=
∑

e∈T [u,r]

aaa(e) =
∑

(v,w)∈T [u,r]

y(v)− y(w) = y(u)

where the first equality is by definition, the second follows
from the fact that sub-trees not containing u do not affect its
value in ŷ , the third follows since se(u) = 1 for ever edge on
the path T [u, r], the forth follows by definition of aaa(e) and
the final equality follows from y(r) = 0 after cancellation.

Therefore we have ⟨g ,y⟩ =
∑

e∈T aaa(e)⟨g , se⟩ and
∥UBy∥1 =

∑
e∈T |aaa(e)| ∥UBse∥1, because Bse are

indicators of single edges. The result then again fol-
lows from the well known fact that mini∈[n] aaa(i)/b(i) ≤∑n

i=1 aaa(i)/
∑n

i=1 b(i) for aaa ∈ Rn and b ∈ Rn
>0.

As a final ingredient, we need a data structure that detects
when potential difference may have changed significantly.

Definition V.7 (Detection Algorithm). Given a fully dynamic
tree cut sparsifier T and a corresponding fully dynamic
directed layer graph H as in Theorem IV.1 and Lemma IV.3
respectively, and an edge significance function s : E 7→ R>0,
a γ-approximate detection algorithm supports the following
operations.

• ADDDELTA(eT , δ): Given an edge eT ∈ E(T ) and a
value δ ∈ R>0, it adds δ to the accumulated change of
each edge e in E′

eT , i.e. to each edge reachable from veT
in H . Then, it reports a set E′ of edges such that
– Every reported edge e ∈ E′ has accumulated a change

of at least s(e)/γ.
– Every edge e that has accumulated a change of at least
s(e) is in E′.

Then the accumulated change of the edges in E′ is re-set
to 0.

• RESET(e): Resets the accumulated change of edge e to
0.

Furthermore, we let D be the total number of detected edges
throughout the course of the algorithm, C be the number of
updates to H and R be the total number of calls to RESET().

We next state the main theorem for our detection algorithm.

Theorem V.8. There exists a γ-approximate deterministic
detection algorithm (Definition V.7) for γ = dk with total
update time Õ(dk(D +R+C)). Recall that d is a bound on
the in-degree of H , and k is a bound on the depth of H (See
Definition IV.2).

The proof of Theorem V.8 is deferred to the full version of
the paper.

a) Proof of Theorem V.3 and Theorem V.4: We first
prove Theorem V.3 using the slightly faster randomized three
cut sparsifiers, and then proceed with the analogous proof of
Theorem V.4 using deterministic tree cut sparsifiers.

Since the tree cut sparsifiers require the capacities to be
polynomially bounded, our algorithm internally maintains data
structures for log(U) different levels. We first describe the ob-
jects the data structure maintains at level i = 0, . . . , log(U)−1.

• Rounded Graph: We let Gi = (V,E,u i) be the graph G
with altered capacities

u i(e) =

{⌈
u(e)/ni

⌉
if
⌈
u(e)/ni

⌉
≤ n10

n20 otherwise

• Tree Cut Sparsifer: We maintain a tree cut sparsifer Ti of
Gi with quality q = 2O(log3/4 m log logm) and the stated
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update time in Theorem IV.1 (See Theorem IV.4 for the
deterministic version).

• Min-Ratio Cut: We maintain the ratio achieved by every
tree cut and keep them in a sorted list according to
minimum ratio/quality, where we discard every cut that
has capacity larger than n20. Notice that this effectively
contracts edges of capacity n20, and does not affect cuts
that do not contain such edges since other edges have
capcity at most n10, and therefore no cuts only involving
such edges can reach capacity n20.
To explicitly maintain the ratio a tree cut achieves we
directly have access to the capacities, and therefore only
need to worry about maintaining the gradient sums. To
do so, we use that the depth of Ti is bounded by Õ(1).
We then maintain the value g(v) at every vertex v, and
maintain the sum of these values on either side of each
edge in the tree Ti (vertices that are not in Gi but in
Ti contribute 0). These two values are the sum of the
gradients of crossing edges with opposite sign. Whenever
a gradient between two vertices gets updated, only two
vertices are affected in their g(v) value and can be
updated explicitly. Since the vertices change by the same
amount with opposite sign, only tree cuts that place them
in different components are relevant. Therefore, only the
values stored on the edges on the tree path between the
two endpoints need to be updated. Notice that there are
only Õ(1) such edges by the depth bound on the tree cut
sparsifiers (See Remark IV.6). The value of all the edges
on the path between the endpoints of the edge for which
the gradient was updated can be updated accordingly.
Finally, whenever a tree edge (u, v) in the tree that
contains vertices from G on either side is updated, we
simulate it as moving the two endpoints separately from
the old tree edge to the new tree edge. Then after moving
a single endpoint, say v, only the edges on the path
between the new endpoint and the old endpoint need
to be updated with the sum of the values stored for the
component containing u after removing edge (u, v). This
value is readily available on edge e. The update is then
analogous to the case where a gradient is updated.
Finally, new additional vertices and edges to them can
be inserted and always store 0 since they do not contain
crossing edges.

• Detection Algorithm: Furthermore, every level i initial-
izes a detection algorithm to detect whenever the quantity
u(u, v)(y(u)−y(v)) has changed by an additive ϵ. It will
ignore cancellations in-between calls to TOGGLECUT()
and track the difference y(u) − y(v) while looking for
changes of the size ϵ/u(e) instead, which is equivalent.
To this avail, it initializes a detection algorithm Di

(Definition V.7 and Theorem V.8) using the directed layer
graph associated with Ti. Every level sets the significance
of edge e to s(e) = ϵ/(u(e) logU), such that the change
summed up over the levels is still bounded by ϵ/u(e).

After each update the algorithm goes through the best min-

ratio tree cut found at each level and scales the quality of
the best cut at level i by dividing it by ni. Then, it outputs
the gradient sum g of this cut, and the cut estimate u = ni ·
uTi

(eTi
) where eTi

is the edge that induces the cut.
We next show that the best quality such tree cut across all

levels is α competitive for α = 2Õ(log3/4 m log logm). To do so,
we fix a cut C optimal for the min-ratio cycle problem which
exists by Lemma V.5. Consider the edge e′ in E(C, V \ C)
with highest capacity. Let i be the smallest index such that⌈
u(e)/ni

⌉
≤ n10. If that i is 0, then the cut C is captured by

the tree-cut sparsifier T0 up to a factor of 2q, and therefore one
if its tree cuts is a 2q approximate min-ratio cut by Lemma V.6.
For higher i, the cut is again approximately preserved, because
capacities with u(e) ≥ ni are correct up to a factor 2, and
capacities u(e) ≤ ni contribute less than u(e′) altogether
since there are at most n2 such capacities. Therefore, the tree
Ti again captures the cut up to a 2q factor (after re-scaling),
and therefore one if its re-scaled tree cuts is 2q approximately
min-ratio by Lemma V.6.

The potential vector y after updates can be tracked via
a link-cut tree on Ti [72] and queries can be supported by
querying the potential change on each tree and adding them
up.

It remains to show that we can detect changes in potential
difference of the right magnitude when they happen with-
out returning too many edges. We can update the detection
thresholds of the set E′

eT from the directed layer graph
H (Definition IV.2) via the routine ADDDELTA(eT , η) of
the detection algorithm. Then the detection algorithm clearly
reports all edges that have changed by the required margin,
because the set E′

eT is a super-set of the edges the tree cut
actually cuts and it does not factor in cancellations that happen
across calls.

We finally bound the total number of returned edges.
Since the potential change of an edge can only be detected
whenever it has accumulated ϵu(e)/(γ log(U)) change in
potential difference, and the total amount of change per update
is |E′|·η ≤ |E′|/uT (eT ) ≤ |E′|/(

∑
e∈E′

eT

u(e)) we have that
at most (γ · t logU)/ϵ edges get reported after processing t
updates.

The runtime guarantee follows from Theorem V.8 and
Theorem IV.1.

We finally remark that the completely analogous proof using
deterministic tree cut sparsifiers (See Theorem IV.4) yields
Theorem V.4.

VI. L1-IPM ON THE DUAL

WLOG, we may consider the following uncapacitated trans-
shipment problem:

min
B⊤f=d,f≥0

⟨c, f ⟩ (7)

Our main IPM result is summarized as follows:

Theorem VI.1 (Dual L1 IPM). Consider a decremental
uncapacitated min-cost flow instance (7), a cost threshold
F , and an approximation parameter κ = mo(1). There is a
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potential reduction framework for the dual problem that runs
in Õ(mκ2) iterations in total.

We start with a feasible dual y (0) such that Φ(y (0)) =

Õ(m) and edge slacks s̃
def
= s(y (0)) and residual r̃

def
=

r(y (0)). At each iteration, the following happens:

1) We receive updates in U ⊆ E to s̃ so that

s̃ ≈1+1/10κ s(y (t)) (8)

We also update r̃ so that r̃ ≈1+1/10κ r(y (t)).
2) Compute a κ-approximate min-ratio cut ∆ ∈ RV , i.e.,

an κ-approximate solution to the problem:

min
∆∈RV

⟨g̃ ,∆⟩∥∥∥ŨB∆
∥∥∥
1

where g̃ = g(s̃, r̃) and ũ = u(s̃). If the ratio is larger
than −Õ(1/κ), we certify that the optimal value to (7)
is less than F.

3) Scale ∆ so that ⟨g̃,∆⟩ = −1/(100κ2) and update
y (t+1) ← y (t) +∆.

After Õ(mκ2) iterations, we have ⟨d ,y⟩ ≥ F − (mC)−10.
Over the course of the algorithm, the slacks s(y (t))

stay quasi-polynomially bounded. That is, s(y (t))(e) ∈
[2−O(log2(mC)), (mC)O(1)] for any edge e at any iteration t.

Its proof is deferred to the full version.
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