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Abstract

High-resolution characterization of surfaces is essential in a variety of quality

control tasks in modern manufacturing, such as surface quality inspection and

tooling maintenance. However, direct high-resolution surface measurements of-

ten come with high cost and/or long measurement time. Interpolation based

on spatial process models, especially kriging-type methods, has been used to

obtain denser estimations from low-resolution and cheaper measurements. Peri-

odic spatial correlations, which commonly exist in manufacturing applications,

cannot be adequately captured by conventional spatial models, thereby causing

potential performance degradation or numerical issues. To address these chal-

lenges, we propose a new procedure termed as filtered kriging (FK), which sepa-

rates the periodic component using a bandpass pre-filter, such that the residual

can be well fitted with common models. Through frequency-domain analysis,

conditions under which FK is effective are identified, and a practical bandpass

filter design strategy is devised. A new theorem is proven to show that, when

measurements are free from aliasing, perfect reconstruction guaranteed by the

Nyquist-Shannon sampling theorem is achieved by FK estimations under certain

assumptions. Finally, the effectiveness of FK is demonstrated by case studies

using real-world periodic surfaces from two-photon lithography and ultrasonic
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metal welding. FK is shown to capture spatial correlation more adequately than

conventional methods, and achieves better interpolation accuracy.

Keywords: spatial interpolation, periodic surfaces, filtering, two-photon

lithography, ultrasonic metal welding, surface metrology

1. Introduction

Fine-scale characterization of surfaces and geometric compliance is crucial for

quality control of various manufacturing processes, e.g., machining and micro-

machining [1–4], wafer manufacturing [5, 6], ultrasonic metal welding (UMW) [7,

8], two-photon lithography (TPL) [9, 10], additive manufacturing [11, 12], and5

many others [13–15]. However, high-resolution surface measurements typically

rely on expensive instruments, critically limiting their accessibility on the factory

floor [16]. Their time-consuming nature significantly delays decision-making in

production, leading to undesirable outcomes like deteriorated quality of products

and machine maintenance [16, 17].10

Spatial interpolation, which produces estimations at unmeasured locations

based on observed neighboring ones, can generate a denser dataset from coarser

and less expensive measurements [4, 16]. Conventional non-statistical methods,

such as nearest neighbor, linear and cubic interpolation [18, 19], provide limited

precision as they do not adapt to specific data or problem characteristics. In15

the field of spatial statistics [20], various methods based on stochastic processes

have been developed to leverage data-specific statistical correlations for spa-

tial interpolation. Among these, kriging-type methods are predominantly used

due to their simplicity and generally satisfactory performance [16]. They are

also known as Gaussian process regression in statistical and machine learning20

communities [21], since they are equivalent to modeling and inference using a

Gaussian process. Such processes capture statistical correlation through covari-

ance functions, which need to be properly modeled with measurement data.

When applying Gaussian process regression, it is typically required that the

covariance model is stationary and either isotropic or, at most, geometrically25
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anisotropic [20].

Periodic spatial patterns exist in many disciplines, such as materials sci-

ence [22], ecology [23], and remote sensing [24]. Periodicity is also common in

manufactured surfaces. Often, periodic textures are inadvertent byproducts of

manufacturing processes such as machining [3, 25–27], additive manufacturing30

[11, 28], and woven surface fabrication [29]. Additionally, repetitive structures

or patterns can be manufactured over surfaces using techniques including ma-

chining [30], micro-/nano-machining [31–33], additive manufacturing methods

such as TPL [9, 10, 34], molding [35, 36], and various laser surface modification

technologies [35, 37–42]. Such structural surfaces are frequently engineered to35

fulfill specific functions [40]. For example, optical elements such as blazed grat-

ings [32] and micro-lens arrays [33] are designed for light manipulation. Other

functional surfaces include laser-processed superhydrophobic [41] and antireflec-

tive/superwicking surfaces [43], as well as textured tool surfaces for UMW [44],

cutting [42], and molding [35].40

However, the assumption of isotropic correlations can be hardly satisfied

when modeling periodic surfaces. While maintaining the stationarity assump-

tion, the covariance function is expected to exhibit a discernible periodic pattern

due to the inherent periodicity of the surface. Such a pattern is incompati-

ble with isotropy for any nontrivial case in a two-dimensional space, making45

isotropic models oversimplified and highly inaccurate for capturing such com-

plexities. Maculotti et al. [28] provided an illustrative example. It is possible to

model such correlation structures by adopting flexible nonparametric methods

and/or combining proper covariance functions [45] to account for both period-

icity and the induced anisotropy. Nevertheless, such an uncommon model must50

be carefully crafted, and is often more computationally expensive to fit because

of a much higher degree of freedom.

Furthermore, numerical issues may exist with periodic correlation even if it

is properly modeled. On a periodic surface, the value at a location may correlate

strongly with some distant observations. It is possible that strong long-range55

correlations result in dense and potentially ill-conditioned matrices at the stage
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Figure 1: Overview of the FK framework.

of inference, thus leading to poor scalability and numerical singularities [46].

One approach to circumvent these complications is to separate the difficult-

to-model periodic component using an alternative method, and the residual

with simpler structure becomes easier to treat. Inspired by band-limited filters60

in signal processing, we propose to estimate the periodic part with a spatial

version of such filters. Then, the residual can be captured more adequately by

conventional isotropic models with significantly reduced correlation range, and

interpolation can be performed effectively using simple kriging. We name this

procedure as filtered kriging (FK). Figure 1 illustrates the FK framework. FK65

bypasses the dilemma of having to address a complex and atypical model prone

to numerical issues, or suffering from lack of fit and compromised interpolation

accuracy. Thus, the FK strategy effectively enhances kriging-type methods on

surfaces with periodic patterns. Periodic surfaces from two real-world manufac-

turing applications including TPL and UMW are used to illustrate the proposed70

FK method and demonstrate its effectiveness.

The remainder of this paper is organized as follows. Section 2 provides

preliminaries and a detailed description of the FK procedure. In Section 3, the

formulation of FK procedures is further explained and analyzed using frequency

domain techniques and insights from signal processing. These analyses lead to75

conditions under which FK to be effective. Subsequently, a practical bandpass

filter design strategy for periodic surfaces is discussed in Section 4. Section 5
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presents two case studies. Finally, Section 6 concludes the paper.

2. The FK Method

2.1. Preliminaries and notations80

Let the value (e.g., height) of interest be a function h over a spatial region

D ⊂ Rd (d = 2 for surface problems). The function is measured at N locations

x1,x2, . . . ,xN ∈ D, which are aggregated into an N ×d matrix X with the j-th

row being x>j . Throughout this paper, boldface lowercase letters are used to

represent vectors of exactly d dimensions. Measurements are organized into a85

column vector H = h(X) = (h1, h2, . . . , hN )>, where hj = h(xj). Note that

the measurement error is ignored for simplicity, and will be treated in Section

?? of the Supplementary Information (SI). An interpolation method I yields a

function I(H) = hInt : D → R given the measurements [16]. In other words, for

x0 ∈ D, it produces an estimation hInt(x0) of h(x0) given H and X.90

Spatial statistical methods model the function as a realization of a contin-

uously indexed spatial stochastic process h = {h(x) : x ∈ D}, and statistical

inference methods are used to produce the estimation. Since this work focuses

on kriging-type methods, we assume h ∼ GP (0, c) is a stationary zero-mean

Gaussian process on D ⊂ Rd with covariance function c(x,x′) = c(x − x′).95

Then, for interpolation simple kriging yields the best linear unbiased prediction

ĥ(x0) of h(x0) given H:

ĥ(x0) = c(x0,X)C−1H, (1)

where c(x0,X) denotes the 1×N matrix of the covariances evaluated at all pairs

of points in x0 and X, and similarly for C = c(X,X). By relaxing the assump-

tion about the mean function of a Gaussian process, major kriging variants such100

as ordinary kriging and kriging with external drift (KED) can be obtained.

A function or signal is composed of trigonometric components with different

frequencies in the view of Fourier analysis, and filters can be used to change

the amplitudes of these frequency components. A bandpass filter preserves

components within a certain frequency range and attenuates those outside that105
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range. Thus, it can be used to extract components of certain periods from a

function. Similar procedures can be applied to stochastic processes.

The following notations are used for Fourier analysis of deterministic func-

tions. The spectrum f̃(ξ) of a function f(x) on Rd is defined as

f̃(ξ) =

∫
e−2πi〈ξ,x〉f(x)dx. (2)

Under mild assumptions we have110

f(x) =

∫
e2πi〈x,ξ〉f̃(ξ)dξ. (3)

A function f on Rd is said to be periodic, if there exists d non-collinear

vectors p1,p2, . . . ,pd, such that

f(x) = f(x− p1) = f(x− p2) = · · · = f(x− pd). (4)

The matrix P = (p1,p2, . . . ,pd) is referred to as the periodicity matrix [47].

2.2. Description of the FK procedure

The FK procedure contains the following four steps:115

Step 1 Preparations. First, the surface h is measured at locations X to ob-

tain spatial data H = h(X). Based on sampled data and/or existing process

knowledge, the periodicity matrix P of the pattern is determined. Then,

a linear bandpass filter F is designed to center its pass-bands approximately

around the integer multiples of frequencies in Q = P−1. The residual h−F (h)120

after filtering (if computable) is expected to be scarcely periodic. A straight-

forward method to specify a discrete convolutional filter will be discussed in

Section 4.

Step 2 Pre-filtering. Since F (h) is generally not computable with only H =

h(X), an additional pre-interpolation step is introduced before applying the125

filter. The samples H = h(X) are first interpolated with a simple interpo-

lation method I, e.g., linear or cubic interpolation; the result is a function

hInt = I(H) : D → R. Since the value of hInt can be evaluated at any location
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in the continuous interpolation region D, hF = F (hInt) becomes computable

in D. It is expected that the periodic component could be well-preserved by130

the interpolation method selected, i.e., hF = F (hInt) ≈ F (h).

Step 3 Kriging the residual. The residual of pre-filtering is computed over

the sampled locations: Hres = H − hF (X). Then, a stationary process hr

is used to model the residual, i.e., let observations of hr be hr(X) = Hres.

In this work, we follow the commonly used approach for model selection:135

fitting a parametric covariance function model via weighted least squares to

the empirical covariance computed from Hres. Alternative approaches, e.g.,

likelihood-based methods [20], could also be adopted to yield a valid para-

metric covariance model. An estimation ĥr of hr is obtained by performing

kriging with the fitted model and data Hres.140

Step 4 Obtaining the final estimation. ĥ = hF + ĥr is used as the final

estimation of h.

The FK method can be extended to account for measurement noise. Cor-

responding FK procedures and conditions that control the estimation error are

presented in Section ?? of the SI. Symbols and notations that are frequently145

used are summarized in Table 1.

3. Theoretical Analysis of the FK Procedure

In this section, we first explain the formulation of FK and establish an an-

alytical framework. Then, quantitative and qualitative assessments of FK are

conducted in the case of uniform sampling over an infinite grid, where conditions150

allow straightforward analysis of sampling, interpolation and filtering in the fre-

quency domain. These analyses identify conditions under which FK is effective

and provide guidance for filter design. Finally, we introduce a new theorem that

establishes the equivalence between kriging and cardinal series interpolation for

band-limited processes, both method yielding perfect estimations in the mean155

square sense. With this theorem, it is proven that FK achieves identical optimal

results under appropriate conditions.
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Table 1: List of frequently used symbols and notations

Symbol / Notation Description
x, ξ, l . . . d× 1 column vectors (boldface lowercase letters)

D d-dimensional spatial region of interest in Rd

h Quantity (e.g., height) over region D to be interpolated
x1,x2, . . . ,xN Measured locations in D

X N × d matrix of measured locations X = (x1,x2, . . . ,xN )>

H = h(X) N × 1 vector of measurements H = (h(x1), h(x2), . . . , h(xN ))>

P Periodicity matrix defined by Eq. (4)
hInt = I(H) Result of pre-interpolating samples H = h(X) with I
hF = F (hInt) Result of filtering hInt with the filter F
hres = h− hF Residual after pre-filtering

hr Stationary process that models the residual hres
ĥ, ĥr Estimations of h, hr
c, cr Covariance functions of stochastic processes

kInt, kF , k Convolution kernels corresponding to I, F and F ◦ I
f̃(ξ), k̃(ξ), . . . Fourier transform of function f(x), k(x), etc.

3.1. Formulation of FK and an analytical framework

As described in Section 1, challenging periodic components in h can signifi-

cantly impact the performance of kriging. If h is a known deterministic function,160

it is well-established that such a component can be isolated using a convolutional

bandpass filter F with kernel k, and this filter can be readily designed in the

frequency domain. By the convolutional theorem in classical Fourier analysis,

the filtered result F (h) = h ∗ k transforms to

F̃ (h) = h̃ ∗ k = h̃ · k̃. (5)

To isolate certain components, such as those related to strong periodicity, sup-165

ported on a set A ⊂ Rd in the frequency domain, it suffices to designate A as

the passband of the filter F . Specifically, set k̃(ξ) ≈ 1 for ξ ∈ A and k̃(ξ) ≈ 0

elsewhere. Consequently, the corresponding components within A can be effec-

tively removed in the residual h − F (h), with h̃ − F̃ (h) = h̃ · (1 − k̃) ≈ 0 on

A.170
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For stochastic processes, Fourier analysis can be performed in a similar way

as the deterministic case. Following the spectral representation theorem [48],

a mean square continuous stationary Gaussian process h ∼ GP (0, c) can be

represented as

h(x) =

∫
e2πi〈x,ξ〉R(dξ), (6)

where R is a random measure [48] called the spectral process corresponding to175

h. It is often assumed that R can be written as R(dξ) = ρ(ξ)Z(dξ), where

ρ(ξ) is a square-integrable function, and Z is a Gaussian white noise based on

Lebesgue measure in Rd. The term ρ (or R(dξ) = ρ(ξ)Z(dξ)) resembles the

behavior of h̃ (or h̃(ξ)dξ) in the deterministic case. The covariance function is

c(x,x′) =

∫
e2πi〈x−x

′,ξ〉E[|R(dξ)|2] =
∫
e2πi〈x−x

′,ξ〉|ρ(ξ)|2dξ, (7)

where |ρ|2 is called the spectral density of h.180

With preceding definitions, convolutional filtering operates on a stochastic

process h in a similar manner

(F (h))(x) = (h̃ ∗ k)(x) =
∫
e2πi〈x−x

′,ξ〉ρ(ξ)Z(dξ) k(x′)dx′

=

∫
e2πi〈x,ξ〉 (ρ · k̃)(ξ)Z(dξ),

(8)

and isolates components with strong periodic correlation given a proper band-

pass filter. The residual h− F (h) remains to be a stationary Gaussian process,

but with periodic correlations eliminated, making it significantly easier to model185

than h prior to filtering.

When the process h is only partially observed over a discrete set of sam-

ple locations X, the aforementioned convolutional filter generally becomes in-

applicable. To address this case, the Step 2 of FK integrates the filter with

an additional pre-interpolation step to approximate the effect of the original190

filter F and adapt to discrete measurements H = h(X). Specifically, a sub-

stitute hInt = I(H) is constructed for h with the pre-interpolation I. Then,

hF = F (hInt) is computed as a surrogate for F (h). Given a properly designed

filter F in Step 1 of FK, the residual hres = h− hF ≈ h−F (h) can be properly

modeled and estimated from hres(X) using kriging in Step 3.195
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Up to now, the FK procedure has been formulated through an attempt to

approximate bandpass filtering of a stationary stochastic process. From this

perspective, when selecting the pre-interpolation method, it is desired that hInt

approximates h accurately especially within the filter’s passbands. FK makes

improvements based on the pre-interpolation result by replacing its components200

outside the passbands with more accurate kriging estimations. This approach

also implies that the filter should have as narrow a bandwidth as possible,

provided it completely isolates the difficult-to-model components, to minimize

the passage of errors from pre-interpolation into the final result. These intuitive

conclusions will be further substantiated by analyses in subsequent sections.205

Although above formulation of FK does not rely on a specific sampling strat-

egy or pre-interpolation method, for the purpose of quantitative characteriza-

tion, sampling over a uniform, infinite grid and linear pre-interpolation with

respect to h(X) are assumed throughout the subsequent analysis. Without loss

of generality, samples are further assumed to be taken over the infinite integer210

grid Zd, which can always be achieved through some linear transformation. In-

finite grid assumption leads to neater derivation and conclusions, which might

be regarded as the increasing-domain asymptotics for samples in a finite region

(as discussed in Section ?? of the SI). Some empirical comments are also made

in Section ?? of the SI for general sampling and pre-interpolation methods.215

3.2. A quantitative analysis of FK procedures

Under the analytical framework outlined in Section 3.1, FK procedures are

analyzed to derive an upper bound for the discrepancy between FK and the

theoretically optimal Gaussian process regression. This analysis reveals the

condition under which FK approaches near-optimal performance.220

First, the procedure of uniform sampling is formulated as the product with

a Dirac comb:

hs(x) = h(x) ·
∑
n∈Zd

δ(x− n) (9)

After sampling, interpolating the data h(X) linearly is equivalent to convolution
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with an interpolation kernel kInt [18]:

hInt = hs ∗ kInt. (10)

Filtering the interpolated data hInt is also equivalent to a convolution with225

kernel kF . Then, it follows from the associativity of convolution that

hF = hInt ∗ kF = hs ∗ (kInt ∗ kF ) = hs ∗ k, (11)

where k = kInt ∗ kF , whose spectrum is

k̃(ξ) = k̃Int(ξ) · k̃F (ξ). (12)

As shown in Section ?? of the SI, hF could be written as

hF (x) =

∫
e2πi〈x,ξ〉K̃(ξ;x)R(dξ), (13)

where K̃(ξ;x) is defined as

K̃(ξ;x) =
∑
l∈Zd

e2πi〈x,l〉k̃(ξ + l). (14)

It is straightforward to verify that, although hres = h− hF is not stationary230

by itself, it coincides with a stationary process hr over the sampling integer grid

Zd, which is modeled and estimated in Step 3 of FK:

hr(x) =

∫
e2πi〈x,ξ〉(1− K̃(ξ;0))R(dξ). (15)

Because hr is stationary, its covariance cr over the grid can be computed

from hr|Zd = hres|Zd = Hres using Eq. (16). The estimator is unbiased, and the

equality holds in the mean square sense whenever cr(l) → 0 as |l| → ∞ (see235

Section ?? of the SI for relevant conditions and proof).

cr(m,n) = E[hr(m)hr(n)]

= lim
M→∞

1

|2M + 1|d
M∑

l=−M

hr(l+m)hr(l+ n),
(16)

where each entry of l = (l(1), . . . , l(d)) in the sum ranges from −M to M . The

covariance function cr(x) is then estimated from its values over the grid.
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The total error of FK is

h− (hF + ĥr)

= (h− hF − hr) + (hr − ĥr)

= r1 + r2,

(17)

where r1 = hres − hr, and r2 = hr − ĥr.240

The first part of the error r1 is the difference between hres and its stationary

version hr. From Eq. (13) and (15),

r1(x) =

∫
e2πi〈x,ξ〉

(
K̃(ξ, 0)− K̃(ξ,x)

)
R(dξ), (18)

whose variance is bounded by (see Section ?? of SI for details)

E[|r1(x)|2] ≤ 4

∫
|ρ(ξ)|2

∑
|l|≥1

|k̃(ξ + l)|

2

dξ. (19)

Convergence of
∑
|l|≥1 |k̃(ξ + l)| could be guaranteed by sufficient smoothness

property of k (usually essentially of kInt). Comparing Eq. (19), (13) and (8),245

it can be seen that r1 is essentially a type of aliasing error that persists or is

introduced during the process of pre-interpolation and filtering, from a signal

processing perspective. The integral upper bound above could then be made

small given the following condition.

Condition 1: The overlap between |ρ|2 and the sum K̃1(ξ) =
∑
|l|≥1 |k̃(ξ+ l)|250

is small.

For the second part of the error r2 = hr − ĥr, if the covariance function

cr is known, then the error variance E[r22] is minimized, because the simple

kriging estimator ĥr is already the minimum mean square error estimation of255

hr. The estimator ĥr could deviate from the optimum only because of error

in the estimated covariance function. Under conditions stated in Section ??

of the SI, values of cr over the integer grid could be estimated correctly with

Eq. (16), and off-grid values can be further obtained through interpolation.

The estimation error may be controlled with extra conditions like Lipschitz260
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continuity, and could be eliminated if a stronger band-limitation assumption is

imposed (see Section 3.4).

3.3. Effect of bandpass filtering

In this section, we perform a qualitative analysis of the bandpass filtering

procedure in FK, explaining how it enhances conventional covariance models265

and deriving criteria for filter design accordingly. To illustrate this, consider the

typical decomposition of the process h into a global trend m and local spatial

variation η:

h(x) = m(x) + η(x), (20)

where m and η are independent zero-mean stationary Gaussian processes. For

surfaces with periodic patterns, the term m is supposed to account for the270

strong periodic trend, while in general, we may assume η can be readily fitted

by conventional models (e.g., isotropic ones adopted in the case studies of this

paper).

To characterize m and η in the frequency domain, let their spectral process

be p(ξ)V (dξ) and q(ξ)W (dξ), respectively, where p and q are square-integrable275

functions, and V andW are independent Gaussian white noise in Rd. Becausem

captures the strong periodicity, its spectral density |p|2 is concentrated around

a few integer linear combinations of columns in P−1. In contrast, q tends to

distribute more uniformly across the frequency domain, with η representing

smaller-scale variation. Both p and q exhibit rapid decay when the process h is280

adequately sampled.

With these notations, the filtered hF is composed of two parts:

hF =

(m+ η) ·
∑
n∈Zd

δ(· − n)

 ∗ k = mF + ηF . (21)

Similar to Eq. (13), mF (x) =
∫
e2πi〈·,ξ〉p(ξ)K̃(ξ;x)V (dξ), which can be

further decomposed into

mF (x) =

∫
e2πi〈x,ξ〉p(ξ)k̃(ξ)V (dξ) +

∫
e2πi〈x,ξ〉p(ξ)K̃r(ξ;x)V (dξ), (22)
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where285

K̃r(ξ;x) = K̃(ξ;x)− k̃(ξ) =
∑

l∈Zd,l6=0

e2πi〈x,l〉k̃(ξ + l). (23)

It is evident that first term of Eq. (22) corresponds to the “pure” filtering effect

as seen in Eq. (8), while the latter term indicates how much pre-filtering is

affected by the aliasing effect due to sampling. We may expect that pk̃ ≈ p,

which suggests that the first term closely approximates m, provided the fil-

ter’s passbands are designed to cover frequencies where p’s energy concentrates.290

Additionally, if k̃ and p decay rapidly, the overlap between p and K̃r will be

minimal, indicating a low variance in the aliasing term.

The second part

ηF (x) =

∫
e2πi〈x,ξ〉q(ξ)K̃(ξ;x)W (dξ) (24)

will be minimal if the overlap between |q|2 and K̃ is small. Consequently, when

the total passband of k̃ is narrow, ηF becomes negligible, given the existing295

assumptions about q.

In summary, the analysis above shows that FK approximates the typical

decomposition of spatial processes into a global trend and a local variation:

hF = mF + ηF ≈ m, when the filter is intentionally designed to pass the

strong periodic global trend m while suppressing local variation η, and when300

the process is adequately sampled. In other words, bandpass pre-filtering could

separate out the periodic m, such that the residual hres = (m+η)−hF ≈ η can

be modeled more easily using conventional methods. As a result, the following

design criterion is established for the filter corresponding to k̃:

Condition 2: m−mF is sufficiently suppressed, while the filter has a narrow305

total bandwidth.

3.4. Kriging for band-limited processes and Shannon sampling theorem

From analyses in the previous two sections, it is evident that FK is influenced

by aliasing error. In this section, through a novel theorem, we demonstrate that310

when a band-limited process is sampled without aliasing, FK is also free from
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aliasing error and consequently yields optimal estimations under appropriate

conditions.

According to the classical Nyquist-Shannon sampling theorem, a band-limited

deterministic function can be fully recovered from its samples over the integer315

grid using the cardinal series [47]. Here a deterministic function y is said to

be band-limited, if its Fourier transform ỹ satisfies ỹ = ỹ · rect, where the rect

function in d-dimensional space is defined from standard 1-D rectangular func-

tion as rect(ξ) :=
∏d
j=1 rect(ξ

(j)) for ξ = (ξ(1), . . . , ξ(d)). Similar definitions and

theorem hold for stationary stochastic processes, as shown in [47, Sec. 3.5]:320

Lemma 1. A zero-mean wide sense stationary process y(x) is said to be band-
limited, if it has spectral density s.t.

c̃(ξ) = c̃(ξ)rect(ξ), (25)

i.e., its covariance function c is band-limited.
The cardinal series ŷCard for y converges in the mean square sense. Specifi-

cally, define325

ŷCard(x) =
∑
n∈Z

y(n)sinc(x− n), (26)

where

sinc(x) :=
d∏
j=1

sinc(x(j)) =
d∏
j=1

sin(πx(j))

πx(j)
, (27)

for x = (x(1), . . . , x(d)).
Then ŷCard(x) equals to y(x) in the mean square sense:

E
[
(ŷCard(x)− y(x))2

]
= 0. (28)

In the Gaussian process case where a spectral density exists, h is band-

limited if |ρ(ξ)|2 = |ρ(ξ)|2 · rect(ξ) (or equivalently, R(dξ) = R(dξ) · rect(ξ)).330

Practically, the band-limitation assumption has the following implications.

• Samples on the integer grid are sufficient for capturing all surface varia-

tions, i.e., sampling is free from aliasing.

• Since almost every sample path of a band-limited process is smooth, i.e.,

infinitely differentiable [49], it implies that the surface is smooth and mea-335

surement noise is ignored.
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In the ideal case where h is a band-limited process, we are able to obtain a

perfect estimation in the mean square sense from samples according to Lemma

1. Moreover, the simple kriging estimator is also perfect in this case, as stated

in the following new theorem.340

Theorem 1. Given observations of a band-limited process y(x) over a finite
regular grid that is sufficiently dense for sampling without aliasing, the best
linear unbiased predictor converges to corresponding cardinal series in the mean
square sense, as the size of the grid tends to infinity, as long as the covariance
function c is strictly positive definite (such that the best linear unbiased predictor345

exists).
Without loss of generality, let X = XN contain all integer points in [−N,N ]d,

Y = YN = y(XN ), and let the spectral support of y be contained in [−1/2, 1/2]d.
In this case, the best linear unbiased predictor ŷN (x) = c(x,X)c(X,X)−1Y
tends to y(x) in the mean square sense as N →∞.350

Particularly, the best linear unbiased predictor ŷN and the partial sum of
the cardinal series ŷCard yields the same limit y when the process covariance is
band-limited and strictly positive definite.

Proof. See Section ?? of the SI for proof and relevant remarks.

Perfect reconstruction can be achieved by the FK procedure in this ideal355

case, given some additional conditions, and specifying the pre-filtering to be

band-limited: k̃(ξ) = k̃(ξ) · rect(ξ). See discussions in Section ?? of the SI for

details.

4. Design and Implementation of the FK Pre-filter

4.1. General requirements for FK filters360

Following the analysis in Section 3.2, Condition 1 should be approached

through k. Additionally, Condition 2 is required to ensure the residual after

filtering can be more readily modeled with common models.

Following Eq. (13) and (21),

(m−mF )(x) =

∫
e2πi〈x,ξ〉p(ξ)

(
(1− k̃(ξ))− K̃r(ξ;x)

)
V (dξ). (29)

The term pK̃r is already suppressed if Condition 1 is satisfied. Thus, Condi-365

tion 2 could be rephrased as
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Condition 2’: p(1− k̃) is sufficiently suppressed, i.e., filtering passes the peri-

odic component thoroughly. Meanwhile, k̃ has a narrow total bandwidth.

Since most interpolation methods resemble the behavior of some low-pass filter,

we may assume k̃Int ≈ rect(·), and Conditions 1,2’ for k̃ (≈ rect · k̃F ) can be370

further decoupled for simplification into:

(a) The pre-interpolation (kInt) has a passband which covers that of m, and

its frequency response decays rapidly outside this passband.

(b) The filter (kF ) maintains approximately unit gain within its passbands,

which are narrow yet cover regions where m’s energy is concentrated.375

4.2. Design of a discrete bandpass filter

In practice, interpolation values are usually inquired over a regular grid

denser than measurements. In such cases, it is convenient to use convolutional

discrete filters.

Let the periodicity matrix be P = (p1, . . . ,pd). We may use a filter of the380

form

kF (x) =
∑

m∈Zd

wmδ(x−P ·m), (30)

where only finite terms of wm are nonzero. It simplifies design and analysis to

use wm = w(P ·m) for some compactly supported function w. In this case,

kF (x) = w(x) ·

 ∑
m∈Zd

δ(x−P ·m)

 . (31)

Considering that the Fourier transform of
∑

m∈Zd δ(x−P ·m) is [47]

| detQ|
∑

m∈Zd

δ(ν −Q ·m), (32)

where Q = P−1, the frequency response of such filter k̃F is385

k̃F = w̃ ∗ | detQ|
∑

m∈Zd

δ(· −Q ·m) = | detQ|
∑

m∈Zd

w̃(· −Q ·m). (33)

Note that k̃F is periodic. By defining w̃ as a lowpass filter with a narrow

passband, a bandpass filter is obtained, with same passbands of w̃ centered at

integer multiples of fundamental frequencies Q.
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To ensure the bandpass filter k̃F achieves unit gain at QZd = {Q ·m |m ∈

Zd}, according to Eq. (33), the amplitude of w may be adjusted so that w̃(0) =390

| detP| if w̃ decays rapidly. Alternatively, exact unit gain can be achieved by

setting ∑
m∈Zd

wm = 1. (34)

Since the passband of w̃ is replicated at intervals of Q in k̃F , it is necessary

to ensure this passband is containd within the frame spanned by columns of Q

and has significantly smaller volume compared with | detQ|. Practically, this395

often requires w to have a spatial bandwidth extending over more than three

periods in each direction. There is a trade-off in determining the width of w: a

wider w yields narrower passbands, which makes it less prone to aliasing error,

but it also increases the risk of not completely isolating the periodic trend.

Usually, w decays monotonically as the distance increases. When w assigns400

equal weights, FK resembles the “seasonal adjustment” technique for time series

analysis [50].

Filters may be combined to form a new filter with passband being the union

of individual ones. For example, the passbands of two filters F1 and F2 can be

merged by taking405

F = F1 + F2 ◦ (id− F1) = F1 + F2 − F2 ◦ F1, (35)

where id is the identity mapping and ◦ represents the composition of mappings.

4.3. Practical considerations for implementation

We make the following two remarks regarding the implementation of the

filter.

First, computational efficiency can be improved for filtering by adaptation410

to the interpolation grid, which reduces the discrete filter to a conventional

digital filter. Let the pre-interpolation be conducted over the grid L0Zd, i.e.,

hInt(L0 · n) is obtained for n ∈ Zd in the pre-interpolation step. Applying

18



previous bandpass filter to hInt results in

hF (x) = (hInt ∗ kF )(x) =
∑

m∈Zd

wm · hInt(x−P ·m). (36)

If further L−10 P is an integer matrix, for x = L0 · n on the grid, then415

hF (L0 · n) =
∑

m∈Zd

wm · hInt(L0 · (n− L−10 P ·m)), (37)

which only involves on-grid values in the computation, making the number of

pre-interpolation inquiries independent of the filter size. When L−10 P is not

integer, the rounded value [L−10 P · m] may be used as an approximation to

avoid off-grid evaluations.

Second, in practice measurements can only be made over a finite domain.420

Consequently, filter evaluation always has to deal with missing values as it ap-

proaches to boundaries. One common method to address this issue is padding.

Alternatively, Eq. (34) suggests a simple way to modify the filter weights if

there are terms unavailable (e.g., exceeding the boundaries) for computing the

full filter: rescaling remaining weights for available terms such that they sum425

up to be one. For the aforementioned bandpass filter design, this adjustment

strategy keeps the peaks in passbands unchanged. See Section ?? of the SI for

details.

5. Case Studies

In this section, we demonstrate the effectiveness of FK with two case studies430

that examine TPL-manufactured hemisphere structures [9, 10] and UMW tool

surfaces with pyramid-shaped knurls [17, 45], respectively. Both case studies

involve periodic surfaces, for which common ordinary kriging with isotropic

covariance is demonstrated inapplicable.

High-resolution surface data in the form of regular grid are collected with435

a 3D microscope in both case studies. Information about the two datasets are

summarized in Table 2. Then, downsampling is used to simulate data obtained

from a measurement system of lower resolution. The true data serves as the
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Table 2: Summary of datasets for case studies.

Case study No. 1 2

Surface name TPL surfaces [9, 10] UMW tool surfaces [17, 45]
Descriptions Surface manufactured by a

Nanoscribe Photonic Profes-
sional GT 3D printer

Anvil tool surfaces from a
Brandson UMW machine

Periodic pattern 5× 5 hemisphere structures Repetitive pyramid-shaped
knurls

Approximate periodicity
matrix

(
7.5µm 0

0 7.5µm

)
1.436mm ·

(
1/2 1/2

−1/2 1/2

)
Measurement instrument Keyence VK-X1000 confocal

laser microscope
Keyence VK-9700 confocal
laser microscope

Measurement resolution 94.8nm/pixel 22.032µm/pixel
Number of surfaces in the
dataset

5 6

Size of measurement data 406× 400 163× 900

ground truth and root-mean-squared errors (RMSEs) are computed to evaluate

the performance of candidate interpolation methods. Specifically, the data is440

uniformly downsampled with a step of three in both vertical and horizontal

directions. Thus, one out of nine locations in each 3 × 3 grid is kept as a

measured point, which still form a regular grid. The same ground truth data is

sampled nine times with different starting locations to evaluate how much the

result could be affected by uncertainties in the sampling step.445

FK is compared with three state-of-the-art interpolation techniques: (1) bi-

linear spline, (2) bicubic spline, and (3) KED. KED is a common yet sufficiently

general variant of kriging. It models the large-scale trend (m) as a linear com-

bination of multiple basis functions, and the rest variation (η) as a zero-mean

Gaussian process. As special cases, KED is termed ordinary or simple kriging,450

when the unknown mean is assumed to be constant or zero. Although ordinary

kriging was performed for the same dataset in [45], and is more standard than

the KED adopted here, it is not included in the comparison for reasons to be

demonstrated in Section 5.1.1.
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In this paper, a set of 25 trigonometric functions are employed as the basis455

for KED to model a periodic trend m, namely,

{f(x) =
2∏
i=1

fi(2πt
(i))|f1, f2 ∈ {1, cos(t), sin(t), cos(2t), sin(2t)}}, (38)

where t(i) is the i-th term of t = P−1 ·x, and P is the periodicity matrix of the

surface. It should be noted that including as many as 25 trigonometric basis

functions goes beyond standard practice. In most practices of KED, only low-

order polynomials are used. Trigonometric kriging [51], another variant of KED,460

employs three terms for periodic 1-D signals. When applied to the spatial case,

the regular trigonometric kriging includes 3× 3 = 9 terms. However, compared

to the 25-term version, it demonstrates significantly inferior performance as it

lacks the ability to capture periodicity of higher frequencies. Theoretically, the

computational complexity of the kriging estimator for FK is lower than that of465

KED. This is because KED involves solving a linear system, the computational

time of which scales linearly with the number of basis functions. In the two case

studies presented, this theoretical advantage is not significant due to numeri-

cal implementations; generally FK is only slightly faster than KED in solving

corresponding linear systems.470

In all situations standard isotropic covariance models are used. To make it

sufficiently flexible for both FK and KED, we use the following additive model

with five terms:

c(x,x′) = c(‖x− x′‖) =
5∑
j=1

λjcj(‖x− x′‖/lj), (39)

where

c1(s) = exp(−s),

c2(s) = exp(−s2),

c3(s) = cMatern,ν=3/2(s) = (1 +
√
3s) exp(−

√
3s),

c4(s) = cMatern,ν=5/2(s) = (1 +
√
5s+

5

3
s2) exp(−

√
5s),

c5(s) = J0(2πs).
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J0 in c5(s) is the ordinary Bessel function of the first kind of order 0, which

can capture possible non-monotonic behavior as shown in [45]. We also assume475

no nuggets, because the surfaces are all continuous, and the low measurement

noise may not be distinguished with small-scale variation.

5.1. Case study 1: TPL surface

TPL is a manufacturing technique for fabrication of three-dimensional com-

plex micro/nanostructures with sub-nanometer resolution. In this study, we use480

measurements of five surfaces, on which there are 5 × 5 hemisphere structures

manufactured with a Nanoscribe Photonic Professional GT 3D Printer, as shown

in Figure 2. Each high-resolution measurement produces a 406 × 400 surface

(94.8 nm between adjacent pixels). The distance between adjacent hemisphere

centers is 7.5 µm by design with possible errors when manufactured.

Figure 2: Hemisphere structures manufactured by TPL.

485

5.1.1. Difficulties with ordinary kriging

We first show why ordinary kriging is not applicable in this case. If a constant

mean is assumed, the empirical covariance for spatial lags within 12.3 µm in each

direction is shown in Figure 3(a). It is clear that the actual covariance in 2D is

far from being isotropic, which explains why ordinary kriging is not applicable490

with isotropic covariance models. One may ignore these issues, map the graph

of a 2-D function along the radial direction with (x, y, f) 7→ (r =
√
x2 + y2, f),

22



Figure 3: Empirical covariance of a TPL manufactured sample for (a) ordinary kriging, (c)
KED, and (e) bicubic-FK. Empirical correlation for (b) ordinary kriging, (d) KED and (f)
bicubic-FK when mapped along the radial direction, averaged and fitted.
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and then take the weighted average for (nearly) equidistant points and fit an

isotropic covariance model to it, as shown in Figure 3(b). Ordinary kriging

could be performed with an isotropic model fitted this way; however, the result495

may depend heavily on the size of the kriging neighborhood, for which any large

radius can cause both bad performance and numerical instability. It is also seen

that the 2D empirical covariance is almost periodic with little decay, implying

undesirable numerical difficulties with the inference because of multicollinearity,

even if the covariance is accurately modeled at the cost of greater complexity.500

Compared with ordinary kriging, the isotropy issue is largely eased for KED,

as shown by its empirical covariance in Figure 3(c,d). Although the isotropy

assumption is still violated by a residual periodic pattern, KED yields reasonable

estimations with the isotropic model (39).

5.1.2. Settings for FK505

To apply FK, we follow the procedure described in Sections 2 and 4. First, a

filter is designed to suppress the periodic component. The periodicity matrix of

the surface is P = diag{T0, T0}, where T0 ≈ 7.5 µm. The filter weights are pro-

duced using Eq. (30) with wm = w1,m(1)w2,m(2) , where m ∈ {−2,−1, . . . , 2}2,

wi,m = r exp(−2(m/2)2) for i = 1, 2, and r normalizes the sum of wm’s to be510

one. The periodicity matrix of the interpolation grid is L0 = diag{l0, l0}, where

l0 = 94.8 nm. To avoid off-grid computation, let T ′0 = 79l0 = 7.49µm(≈ T0),

and P′ = diag{T ′0, T ′0} is adopted to evaluate Eq. (37).

Then, bilinear and bicubic interpolation are used in the second step to pro-

duce hInt. With the designed filter applied to hInt, the periodic component in515

the residual Hres is largely reduced (see Figure 4). The empirical covariance

of the residual is plotted in the Figure 3(e,f), which suggest that the correla-

tion becomes mostly isotropic, and could be fitted more precisely with common

isotropic models. The weight function in [52] is used in weighted least squares

for covariance fitting.520
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Figure 4: The residual Yres after bicubic pre-interpolation and bandpass filtering.

5.1.3. Performance comparison

RMSE comparison is reported in Table 3 and Figure 5. It is shown that FK

achieves the lowest prediction errors compared with KED, bicubic or bilinear

interpolation alone for all samples. In most cases, FK works better with bicubic

pre-interpolation than with bilinear.

Table 3: RMSE (nm) of the five interpolation methods for TPL data. The best results are
marked boldface for each sample number and the average.

Sample No. bicubic-FK bilinear-FK KED bicubic linear
1 33.04±0.33 33.08±0.29 34.22±0.36 34.12±0.27 34.61±0.39
2 33.24±0.23 33.34±0.24 34.15±0.15 34.38±0.17 34.66±0.20
3 32.22±0.14 32.57±0.17 33.24±0.28 33.38±0.15 33.84±0.17
4 32.99±0.30 33.26±0.32 34.17±0.28 34.37±0.24 34.87±0.25
5 36.27±0.30 36.09±0.26 37.18±0.36 37.10±0.21 37.63±0.23

Average 33.552 33.6674 34.5928 34.6716 35.1236

525

While FK makes improvement based on the pre-interpolation method se-

lected, and better pre-processing tends to yield a better result, it is observed that

different pre-interpolation methods are “leveled/evened” after filtering. This is

expected because the difference between interpolation results generally has a

spreading spectrum, and can be significantly weakened after passing a filter530
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Figure 5: RMSE of the five interpolation methods for TPL data.

with a narrow total bandwidth.

5.2. Case study 2: UMW tool surface

The data in this case study contains surface measurements of UMW anvils in

different life stages [17]. Degradation of anvil surfaces could affect the joint qual-

ity strongly [44]. Each original high-resolution measurement (l0 = 22.032 µm535

per pixel) produces a 163×900 surface. The 3D height plots are shown in Figure

6.

Knurls are located on the anvil with periodicity matrix

P = T0 ·

 1/2 1/2

−1/2 1/2

 , (40)

where T0 = 1.436mm.

Figure 7 shows the empirical covariance of surface 3. A bandpass filter540

is designed following the same methodology. Implementation details are pre-

sented in Section ?? of the SI. Both bicubic and bilinear methods are used for

pre-interpolation. Empirical covariance computed from the filtered residual of

bicubic-FK is shown in Figure 7 (e,f).
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Figure 6: Six measurements of an anvil surface in UMW.

RMSE is summarized and compared in Table 4 and Figure 8. Again, the545

lowest prediction RMSE is achieved by the FK with bicubic pre-interpolation

for all sampling times. More significantly than in the TPL case, the differ-

ence between bicubic and bilinear pre-interpolation are reduced after the FK

procedure.

Table 4: RMSE (µm) of the five interpolation methods for UMW anvil data. The best results
are marked boldface for each sampling time and the average.

Surface No. bicubic-FK bilinear-FK KED bicubic bilinear
1 4.392±0.073 4.480±0.083 4.835±0.046 4.689±0.078 5.517±0.103
2 4.079±0.028 4.135±0.036 4.296±0.041 4.286±0.048 5.097±0.062
3 7.485±0.033 7.603±0.032 7.675±0.043 7.802±0.050 8.192±0.046
4 5.455±0.073 5.515±0.082 5.549±0.078 5.576±0.085 6.397±0.092
5 4.724±0.062 4.785±0.074 4.816±0.066 4.852±0.077 5.731±0.086
6 3.814±0.024 3.879±0.030 3.920±0.029 3.970±0.032 4.815±0.035

Average 4.9915 5.0661 5.1818 5.1957 5.9583
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Figure 7: Empirical covariance of the UMW tool surface at sampling time 3 for (a) ordinary
kriging, (c) KED, and (e) bicubic-FK. Empirical correlation for (b) ordinary kriging, (d) KED
and (f) bicubic-FK mapped along the radial direction, averaged and fitted.
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Figure 8: RMSE of the five interpolation methods for UMW surfaces.

6. Conclusion550

Modeling of periodic surfaces with kriging or Gaussian process regression has

been challenging in the past because of complicated covariance structures. In

this paper, we propose the FK procedure to enhance the conventional kriging-

type methods with a pre-filtering step. With the FK technique that adopts a

bandpass filter, common isotropic models become applicable to periodic surfaces555

with improved goodness-of-fit and interpolation accuracy, with potential numer-

ical issues alleviated. Through analysis using frequency domain techniques, the

mechanisms of the FK method are illustrated both qualitatively and quanti-

tatively, and conditions for effective pre-filtering are identified. Within this

analytical framework, a new theorem is proven that establishes the equivalence560

between kriging estimation and the perfect reconstruction from alias-free mea-

surements, as guaranteed by the Nyquist-Shannon sampling theorem. Based on

derived conditions, a practical bandpass filter design for periodic surfaces and

its implementation are demonstrated. The effectiveness of FK and the filter de-

sign strategy is verified with two real-world manufacturing case studies, showing565

superior interpolation performance compared to state-of-the-art methods.

As a final remark, it is noteworthy that the core principle of FK is to iso-
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late challenging components without significant extra cost, while leaving the

readily manageable part undisturbed. This inherently does not rely on uniform

sampling, linear pre-interpolation, convolutional filtering and process with peri-570

odicity, which are required for rigorous quantitative analysis. Consequently, FK

can potentially be applied to a wider range of filters and processes, opening the

possibility of leveraging various signal processing techniques to address spatial

problems.
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