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Data-driven rheological model for 3D printable concrete

Jianhao Gao,Chaofeng Wang,Jiaqi Li,S.H. Chu

Analyzed the rheology of 3D printing concrete through the lens of data.
Identified research gaps in the area of mix designs for 3D printing concrete.
Developed novel predictive models for 3D printing concrete and explained the models using game theory.

Developed novel explicit equations for rapid estimation of rheological properties based only on the mix design.



10

11

12

13

14

15

16

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

33

34

35

36

37

38

39

40

41

42

Data-driven rheological model for 3D printable concrete

Jianhao Gao“, Chaofeng Wang®?*, Jiaqi Li¢ and S.H. Chu?

“M.E. Rinker, Sr. School of Construction Management, College of Design, Construction and Planning, University of Florida, FL, USA

bDepartment of Civil & Coastal Engineering, Herbert Wertheim College of Engineering, University of Florida, FL, USA

¢Atmospheric, Earth, & Energy Division, Lawrence Livermore National Laboratory, Livermore, CA, USA

4Department of Civil Engineering & Engineering Mechanics, Columbia University, New York, NY, USA

ARTICLE INFO

Keywords:

3D printing concrete
rheology
data-driven

data mining

mix design

ABSTRACT

Additive manufacturing in construction demands an in-depth understanding of the rheological
properties of fresh concrete. However, the abundant data in this field remains underexplored.
This conventional fragmented approach has hindered broader progress and innovation. This
study aims to develop rheological models for 3D printable concrete through a comprehensive,
data-driven paradigm, emphasizing the urgent need for a unified, large-scale dataset. By compil-
ing data spanning a decade, we have created an open-access dataset that contains mix designs and
experimental results on the rheological behaviors of additive construction concrete. A machine
learning-based model and explicit polynomial expressions for estimating rheological properties
were developed. The developed machine learning model can take nineteen different parameters
as inputs to predict the rheological behavior of printed concrete, showing superiority over models
considering a few parameters. Our model can predict the properties of unexplored mix designs,
with tailored expressions for practical engineering in additive construction. This enhances un-
derstanding of concrete mix design and rheology, highlighting the importance of data-driven
method in unveiling the complexity of concrete.

1. Introduction

Additive construction, or three-dimensional (3D) concrete printing, i.e., 3DCP, is considered a technique possessing

great potential for automation in construction [ 1, 2]. The main process is the pumping and extrusion of fresh concrete to

form a structure layer by layer. The process requires the fresh concrete to be easily pumpable, extrudable, and buildable

- attributes intimately linked to its rheological properties [3—5]. However, such requirements often lead to conflicting

rheological demands. For example, the pumpability requires low plastic viscosity to ensure the easy flow during the

transportation under a specific working pumping pressure, while the buildability requires high viscosity so that the

printed fresh concrete can maintain its shape without the external support from the framework - a main advantage

of 3DCP compared with traditional construction. The pumpability and extrudability both demand a relatively low

dynamic yield stress to allow the concrete to flow, while the buildability demands high static yield stress so that the

*Corresponding author: chaofeng.wang@ufl.edu
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concrete can maintain a stable shape once printed. To meet these requirements, accurately designing rheological

properties is critical in achieving the desired balance.

The importance of rheology optimization has been sufficiently addressed in previous research [6-9]. The inherent
relationships between ingredients and rheology are pivotal in guiding the mix design process [10—13]. Traditionally,
this process involves a trial-and-error approach, featured with extensive lab tests to fit the Bingham plastic model [14].

This model can be mathematically expressed as:

T=7T,+puy ey

where 7 is the shear stress in units of kPa, 7, is the dynamic yield stress in units of kPa, y is the plastic viscosity in

units of Pa - s, and y is the shear rate in units of s~1,

The dynamic yield stress represents the critical shear stress level below which the shear stress is inadequate to sustain
the flow, the plastic viscosity indicates the increase of stress with flow speed. Along with the two parameters, static
yield stress, the minimum shear stress to initiate the flow, is also an important property. Figure 1 shows a typical
experiment [5, 13, 15] for measuring them, where Bingham model is applied to find the dynamic yield stress and

plastic viscosity, while the static yield stress is obtained from the peak stress during the loading process.

However, traditional experiment-based trial-and-error approach to mix design could be time consuming and labor-
intensive. Alternatively, behavior of concrete can be predicted directly based on its mix design - these are pure
data-driven methods, where data is used to fit a statistical relationship between the mix design and the hardening
or rheological properties. For hardening properties, Yeh [16] pioneered this research using neural networks to predict
concrete compressive strength in 1998. In recent years, Song et al. [17] employed a neural network model to predict
the strength of concrete and used the model for selecting lower-carbon mix designs. Emad et al. [18] used Linear re-
gression, pure quadratic, M5P-tree, and neural network to predict the compressive strength of Ultra-High-Performance
Fibre Reinforced Concrete and compared with experimental results. Ahmed et al. [19] employed several machine learn-
ing techniques, including artificial neural networks, multi-expression programming, full quadratic regression, linear

regression, and M5P-tree, to predict the compressive strength of geopolymer concrete. Naseri et al. [20] introduced
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Figure 1: Typical static yield stress, dynamic yield stress and plastic viscosity experimental measurement

Coyote Optimization Programming to predict the compressive strength of concrete incorporating supplementary ce-
mentitious materials (SCMs). They also modeled an optimization problem to evaluate the compressive strength, cost,
and environmental impact of sustainable concrete mixtures. Huang et al. [21] developed gradient-boosted regressors
to predict concrete properties for the optimization of strength, cost, and CO, emissions. Kakasor Ismael Jaf et al. [22]
analyzed data from various sources and used four models to predict compressive strength. They found that increasing
Si0;, (%) improved compressive strength, and increasing CaO (%) did so only when fly ash replaced 52% to 100% of the
cement. For rheological properties, Ferraris and DeLarrard [23] pioneered the study in 2001, focusing on establishing
models that link mix composition with rheological properties. In recent years, with the capability of machine learning,
Nguyen et al. [24] and Nazar et al. [25] focused on predicting the plastic viscosity of concrete, with the former using
Least Squares Support Vector Machine and the latter employing bagging regressor and decision tree, also incorporating
yield stress prediction. Mohammed et al. [26] and Nazar et al. [27] explored rheological properties and compressive
strength, with the former examining nonlinear regression and neural networks, particularly noting role of nanoclay,
and the latter linking raw ingredients of concrete to these properties using gene expression programming. Nazar et al.
[28] explored the impact of hydraulic lime on alkali-activated material-based concrete using machine learning and

gene expression modeling, uncovering its positive influence on yield stress and plastic viscosity but negative effect
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on compressive strength, contrasting with fly ash’s negative impacts on these properties. Sahin et al. [29] employed
Linear Regression Analysis, AdaBoost, and K Nearest Neighbor algorithms to model the rheological properties of
cementitious systems, identifying the metakaolin usage ratio as the most influential factor affecting the rheology and

thixotropic properties of the mixtures.

Despite numerous data-driven rheological models for conventional concrete, previous studies have focused on only
a few materials to derive a regression model for predicting rheological properties. Furthermore, there is a lack of
comprehensive study that employs large-scale data mining and machine learning to explore concrete rheology across

the literature, especially for the 3DCP sector, aimed at developing a well-suited model specifically for 3DPC.

In the past decade, extensive research has been conducted on rheology and mix design, providing a rich repository of
data. It is yet to be determined whether the collection and analysis of this data can lead to the development of new

predictive models for the rheology of fresh printed concrete and provide insights into unexplored mix designs.

It is hypothesized that the collected data will support the development of predictive machine learning models that
can learn the mapping between the mix designs and their rheological properties. To achieve this, a comprehensive
range of 3D printing concrete mix designs is systematically gathered from research results over the last decades. To do
this, a predictive model, comprising of only an XGBoost [30] and a Neural Network, was developed to regress on the
rheology. Traditionally, pure data-driven models are often criticized for being unexplainable due to their ‘black box’
nature in making predictions. However, it is essential that researchers and engineers thoroughly understand the model
before its reliable application. To address this, we constructed a model explainer, based on the Game Theory - SHapley
Additive exPlanations (SHAP) method [31], to interpret the predictions of the developed model. The predictive model
helps discover the mapping between the mix design and the rheological behavior, while the explainer justifies the

model’s prediction.

It is hypothesized that the established predictive model can virtually test new, previously unstudied mix designs and
provide valuable insights. To demonstrate its capability, the model was used to predict the rheological properties of
sulphoaluminate and clay-based mix designs — a novel family of mix designs that don’t exist in the literature. The re-
sults indicate that the model is capable of capturing calcined clay’s effect on the rheology behavior of sulphoaluminate-

based 3D printing concrete, which has not been previously studied by researchers. Moreover, based on the predictive

Page 4 of 32



104

105

107

108

109

112

114

117

118

121

122

123

126

127

model, we developed a polynomial expression, which is convenient for direct engineering application in designing Port-
land cement-based 3D printing concrete with varying water to binder ratio and sand to binder ratio. This application

is demonstrated in case study, where the polynomial expression is used for estimating rheological properties.

The significance of this study lies in the development of a 3D printing concrete dataset from a decade of literature for the
first time, along with a predictive model that can process inputs from nineteen different mix components. This approach
surpasses existing rheological models [23-28], which are limited to a few material components as inputs. Furthermore,
our model specifically focus on 3DPC, an area previously underexplored in material-to-rheological properties modeling
but of critical importance. Moreover, this innovative model has the capability to predict potential new mix designs
not yet examined in the literature, opening up novel mix design opportunities for 3DPC, accelerating its research and

engineering processes.

2. Rheological Properties of 3D Printing Concrete: Existing Research

Numerous studies have explored the rheological properties of 3D printing concrete through various approaches. Most
of such research focuses on exploring binders, aggregates, and admixtures. A selection of representative studies,

though not exhaustive, are discussed in this section.

The literature has largely explored the impact of different binders as well as the role of SCMs in concrete. Marchon
et al. [32] emphasized the use of various binders and admixtures to adjust the rheological and hydration properties
of concrete to meet the demands of the printing process, detailing the necessary concrete properties for each stage,
and discussed the types of materials needed to meet these requirements, such as superplasticizers for fluidity during
pumping and extrusion, and clays for structural stability during deposition. It also highlights the admixtures that help
control setting times and enhance strength gain to ensure successful 3D printing and curing of concrete. In the study of
Douba et al. [33], the addition of nanoclays and methylcellulose significantly increased the yield stress of Magnesium
oxide paste. Khalil et al. [34] demonstrated that a mix of 7% calcium sulfoaluminate and 93% ordinary Portland
cement enhances the rheological behavior and buildability of mortar without compromising its long-term compressive
strength. Mohan et al. [10] explored calcium sulfoaluminate cement-based 3D printable concrete, noting that limestone

substitution reduces plastic viscosity, and influences buildability. Chen et al. [35] incorporated metakaolin into calcium
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sulfoaluminate cement composites, which increased the static yield stress and improved thixotropy. The study suggests
that controlling thixotropy and yield stress through metakaolin addition can achieve better structural integrity and
precision. Chen et al. [36] studied the effect of high substitution of Portland cement with calcined clay and limestone
with the same dosage for superplasticizer and viscosity modifying agent (VMA), which improved the buildability of
fresh mixs. Panda and Tan [37] and Panda et al. [38] have shown how silica fume, along with ground granulated blast-
furnace slag, enhance the rheological properties of mixs, making them suitable for 3D concrete printing. Manikandan
et al. [9] found that the addition of silica fume and superplasticizer in cement mixs improves yield stress and maintains
viscosity. Similarly, Sikora et al. [39] observed that nanosilica accelerates setting, improves hardening, and rheological

properties of mortar, optimizing for 3D printing applications.

Studies on the impact of different aggregates can also be found in the literature. Ting et al. [40] investigated the use of
recycled glass as fine aggregates in 3D printable concrete, examining its effects on flow properties, buildability, and
mechanical strength, and the necessity of optimizing mix designs for balance between workability and strength. The
research by Mohan et al. [41] discussed the effect of varying aggregate to binder ratio in 3D printable cementitious
materials, highlighting its significant impact on rheological properties such as plastic viscosity, yield stress, and storage
modulus, as well as on printing height and pumping efficiency. The study by Rahul et al. [42] examined the potential
of using natural and recycled coarse aggregates in 3D printable concrete, emphasizing the need for adjustments in
superplasticizer dosage to maintain yield stress and buildability, and noting improvements in shrinkage and cracking

behavior.

The role of admixtures in the rheological properties of 3D printing concrete has also been continuously investigated.
Kolawole et al. [43] analyzed how VMA, superplasticizers, and water influence the thixotropic behavior of conventional
concrete, with a focus on shearing rate and the pre-history of concrete. Chen et al. [44] highlighted how increasing the
dosage of VMA enhances extrudability and shape retention. Chen et al. [45] discussed the improvement in rheological
properties necessary for 3D printing, such as extrusion pressure and buildability, by adding VMA. Chen et al. [12]
explored the use of hydroxypropyl methyl cellulose, water-reducing agent, and lithium carbonate in sulphoaluminate
cement, focusing on its stress and viscosity for 3D printing. The study by Long et al. [13] discussed the addition of

micro-crystalline cellulose increasing plastic viscosity and yield stress, enhancing cohesion and printability in sustain-
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Table 1
Summary of the collection, standardization, and preprocess steps.

Step Description

1 Collect samples:
Select around 90 related papers.
Obtain about 500 initial mix design samples.

2 Standardization:
Normalize binder weight to one.
Record other materials as relative percentage to binder.
Rename same materials to a uniform name.
Obtain the compiled dataset of 500 samples.

3 Preprocess:
Exclude rare/ambiguous materials before training.
Transfer admixtures to ASTM Type A to F, and VMA.
Remain 377 samples, 19 material inputs, 3 rheological outputs.

able cement-based composites for 3D printing. Qian and De Schutter [46] compared the efficiencies of Naphthalene
Sulfonate Formaldehyde and Polycarboxylate Ether superplasticizers in reducing dynamic yield stress and thixotropy
in cement pastes for 3D printing. Chen et al. [47] investigated the effect of tartaric acid on setting time, hydration

evolution, and apparent viscosity of sulphoaluminate cement paste for 3D printing.

3. Data Collection and Inspection

To quantitatively analyze the rheological properties of 3D printing concrete, we conducted a comprehensive review of
studies in this field over the past decade and compiled a dataset from the literature, including [3, 5, 9-13, 15, 34—112].
The compilation of these papers can be accessed through this link. We standardized the mix designs presented in each
paper. This standardization facilitated the training of machine learning models later. Furthermore, we conducted an
analysis of the standardized dataset, identifying gaps in the research on 3D printing concrete mix design. Potential

research opportunities are highlighted.

3.1. Data Collection and Preprocessing
Table 1 summarizes the processes of data collection, standardization, and preprocessing. Each step is detailed be-

low:

The compiled dataset consists of approximately 500 concrete mix designs for 3D printing. This dataset, collected from

about 90 highly relevant studies to printed concrete, represents a broad spectrum of research in this field, including a
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diverse range of mix designs and the corresponding tests on concrete properties, all methodically collected, cleaned,
and uniformly formatted. Those papers were selected inclusively based on their description of detailed mix designs
and corresponding experimental results for printed concrete. The dataset has been made publicly available and can be

accessed at [113].

A rigorous standardization process was applied to harmonize mix designs from diverse sources. Studies presented mix
designs in various formats, including tables and textual descriptions. Quantification methods for material composition
varied widely, ranging from volume-based measurements (per cubic meter or yard [114]) to percentages and relative
weights. To create a uniform dataset, we meticulously reviewed and standardized each mix design’s proportions.
Materials with different nomenclatures across studies were assigned consistent terminology. In the final standardized
dataset, binder weights were normalized to one, with other components expressed as percentages relative to the binder

weight.

Prior to training the models, a preprocess procedure is conducted. Samples with infrequently used (e.g. potassium
silicate) or ambiguous materials (e.g non-Polycarboxylate Polymers (PCE) based superplasticizer, non-Hydroxypropyl
Methylcellulose (HPMC) based VMA) were excluded, admixture were reviewed and categorized according to the
ASTM C494 standard. Type A admixtures, known as water-reducing admixtures, serve to reduce the water requirement
of concrete mixs, thereby tending to enhance the workability and strength. Type B, or retarding admixtures, are
formulated to delay the setting time of concrete, offering extended workability and placement time. Accelerating
admixtures, classified as Type C, are designed to expedite the setting time and early strength development of concrete.
Type D admixtures combine the properties of water reduction and setting time retardation, improving both workability
and strength of the mix. Type F admixtures, which are high range water-reducing agents, significantly decrease the
water content, leading to increased strength and lower permeability. Additionally, the table includes VMA, which are

used to adjust the viscosity of the concrete mix. After this step, 377 curated samples remain.

The data preprocess procedure is illustrated in Figure 2. The ingredients are categorized, resulting in 19 distinct
categories. The processed data for each mix design sample contains a range of binders including Portland cement,
sulfoaluminate cement, fly ash, ground granulated blast-furnace slag, limestone powder, metakaolin, silica fume, di-

atomite, and calcined clay. The reason to separate metakaolin from general calcined clay is because many papers did
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not provide the precise type of their calcined clay. The total amount of binder is normalized to one for each sample.
Additive admixtures and fibers are also included in the processed data, measured in relative percentage by weight of the
binder (%Wob). Each admixture description was reviewed and classified as per ASTM C494 standards. Accordingly,
applicable admixtures in each mix design are categorized as ASTM Type A to Type F admixtures. Due to the small
number of samples for each type of fiber, we must disregard the type and group them into a single category. While
this approach influences the model evaluation of fiber, it is the only feasible solution given the current conditions.
Important ratios like the sand to binder and water to binder ratios are formatted. These features serve as the input for
the mix design, with the output representing experimental results such as initial Static Yield Stress (kPa), Dynamic

Yield Stress (kPa), and Plastic Viscosity (Pa-s).

3.2. Data Inspection

The quantities of the ingredients and experimental results are further examined in Figure 3. Among the final curated
377 mixs, 266 use sand for aggregate, while 111 contain no aggregate. Regarding the binder ingredients, 231 mixs
contain Portland cement, followed by 147 containing fly ash, 121 with sulphoaluminate cement, 115 with silica fume,
82 with blast furnace slag, 53 with clay, 44 with diatomite, 41 with limestone, and 14 with metakaolin. In terms of
admixtures, Types F admixture and VMA were the most used, featured in 293 and 189 mixs, respectively. Conversely,
Types A, B, C, and D were less common, being used in 25, 63, 44, and 34 mixs, respectively. Additionally, 88 mixs
contain fibers. For outputs, 178 contains plastic viscosity, 192 contains dynamic yield stress, 142 contains static yield

stress.

Three rheological properties for each mix design are included in the data, namely static yield stress, dynamic yield
stress, and plastic viscosity. In cases where experimental results are missing from the original literature, they are
left empty in the dataset. The intrinsic correlations among rheological properties were investigated using the Pearson

correlation coefficient, denoted as py y. This coefficient is mathematically defined as Equation 2:

cov(X,Y)
Pxy=——"" @)
OxOy

where cov(X,Y') denotes the covariance between variables X and Y, and oy and oy represent their respective standard
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Binder Fly ash:Portland cement:sulphoaluminate cement=0.57:0.4:0.03

Water-Binder Ratio 0.28
Sand-Binder Ratio 0.4
Sand Size (mm) 0-0.3
Admixture ($Wob) PCE:HPMC=1.2:0.1
Fiber (%Wob) Polyethylene fiber=1.3
Static Yield Stress (kPa) 11.3
Dynamic Yield Stress (kPa) 0.55
Plastic Viscosity (Pa‘s) 11.7

Data Preprocess

Portland cement 0.40
Sulphoaluminate cement 0.03
Fly ash 0.57
Slag 0.00
Limestone powder 0.00
Metakaolin 0.00
Silica fume 0.00
Diatomite 0.00
Clay 0.00
Sand Size Processed (mm) 0.15
Sand-Binder Ratio 0.40
Water-Binder Ratio 0.28
Type A Admixture ($Wob) 0.00
Type B Admixture ($Wob) 0.00
Type C Admixture ($Wob) 0.00
Type D Admixture ($Wob) 0.00
Type F Admixture ($Wob) 1.20
VMA (%Wob) 0.10
Fiber ($Wob) 1.30
Static Yield Stress (kPa) 11.30
Dynamic Yield Stress (kPa) 0.55
Plastic Viscosity (Pa‘s) 11.70

Figure 2: Preprocessing of data as model input. Weights of binders are normalized to be one. The water to binder and
sand to binder ratios are calculated as the weight ratios relative to the total weight of binders. admixtures and fibers
are expressed as weight ratios to the total binder weight, multiplied by 100, and are denoted as %Wob. admixtures are
classified to proper types (Type A - F) according to ASTM C494.

deviations.

Consequently, a correlation matrix can be used to show relationships between quantities. A correlation heatmap,
which visually represents the correlation matrix, is plotted in Figure 4. It reveals a positive correlation between static
yield stress and both dynamic yield stress and plastic viscosity. Conversely, a slight negative correlation is observed
between dynamic yield stress and plastic viscosity. The positive correlation between static yield stress and dynamic
yield stress is moderate, suggesting some level of association. The positive correlation between static yield stress and

plastic viscosity is relatively stronger. It suggests that higher static yield stress is often associated with higher plastic
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Figure 3: Histogram of feature and property values for selected mix samples. The x-axis represents the numerical values of
features and properties, while the y-axis shows the frequency count of each value. The sum of binders, including Portland
cement, Sulphoaluminate cement, fly ash, blast furnace slag, limestone powder, metakaolin, silica fume, diatomite, and
calcined clay, is normalized to 1. admixtures (Type A to Type F and VMA) and fibers are measured relative to the binder’s
weight and are represented as a percentage of the binder weight (%wob). The outputs are static yield stress, dynamic
yield stress, and plastic viscosity.
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viscosity. The negative correlation between dynamic yield stress and plastic viscosity, although weak, indicates that

an increase in dynamic yield stress might correspond to a slight decrease in plastic viscosity, or vice versa.
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Figure 4: Correlation of the rheological parameters from compiled dataset

3.3. Identified Gaps and Potential Research Opportunities

Based on the inspection of the curated dataset, most binders consist of four or less ingredients, including SCMs. All
existing binder designs are listed in Table 2. Combinations not listed in the table present opportunities for novel re-
search. One example is the use of sulphoaluminate cement as the main binder combined with other SCMs, which has
been rarely explored, with previous studies only combining it with Diatomite and Metakaolin. Figure 3 presents the
frequency histogram of each material count. The proportion of sulphoaluminate cement ranging from 0.2 to 0.8 re-
mains unexplored, indicating a potential area for detailed investigation. In terms of admixtures, the use of Types A, B,
C, and D admixtures in binders is an unexplored area. The observed negative correlation between dynamic yield stress
and plastic viscosity may suggest the existence of an unexplored intrinsic mechanism. This could mean that a concrete
mix with higher dynamic yield stress may exhibit lower plastic viscosity, or vice versa. This observation could indi-
cate a complex interaction between the components of the concrete mix, affecting its flow characteristics, suggesting

underlying factors or interactions at the material level that are not fully understood yet. It indicates a potential area for
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Table 2

Categorization of 3D printing concrete binders over the past decade. This table encompasses the primary combinations
explored in recent research. Binder combinations not represented here may constitute unexplored areas, presenting potential
opportunities for pioneering research.

Category Count Binder
55 Sulphoaluminate Cement
. 27 Portland Cement
One binder 9 Blast Furnace Slag
1 Fly Ash
19 Portland Cement, Fly Ash
13 Portland Cement, Sulphoaluminate Cement
12 Portland Cement, Blast Furnace Slag
10 Portland Cement, Silica Fume
6 Portland Cement, Limestone Powder
Portland Cement + 1 SCM 5 Portland Cement, Calcined Clay
49 Portland Cement, Fly Ash, Silica Fume

=

Portland Cement, Fly Ash, Blast Furnace Slag

Portland Cement, Fly Ash, Calcined Clay

Portland Cement, Fly Ash, Limestone Powder

Portland Cement, Fly Ash, Sulphoaluminate Cement
Portland Cement, Limestone Powder, Calcined Clay
Portland Cement, Limestone Powder, Silica Fume
Portland Cement, Blast Furnace Slag, Silica Fume
Portland Cement, Blast Furnace Slag, Limestone Powder
Portland Cement, Silica Fume, Metakaolin

Portland Cement, Silica Fume, Calcined Clay

Portland Cement + 2 SCMs

(o]

Portland Cement, Fly Ash, Silica Fume, Calcined Clay

Portland Cement, Metakaolin, Silica Fume, Calcined Clay

Portland Cement, Sulphoaluminate Cement, Fly Ash, Calcined Clay
Portland Cement, Limestone Powder, Metakaolin, Silica Fume

NWPrOIFRFONOORE WA ON

Portland Cement 4+ 3 SCMs

N
N

Sulphoaluminate Cement, Diatomite

Sulphoaluminate Cement Based . -
P Sulphoaluminate Cement, Metakaolin

w

w

Fly Ash, Blast Furnace Slag

Fly Ash, Silica Fume

21 Fly Ash, Blast Furnace Slag, Silica Fume

4 Fly Ash, Blast Furnace Slag, Silica Fume, Calcined Clay

sy

Fly Ash Based

Blast Furnace Slag Based 5 Blast Furnace Slag, Limestone Powder

236 further research to understand the fundamental principles governing these properties. Such understanding could lead
237 to the development of more advanced models for predicting concrete behavior and could have practical applications in

238 improving concrete mix design.
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4. Predictive Model and Phenomenological Explanation

4.1. Predictive Model

With the data, we aim to develop regression models to predict dynamic yield stress, static yield stress, and plastic
viscosity separately with given mix design information. The models are pure data-driven. It would be convenient
to use such models for analyzing existing mix designs and exploring new designs without experiments. There are
numerous algorithms to be chosen from. Among those, XGBoost, a gradient-boosted tree-based model, usually excels
with smaller datasets like ours. However, it tends to overfit the data, and is sensitive to noise and minor fluctuations
in the training data. Additionally, the interpolation and extrapolation (generalization) performance of XGBoost is
usually found to be suboptimal. In contrast, neural networks are good at capturing nonlinear patterns in the data, while
there is a concern about its ability to generalize across the entire range of the data, especially for cases where data
might be sparse and small. To leverage the strengths of both approaches, we applied ensemble models that integrate
XGBoost and NeuralNet as submodels. Each submodel is independently trained on the same dataset to produce initial
predictions. These predictions are then concatenated with the original input features, forming an enriched dataset.
This enriched dataset serves as input for second-layer models. The optimal configurations of multi-layer stacking are
determined by selecting some best combinations, allowing the ensemble model to combine the predictive capabilities
of XGBoost and Neural Networks. Further details about the concept of the ensemble technique are beyond the scope

of this research, but interested readers are referred to the original paper of this method [115].

To demonstrate the advantages of the predictive ensemble model, we set up an example case, where the sand size is
1.0 mm, the sand to binder ratio is 1.0, and the water to binder ratio is 0.4. Then, based on this setup, the model is
used to predict the dynamic yield stress of pure Portland cement-based concrete varies with VMA content. As shown
in Figure 6, the XGBoost model’s zigzaggy prediction pattern indicates possible overfitting, despite of its inherent
nature of decision trees in capturing binary splits. The NeuralNet prediction is smooth, but its accuracy within the
sample domain is not as good as the XGBoost model when tested on our data. The ensemble model leverages the
distinct strengths of both models: the XGBoost regressor excels in the efficient capturing of feature interactions, while
the neural network excels in modeling complex, non-linear relationships. The combination addresses the individual

limitations observed when they were used separately. Specifically, the neural network’s ability to produce smooth
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Figure 5: Multi-layer stacking ensemble model structure.

predictions complements the XGBoost model’s precision in data interpretation, leading to a more robust and accurate

model overall.

Prediction of Dynamic Yield Stress (kPa)
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Figure 6: Comparison of Ensemble model, XGBoost and Neural network, on Portland cement concrete with 1mm sand
size, 1.0 sand to binder ratio and 0.4 water to binder ratio

The trained ensemble model is then evaluated on a test dataset, resulting R-squared (R2) values are 0.917, 0.908, and

0.959 for static yield stress, dynamic yield stress, and plastic viscosity, respectively. R? is the performance metric

calculated using the Equation 3:

Zi(yi - )7[)2

RP=1-= T

Zi(yi - )_})2

where y; is the actual value, J; is the predicted value, and y is the mean of the actual values.

3
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The model’s performance is further illustrated in Figure 7, with the ground truth values plotted on the x-axis and
predicted values on the y-axis. There is a significant alignment between the predicted and ground truth values, under-
scoring the model’s capability in capturing the pattern of the data. This high degree of alignment between predictions

and ground truth emphasizes the model’s robustness and reliability in practical applications.
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Figure 7: Model performance of the Ensemble model on the test dataset

4.2. A Game-Theoretical Approach to Model Interpretation
Regression models, especially in complex tasks like concrete mix rheology prediction, often act as “black boxes’,
offering predictions without clear explanations. The lack of transparency can make them less trustworthy for practical

use. To address this issue, it is essential to understand how these models arrive at their decisions.

To achieve this, we employ SHapley Additive exPlanations (SHAP) [31], a methodological framework for interpreting
machine learning models. SHAP is developed on the concept of Shapley values from the cooperative game theory,
where they serve as a metric for *feature importance’ in a machine learning model. In this context, the Shapley value
concept is adapted to quantify the contribution of each feature (i.e., input variable) to a specific prediction of a model.

This approach enables the understanding of how each input factor influences the model’s output.

For a given feature, a SHAP value quantifies its impact on the model’s prediction comparatively to a baseline scenario,

where the feature assumes an average value. The Shapley value for a feature is mathematically formulated as:

SHin—1S| - 1!
= Y, LBROIZD sy - visy @

n!
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where, ¢; represents the Shapley value for a particular feature, designated as feature i. The term N stands for the total
set of features included in the model. The subset .S refers to any subset of features that does not include feature i. This
approach is employed to assess the contribution of feature i in various combinations with other features. The function
v(.S) indicates the predicted output of the model when it considers only the features included in subset .S. Essentially,
the equation calculates the average contribution of feature i across all possible combinations of features, offering an

understanding of impact of input on the output.

The computation of SHAP values employs the Kernel SHAP method, a weighted linear regression technique designed

to estimate these values for any model. This is represented by the equation:

2
¢= argmin > [fxm ~do— ), ¢,-] o(S), )

SCN iesS

where ¢ denotes the estimated SHAP values, f+(S) is the model output for a subset of features S, ¢y is the baseline

output, and (.S is the weight attributed to each subset .S.

Through SHAP analysis, we can discern the individual contribution of each input to a prediction, thereby quantifying
the internal dynamics of the model’s predictions. Moreover, analyzing the mean of absolute Shapley values for a

feature across all samples leads to the understanding of the feature’s overall impact on the model.

4.3. Feature Selection and Data Generation

To perform the model explanation, we need to select input features to be explained, and then generate data of these
features. The explanation will then be based on the generated data. Six common features were selected for the explana-
tion: "Portland Cement’, ’Sulphoaluminate Cement’, ’Fly Ash’, ’Silica Fume’, *Type F’, ”"VMA’. The first four features
belong to the binders/SCMs category. Given the limited number of samples and the sparsity of representation in the
original dataset, additional sampling was performed to augment the data and facilitate the explanation of selected fea-
tures. Considering their original distribution, Dirichlet distribution was used for joint sampling. Because it effectively
models the proportions of the binders and SCMs, ensuring they sum to 1. This distribution provides a straightforward
method to incorporate prior knowledge about the mix design proportions. Based on the observed coverage of binders

in the dataset, a Dirichlet distribution with alpha parameters [1, 1, 1, 0.5] was employed to encompass the design space
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of the four binders. Expression of Dirichlet distribution dense function is shown as Equation 6. The VMA and Type F
were sampled by uniform distribution between 0 to 5. Other features such as the water to binder ratio, sand to binder
ratio, sand size were kept consistent at 0.40, 1.0, and 1.0 mm, separately. And all other ingredients were set to zero.

Figure 8 shows the histogram of sampled data for SHAP interpretation.

k
. _ 1 a;—1
fXi@) = g gx,. (6)

where X = [xy,x,,...,X;] is a vector of probabilities with k components, & = [a;,a,, ..., a;] is the vector of
concentration parameters for the Dirichlet distribution, and B(e) is the multinomial beta function, which serves as a

normalization constant to ensure that the total probability integrates to 1.
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Figure 8: Histogram of sampled data for selected features. Portland cement, sulphoaluminate cement, fly ash, and silica
fume are sampled by Dirichlet distribution with alpha parameters [1.0, 1.0, 1.0, 0.5]. Type F admixture and VMA are
sampled by even distribution.
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4.4. Explanation of the Trained Model

The SHAP result of each ingredient is then demonstrated using the beeswarm plots in Figure 9, Figure 10, and Figure 11
for static yield stress, dynamic yield stress, and plastic viscosity, respectively. In those figures, red means the feature
value is larger than average, blue means the feature value is lower than average. When the SHAP value is positive,
it means the corresponding feature value has a positive impact on the final prediction. When the SHAP value is
negative, it indicates the corresponding feature value would have negative impact on the prediction. In the beeswarm
plots, a higher position of a feature corresponds to a higher mean absolute SHAP value for that feature, which can
approximately be regarded as the ’overall importance rank’ of that feature. The changes in the top features would

cause more significant changes in the rheological characteristics of concrete.

Figure 9 displays a SHAP summary plot detailing the influence of various factors on the static yield stress, measured
in kPa. For binders, Portland cement percentage significantly impacts the static yield stress, exhibiting a complex and
non-linear relationship that can either reduce or augment the stress under certain conditions. Silica fume appears to
slightly enhance the static yield stress under some conditions, while sulphoaluminate cement, fly ash, VMA and Type
F admixture may not significantly impact static yield stress.

Static Yield Stress (kPa)

High
Portland cement = - e .e *.-— o o off o
Silica fume **0 - g en
VMA I . o g
©
>
Type F . as .i o
2
Fly ash i §
Sulphoaluminate cement | .
Other unsampled features l
T T T T T Low
-4 -2 0 2 4

SHAP value (impact on model output)

Figure 9: SHAP result: static yield stress

Figure 10 illustrates the impact of various elements on the dynamic yield stress, also measured in kPa. The percentage
of Portland cement, sulphoaluminate cement, and fly ash in binders all negatively affects the dynamic yield stress,

while silica fume seems to improve the dynamic yield stress. VMA and Type F admixture both stand out as the most

Page 19 of 32



a3 influential. A higher content of them is associated with a possible rise in dynamic yield stress.
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Figure 10: SHAP result: dynamic yield stress

s12  Figure 11 demonstrates the influence on plastic viscosity, expressed in Pa.s. In terms of binders, fly ash would increase
s1s  the plastic viscosity, while silica fume reduces the plastic viscosity. Portland cement and sulphoaluminate cement have

a6 little influence. For admixtures, Type F admixture reduces the plastic viscosity, while VMA increases it.

a1z The SHAP-identified impacts of various inputs on rheological properties are summarized in Table 3.
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Figure 11: SHAP result: plastic viscosity

ss 5. Prediction on Unexplored Mix Designs

s10  As indicated in Table 2, the combination of sulphoaluminate cement with calcined clay in printed concrete has not

320 been previously well-explored in the collected literature. Using this combination as an example, we demonstrate the
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Table 3
Summary of SHAP value influences on printing concrete properties for major SCMs and admixtures

Factor Static Yield Stress (kPa) Dynamic Yield Stress (kPa) Plastic Viscosity (Pa.s)
Portland Cement Significant Reduces Not significant

Silica Fume May slightly increases Increases Reduces
Sulphoaluminate Cement  Not significant Slightly reduces Not significant

Fly Ash Not significant Slightly reduces Increases

VMA Not significant Increases Increases

Type F admixture Not significant Increases Reduces

potential of our method for predicting on unexplored mix designs. Based on this combination, we developed a series
of mixs by varying the variables of the mix design. The variables include Type D admixture ranging from 0% to 0.25%
of binder weight, Type F admixture fixed at 0.3%, VMA set at 0.4%, calcined clay from 0.02% to 0.08% and a water to
binder ratio of 0.35. Those values are chosen based on a printed concrete paper using sulphoaluminate cement without
calcined clay [75]. Our developed model is used for making predictions on the static yield stress of mix designs of this

range.

1.0
Type D
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Figure 12: Prediction of Static Yield Stress in sulphoaluminate-based concrete with clay. This illustrates the trained model
is able to predict properties of mix designs outside the dataset.

As shown in Figure 12, the plot illustrates the predicted static yield stress of sulphoaluminate cement-based concrete
combined with calcined clay. The model shows that adding calcined clay to sulphoaluminate cement paste would

increase the static yield stress within this range.
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To verify such a prediction, the actual impact of adding calcined clay to sulphoaluminate cement paste should be empir-
ically tested. The exact qualitative result could also depend on the specific types of calcined clay and sulphoaluminate

cement used, as well as the proportions and other components of the concrete mix.

6. Discussions

6.1. Explicit Equations

Compared to the predictive ensemble model, explicit equations such as polynomial expressions are intrinsically inter-
pretable and convenient for engineering applications. But they are not easy to be developed from relatively small but
highly non-linear dataset. In this section, we show examples of developing such expressions using the trained ensemble
model from the previous section. Based on observation of outputs, we define polynomial equations. The parameters
of the equations are then fitted by the data generated from the ensemble model. Alternative forms of functions are

possible. However, we aim to keep a balance between simplicity and accuracy.

In the first example, we examine a typical Portland cement-based concrete, characterized by a sand to binder ratio of
1.0 and an average sand size of 1.0 mm. This scenario includes the use of VMA and Type F admixtures, varying from
0 to 1 percent weight of binder, along with an adjustable water to binder ratio that ranges from 0.15 to 0.65. The results

of the polynomial regression for this case are presented in Equation 7 and illustrated in Figure 13.

Static Yield Stress = 1.16 — 0.55x; + 0.39x% +0.17x, — 0.30x5 kPa
Dynamic Yield Stress = 0.33 — 0.27x; — 0.16x7 + 0.08x, + 0.19x; kPa @)

Plastic Viscosity = 6.85 + 1.07x; — 3.77x% —0.72x, + 1.10x5 Pa-s

where x| represents the water to binder ratio, x, is the weight percentage of Type F relative to the binder, and x5 denotes
the VMA weight percentage of the binder. These equations are specifically formulated for Portland cement-based 3D
printing concrete with a sand to binder ratio of 1.0, an average sand size of 1.0 mm, excluding all other SCMs and

admixtures.

In the second example, we focus on Portland cement-based concrete with a water to binder ratio of 0.4 and an average

sand size of 1.0 mm. This example assumes the inclusion of VMA and Type F admixtures, varying from O to 1 percent,
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while the sand to binder ratio varies from 0 to 3.0. The polynomial regression results for this scenario are presented in

Equation 8, and are illustrated in Figure 13.

Static Yield Stress = 1.01 — 0.46x; + 0.56x7 + —0.12x] + 0.17x, — 0.31x3 kPa

Dynamic Yield Stress = 0.19 + 0.01x; + 0.08x, + 0.19x; kPa ®)

1

Plastic Viscosity = 5.26 + 39.42m

- 0.0SX2 + IISX3

where x represents the sand to binder ratio, x, is the weight percentage of Type F relative to the binder, and x5 denotes
the VMA weight percentage of the binder. These equations are specifically formulated for Portland cement-based 3D
printing concrete with a water to binder ratio of 0.4, an average sand size of 1.0 mm, excluding all other SCMs and

admixtures.
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Figure 13: Regression plot of rheological parameters vary with water to binder ratio (top), and vary with sand to binder
ratio (bottom), based on the polynomial expressions provided in Equation 7 and Equation 8. Scatters are derived from
the ensemble models.

6.2. Further Discussions
The presented results are based on a dataset collected from a decade of research in 3D printing concrete. The dataset is
a compilation of 3D printing mix designs and rheological experiments. Despite the differences in the testing systems

(e.g., testing time, experimental method, equipment condition, testing environment, and potential human errors), the
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data has been standardized into a consistent format based on expert judgment. While the noise and uncertainties
in the data should be acknowledged, they are not explicitly quantified in this study, as they fall outside its primary

focus.

Based on the dataset, we developed a predictive ensemble model, which is aimed at evaluating the rheological proper-
ties of various concrete mix designs. This model integrates two algorithms (XGBoost and NeuralNet), leveraging the

strengths of each to predict concrete properties with balanced accuracy and generalizability.

To ensure the transparency and interpretability of the model, we utilized SHAP to explain the predictions of the model.
SHAP is a robust framework for understanding the contribution of each input to the output of the model, thereby
enhancing the clarity of our predictive model. However, there are certain limitations in SHAP-based explainers. The
effectiveness and accuracy of SHAP’s explanations are highly dependent on the quality and representativeness of the
data being explained. In scenarios where the data is sparse or unrepresentative of the broader context, SHAP values
might not accurately capture the full impact of certain parameters on the rheological properties. This could lead to

incomplete or skewed interpretations of how different factors influence the predictions of the model.

In the context of the present study, certain features in our data is sparse. This causes difficulty for the SHAP explainer
when evaluating contributions of certain parameters. To mitigate this issue, we enhanced the data with sampled mix
designs by Dirichlet and uniform distributions. By doing so, we aimed to feed an enhanced and balanced dataset to the
model, which could improve the effectiveness of SHAP’s explanations. However, it is important to remain cautious
about the potential limitations of SHAP in interpreting the effects of certain parameters, especially when dealing
with complex and multifaceted rheological properties. We suggest applying and interpreting predictive models with a

critical and informed perspective.

One advantage of a predictive model is its capability to predict the behavior of untested, novel mix designs. This is
particularly valuable in concrete research, because the development of new mix designs is usually costly and time-
consuming. By learning from historical data, the model can predict the properties of mixs that have not yet been
physically created/tested. This can significantly accelerate the mix design process, enabling rapid innovation and

optimization.
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Based on our ensemble model, we demonstrated the derivation of explicit polynomial expressions. Similar to the
ensemble model, the explicit expressions can be used for predicting the rheological properties of concrete mixs. Com-
pared to the ensemble model, the explicit expressions are naturally interpretable and convenient for practical engineer-
ing applications. We showed two examples with varying mix design parameters (sand to binder ratio and different
admixtures). There could be alternative forms of equations, some of which may be very complex. However, we aim
to balance simplicity and accuracy, so we chose low-order polynomial terms to construct the equations. This approach

still shows sufficient accuracy.

This study makes contributions through both its comprehensive dataset and innovative models. The dataset advances
the field by enabling a data-driven approach to mix design complexities. Analysis of this dataset yields valuable insights
into printed concrete mix design and reveals potential research gaps. For practitioners looking to design their printed
concrete, the dataset serves as a valuable reference offering access to recorded mix designs that can guide and inform
their projects. With the models, practitioners can virtually test their designs. This would allow them to explore novel

mix designs rapidly.

It is noteworthy that our model simplifies the complex rheology of fresh concrete by averaging variations in ingredients,
environments, and testing methods, and by treating concrete as a homogeneous fluid with constant properties, ignoring
time-dependent hydration reactions. While this approach aligns with existing models, it may not capture all nuances.
Users should interpret results cautiously, especially in sensitive designs requiring precise rheological control. Future

research could benefit from larger, more detailed datasets to improve model accuracy and applicability.

7. Conclusion

Additive construction with concrete is an emerging sector that faces significant challenges in designing optimal mixes
for various projects, given the precision and unique rheological properties required. Recognizing the potential of data in
addressing these challenges, numerous studies have relied on small, isolated datasets. However, a large, comprehensive
dataset in this field has remained elusive. Inspired by the ImageNet dataset, which served as the catalyst for the current
wave of advancements in artificial intelligence, we are among the first to develop a comprehensive additive construction

concrete dataset, which is continuously expanding. This dataset aims to address the complexities of mix design through
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a data-driven approach.

1. A dataset of ~500 samples has been compiled from 3D printed concrete research of the last decade. In 3D
printing concrete, Portland cement remains the predominant binder, featuring in 231 of the surveyed mix de-
signs. Other common binders/SCMs include fly ash (147 designs), sulphoaluminate cement (121 designs), and
silica fume (115 designs). Among admixtures, Type F superplasticizer and VMA were most frequently utilized,
appearing in 293 and 189 mixes, respectively.

2. The curated dataset reveals a notable lack of case studies where sulphoaluminate cement comprises 20% to 80%
of the total binder. The potential of sulphoaluminate cement as the primary binder in combination with other
SCMs, remains underexplored.

3. The tailored ensemble model, which combines XGBoost and Neural Networks, demonstrated high performance
in predicting the rheological properties of 3D printing concrete, achieving R? values of 0.917, 0.908, and 0.959
on the test dataset. After SHAP analysis, this model is not a black box but interpretable. The relative SHAP re-
sults of various components provide references to adjust the mix proportions, helping optimizing the rheological
properties of the concrete. This enhanced transparency increases practicality and reliability.

4. The predictions of unexplored mix designs using the developed models suggest that, within specific ranges, the
addition of calcined clay in sulphoaluminate cement paste could potentially lead to a higher static yield stress.
Furthermore, the trained machine learning model has been distilled into explicit polynomial expressions, offering

engineers and practitioners a transparent, rapid, and computationally efficient tool for real-world applications.

Continuously expanding and enriching the dataset will be a key aspect of future work. The dataset should be contin-
uously updated with new concrete mix designs and experimental results. Each new entry shall be manually verified
against original sources for accuracy. The dataset should be enriched with more detailed mix parameters, experimen-
tal conditions, and expanded result metrics. This research establishes a foundation for applying data-driven models
to streamline the mix design process for additive construction concrete, ultimately contributing to more efficient and

cost-effective practices in mix design.
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