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• Analyzed the rheology of 3D printing concrete through the lens of data.4

• Identified research gaps in the area of mix designs for 3D printing concrete.5

• Developed novel predictive models for 3D printing concrete and explained the models using game theory.6

• Developed novel explicit equations for rapid estimation of rheological properties based only on the mix design.7
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Additive manufacturing in construction demands an in-depth understanding of the rheological18

properties of fresh concrete. However, the abundant data in this field remains underexplored.19

This conventional fragmented approach has hindered broader progress and innovation. This20

study aims to develop rheological models for 3D printable concrete through a comprehensive,21

data-driven paradigm, emphasizing the urgent need for a unified, large-scale dataset. By compil-22

ing data spanning a decade, we have created an open-access dataset that contains mix designs and23

experimental results on the rheological behaviors of additive construction concrete. A machine24

learning-based model and explicit polynomial expressions for estimating rheological properties25

were developed. The developed machine learning model can take nineteen different parameters26

as inputs to predict the rheological behavior of printed concrete, showing superiority over models27

considering a few parameters. Our model can predict the properties of unexplored mix designs,28

with tailored expressions for practical engineering in additive construction. This enhances un-29

derstanding of concrete mix design and rheology, highlighting the importance of data-driven30

method in unveiling the complexity of concrete.31

32

1. Introduction33

Additive construction, or three-dimensional (3D) concrete printing, i.e., 3DCP, is considered a technique possessing34

great potential for automation in construction [1, 2]. The main process is the pumping and extrusion of fresh concrete to35

form a structure layer by layer. The process requires the fresh concrete to be easily pumpable, extrudable, and buildable36

- attributes intimately linked to its rheological properties [3–5]. However, such requirements often lead to conflicting37

rheological demands. For example, the pumpability requires low plastic viscosity to ensure the easy flow during the38

transportation under a specific working pumping pressure, while the buildability requires high viscosity so that the39

printed fresh concrete can maintain its shape without the external support from the framework - a main advantage40

of 3DCP compared with traditional construction. The pumpability and extrudability both demand a relatively low41

dynamic yield stress to allow the concrete to flow, while the buildability demands high static yield stress so that the42
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concrete can maintain a stable shape once printed. To meet these requirements, accurately designing rheological43

properties is critical in achieving the desired balance.44

The importance of rheology optimization has been sufficiently addressed in previous research [6–9]. The inherent
relationships between ingredients and rheology are pivotal in guiding the mix design process [10–13]. Traditionally,
this process involves a trial-and-error approach, featured with extensive lab tests to fit the Bingham plastic model [14].
This model can be mathematically expressed as:

𝜏 = 𝜏𝑦 + 𝜇𝛾̇ (1)

where 𝜏 is the shear stress in units of kPa, 𝜏𝑦 is the dynamic yield stress in units of kPa, 𝜇 is the plastic viscosity in45

units of Pa ⋅ s, and 𝛾̇ is the shear rate in units of s−1.46

The dynamic yield stress represents the critical shear stress level below which the shear stress is inadequate to sustain47

the flow, the plastic viscosity indicates the increase of stress with flow speed. Along with the two parameters, static48

yield stress, the minimum shear stress to initiate the flow, is also an important property. Figure 1 shows a typical49

experiment [5, 13, 15] for measuring them, where Bingham model is applied to find the dynamic yield stress and50

plastic viscosity, while the static yield stress is obtained from the peak stress during the loading process.51

However, traditional experiment-based trial-and-error approach to mix design could be time consuming and labor-52

intensive. Alternatively, behavior of concrete can be predicted directly based on its mix design - these are pure53

data-driven methods, where data is used to fit a statistical relationship between the mix design and the hardening54

or rheological properties. For hardening properties, Yeh [16] pioneered this research using neural networks to predict55

concrete compressive strength in 1998. In recent years, Song et al. [17] employed a neural network model to predict56

the strength of concrete and used the model for selecting lower-carbon mix designs. Emad et al. [18] used Linear re-57

gression, pure quadratic, M5P-tree, and neural network to predict the compressive strength of Ultra-High-Performance58

Fibre Reinforced Concrete and compared with experimental results. Ahmed et al. [19] employed several machine learn-59

ing techniques, including artificial neural networks, multi-expression programming, full quadratic regression, linear60

regression, and M5P-tree, to predict the compressive strength of geopolymer concrete. Naseri et al. [20] introduced61
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Figure 1: Typical static yield stress, dynamic yield stress and plastic viscosity experimental measurement

Coyote Optimization Programming to predict the compressive strength of concrete incorporating supplementary ce-62

mentitious materials (SCMs). They also modeled an optimization problem to evaluate the compressive strength, cost,63

and environmental impact of sustainable concrete mixtures. Huang et al. [21] developed gradient-boosted regressors64

to predict concrete properties for the optimization of strength, cost, and CO2 emissions. Kakasor Ismael Jaf et al. [22]65

analyzed data from various sources and used four models to predict compressive strength. They found that increasing66

SiO2 (%) improved compressive strength, and increasing CaO (%) did so only when fly ash replaced 52% to 100% of the67

cement. For rheological properties, Ferraris and DeLarrard [23] pioneered the study in 2001, focusing on establishing68

models that link mix composition with rheological properties. In recent years, with the capability of machine learning,69

Nguyen et al. [24] and Nazar et al. [25] focused on predicting the plastic viscosity of concrete, with the former using70

Least Squares Support Vector Machine and the latter employing bagging regressor and decision tree, also incorporating71

yield stress prediction. Mohammed et al. [26] and Nazar et al. [27] explored rheological properties and compressive72

strength, with the former examining nonlinear regression and neural networks, particularly noting role of nanoclay,73

and the latter linking raw ingredients of concrete to these properties using gene expression programming. Nazar et al.74

[28] explored the impact of hydraulic lime on alkali-activated material-based concrete using machine learning and75

gene expression modeling, uncovering its positive influence on yield stress and plastic viscosity but negative effect76
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on compressive strength, contrasting with fly ash’s negative impacts on these properties. Şahin et al. [29] employed77

Linear Regression Analysis, AdaBoost, and K Nearest Neighbor algorithms to model the rheological properties of78

cementitious systems, identifying the metakaolin usage ratio as the most influential factor affecting the rheology and79

thixotropic properties of the mixtures.80

Despite numerous data-driven rheological models for conventional concrete, previous studies have focused on only81

a few materials to derive a regression model for predicting rheological properties. Furthermore, there is a lack of82

comprehensive study that employs large-scale data mining and machine learning to explore concrete rheology across83

the literature, especially for the 3DCP sector, aimed at developing a well-suited model specifically for 3DPC.84

In the past decade, extensive research has been conducted on rheology and mix design, providing a rich repository of85

data. It is yet to be determined whether the collection and analysis of this data can lead to the development of new86

predictive models for the rheology of fresh printed concrete and provide insights into unexplored mix designs.87

It is hypothesized that the collected data will support the development of predictive machine learning models that88

can learn the mapping between the mix designs and their rheological properties. To achieve this, a comprehensive89

range of 3D printing concrete mix designs is systematically gathered from research results over the last decades. To do90

this, a predictive model, comprising of only an XGBoost [30] and a Neural Network, was developed to regress on the91

rheology. Traditionally, pure data-driven models are often criticized for being unexplainable due to their ‘black box’92

nature in making predictions. However, it is essential that researchers and engineers thoroughly understand the model93

before its reliable application. To address this, we constructed a model explainer, based on the Game Theory - SHapley94

Additive exPlanations (SHAP) method [31], to interpret the predictions of the developed model. The predictive model95

helps discover the mapping between the mix design and the rheological behavior, while the explainer justifies the96

model’s prediction.97

It is hypothesized that the established predictive model can virtually test new, previously unstudied mix designs and98

provide valuable insights. To demonstrate its capability, the model was used to predict the rheological properties of99

sulphoaluminate and clay-based mix designs — a novel family of mix designs that don’t exist in the literature. The re-100

sults indicate that the model is capable of capturing calcined clay’s effect on the rheology behavior of sulphoaluminate-101

based 3D printing concrete, which has not been previously studied by researchers. Moreover, based on the predictive102
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model, we developed a polynomial expression, which is convenient for direct engineering application in designing Port-103

land cement-based 3D printing concrete with varying water to binder ratio and sand to binder ratio. This application104

is demonstrated in case study, where the polynomial expression is used for estimating rheological properties.105

The significance of this study lies in the development of a 3D printing concrete dataset from a decade of literature for the106

first time, along with a predictive model that can process inputs from nineteen different mix components. This approach107

surpasses existing rheological models [23–28], which are limited to a few material components as inputs. Furthermore,108

our model specifically focus on 3DPC, an area previously underexplored in material-to-rheological properties modeling109

but of critical importance. Moreover, this innovative model has the capability to predict potential new mix designs110

not yet examined in the literature, opening up novel mix design opportunities for 3DPC, accelerating its research and111

engineering processes.112

2. Rheological Properties of 3D Printing Concrete: Existing Research113

Numerous studies have explored the rheological properties of 3D printing concrete through various approaches. Most114

of such research focuses on exploring binders, aggregates, and admixtures. A selection of representative studies,115

though not exhaustive, are discussed in this section.116

The literature has largely explored the impact of different binders as well as the role of SCMs in concrete. Marchon117

et al. [32] emphasized the use of various binders and admixtures to adjust the rheological and hydration properties118

of concrete to meet the demands of the printing process, detailing the necessary concrete properties for each stage,119

and discussed the types of materials needed to meet these requirements, such as superplasticizers for fluidity during120

pumping and extrusion, and clays for structural stability during deposition. It also highlights the admixtures that help121

control setting times and enhance strength gain to ensure successful 3D printing and curing of concrete. In the study of122

Douba et al. [33], the addition of nanoclays and methylcellulose significantly increased the yield stress of Magnesium123

oxide paste. Khalil et al. [34] demonstrated that a mix of 7% calcium sulfoaluminate and 93% ordinary Portland124

cement enhances the rheological behavior and buildability of mortar without compromising its long-term compressive125

strength. Mohan et al. [10] explored calcium sulfoaluminate cement-based 3D printable concrete, noting that limestone126

substitution reduces plastic viscosity, and influences buildability. Chen et al. [35] incorporated metakaolin into calcium127
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sulfoaluminate cement composites, which increased the static yield stress and improved thixotropy. The study suggests128

that controlling thixotropy and yield stress through metakaolin addition can achieve better structural integrity and129

precision. Chen et al. [36] studied the effect of high substitution of Portland cement with calcined clay and limestone130

with the same dosage for superplasticizer and viscosity modifying agent (VMA), which improved the buildability of131

fresh mixs. Panda and Tan [37] and Panda et al. [38] have shown how silica fume, along with ground granulated blast-132

furnace slag, enhance the rheological properties of mixs, making them suitable for 3D concrete printing. Manikandan133

et al. [9] found that the addition of silica fume and superplasticizer in cement mixs improves yield stress and maintains134

viscosity. Similarly, Sikora et al. [39] observed that nanosilica accelerates setting, improves hardening, and rheological135

properties of mortar, optimizing for 3D printing applications.136

Studies on the impact of different aggregates can also be found in the literature. Ting et al. [40] investigated the use of137

recycled glass as fine aggregates in 3D printable concrete, examining its effects on flow properties, buildability, and138

mechanical strength, and the necessity of optimizing mix designs for balance between workability and strength. The139

research by Mohan et al. [41] discussed the effect of varying aggregate to binder ratio in 3D printable cementitious140

materials, highlighting its significant impact on rheological properties such as plastic viscosity, yield stress, and storage141

modulus, as well as on printing height and pumping efficiency. The study by Rahul et al. [42] examined the potential142

of using natural and recycled coarse aggregates in 3D printable concrete, emphasizing the need for adjustments in143

superplasticizer dosage to maintain yield stress and buildability, and noting improvements in shrinkage and cracking144

behavior.145

The role of admixtures in the rheological properties of 3D printing concrete has also been continuously investigated.146

Kolawole et al. [43] analyzed how VMA, superplasticizers, and water influence the thixotropic behavior of conventional147

concrete, with a focus on shearing rate and the pre-history of concrete. Chen et al. [44] highlighted how increasing the148

dosage of VMA enhances extrudability and shape retention. Chen et al. [45] discussed the improvement in rheological149

properties necessary for 3D printing, such as extrusion pressure and buildability, by adding VMA. Chen et al. [12]150

explored the use of hydroxypropyl methyl cellulose, water-reducing agent, and lithium carbonate in sulphoaluminate151

cement, focusing on its stress and viscosity for 3D printing. The study by Long et al. [13] discussed the addition of152

micro-crystalline cellulose increasing plastic viscosity and yield stress, enhancing cohesion and printability in sustain-153
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Table 1
Summary of the collection, standardization, and preprocess steps.

Step Description

1 Collect samples:
Select around 90 related papers.
Obtain about 500 initial mix design samples.

2 Standardization:
Normalize binder weight to one.
Record other materials as relative percentage to binder.
Rename same materials to a uniform name.
Obtain the compiled dataset of 500 samples.

3 Preprocess:
Exclude rare/ambiguous materials before training.
Transfer admixtures to ASTM Type A to F, and VMA.
Remain 377 samples, 19 material inputs, 3 rheological outputs.

able cement-based composites for 3D printing. Qian and De Schutter [46] compared the efficiencies of Naphthalene154

Sulfonate Formaldehyde and Polycarboxylate Ether superplasticizers in reducing dynamic yield stress and thixotropy155

in cement pastes for 3D printing. Chen et al. [47] investigated the effect of tartaric acid on setting time, hydration156

evolution, and apparent viscosity of sulphoaluminate cement paste for 3D printing.157

3. Data Collection and Inspection158

To quantitatively analyze the rheological properties of 3D printing concrete, we conducted a comprehensive review of159

studies in this field over the past decade and compiled a dataset from the literature, including [3, 5, 9–13, 15, 34–112].160

The compilation of these papers can be accessed through this link. We standardized the mix designs presented in each161

paper. This standardization facilitated the training of machine learning models later. Furthermore, we conducted an162

analysis of the standardized dataset, identifying gaps in the research on 3D printing concrete mix design. Potential163

research opportunities are highlighted.164

3.1. Data Collection and Preprocessing165

Table 1 summarizes the processes of data collection, standardization, and preprocessing. Each step is detailed be-166

low:167

The compiled dataset consists of approximately 500 concrete mix designs for 3D printing. This dataset, collected from168

about 90 highly relevant studies to printed concrete, represents a broad spectrum of research in this field, including a169
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diverse range of mix designs and the corresponding tests on concrete properties, all methodically collected, cleaned,170

and uniformly formatted. Those papers were selected inclusively based on their description of detailed mix designs171

and corresponding experimental results for printed concrete. The dataset has been made publicly available and can be172

accessed at [113].173

A rigorous standardization process was applied to harmonize mix designs from diverse sources. Studies presented mix174

designs in various formats, including tables and textual descriptions. Quantification methods for material composition175

varied widely, ranging from volume-based measurements (per cubic meter or yard [114]) to percentages and relative176

weights. To create a uniform dataset, we meticulously reviewed and standardized each mix design’s proportions.177

Materials with different nomenclatures across studies were assigned consistent terminology. In the final standardized178

dataset, binder weights were normalized to one, with other components expressed as percentages relative to the binder179

weight.180

Prior to training the models, a preprocess procedure is conducted. Samples with infrequently used (e.g. potassium181

silicate) or ambiguous materials (e.g non-Polycarboxylate Polymers (PCE) based superplasticizer, non-Hydroxypropyl182

Methylcellulose (HPMC) based VMA) were excluded, admixture were reviewed and categorized according to the183

ASTM C494 standard. Type A admixtures, known as water-reducing admixtures, serve to reduce the water requirement184

of concrete mixs, thereby tending to enhance the workability and strength. Type B, or retarding admixtures, are185

formulated to delay the setting time of concrete, offering extended workability and placement time. Accelerating186

admixtures, classified as Type C, are designed to expedite the setting time and early strength development of concrete.187

Type D admixtures combine the properties of water reduction and setting time retardation, improving both workability188

and strength of the mix. Type F admixtures, which are high range water-reducing agents, significantly decrease the189

water content, leading to increased strength and lower permeability. Additionally, the table includes VMA, which are190

used to adjust the viscosity of the concrete mix. After this step, 377 curated samples remain.191

The data preprocess procedure is illustrated in Figure 2. The ingredients are categorized, resulting in 19 distinct192

categories. The processed data for each mix design sample contains a range of binders including Portland cement,193

sulfoaluminate cement, fly ash, ground granulated blast-furnace slag, limestone powder, metakaolin, silica fume, di-194

atomite, and calcined clay. The reason to separate metakaolin from general calcined clay is because many papers did195
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not provide the precise type of their calcined clay. The total amount of binder is normalized to one for each sample.196

Additive admixtures and fibers are also included in the processed data, measured in relative percentage by weight of the197

binder (%Wob). Each admixture description was reviewed and classified as per ASTM C494 standards. Accordingly,198

applicable admixtures in each mix design are categorized as ASTM Type A to Type F admixtures. Due to the small199

number of samples for each type of fiber, we must disregard the type and group them into a single category. While200

this approach influences the model evaluation of fiber, it is the only feasible solution given the current conditions.201

Important ratios like the sand to binder and water to binder ratios are formatted. These features serve as the input for202

the mix design, with the output representing experimental results such as initial Static Yield Stress (kPa), Dynamic203

Yield Stress (kPa), and Plastic Viscosity (Pa·s).204

3.2. Data Inspection205

The quantities of the ingredients and experimental results are further examined in Figure 3. Among the final curated206

377 mixs, 266 use sand for aggregate, while 111 contain no aggregate. Regarding the binder ingredients, 231 mixs207

contain Portland cement, followed by 147 containing fly ash, 121 with sulphoaluminate cement, 115 with silica fume,208

82 with blast furnace slag, 53 with clay, 44 with diatomite, 41 with limestone, and 14 with metakaolin. In terms of209

admixtures, Types F admixture and VMA were the most used, featured in 293 and 189 mixs, respectively. Conversely,210

Types A, B, C, and D were less common, being used in 25, 63, 44, and 34 mixs, respectively. Additionally, 88 mixs211

contain fibers. For outputs, 178 contains plastic viscosity, 192 contains dynamic yield stress, 142 contains static yield212

stress.213

Three rheological properties for each mix design are included in the data, namely static yield stress, dynamic yield
stress, and plastic viscosity. In cases where experimental results are missing from the original literature, they are
left empty in the dataset. The intrinsic correlations among rheological properties were investigated using the Pearson
correlation coefficient, denoted as 𝜌𝑋,𝑌 . This coefficient is mathematically defined as Equation 2:

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌 )
𝜎𝑋𝜎𝑌

(2)

where 𝑐𝑜𝑣(𝑋, 𝑌 ) denotes the covariance between variables 𝑋 and 𝑌 , and 𝜎𝑋 and 𝜎𝑌 represent their respective standard214
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Binder                        Fly ash:Portland cement:sulphoaluminate cement=0.57:0.4:0.03
Water-Binder Ratio                                                                    0.28
Sand-Binder Ratio                                                                      0.4
Sand Size (mm)                                                                       0-0.3
Admixture(%Wob)                                                           PCE:HPMC=1.2:0.1
Fiber(%Wob)                                                         Polyethylene fiber=1.3
Static Yield Stress (kPa)                                                             11.3
Dynamic Yield Stress (kPa)                                                            0.55
Plastic Viscosity (Pa·s)                                                              11.7

Portland cement                          0.40
Sulphoaluminate cement                   0.03
Fly ash                                  0.57
Slag                                     0.00
Limestone powder                         0.00
Metakaolin                               0.00
Silica fume                              0.00
Diatomite                                0.00
Clay                                     0.00
Sand Size Processed (mm)                 0.15
Sand-Binder Ratio                        0.40
Water-Binder Ratio                       0.28
Type A Admixture(%Wob)                   0.00
Type B Admixture(%Wob)                   0.00
Type C Admixture(%Wob)                   0.00
Type D Admixture(%Wob)                   0.00
Type F Admixture(%Wob)                   1.20
VMA (%Wob)                               0.10
Fiber(%Wob)                              1.30
Static Yield Stress (kPa)               11.30
Dynamic Yield Stress (kPa)               0.55
Plastic Viscosity (Pa·s)                11.70

Data Preprocess

Figure 2: Preprocessing of data as model input. Weights of binders are normalized to be one. The water to binder and
sand to binder ratios are calculated as the weight ratios relative to the total weight of binders. admixtures and fibers
are expressed as weight ratios to the total binder weight, multiplied by 100, and are denoted as %Wob. admixtures are
classified to proper types (Type A - F) according to ASTM C494.

deviations.215

Consequently, a correlation matrix can be used to show relationships between quantities. A correlation heatmap,216

which visually represents the correlation matrix, is plotted in Figure 4. It reveals a positive correlation between static217

yield stress and both dynamic yield stress and plastic viscosity. Conversely, a slight negative correlation is observed218

between dynamic yield stress and plastic viscosity. The positive correlation between static yield stress and dynamic219

yield stress is moderate, suggesting some level of association. The positive correlation between static yield stress and220

plastic viscosity is relatively stronger. It suggests that higher static yield stress is often associated with higher plastic221
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Figure 3: Histogram of feature and property values for selected mix samples. The x-axis represents the numerical values of
features and properties, while the y-axis shows the frequency count of each value. The sum of binders, including Portland
cement, Sulphoaluminate cement, fly ash, blast furnace slag, limestone powder, metakaolin, silica fume, diatomite, and
calcined clay, is normalized to 1. admixtures (Type A to Type F and VMA) and fibers are measured relative to the binder’s
weight and are represented as a percentage of the binder weight (%wob). The outputs are static yield stress, dynamic
yield stress, and plastic viscosity.
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viscosity. The negative correlation between dynamic yield stress and plastic viscosity, although weak, indicates that222

an increase in dynamic yield stress might correspond to a slight decrease in plastic viscosity, or vice versa.223
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Figure 4: Correlation of the rheological parameters from compiled dataset

3.3. Identified Gaps and Potential Research Opportunities224

Based on the inspection of the curated dataset, most binders consist of four or less ingredients, including SCMs. All225

existing binder designs are listed in Table 2. Combinations not listed in the table present opportunities for novel re-226

search. One example is the use of sulphoaluminate cement as the main binder combined with other SCMs, which has227

been rarely explored, with previous studies only combining it with Diatomite and Metakaolin. Figure 3 presents the228

frequency histogram of each material count. The proportion of sulphoaluminate cement ranging from 0.2 to 0.8 re-229

mains unexplored, indicating a potential area for detailed investigation. In terms of admixtures, the use of Types A, B,230

C, and D admixtures in binders is an unexplored area. The observed negative correlation between dynamic yield stress231

and plastic viscosity may suggest the existence of an unexplored intrinsic mechanism. This could mean that a concrete232

mix with higher dynamic yield stress may exhibit lower plastic viscosity, or vice versa. This observation could indi-233

cate a complex interaction between the components of the concrete mix, affecting its flow characteristics, suggesting234

underlying factors or interactions at the material level that are not fully understood yet. It indicates a potential area for235
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Table 2
Categorization of 3D printing concrete binders over the past decade. This table encompasses the primary combinations
explored in recent research. Binder combinations not represented here may constitute unexplored areas, presenting potential
opportunities for pioneering research.

Category Count Binder

One binder

55 Sulphoaluminate Cement
27 Portland Cement
9 Blast Furnace Slag
1 Fly Ash

Portland Cement + 1 SCM

19 Portland Cement, Fly Ash
13 Portland Cement, Sulphoaluminate Cement
12 Portland Cement, Blast Furnace Slag
10 Portland Cement, Silica Fume
6 Portland Cement, Limestone Powder
5 Portland Cement, Calcined Clay

Portland Cement + 2 SCMs

49 Portland Cement, Fly Ash, Silica Fume
21 Portland Cement, Fly Ash, Blast Furnace Slag
9 Portland Cement, Fly Ash, Calcined Clay
4 Portland Cement, Fly Ash, Limestone Powder
3 Portland Cement, Fly Ash, Sulphoaluminate Cement
18 Portland Cement, Limestone Powder, Calcined Clay
4 Portland Cement, Limestone Powder, Silica Fume
5 Portland Cement, Blast Furnace Slag, Silica Fume
2 Portland Cement, Blast Furnace Slag, Limestone Powder
5 Portland Cement, Silica Fume, Metakaolin
1 Portland Cement, Silica Fume, Calcined Clay

Portland Cement + 3 SCMs

9 Portland Cement, Fly Ash, Silica Fume, Calcined Clay
4 Portland Cement, Metakaolin, Silica Fume, Calcined Clay
3 Portland Cement, Sulphoaluminate Cement, Fly Ash, Calcined Clay
2 Portland Cement, Limestone Powder, Metakaolin, Silica Fume

Sulphoaluminate Cement Based 44 Sulphoaluminate Cement, Diatomite
3 Sulphoaluminate Cement, Metakaolin

Fly Ash Based

3 Fly Ash, Blast Furnace Slag
1 Fly Ash, Silica Fume
21 Fly Ash, Blast Furnace Slag, Silica Fume
4 Fly Ash, Blast Furnace Slag, Silica Fume, Calcined Clay

Blast Furnace Slag Based 5 Blast Furnace Slag, Limestone Powder

further research to understand the fundamental principles governing these properties. Such understanding could lead236

to the development of more advanced models for predicting concrete behavior and could have practical applications in237

improving concrete mix design.238
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4. Predictive Model and Phenomenological Explanation239

4.1. Predictive Model240

With the data, we aim to develop regression models to predict dynamic yield stress, static yield stress, and plastic241

viscosity separately with given mix design information. The models are pure data-driven. It would be convenient242

to use such models for analyzing existing mix designs and exploring new designs without experiments. There are243

numerous algorithms to be chosen from. Among those, XGBoost, a gradient-boosted tree-based model, usually excels244

with smaller datasets like ours. However, it tends to overfit the data, and is sensitive to noise and minor fluctuations245

in the training data. Additionally, the interpolation and extrapolation (generalization) performance of XGBoost is246

usually found to be suboptimal. In contrast, neural networks are good at capturing nonlinear patterns in the data, while247

there is a concern about its ability to generalize across the entire range of the data, especially for cases where data248

might be sparse and small. To leverage the strengths of both approaches, we applied ensemble models that integrate249

XGBoost and NeuralNet as submodels. Each submodel is independently trained on the same dataset to produce initial250

predictions. These predictions are then concatenated with the original input features, forming an enriched dataset.251

This enriched dataset serves as input for second-layer models. The optimal configurations of multi-layer stacking are252

determined by selecting some best combinations, allowing the ensemble model to combine the predictive capabilities253

of XGBoost and Neural Networks. Further details about the concept of the ensemble technique are beyond the scope254

of this research, but interested readers are referred to the original paper of this method [115].255

To demonstrate the advantages of the predictive ensemble model, we set up an example case, where the sand size is256

1.0 mm, the sand to binder ratio is 1.0, and the water to binder ratio is 0.4. Then, based on this setup, the model is257

used to predict the dynamic yield stress of pure Portland cement-based concrete varies with VMA content. As shown258

in Figure 6, the XGBoost model’s zigzaggy prediction pattern indicates possible overfitting, despite of its inherent259

nature of decision trees in capturing binary splits. The NeuralNet prediction is smooth, but its accuracy within the260

sample domain is not as good as the XGBoost model when tested on our data. The ensemble model leverages the261

distinct strengths of both models: the XGBoost regressor excels in the efficient capturing of feature interactions, while262

the neural network excels in modeling complex, non-linear relationships. The combination addresses the individual263

limitations observed when they were used separately. Specifically, the neural network’s ability to produce smooth264
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Figure 5: Multi-layer stacking ensemble model structure.

predictions complements the XGBoost model’s precision in data interpretation, leading to a more robust and accurate265

model overall.266
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Figure 6: Comparison of Ensemble model, XGBoost and Neural network, on Portland cement concrete with 1mm sand
size, 1.0 sand to binder ratio and 0.4 water to binder ratio

The trained ensemble model is then evaluated on a test dataset, resulting R-squared (R2) values are 0.917, 0.908, and
0.959 for static yield stress, dynamic yield stress, and plastic viscosity, respectively. R2 is the performance metric
calculated using the Equation 3:

𝑅2 = 1 −
∑

𝑖(𝑦𝑖 − 𝑦̂𝑖)2
∑

𝑖(𝑦𝑖 − 𝑦̄)2
(3)

where 𝑦𝑖 is the actual value, 𝑦̂𝑖 is the predicted value, and 𝑦̄ is the mean of the actual values.267
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The model’s performance is further illustrated in Figure 7, with the ground truth values plotted on the x-axis and268

predicted values on the y-axis. There is a significant alignment between the predicted and ground truth values, under-269

scoring the model’s capability in capturing the pattern of the data. This high degree of alignment between predictions270

and ground truth emphasizes the model’s robustness and reliability in practical applications.271
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Figure 7: Model performance of the Ensemble model on the test dataset

4.2. A Game-Theoretical Approach to Model Interpretation272

Regression models, especially in complex tasks like concrete mix rheology prediction, often act as ’black boxes’,273

offering predictions without clear explanations. The lack of transparency can make them less trustworthy for practical274

use. To address this issue, it is essential to understand how these models arrive at their decisions.275

To achieve this, we employ SHapley Additive exPlanations (SHAP) [31], a methodological framework for interpreting276

machine learning models. SHAP is developed on the concept of Shapley values from the cooperative game theory,277

where they serve as a metric for ’feature importance’ in a machine learning model. In this context, the Shapley value278

concept is adapted to quantify the contribution of each feature (i.e., input variable) to a specific prediction of a model.279

This approach enables the understanding of how each input factor influences the model’s output.280

For a given feature, a SHAP value quantifies its impact on the model’s prediction comparatively to a baseline scenario,
where the feature assumes an average value. The Shapley value for a feature is mathematically formulated as:

𝜙𝑖 =
∑

𝑆⊆𝑁⧵{𝑖}

(|𝑆|)!(𝑛 − |𝑆| − 1)!
𝑛!

(𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)) (4)
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where, 𝜙𝑖 represents the Shapley value for a particular feature, designated as feature 𝑖. The term 𝑁 stands for the total281

set of features included in the model. The subset 𝑆 refers to any subset of features that does not include feature 𝑖. This282

approach is employed to assess the contribution of feature 𝑖 in various combinations with other features. The function283

𝑣(𝑆) indicates the predicted output of the model when it considers only the features included in subset 𝑆. Essentially,284

the equation calculates the average contribution of feature 𝑖 across all possible combinations of features, offering an285

understanding of impact of input on the output.286

The computation of SHAP values employs the Kernel SHAP method, a weighted linear regression technique designed
to estimate these values for any model. This is represented by the equation:

𝜙̂ = argmin
𝜙

∑

𝑆⊆𝑁

[

𝑓𝑥(𝑆) − 𝜙0 −
∑

𝑖∈𝑆
𝜙𝑖

]2

𝜔(𝑆), (5)

where 𝜙̂ denotes the estimated SHAP values, 𝑓𝑥(𝑆) is the model output for a subset of features 𝑆, 𝜙0 is the baseline287

output, and 𝜔(𝑆) is the weight attributed to each subset 𝑆.288

Through SHAP analysis, we can discern the individual contribution of each input to a prediction, thereby quantifying289

the internal dynamics of the model’s predictions. Moreover, analyzing the mean of absolute Shapley values for a290

feature across all samples leads to the understanding of the feature’s overall impact on the model.291

4.3. Feature Selection and Data Generation292

To perform the model explanation, we need to select input features to be explained, and then generate data of these
features. The explanation will then be based on the generated data. Six common features were selected for the explana-
tion: ’Portland Cement’, ’Sulphoaluminate Cement’, ’Fly Ash’, ’Silica Fume’, ’Type F’, ’VMA’. The first four features
belong to the binders/SCMs category. Given the limited number of samples and the sparsity of representation in the
original dataset, additional sampling was performed to augment the data and facilitate the explanation of selected fea-
tures. Considering their original distribution, Dirichlet distribution was used for joint sampling. Because it effectively
models the proportions of the binders and SCMs, ensuring they sum to 1. This distribution provides a straightforward
method to incorporate prior knowledge about the mix design proportions. Based on the observed coverage of binders
in the dataset, a Dirichlet distribution with alpha parameters [1, 1, 1, 0.5] was employed to encompass the design space
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of the four binders. Expression of Dirichlet distribution dense function is shown as Equation 6. The VMA and Type F
were sampled by uniform distribution between 0 to 5. Other features such as the water to binder ratio, sand to binder
ratio, sand size were kept consistent at 0.40, 1.0, and 1.0 mm, separately. And all other ingredients were set to zero.
Figure 8 shows the histogram of sampled data for SHAP interpretation.

𝑓 (𝑿;𝜶) = 1
𝐵(𝜶)

𝑘
∏

𝑖=1
𝑥𝛼𝑖−1𝑖 (6)

where 𝑿 = [𝑥1, 𝑥2,… , 𝑋𝑘] is a vector of probabilities with 𝑘 components, 𝜶 = [𝛼1, 𝛼2,… , 𝛼𝑘] is the vector of293

concentration parameters for the Dirichlet distribution, and 𝐵(𝜶) is the multinomial beta function, which serves as a294

normalization constant to ensure that the total probability integrates to 1.295
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Figure 8: Histogram of sampled data for selected features. Portland cement, sulphoaluminate cement, fly ash, and silica
fume are sampled by Dirichlet distribution with alpha parameters [1.0, 1.0, 1.0, 0.5]. Type F admixture and VMA are
sampled by even distribution.
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4.4. Explanation of the Trained Model296

The SHAP result of each ingredient is then demonstrated using the beeswarm plots in Figure 9, Figure 10, and Figure 11297

for static yield stress, dynamic yield stress, and plastic viscosity, respectively. In those figures, red means the feature298

value is larger than average, blue means the feature value is lower than average. When the SHAP value is positive,299

it means the corresponding feature value has a positive impact on the final prediction. When the SHAP value is300

negative, it indicates the corresponding feature value would have negative impact on the prediction. In the beeswarm301

plots, a higher position of a feature corresponds to a higher mean absolute SHAP value for that feature, which can302

approximately be regarded as the ’overall importance rank’ of that feature. The changes in the top features would303

cause more significant changes in the rheological characteristics of concrete.304

Figure 9 displays a SHAP summary plot detailing the influence of various factors on the static yield stress, measured305

in kPa. For binders, Portland cement percentage significantly impacts the static yield stress, exhibiting a complex and306

non-linear relationship that can either reduce or augment the stress under certain conditions. Silica fume appears to307

slightly enhance the static yield stress under some conditions, while sulphoaluminate cement, fly ash, VMA and Type308

F admixture may not significantly impact static yield stress.309
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Figure 9: SHAP result: static yield stress

Figure 10 illustrates the impact of various elements on the dynamic yield stress, also measured in kPa. The percentage310

of Portland cement, sulphoaluminate cement, and fly ash in binders all negatively affects the dynamic yield stress,311

while silica fume seems to improve the dynamic yield stress. VMA and Type F admixture both stand out as the most312
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influential. A higher content of them is associated with a possible rise in dynamic yield stress.313
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Figure 10: SHAP result: dynamic yield stress

Figure 11 demonstrates the influence on plastic viscosity, expressed in Pa.s. In terms of binders, fly ash would increase314

the plastic viscosity, while silica fume reduces the plastic viscosity. Portland cement and sulphoaluminate cement have315

little influence. For admixtures, Type F admixture reduces the plastic viscosity, while VMA increases it.316

The SHAP-identified impacts of various inputs on rheological properties are summarized in Table 3.317
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Figure 11: SHAP result: plastic viscosity

5. Prediction on Unexplored Mix Designs318

As indicated in Table 2, the combination of sulphoaluminate cement with calcined clay in printed concrete has not319

been previously well-explored in the collected literature. Using this combination as an example, we demonstrate the320
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Table 3
Summary of SHAP value influences on printing concrete properties for major SCMs and admixtures

Factor Static Yield Stress (kPa) Dynamic Yield Stress (kPa) Plastic Viscosity (Pa.s)

Portland Cement Significant Reduces Not significant
Silica Fume May slightly increases Increases Reduces
Sulphoaluminate Cement Not significant Slightly reduces Not significant
Fly Ash Not significant Slightly reduces Increases
VMA Not significant Increases Increases
Type F admixture Not significant Increases Reduces

potential of our method for predicting on unexplored mix designs. Based on this combination, we developed a series321

of mixs by varying the variables of the mix design. The variables include Type D admixture ranging from 0% to 0.25%322

of binder weight, Type F admixture fixed at 0.3%, VMA set at 0.4%, calcined clay from 0.02% to 0.08% and a water to323

binder ratio of 0.35. Those values are chosen based on a printed concrete paper using sulphoaluminate cement without324

calcined clay [75]. Our developed model is used for making predictions on the static yield stress of mix designs of this325

range.326
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Figure 12: Prediction of Static Yield Stress in sulphoaluminate-based concrete with clay. This illustrates the trained model
is able to predict properties of mix designs outside the dataset.

As shown in Figure 12, the plot illustrates the predicted static yield stress of sulphoaluminate cement-based concrete327

combined with calcined clay. The model shows that adding calcined clay to sulphoaluminate cement paste would328

increase the static yield stress within this range.329
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To verify such a prediction, the actual impact of adding calcined clay to sulphoaluminate cement paste should be empir-330

ically tested. The exact qualitative result could also depend on the specific types of calcined clay and sulphoaluminate331

cement used, as well as the proportions and other components of the concrete mix.332

6. Discussions333

6.1. Explicit Equations334

Compared to the predictive ensemble model, explicit equations such as polynomial expressions are intrinsically inter-335

pretable and convenient for engineering applications. But they are not easy to be developed from relatively small but336

highly non-linear dataset. In this section, we show examples of developing such expressions using the trained ensemble337

model from the previous section. Based on observation of outputs, we define polynomial equations. The parameters338

of the equations are then fitted by the data generated from the ensemble model. Alternative forms of functions are339

possible. However, we aim to keep a balance between simplicity and accuracy.340

In the first example, we examine a typical Portland cement-based concrete, characterized by a sand to binder ratio of
1.0 and an average sand size of 1.0 mm. This scenario includes the use of VMA and Type F admixtures, varying from
0 to 1 percent weight of binder, along with an adjustable water to binder ratio that ranges from 0.15 to 0.65. The results
of the polynomial regression for this case are presented in Equation 7 and illustrated in Figure 13.

Static Yield Stress = 1.16 − 0.55𝑥1 + 0.39𝑥21 + 0.17𝑥2 − 0.30𝑥3 kPa

Dynamic Yield Stress = 0.33 − 0.27𝑥1 − 0.16𝑥21 + 0.08𝑥2 + 0.19𝑥3 kPa

Plastic Viscosity = 6.85 + 1.07𝑥1 − 3.77𝑥21 − 0.72𝑥2 + 1.10𝑥3 Pa⋅s

(7)

where 𝑥1 represents the water to binder ratio, 𝑥2 is the weight percentage of Type F relative to the binder, and 𝑥3 denotes341

the VMA weight percentage of the binder. These equations are specifically formulated for Portland cement-based 3D342

printing concrete with a sand to binder ratio of 1.0, an average sand size of 1.0 mm, excluding all other SCMs and343

admixtures.344

In the second example, we focus on Portland cement-based concrete with a water to binder ratio of 0.4 and an average
sand size of 1.0 mm. This example assumes the inclusion of VMA and Type F admixtures, varying from 0 to 1 percent,
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while the sand to binder ratio varies from 0 to 3.0. The polynomial regression results for this scenario are presented in
Equation 8, and are illustrated in Figure 13.

Static Yield Stress = 1.01 − 0.46𝑥1 + 0.56𝑥21 + −0.12𝑥31 + 0.17𝑥2 − 0.31𝑥3 kPa

Dynamic Yield Stress = 0.19 + 0.01𝑥1 + 0.08𝑥2 + 0.19𝑥3 kPa

Plastic Viscosity = 5.26 + 39.42 1
1 + 𝑒−20(𝑥1−1.7)

− 0.05𝑥2 + 1.15𝑥3

(8)

where 𝑥1 represents the sand to binder ratio, 𝑥2 is the weight percentage of Type F relative to the binder, and 𝑥3 denotes345

the VMA weight percentage of the binder. These equations are specifically formulated for Portland cement-based 3D346

printing concrete with a water to binder ratio of 0.4, an average sand size of 1.0 mm, excluding all other SCMs and347

admixtures.348
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Figure 13: Regression plot of rheological parameters vary with water to binder ratio (top), and vary with sand to binder
ratio (bottom), based on the polynomial expressions provided in Equation 7 and Equation 8. Scatters are derived from
the ensemble models.

6.2. Further Discussions349

The presented results are based on a dataset collected from a decade of research in 3D printing concrete. The dataset is350

a compilation of 3D printing mix designs and rheological experiments. Despite the differences in the testing systems351

(e.g., testing time, experimental method, equipment condition, testing environment, and potential human errors), the352
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data has been standardized into a consistent format based on expert judgment. While the noise and uncertainties353

in the data should be acknowledged, they are not explicitly quantified in this study, as they fall outside its primary354

focus.355

Based on the dataset, we developed a predictive ensemble model, which is aimed at evaluating the rheological proper-356

ties of various concrete mix designs. This model integrates two algorithms (XGBoost and NeuralNet), leveraging the357

strengths of each to predict concrete properties with balanced accuracy and generalizability.358

To ensure the transparency and interpretability of the model, we utilized SHAP to explain the predictions of the model.359

SHAP is a robust framework for understanding the contribution of each input to the output of the model, thereby360

enhancing the clarity of our predictive model. However, there are certain limitations in SHAP-based explainers. The361

effectiveness and accuracy of SHAP’s explanations are highly dependent on the quality and representativeness of the362

data being explained. In scenarios where the data is sparse or unrepresentative of the broader context, SHAP values363

might not accurately capture the full impact of certain parameters on the rheological properties. This could lead to364

incomplete or skewed interpretations of how different factors influence the predictions of the model.365

In the context of the present study, certain features in our data is sparse. This causes difficulty for the SHAP explainer366

when evaluating contributions of certain parameters. To mitigate this issue, we enhanced the data with sampled mix367

designs by Dirichlet and uniform distributions. By doing so, we aimed to feed an enhanced and balanced dataset to the368

model, which could improve the effectiveness of SHAP’s explanations. However, it is important to remain cautious369

about the potential limitations of SHAP in interpreting the effects of certain parameters, especially when dealing370

with complex and multifaceted rheological properties. We suggest applying and interpreting predictive models with a371

critical and informed perspective.372

One advantage of a predictive model is its capability to predict the behavior of untested, novel mix designs. This is373

particularly valuable in concrete research, because the development of new mix designs is usually costly and time-374

consuming. By learning from historical data, the model can predict the properties of mixs that have not yet been375

physically created/tested. This can significantly accelerate the mix design process, enabling rapid innovation and376

optimization.377

Page 24 of 32



Based on our ensemble model, we demonstrated the derivation of explicit polynomial expressions. Similar to the378

ensemble model, the explicit expressions can be used for predicting the rheological properties of concrete mixs. Com-379

pared to the ensemble model, the explicit expressions are naturally interpretable and convenient for practical engineer-380

ing applications. We showed two examples with varying mix design parameters (sand to binder ratio and different381

admixtures). There could be alternative forms of equations, some of which may be very complex. However, we aim382

to balance simplicity and accuracy, so we chose low-order polynomial terms to construct the equations. This approach383

still shows sufficient accuracy.384

This study makes contributions through both its comprehensive dataset and innovative models. The dataset advances385

the field by enabling a data-driven approach to mix design complexities. Analysis of this dataset yields valuable insights386

into printed concrete mix design and reveals potential research gaps. For practitioners looking to design their printed387

concrete, the dataset serves as a valuable reference offering access to recorded mix designs that can guide and inform388

their projects. With the models, practitioners can virtually test their designs. This would allow them to explore novel389

mix designs rapidly.390

It is noteworthy that our model simplifies the complex rheology of fresh concrete by averaging variations in ingredients,391

environments, and testing methods, and by treating concrete as a homogeneous fluid with constant properties, ignoring392

time-dependent hydration reactions. While this approach aligns with existing models, it may not capture all nuances.393

Users should interpret results cautiously, especially in sensitive designs requiring precise rheological control. Future394

research could benefit from larger, more detailed datasets to improve model accuracy and applicability.395

7. Conclusion396

Additive construction with concrete is an emerging sector that faces significant challenges in designing optimal mixes397

for various projects, given the precision and unique rheological properties required. Recognizing the potential of data in398

addressing these challenges, numerous studies have relied on small, isolated datasets. However, a large, comprehensive399

dataset in this field has remained elusive. Inspired by the ImageNet dataset, which served as the catalyst for the current400

wave of advancements in artificial intelligence, we are among the first to develop a comprehensive additive construction401

concrete dataset, which is continuously expanding. This dataset aims to address the complexities of mix design through402
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a data-driven approach.403

1. A dataset of ∼500 samples has been compiled from 3D printed concrete research of the last decade. In 3D404

printing concrete, Portland cement remains the predominant binder, featuring in 231 of the surveyed mix de-405

signs. Other common binders/SCMs include fly ash (147 designs), sulphoaluminate cement (121 designs), and406

silica fume (115 designs). Among admixtures, Type F superplasticizer and VMA were most frequently utilized,407

appearing in 293 and 189 mixes, respectively.408

2. The curated dataset reveals a notable lack of case studies where sulphoaluminate cement comprises 20% to 80%409

of the total binder. The potential of sulphoaluminate cement as the primary binder in combination with other410

SCMs, remains underexplored.411

3. The tailored ensemble model, which combines XGBoost and Neural Networks, demonstrated high performance412

in predicting the rheological properties of 3D printing concrete, achieving 𝑅2 values of 0.917, 0.908, and 0.959413

on the test dataset. After SHAP analysis, this model is not a black box but interpretable. The relative SHAP re-414

sults of various components provide references to adjust the mix proportions, helping optimizing the rheological415

properties of the concrete. This enhanced transparency increases practicality and reliability.416

4. The predictions of unexplored mix designs using the developed models suggest that, within specific ranges, the417

addition of calcined clay in sulphoaluminate cement paste could potentially lead to a higher static yield stress.418

Furthermore, the trained machine learning model has been distilled into explicit polynomial expressions, offering419

engineers and practitioners a transparent, rapid, and computationally efficient tool for real-world applications.420

Continuously expanding and enriching the dataset will be a key aspect of future work. The dataset should be contin-421

uously updated with new concrete mix designs and experimental results. Each new entry shall be manually verified422

against original sources for accuracy. The dataset should be enriched with more detailed mix parameters, experimen-423

tal conditions, and expanded result metrics. This research establishes a foundation for applying data-driven models424

to streamline the mix design process for additive construction concrete, ultimately contributing to more efficient and425

cost-effective practices in mix design.426
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