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Abstract

High-resolution characterization of surfaces is essential in a variety of quality
control tasks in modern manufacturing, such as surface quality inspection and
tooling maintenance. However, direct high-resolution surface measurements of-
ten come with high cost and/or long measurement time. Interpolation based
on spatial process models, especially kriging-type methods, has been used to
obtain denser estimations from low-resolution and cheaper measurements. Peri-
odic spatial correlations, which commonly exist in manufacturing applications,
cannot be adequately captured by conventional spatial models, thereby causing
potential performance degradation or numerical issues. To address these chal-
lenges, we propose a new procedure termed as filtered kriging (FK), which sepa-
rates the periodic component using a bandpass pre-filter, such that the residual
can be well fitted with common models. Through frequency-domain analysis,
conditions under which FK is effective are identified, and a practical bandpass
filter design strategy is devised. A new theorem is proven to show that, when
measurements are free from aliasing, perfect reconstruction guaranteed by the
Nyquist-Shannon sampling theorem is achieved by FK estimations under certain
assumptions. Finally, the effectiveness of FK is demonstrated by case studies

using real-world periodic surfaces from two-photon lithography and ultrasonic
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metal welding. FK is shown to capture spatial correlation more adequately than
conventional methods, and achieves better interpolation accuracy.
Keywords: spatial interpolation, periodic surfaces, filtering, two-photon

lithography, ultrasonic metal welding, surface metrology

1. Introduction

Fine-scale characterization of surfaces and geometric compliance is crucial for
quality control of various manufacturing processes, e.g., machining and micro-
machining [1-4], wafer manufacturing [5, 6], ultrasonic metal welding (UMW) [7,
8], two-photon lithography (TPL) [9, 10], additive manufacturing [11, 12], and
many others [13-15]. However, high-resolution surface measurements typically
rely on expensive instruments, critically limiting their accessibility on the factory
floor [16]. Their time-consuming nature significantly delays decision-making in
production, leading to undesirable outcomes like deteriorated quality of products
and machine maintenance [16, 17].

Spatial interpolation, which produces estimations at unmeasured locations
based on observed neighboring ones, can generate a denser dataset from coarser
and less expensive measurements [4, 16]. Conventional non-statistical methods,
such as nearest neighbor, linear and cubic interpolation [18, 19], provide limited
precision as they do not adapt to specific data or problem characteristics. In
the field of spatial statistics [20], various methods based on stochastic processes
have been developed to leverage data-specific statistical correlations for spa-
tial interpolation. Among these, kriging-type methods are predominantly used
due to their simplicity and generally satisfactory performance [16]. They are
also known as Gaussian process regression in statistical and machine learning
communities [21], since they are equivalent to modeling and inference using a
Gaussian process. Such processes capture statistical correlation through covari-
ance functions, which need to be properly modeled with measurement data.
When applying Gaussian process regression, it is typically required that the

covariance model is stationary and either isotropic or, at most, geometrically
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anisotropic [20].

Periodic spatial patterns exist in many disciplines, such as materials sci-
ence [22], ecology [23], and remote sensing [24]. Periodicity is also common in
manufactured surfaces. Often, periodic textures are inadvertent byproducts of
manufacturing processes such as machining [3, 25-27], additive manufacturing
[11, 28], and woven surface fabrication [29]. Additionally, repetitive structures
or patterns can be manufactured over surfaces using techniques including ma-
chining [30], micro-/nano-machining [31-33], additive manufacturing methods
such as TPL [9, 10, 34], molding [35, 36], and various laser surface modification
technologies [35, 37—42]. Such structural surfaces are frequently engineered to
fulfill specific functions [40]. For example, optical elements such as blazed grat-
ings [32] and micro-lens arrays [33] are designed for light manipulation. Other
functional surfaces include laser-processed superhydrophobic [41] and antireflec-
tive/superwicking surfaces [43], as well as textured tool surfaces for UMW [44],
cutting [42], and molding [35].

However, the assumption of isotropic correlations can be hardly satisfied
when modeling periodic surfaces. While maintaining the stationarity assump-
tion, the covariance function is expected to exhibit a discernible periodic pattern
due to the inherent periodicity of the surface. Such a pattern is incompati-
ble with isotropy for any nontrivial case in a two-dimensional space, making
isotropic models oversimplified and highly inaccurate for capturing such com-
plexities. Maculotti et al. [28] provided an illustrative example. It is possible to
model such correlation structures by adopting flexible nonparametric methods
and/or combining proper covariance functions [45] to account for both period-
icity and the induced anisotropy. Nevertheless, such an uncommon model must
be carefully crafted, and is often more computationally expensive to fit because
of a much higher degree of freedom.

Furthermore, numerical issues may exist with periodic correlation even if it
is properly modeled. On a periodic surface, the value at a location may correlate
strongly with some distant observations. It is possible that strong long-range

correlations result in dense and potentially ill-conditioned matrices at the stage
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Figure 1: Overview of the FK framework.

of inference, thus leading to poor scalability and numerical singularities [46].

One approach to circumvent these complications is to separate the difficult-
to-model periodic component using an alternative method, and the residual
with simpler structure becomes easier to treat. Inspired by band-limited filters
in signal processing, we propose to estimate the periodic part with a spatial
version of such filters. Then, the residual can be captured more adequately by
conventional isotropic models with significantly reduced correlation range, and
interpolation can be performed effectively using simple kriging. We name this
procedure as filtered kriging (FK). Figure 1 illustrates the FK framework. FK
bypasses the dilemma of having to address a complex and atypical model prone
to numerical issues, or suffering from lack of fit and compromised interpolation
accuracy. Thus, the FK strategy effectively enhances kriging-type methods on
surfaces with periodic patterns. Periodic surfaces from two real-world manufac-
turing applications including TPL and UMW are used to illustrate the proposed
FK method and demonstrate its effectiveness.

The remainder of this paper is organized as follows. Section 2 provides
preliminaries and a detailed description of the FK procedure. In Section 3, the
formulation of FK procedures is further explained and analyzed using frequency
domain techniques and insights from signal processing. These analyses lead to
conditions under which FK to be effective. Subsequently, a practical bandpass

filter design strategy for periodic surfaces is discussed in Section 4. Section 5
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presents two case studies. Finally, Section 6 concludes the paper.

2. The FK Method
2.1. Preliminaries and notations

Let the value (e.g., height) of interest be a function h over a spatial region
D C R? (d = 2 for surface problems). The function is measured at N locations
X1,X2,...,XN € D, which are aggregated into an N x d matrix X with the j-th
row being X;r. Throughout this paper, boldface lowercase letters are used to
represent vectors of exactly d dimensions. Measurements are organized into a
column vector H = h(X) = (h1,h2,...,hn)", where h; = h(x;). Note that
the measurement error is ignored for simplicity, and will be treated in Section
?? of the Supplementary Information (SI). An interpolation method I yields a
function I(H) = hipt : D — R given the measurements [16]. In other words, for
xg € D, it produces an estimation hin(Xg) of h(xg) given H and X.

Spatial statistical methods model the function as a realization of a contin-
uously indexed spatial stochastic process h = {h(x) : x € D}, and statistical
inference methods are used to produce the estimation. Since this work focuses
on kriging-type methods, we assume h ~ GP(0,c) is a stationary zero-mean
Gaussian process on D C R with covariance function c(x,x’) = ¢(x — x).
Then, for interpolation simple kriging yields the best linear unbiased prediction

h(x0) of h(xq) given H:

h(xo) = c(x0, X)C™'H, (1)
where ¢(x¢, X) denotes the 1 x N matrix of the covariances evaluated at all pairs
of points in xg and X, and similarly for C = ¢(X, X). By relaxing the assump-
tion about the mean function of a Gaussian process, major kriging variants such
as ordinary kriging and kriging with external drift (KED) can be obtained.

A function or signal is composed of trigonometric components with different
frequencies in the view of Fourier analysis, and filters can be used to change
the amplitudes of these frequency components. A bandpass filter preserves

components within a certain frequency range and attenuates those outside that
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range. Thus, it can be used to extract components of certain periods from a
function. Similar procedures can be applied to stochastic processes.
The following notations are used for Fourier analysis of deterministic func-

tions. The spectrum f(&) of a function f(x) on R? is defined as

fle) = [ e fix. @)

Under mild assumptions we have

f(x) = / 2T F(g) . (3)

A function f on R? is said to be periodic, if there exists d non-collinear

vectors p1, P2, - - -, Pd, such that

fx) = f(x=p1) = f(x=p2) =+ = f(x = pa). (4)
The matrix P = (p1,pa, ..., Pq) is referred to as the periodicity matrix [47].

2.2. Description of the FK procedure

The FK procedure contains the following four steps:

Step 1 Preparations. First, the surface h is measured at locations X to ob-
tain spatial data H = h(X). Based on sampled data and/or existing process
knowledge, the periodicity matrix P of the pattern is determined. Then,
a linear bandpass filter F' is designed to center its pass-bands approximately
around the integer multiples of frequencies in Q = P~!. The residual h— F(h)
after filtering (if computable) is expected to be scarcely periodic. A straight-
forward method to specify a discrete convolutional filter will be discussed in

Section 4.

Step 2 Pre-filtering. Since F'(h) is generally not computable with only H =
h(X), an additional pre-interpolation step is introduced before applying the
filter. The samples H = h(X) are first interpolated with a simple interpo-
lation method I, e.g., linear or cubic interpolation; the result is a function

hint = I(H) : D — R. Since the value of A, can be evaluated at any location
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in the continuous interpolation region D, hp = F'(hiy) becomes computable
in D. It is expected that the periodic component could be well-preserved by

the interpolation method selected, i.e., hp = F(hmm) =~ F(h).

Step 3 Kriging the residual. The residual of pre-filtering is computed over
the sampled locations: H,.s = H — hp(X). Then, a stationary process h,.
is used to model the residual, i.e., let observations of h, be h.(X) = Hyes.
In this work, we follow the commonly used approach for model selection:
fitting a parametric covariance function model via weighted least squares to
the empirical covariance computed from H,.. Alternative approaches, e.g.,
likelihood-based methods [20], could also be adopted to yield a valid para-
metric covariance model. An estimation h, of h, is obtained by performing

kriging with the fitted model and data Hes.

Step 4 Obtaining the final estimation. h = hp + h, is used as the final

estimation of h.

The FK method can be extended to account for measurement noise. Cor-
responding FK procedures and conditions that control the estimation error are
presented in Section 77 of the SI. Symbols and notations that are frequently

used are summarized in Table 1.

3. Theoretical Analysis of the FK Procedure

In this section, we first explain the formulation of FK and establish an an-
alytical framework. Then, quantitative and qualitative assessments of FK are
conducted in the case of uniform sampling over an infinite grid, where conditions
allow straightforward analysis of sampling, interpolation and filtering in the fre-
quency domain. These analyses identify conditions under which FK is effective
and provide guidance for filter design. Finally, we introduce a new theorem that
establishes the equivalence between kriging and cardinal series interpolation for
band-limited processes, both method yielding perfect estimations in the mean
square sense. With this theorem, it is proven that FK achieves identical optimal

results under appropriate conditions.



Table 1: List of frequently used symbols and notations

Symbol / Notation Description

x,&1... d x 1 column vectors (boldface lowercase letters)
D d-dimensional spatial region of interest in R?
h Quantity (e.g., height) over region D to be interpolated
X1,X2, ..., XN Measured locations in D
X N x d matrix of measured locations X = (x1,Xa,...,Xn)
H = h(X) N x 1 vector of measurements H = (h(x1), h(x2),...,h(xn))T
P Periodicity matrix defined by Eq. (4)
hit = I(H) Result of pre-interpolating samples H = h(X) with T
hp = F(hint) Result of filtering hy, with the filter F’
hres = h — hp Residual after pre-filtering
h, Stationary process that models the residual hyeg
iL, h, Estimations of h, h,
¢, cp Covariance functions of stochastic processes
k. kp, k Convolution kernels corresponding to I, F' and F ol
F(€),k(8), Fourier transform of function f(x), k(x), etc.

160

170

3.1. Formulation of FK and an analytical framework

As described in Section 1, challenging periodic components in A can signifi-
cantly impact the performance of kriging. If A is a known deterministic function,
it is well-established that such a component can be isolated using a convolutional
bandpass filter F' with kernel k, and this filter can be readily designed in the
frequency domain. By the convolutional theorem in classical Fourier analysis,

the filtered result F'(h) = h x k transforms to
F(h)=hxk=h-k. (5)

To isolate certain components, such as those related to strong periodicity, sup-
ported on a set A C R? in the frequency domain, it suffices to designate A as
the passband of the filter F'. Specifically, set %(f) ~ 1 for £ € A and E({) ~ 0
elsewhere. Consequently, the corresponding components within A can be effec-
tively removed in the residual h — F(h), with h — F/'?fj) =h-(1—k) ~0on
A.
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For stochastic processes, Fourier analysis can be performed in a similar way

as the deterministic case. Following the spectral representation theorem [48],

a mean square continuous stationary Gaussian process h ~ GP(0,c¢) can be
represented as

o) = [ € R(de), ©)

where R is a random measure [48] called the spectral process corresponding to

h. It is often assumed that R can be written as R(d€) = p(&)Z(d€), where

p(&) is a square-integrable function, and Z is a Gaussian white noise based on

Lebesgue measure in R, The term p (or R(d¢) = p(&€)Z(d€)) resembles the

behavior of & (or h(£)d¢) in the deterministic case. The covariance function is

) = [ @GR RG] = [T e Pdg, (1)

where |p|? is called the spectral density of h.
With preceding definitions, convolutional filtering operates on a stochastic

process h in a similar manner
(P)x) = (3 R)0) = [ 27058 p(€) Z(dg) h(x )
= [emxe (0. Be) 2(de).

and isolates components with strong periodic correlation given a proper band-

(8)

pass filter. The residual h — F'(h) remains to be a stationary Gaussian process,
but with periodic correlations eliminated, making it significantly easier to model
than h prior to filtering.

When the process h is only partially observed over a discrete set of sam-
ple locations X, the aforementioned convolutional filter generally becomes in-
applicable. To address this case, the Step 2 of FK integrates the filter with
an additional pre-interpolation step to approximate the effect of the original
filter F' and adapt to discrete measurements H = h(X). Specifically, a sub-
stitute hiy = I(H) is constructed for h with the pre-interpolation I. Then,
hp = F(hit) is computed as a surrogate for F'(h). Given a properly designed
filter F' in Step 1 of FK, the residual hy.s = h — hp &~ h — F(h) can be properly
modeled and estimated from h,es(X) using kriging in Step 3.
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Up to now, the FK procedure has been formulated through an attempt to
approximate bandpass filtering of a stationary stochastic process. From this
perspective, when selecting the pre-interpolation method, it is desired that hpy
approximates h accurately especially within the filter’s passbands. FK makes
improvements based on the pre-interpolation result by replacing its components
outside the passbands with more accurate kriging estimations. This approach
also implies that the filter should have as narrow a bandwidth as possible,
provided it completely isolates the difficult-to-model components, to minimize
the passage of errors from pre-interpolation into the final result. These intuitive
conclusions will be further substantiated by analyses in subsequent sections.

Although above formulation of FK does not rely on a specific sampling strat-
egy or pre-interpolation method, for the purpose of quantitative characteriza-
tion, sampling over a uniform, infinite grid and linear pre-interpolation with
respect to h(X) are assumed throughout the subsequent analysis. Without loss
of generality, samples are further assumed to be taken over the infinite integer
grid Z?, which can always be achieved through some linear transformation. In-
finite grid assumption leads to neater derivation and conclusions, which might
be regarded as the increasing-domain asymptotics for samples in a finite region
(as discussed in Section ?? of the SI). Some empirical comments are also made

in Section 77 of the SI for general sampling and pre-interpolation methods.

8.2. A quantitative analysis of FK procedures

Under the analytical framework outlined in Section 3.1, FK procedures are
analyzed to derive an upper bound for the discrepancy between FK and the
theoretically optimal Gaussian process regression. This analysis reveals the
condition under which FK approaches near-optimal performance.

First, the procedure of uniform sampling is formulated as the product with

a Dirac comb:

hs(x) = h(x) - 3 6(x —m) ©)

nezd

After sampling, interpolating the data h(X) linearly is equivalent to convolution

10



with an interpolation kernel kp; [18]:
hInt = hs * kInt- (10)

Filtering the interpolated data hp,: is also equivalent to a convolution with

kernel k. Then, it follows from the associativity of convolution that
hp = bt * kp = hg * (kg * kp) = hg x k, (11)

where k = ki, * kr, whose spectrum is

k(€)= k() - kr(£). (12)
As shown in Section ?7 of the SI, hg could be written as
he(x) = [ SO (ExR(E). (13)
where K (&;x) is defined as
K(&x) =Y k(g +1). (14)
lezd
It is straightforward to verify that, although h..s = h — hp is not stationary

by itself, it coincides with a stationary process h, over the sampling integer grid

Z¢, which is modeled and estimated in Step 3 of FK:

m®=/?m“m—ﬂ&WM%l (15)

Because h,. is stationary, its covariance ¢, over the grid can be computed
from hy|za = hyes|ze = Hyes using Eq. (16). The estimator is unbiased, and the
equality holds in the mean square sense whenever ¢.(1) — 0 as [I| — oo (see

Section ?? of the SI for relevant conditions and proof).

¢r(m, n) = E[h; (m)h,(n)]
. 1 M (16)
= Al 1 IZZM ()

where each entry of 1 = (IV),...1(9)) in the sum ranges from —M to M. The

covariance function ¢, (x) is then estimated from its values over the grid.

11
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The total error of FK is

h— (hg + hy)

=(h—hp—h.)+ (h. — h;) (17)
=T +7‘2,
where r1 = hyes — by, and 7o = h,. — iz,..

The first part of the error r; is the difference between h,os and its stationary

version h,. From Eq. (13) and (15),

ni) = [ @8 (R(g,0) - Kig.x)) Ride), (18)
whose variance is bounded by (see Section 7?7 of SI for details)
2
Eln () <4 [ €)1 | 3 Re+Dl| de (19)

[>1

Convergence of 5, k(€ +1)| could be guaranteed by sufficient smoothness
property of k (usually essentially of kr,). Comparing Eq. (19), (13) and (8),
it can be seen that r; is essentially a type of aliasing error that persists or is
introduced during the process of pre-interpolation and filtering, from a signal
processing perspective. The integral upper bound above could then be made
small given the following condition.

Condition 1: The overlap between |p|2 and the sum Ki(€) = o1 k(€ +1)]

is small.

For the second part of the error ro = h, — iz,«, if the covariance function
¢, is known, then the error variance E[r3] is minimized, because the simple
kriging estimator h, is already the minimum mean square error estimation of
h,. The estimator h, could deviate from the optimum only because of error
in the estimated covariance function. Under conditions stated in Section ?7?
of the SI, values of ¢, over the integer grid could be estimated correctly with
Eq. (16), and off-grid values can be further obtained through interpolation.

The estimation error may be controlled with extra conditions like Lipschitz

12
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continuity, and could be eliminated if a stronger band-limitation assumption is

imposed (see Section 3.4).

3.3. Effect of bandpass filtering

In this section, we perform a qualitative analysis of the bandpass filtering
procedure in FK, explaining how it enhances conventional covariance models
and deriving criteria for filter design accordingly. To illustrate this, consider the
typical decomposition of the process h into a global trend m and local spatial
variation 7:

h(x) = m(x) + n(x), (20)

where m and 7 are independent zero-mean stationary Gaussian processes. For
surfaces with periodic patterns, the term m is supposed to account for the
strong periodic trend, while in general, we may assume 7 can be readily fitted
by conventional models (e.g., isotropic ones adopted in the case studies of this
paper).

To characterize m and 7 in the frequency domain, let their spectral process
be p(&)V (d€) and q(&)W (d€), respectively, where p and ¢ are square-integrable
functions, and V and W are independent Gaussian white noise in R%. Because m
captures the strong periodicity, its spectral density |p|? is concentrated around
a few integer linear combinations of columns in P~!. In contrast, ¢ tends to
distribute more uniformly across the frequency domain, with 7 representing
smaller-scale variation. Both p and ¢ exhibit rapid decay when the process h is
adequately sampled.

With these notations, the filtered hp is composed of two parts:

hrp = (m+n)~Z(5(~—n) xk=mp+np. (21)

nezd

Similar to Eq. (13), mp(x) = [ €208 p(&)K (&;x)V (d€), which can be

further decomposed into

(%) = / R0 (€)T(E)V (dE) + / PO p() K, (6 x)V(dE),  (22)

13
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where

K (&%) = K(&x) = k€)= Y mVE(E+1), (23)

1€Z4,1#0

It is evident that first term of Eq. (22) corresponds to the “pure” filtering effect
as seen in Eq. (8), while the latter term indicates how much pre-filtering is
affected by the aliasing effect due to sampling. We may expect that pE ~ p,
which suggests that the first term closely approximates m, provided the fil-
ter’s passbands are designed to cover frequencies where p’s energy concentrates.
Additionally, if k and p decay rapidly, the overlap between p and IN(T will be
minimal, indicating a low variance in the aliasing term.

The second part
o) = [ g€ K€)W (ag) (24)

will be minimal if the overlap between |¢|? and K is small. Consequently, when
the total passband of k is narrow, np becomes negligible, given the existing
assumptions about q.

In summary, the analysis above shows that FK approximates the typical
decomposition of spatial processes into a global trend and a local variation:
hp = mp + ngp = m, when the filter is intentionally designed to pass the
strong periodic global trend m while suppressing local variation 7, and when
the process is adequately sampled. In other words, bandpass pre-filtering could
separate out the periodic m, such that the residual hyes = (m+1n) —hp =7 can
be modeled more easily using conventional methods. As a result, the following
design criterion is established for the filter corresponding to k:

Condition 2: m — mp is sufficiently suppressed, while the filter has a narrow

total bandwidth.

8.4. Kriging for band-limited processes and Shannon sampling theorem

From analyses in the previous two sections, it is evident that FK is influenced
by aliasing error. In this section, through a novel theorem, we demonstrate that

when a band-limited process is sampled without aliasing, FK is also free from

14



315

325

335

aliasing error and consequently yields optimal estimations under appropriate
conditions.

According to the classical Nyquist-Shannon sampling theorem, a band-limited
deterministic function can be fully recovered from its samples over the integer
grid using the cardinal series [47]. Here a deterministic function y is said to
be band-limited, if its Fourier transform 3 satisfies §y = ¥ - rect, where the rect
function in d-dimensional space is defined from standard 1-D rectangular func-
tion as rect(§) = H?Zl rect(¢0)) for & = (€M), ..., ¢@D). Similar definitions and
theorem hold for stationary stochastic processes, as shown in [47, Sec. 3.5]:

Lemma 1. A zero-mean wide sense stationary process y(x) is said to be band-
limited, if it has spectral density s.t.

(&) = c(§)rect(§), (25)

e., its covariance function c is band-limited.
The cardinal series §°*4 for y converges in the mean square sense. Specifi-
cally, define

gerrd (x Z y(n)sinc(x — n), (26)

nez

where

4 sin(rz)
sinc(x Hsmc @) H n(rz (27)

forx = (zM ... z(D),
Then §°24(x) equals to y(x) in the mean square sense:

E [(57*(x) - y(x))*] = 0. (28)

In the Gaussian process case where a spectral density exists, h is band-
limited if [p(&€)]? = |p(&)|? - rect(&) (or equivalently, R(d€) = R(d€) - rect(&)).

Practically, the band-limitation assumption has the following implications.

e Samples on the integer grid are sufficient for capturing all surface varia-

tions, i.e., sampling is free from aliasing.

e Since almost every sample path of a band-limited process is smooth, i.e.,
infinitely differentiable [49], it implies that the surface is smooth and mea-

surement noise is ignored.

15
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In the ideal case where h is a band-limited process, we are able to obtain a
perfect estimation in the mean square sense from samples according to Lemma
1. Moreover, the simple kriging estimator is also perfect in this case, as stated

in the following new theorem.

Theorem 1. Given observations of a band-limited process y(x) over a finite
reqular grid that is sufficiently demse for sampling without aliasing, the best
linear unbiased predictor converges to corresponding cardinal series in the mean
square sense, as the size of the grid tends to infinity, as long as the covariance
function c is strictly positive definite (such that the best linear unbiased predictor
exists).

Without loss of generality, let X = Xy contain all integer points in [—~N, N]%,
Y =Yy = y(Xy), and let the spectral support of y be contained in [—1/2,1/2]%.
In this case, the best linear unbiased predictor jn(x) = c(x,X)c(X,X)"1Y
tends to y(x) in the mean square sense as N — 00.

Particularly, the best linear unbiased predictor yy and the partial sum of
the cardinal series 4 yields the same limit y when the process covariance is
band-limited and strictly positive definite.

Proof. See Section 77 of the SI for proof and relevant remarks. O

Perfect reconstruction can be achieved by the FK procedure in this ideal
case, given some additional conditions, and specifying the pre-filtering to be
band-limited: k(&) = k(&) - rect(£). See discussions in Section ?? of the SI for
details.

4. Design and Implementation of the FK Pre-filter
4.1. General requirements for FK filters

Following the analysis in Section 3.2, Condition 1 should be approached
through k. Additionally, Condition 2 is required to ensure the residual after
filtering can be more readily modeled with common models.

Following Eq. (13) and (21),
(m = me)o) = [ x9p(6) (1= Fe) - Ko (6:)) V(de). (20

The term pl?r is already suppressed if Condition 1 is satisfied. Thus, Condi-

tion 2 could be rephrased as

16
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Condition 2’: p(1 — k) is sufficiently suppressed, i.e., filtering passes the peri-
odic component thoroughly. Meanwhile, k has a narrow total bandwidth.

Since most interpolation methods resemble the behavior of some low-pass filter,
We may assume ki, & rect(-), and Conditions 1,2’ for k (= rect - l;;) can be

further decoupled for simplification into:

(a) The pre-interpolation (k) has a passband which covers that of m, and

its frequency response decays rapidly outside this passband.

(b) The filter (kr) maintains approximately unit gain within its passbands,

which are narrow yet cover regions where m’s energy is concentrated.

4.2. Design of a discrete bandpass filter

In practice, interpolation values are usually inquired over a regular grid
denser than measurements. In such cases, it is convenient to use convolutional
discrete filters.

Let the periodicity matrix be P = (p1,...,pa). We may use a filter of the

form

kp(x) = ) wmd(x —P-m), (30)
mez?
where only finite terms of wy, are nonzero. It simplifies design and analysis to

use wy, = w(P - m) for some compactly supported function w. In this case,

kp(x) =wx)- | Y dx—P-m)]|. (31)

meZd
Considering that the Fourier transform of > .. d(x — P -m) is [47]
[det Q| ) (v~ Q- m), (32)
mez?
where Q = P!, the frequency response of such filter l;:; is
kp=@x|detQ] > (-—Q-m)=|detQ > @(—Q-m). (33
meZ? meze
Note that lfc\; is periodic. By defining w as a lowpass filter with a narrow
passband, a bandpass filter is obtained, with same passbands of w centered at

integer multiples of fundamental frequencies Q.
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To ensure the bandpass filter kp achieves unit gain at QZ? = {Q -m|m €
74}, according to Eq. (33), the amplitude of w may be adjusted so that w(0) =
|det P| if w decays rapidly. Alternatively, exact unit gain can be achieved by
setting

> wm=1. (34)

Since the passband of w is replicated at intervals of Q in IZ;, it is necessary
to ensure this passband is containd within the frame spanned by columns of @
and has significantly smaller volume compared with |det Q|. Practically, this
often requires w to have a spatial bandwidth extending over more than three
periods in each direction. There is a trade-off in determining the width of w: a
wider w yields narrower passbands, which makes it less prone to aliasing error,
but it also increases the risk of not completely isolating the periodic trend.

Usually, w decays monotonically as the distance increases. When w assigns
equal weights, FK resembles the “seasonal adjustment” technique for time series
analysis [50].

Filters may be combined to form a new filter with passband being the union
of individual ones. For example, the passbands of two filters F; and F5 can be

merged by taking
F=F+Fo(d-F)=F+F—-Fol, (35)

where id is the identity mapping and o represents the composition of mappings.

4.3. Practical considerations for implementation

We make the following two remarks regarding the implementation of the
filter.

First, computational efficiency can be improved for filtering by adaptation
to the interpolation grid, which reduces the discrete filter to a conventional
digital filter. Let the pre-interpolation be conducted over the grid LoZ¢, i.e.,
hint (Lo - m) is obtained for n € Z? in the pre-interpolation step. Applying
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previous bandpass filter to hr, results in

hp(x) = (hine ¥ kp) (%) = Y W - hin(x — P - m). (36)

meZd

If further LglP is an integer matrix, for x = Lg - n on the grid, then

hp(Lo-n) = Y wm-hm(Lo - (n— Ly 'P - m)), (37)

meZ?
which only involves on-grid values in the computation, making the number of
pre-interpolation inquiries independent of the filter size. When L 'P is not
integer, the rounded value [Lg p. m| may be used as an approximation to
avoid off-grid evaluations.

Second, in practice measurements can only be made over a finite domain.
Consequently, filter evaluation always has to deal with missing values as it ap-
proaches to boundaries. One common method to address this issue is padding.
Alternatively, Eq. (34) suggests a simple way to modify the filter weights if
there are terms unavailable (e.g., exceeding the boundaries) for computing the
full filter: rescaling remaining weights for available terms such that they sum
up to be one. For the aforementioned bandpass filter design, this adjustment
strategy keeps the peaks in passbands unchanged. See Section ?7? of the SI for
details.

5. Case Studies

In this section, we demonstrate the effectiveness of FK with two case studies
that examine TPL-manufactured hemisphere structures [9, 10] and UMW tool
surfaces with pyramid-shaped knurls [17, 45], respectively. Both case studies
involve periodic surfaces, for which common ordinary kriging with isotropic
covariance is demonstrated inapplicable.

High-resolution surface data in the form of regular grid are collected with
a 3D microscope in both case studies. Information about the two datasets are
summarized in Table 2. Then, downsampling is used to simulate data obtained

from a measurement system of lower resolution. The true data serves as the
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Table 2: Summary of datasets for case studies.

Case study No.

1

2

Surface name

TPL surfaces [9, 10]

UMW tool surfaces [17, 45]

Descriptions

Surface manufactured by a
Nanoscribe Photonic Profes-
sional GT 3D printer

Anvil tool surfaces from a
Brandson UMW machine

Periodic pattern

5 x 5 hemisphere structures

Repetitive
knurls

pyramid-shaped

Approximate
matrix

periodicity

7.51m 0
0 7.5nm

1/2  1/2
1.436mm - <_1/2 1/2>

Measurement instrument

Keyence VK-X1000 confocal

Keyence VK-9700 confocal

laser microscope laser microscope

Measurement resolution

94.8nm /pixel 22.032pm/ pixel

Number of surfaces in the | 5 6

dataset

Size of measurement data

406 x 400 163 x 900

445

ground truth and root-mean-squared errors (RMSEs) are computed to evaluate
the performance of candidate interpolation methods. Specifically, the data is
uniformly downsampled with a step of three in both vertical and horizontal
directions. Thus, one out of nine locations in each 3 x 3 grid is kept as a
measured point, which still form a regular grid. The same ground truth data is
sampled nine times with different starting locations to evaluate how much the
result could be affected by uncertainties in the sampling step.

FK is compared with three state-of-the-art interpolation techniques: (1) bi-
linear spline, (2) bicubic spline, and (3) KED. KED is a common yet sufficiently
general variant of kriging. It models the large-scale trend (m) as a linear com-
bination of multiple basis functions, and the rest variation (7)) as a zero-mean
Gaussian process. As special cases, KED is termed ordinary or simple kriging,
when the unknown mean is assumed to be constant or zero. Although ordinary
kriging was performed for the same dataset in [45], and is more standard than

the KED adopted here, it is not included in the comparison for reasons to be

demonstrated in Section 5.1.1.
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In this paper, a set of 25 trigonometric functions are employed as the basis

for KED to model a periodic trend m, namely,
Hfl 21t )| f1, fo € {1, cos(t), sin(t), cos(2t), sin(2t)} }, (38)

where ¢ is the i-th term of t = P~!.x, and P is the periodicity matrix of the
surface. It should be noted that including as many as 25 trigonometric basis
functions goes beyond standard practice. In most practices of KED, only low-
order polynomials are used. Trigonometric kriging [51], another variant of KED,
employs three terms for periodic 1-D signals. When applied to the spatial case,
the regular trigonometric kriging includes 3 x 3 = 9 terms. However, compared
to the 25-term version, it demonstrates significantly inferior performance as it
lacks the ability to capture periodicity of higher frequencies. Theoretically, the
computational complexity of the kriging estimator for FK is lower than that of
KED. This is because KED involves solving a linear system, the computational
time of which scales linearly with the number of basis functions. In the two case
studies presented, this theoretical advantage is not significant due to numeri-
cal implementations; generally FK is only slightly faster than KED in solving
corresponding linear systems.

In all situations standard isotropic covariance models are used. To make it
sufficiently flexible for both FK and KED, we use the following additive model

with five terms:
c(x,x') = e([[x — x'|]) Z/\ ci(llx = x"11/15), (39)

where

c1(s) = exp(—s),

ea(s) = exp(—s?),

c3(8) = CMatern,w=3/2(5) = (1 + \/33) exp(—\/gs),
5
04(8) = cMatern,y:S/Z(s) = (1 + \/55 + 532) eXp(—\/gs),

cs(s) = Jo(2ms).
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Jo in ¢5(s) is the ordinary Bessel function of the first kind of order 0, which
can capture possible non-monotonic behavior as shown in [45]. We also assume
no nuggets, because the surfaces are all continuous, and the low measurement

noise may not be distinguished with small-scale variation.

5.1. Case study 1: TPL surface

TPL is a manufacturing technique for fabrication of three-dimensional com-
plex micro/nanostructures with sub-nanometer resolution. In this study, we use
measurements of five surfaces, on which there are 5 x 5 hemisphere structures
manufactured with a Nanoscribe Photonic Professional GT 3D Printer, as shown
in Figure 2. Each high-resolution measurement produces a 406 x 400 surface
(94.8 nm between adjacent pixels). The distance between adjacent hemisphere

centers is 7.5 nm by design with possible errors when manufactured.

30
—~4
€3 3
=2
N
2:5
2

20

y (um) 0 o o

Figure 2: Hemisphere structures manufactured by TPL.

5.1.1. Difficulties with ordinary kriging

We first show why ordinary kriging is not applicable in this case. If a constant
mean is assumed, the empirical covariance for spatial lags within 12.3 pm in each
direction is shown in Figure 3(a). It is clear that the actual covariance in 2D is
far from being isotropic, which explains why ordinary kriging is not applicable

with isotropic covariance models. One may ignore these issues, map the graph

of a 2-D function along the radial direction with (z,y, f) — (r = Va2 +y2, f),
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Figure 3: Empirical covariance of a TPL manufactured sample for (a) ordinary kriging, (c)
KED, and (e) bicubic-FK. Empirical correlation for (b) ordinary kriging, (d) KED and (f)
bicubic-FK when mapped along the radial direction, averaged and fitted.
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and then take the weighted average for (nearly) equidistant points and fit an
isotropic covariance model to it, as shown in Figure 3(b). Ordinary kriging
could be performed with an isotropic model fitted this way; however, the result
may depend heavily on the size of the kriging neighborhood, for which any large
radius can cause both bad performance and numerical instability. It is also seen
that the 2D empirical covariance is almost periodic with little decay, implying
undesirable numerical difficulties with the inference because of multicollinearity,
even if the covariance is accurately modeled at the cost of greater complexity.
Compared with ordinary kriging, the isotropy issue is largely eased for KED,
as shown by its empirical covariance in Figure 3(c,d). Although the isotropy
assumption is still violated by a residual periodic pattern, KED yields reasonable

estimations with the isotropic model (39).

5.1.2. Settings for FK

To apply FK, we follow the procedure described in Sections 2 and 4. First, a
filter is designed to suppress the periodic component. The periodicity matrix of
the surface is P = diag{Ty, Tp}, where T ~ 7.5um. The filter weights are pro-
duced using Eq. (30) with wm = wy )Wy ), where m € {—2,-1,...,2}?,
wi m = Texp(—2(m/2)?) for i = 1,2, and r normalizes the sum of wy’s to be
one. The periodicity matrix of the interpolation grid is Lo = diag{ly, o}, where
lo = 94.8nm. To avoid off-grid computation, let T} = 791y = 7.49um(~= Tp),
and P’ = diag{T{, Tj)} is adopted to evaluate Eq. (37).

Then, bilinear and bicubic interpolation are used in the second step to pro-
duce hryt. With the designed filter applied to hrut, the periodic component in
the residual H,es is largely reduced (see Figure 4). The empirical covariance
of the residual is plotted in the Figure 3(e,f), which suggest that the correla-
tion becomes mostly isotropic, and could be fitted more precisely with common
isotropic models. The weight function in [52] is used in weighted least squares

for covariance fitting.
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Figure 4: The residual Yies after bicubic pre-interpolation and bandpass filtering.

5.1.3. Performance comparison

RMSE comparison is reported in Table 3 and Figure 5. It is shown that FK

achieves the lowest prediction errors compared with KED, bicubic or bilinear

interpolation alone for all samples. In most cases, FK works better with bicubic

pre-interpolation than with bilinear.

Table 3: RMSE (nm) of the five interpolation methods for TPL data. The best results are
marked boldface for each sample number and the average.

Sample No. bicubic-FK  bilinear-FK KED bicubic linear
1 33.04+0.33 33.0840.29 34.224+0.36 34.12+0.27 34.614+0.39
2 33.24+0.23 33.34+0.24 34.15+0.15 34.38+0.17 34.66+0.20
3 32.2240.14 32.57+0.17 33.2440.28 33.38+0.15 33.84+0.17
4 32.9940.30 33.26+0.32 34.1740.28 34.37+0.24 34.874+0.25
5 36.27+0.30 36.09+0.26 37.1840.36 37.104+0.21 37.63+0.23
Average 33.552 33.6674 34.5928 34.6716 35.1236

While FK makes improvement based on the pre-interpolation method se-

lected, and better pre-processing tends to yield a better result, it is observed that

different pre-interpolation methods are “leveled /evened” after filtering. This is

expected because the difference between interpolation results generally has a

spreading spectrum, and can be significantly weakened after passing a filter

25



38F 3
bicubic-FK %
bilinear-FK Te

371/ KED 5
bicubic |
bilinear $

36+ :

B

£

87 ! 8 ’
b= T = 1

& aqr : 1 1

w
w
—I=H
—
—{[—
I
]
H A
—{Tk
HEE—
O

Sample number

Figure 5: RMSE of the five interpolation methods for TPL data.

with a narrow total bandwidth.

5.2. Case study 2: UMW tool surface

The data in this case study contains surface measurements of UMW anvils in
different life stages [17]. Degradation of anvil surfaces could affect the joint qual-
ity strongly [44]. Each original high-resolution measurement (ly = 22.032 pm
per pixel) produces a 163 x 900 surface. The 3D height plots are shown in Figure
6.

Knurls are located on the anvil with periodicity matrix

Pt /2 1/2 | w0)
-1/2 1/2
where Ty = 1.436mm.

Figure 7 shows the empirical covariance of surface 3. A bandpass filter
is designed following the same methodology. Implementation details are pre-
sented in Section 7?7 of the SI. Both bicubic and bilinear methods are used for
pre-interpolation. Empirical covariance computed from the filtered residual of

bicubic-FK is shown in Figure 7 (e,f).
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Figure 6: Six measurements of an anvil surface in UMW.

RMSE is summarized and compared in Table 4 and Figure 8. Again, the
lowest prediction RMSE is achieved by the FK with bicubic pre-interpolation
for all sampling times. More significantly than in the TPL case, the differ-
ence between bicubic and bilinear pre-interpolation are reduced after the FK

procedure.

Table 4: RMSE (um) of the five interpolation methods for UMW anvil data. The best results
are marked boldface for each sampling time and the average.

450

400

350

300

250

200

150

100

50

Surface No.  bicubic-FK  bilinear-FK KED bicubic bilinear

1 4.392+0.073 4.48040.083 4.8354+0.046 4.689+0.078 5.517+0.103

2 4.079+0.028 4.13540.036 4.296+0.041 4.286+0.048 5.097+0.062

3 7.485+0.033 7.603+£0.032 7.675+0.043 7.8024+0.050 8.192+40.046

4 5.455+0.073 5.515+£0.082 5.549+0.078 5.576+0.085 6.3974+0.092

5 4.724+0.062 4.7854+0.074 4.8164+0.066 4.852+0.077 5.731+0.086

6 3.814+0.024 3.87940.030 3.9204+0.029 3.970+0.032 4.815+0.035
Average 4.9915 5.0661 5.1818 5.1957 5.9583
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6. Conclusion

Modeling of periodic surfaces with kriging or Gaussian process regression has
been challenging in the past because of complicated covariance structures. In
this paper, we propose the FK procedure to enhance the conventional kriging-
type methods with a pre-filtering step. With the FK technique that adopts a
bandpass filter, common isotropic models become applicable to periodic surfaces
with improved goodness-of-fit and interpolation accuracy, with potential numer-
ical issues alleviated. Through analysis using frequency domain techniques, the
mechanisms of the FK method are illustrated both qualitatively and quanti-
tatively, and conditions for effective pre-filtering are identified. Within this
analytical framework, a new theorem is proven that establishes the equivalence
between kriging estimation and the perfect reconstruction from alias-free mea-
surements, as guaranteed by the Nyquist-Shannon sampling theorem. Based on
derived conditions, a practical bandpass filter design for periodic surfaces and
its implementation are demonstrated. The effectiveness of FK and the filter de-
sign strategy is verified with two real-world manufacturing case studies, showing
superior interpolation performance compared to state-of-the-art methods.

As a final remark, it is noteworthy that the core principle of FK is to iso-
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late challenging components without significant extra cost, while leaving the
readily manageable part undisturbed. This inherently does not rely on uniform
sampling, linear pre-interpolation, convolutional filtering and process with peri-
odicity, which are required for rigorous quantitative analysis. Consequently, FK
can potentially be applied to a wider range of filters and processes, opening the
possibility of leveraging various signal processing techniques to address spatial

problems.

Acknowledgments

This research has been supported by the National Science Foundation, USA
under Grants No. 1944345, and No. 2043168, No. 2433484, and No. 2434813.
The TPL experiments were carried out in the Materials Research Laboratory

Central Research Facilities, University of Illinois.

References

[1] Rahul A. Mali, T. V. K. Gupta, and J. Ramkumar. A comprehensive
review of free-form surface milling— Advances over a decade. Journal of

Manufacturing Processes, 62:132-167, February 2021.

[2] Yaxiang Yin, Yiping Shao, Kun Wang, Shichang Du, and Lifeng Xi. Seg-
mentation of workpiece surfaces with tool marks based on high definition
metrology. Journal of Manufacturing Processes, 57:268-287, September
2020.

[3] Yang Cao, Xuesen Zhao, Guo Li, Wenjun Zong, and Tao Sun. Study re-
garding the influence of process conditions on the surface topography dur-
ing ultra-precision turning. Journal of Manufacturing Processes, 102:23-36,

September 2023.

[4] Xinchen Wang, Mohammad Alshoul, Huimin Zhou, Jia Deng, and Zimo
Wang. Study of the system instability impacts on surface characteristics for
vibration-assisted AFM-based nanomachining. Journal of Manufacturing

Processes, 117:213-223, May 2024.

30



600

605

610

[5]

[6]

7]

18]

19]

[10]

[11]

Jia Peter Liu, Ran Jin, and Zhenyu James Kong. Wafer quality monitoring
using spatial Dirichlet process based mixed-effect profile modeling scheme.

Journal of Manufacturing Systems, 48:21-32, July 2018.

Xin Liu, Bingqi Wang, Yuheng Li, Yuyang Zhou, Jiahao Zhang, Ziheng
Wang, Jingcan Yan, Xiaolei Gu, Zizhen Yuan, Yang Chen, Shuaishuai
Wang, and Jiyu Liu. Improving machinability of single-crystal silicon by
cold plasma jet. Journal of Manufacturing Processes, 99:581-591, August
2023.

Haotian Chen, Yuhang Yang, and Chenhui Shao. Multi-task learning for
data-efficient spatiotemporal modeling of tool surface progression in ul-
trasonic metal welding. Journal of Manufacturing Systems, 58:306—-315,
January 2021.

Yuhang Yang, Yifang Zhang, Y. Dora Cai, Qiyue Lu, Seid Koric, and Chen-
hui Shao. Hierarchical measurement strategy for cost-effective interpolation
of spatiotemporal data in manufacturing. Journal of Manufacturing Sys-

tems, 53:159-168, October 2019.

Yuhang Yang, Varun A. Kelkar, Hemangg S. Rajput, Adriana C.
Salazar Coariti, Kimani C. Toussaint, and Chenhui Shao. Machine-
learning-enabled geometric compliance improvement in two-photon lithog-
raphy without hardware modifications. Journal of Manufacturing Pro-

cesses, 76:841-849, April 2022.

Sixian Jia, Jieliyue Sun, Andrew Howes, Michelle R Dawson, Kimani C
Toussaint Jr, and Chenhui Shao. Hybrid physics-guided data-driven mod-
eling for generalizable geometric accuracy prediction and improvement in
two-photon lithography. Journal of Manufacturing Processes, 110:202-210,
2024.

Andrew Townsend, Nicola Senin, Liam Blunt, RK Leach, and JS Taylor.
Surface texture metrology for metal additive manufacturing: a review. Pre-

cision Engineering, 46:34—47, October 2016.

31



625

630

640

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Xiao Zhang, Yi Zheng, Vignesh Suresh, Shaodong Wang, Qing Li, Beiwen
Li, and Hantang Qin. Correlation approach for quality assurance of additive
manufactured parts based on optical metrology. Journal of Manufacturing

Processes, 53:310-317, May 2020.

Pablo Gamonal-Repiso, Miguel Sanchez-Soto, Soledad Santos-Pinto, and
Maria Lluisa Maspoch. Improvement of the replication quality of randomly
micro-textured injection-moulding components using a multi-scale surface

analysis. Journal of Manufacturing Processes, 42:67-81, June 2019.

Ali Heidarinejad and Fakhreddin Ashrafizadeh. Influence of surface texture
and coating thickness on adhesion of nickel plated coatings to aluminium

substrate. Journal of Manufacturing Processes, 120:435-448, June 2024.

M. Roeder, S. Thiele, D. Hera, C. Pruss, T. Guenther, W. Osten, and
A. Zimmermann. Fabrication of curved diffractive optical elements by
means of laser direct writing, electroplating, and injection compression

molding. Journal of Manufacturing Processes, 47:402-409, November 2019.

Yuhang Yang, Zhigiao Dong, Yuquan Meng, and Chenhui Shao. Data-
Driven Intelligent 3D Surface Measurement in Smart Manufacturing: Re-

view and Outlook. Machines, 9(1):13, January 2021.

Chenhui Shao, Jionghua Judy Jin, and S Jack Hu. Dynamic sampling de-
sign for characterizing spatiotemporal processes in manufacturing. Journal

of Manufacturing Science and Engineering, 139(10), 2017.

Pascal Getreuer. Linear Methods for Image Interpolation. Image Processing

On Line, 1:238-259, September 2011.

Isaac Amidror. Scattered data interpolation methods for electronic imaging

systems: a survey. Journal of electronic imaging, 11(2):157-176, 2002.

Alan E. Gelfand, Peter Diggle, Peter Guttorp, and Montserrat Fuentes.
Handbook of Spatial Statistics. CRC Press, March 2010.

32



675

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes

for machine learning, volume 2. MIT press Cambridge, MA, 2006.

Jingwei Bai, Xing Zhong, Shan Jiang, Yu Huang, and Xiangfeng Duan.
Graphene nanomesh. Nature Nanotechnology, 5(3):190-194, March 2010.

Volker C. Radeloff, Todd F. Miller, Hong S. He, and David J. Mladenoff.
Periodicity in Spatial Data and Geostatistical Models: Autocorrelation be-

tween Patches. Ecography, 23(1):81-91, 2000.

Erchan Aptoula. Remote Sensing Image Retrieval With Global Morpho-
logical Texture Descriptors. IEEE Transactions on Geoscience and Remote

Sensing, 52(5):3023-3034, May 2014.

Hai Trong Nguyen, Hui Wang, and S. Jack Hu. Modeling cutter tilt and
cutter-spindle stiffness for machine condition monitoring in face milling
using high-definition surface metrology. The International Journal of Ad-

vanced Manufacturing Technology, 70(5):1323-1335, February 2014.

V. L. Zakovorotnyi and V. E. Gvindjiliya. Influence of speeds of forming
movements on the properties of geometric topology of the part in longitu-
dinal turning. Journal of Manufacturing Processes, 112:202-213, February
2024.

Woo-Jong Yeo, Hwan-Jin Choi, Minwoo Jeon, Mincheol Kim, Young-Jae
Kim, Byeong Joon Jeong, Seok-Kyeong Jeong, Jong-Gyun Kang, Dong-Ho
Lee, Geon-Hee Kim, I Jong Kim, and Wonkyun Lee. Enhancement of opti-
cal surface quality based on real-time compensation of temperature-driven
thermal errors in diamond turning. Journal of Manufacturing Processes,

110:424-433, January 2024.

Giacomo Maculotti, Giovanni Pistone, and Grazia Vicario. Inference on
errors in industrial parts: Kriging and variogram versus geometrical prod-
uct specifications standard. Applied Stochastic Models in Business and

Industry, 37(5):839-858, 2021.

33



680

685

695

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Qi Jialiang, Gao Hang, Wang Yiqi, Li Lun, and Xiao Shenglei. Research
on the surface flattening model for carbon fiber plain-woven composite
preforming processing. Journal of Manufacturing Processes, 69:223-234,

September 2021.

C. M. H. Hagen, A. Hognestad, O. @. Knudsen, and K. Sgrby. The effect
of surface roughness on corrosion resistance of machined and epoxy coated

steel. Progress in Organic Coatings, 130:17-23, May 2019.

Kodai Nagayama and Jiwang Yan. Deterministic error compensation for
slow tool servo-driven diamond turning of freeform surface with nanometric

form accuracy. Journal of Manufacturing Processes, 64:45-57, April 2021.

Bo Xue, Chunmei Yang, Yanquan Geng, and Yongda Yan. A novel fabrica-
tion of micro/nano hierarchical grating structures for structural coloration
by using revolving tip-based machining method. Journal of Manufacturing

Processes, 62:202-212, February 2021.

Tianfeng Zhou, Jia Zhou, Tianxing Wang, Liheng Gao, Benshuai Ruan,
Qian Yu, Wenxiang Zhao, and Xibin Wang. Fabrication of high aspect-ratio
aspheric microlens array based on local spiral diamond milling. Journal of

Manufacturing Processes, 83:547-554, November 2022.

Jieliyue Sun, Andrew M. Howes, Sixian Jia, Joshua A. Burrow, Pedro F.
Felzenszwalb, Michelle R. Dawson, Chenhui Shao, and Kimani C. Tous-
saint. Automated brightfield layerwise evaluation in three-dimensional mi-
cropatterning via two-photon polymerization. Opt. Express, 32(7):12508—
12519, Mar 2024.

Adrian H. A. Lutey, Gianmarco Lazzini, Laura Gemini, Alexander Peter,
Volkher Onuseit, Javier Graus, Francesco Fuso, Rainer Kling, and Luca
Romoli. Insight into replication effectiveness of laser-textured micro and
nanoscale morphology by injection molding. Journal of Manufacturing Pro-

cesses, 65:445-454, May 2021.

34



710

720

730

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Mert Gilgiir, Elaine Brown, Tim Gough, and Ben Whiteside. Character-
isation of microneedle replication and flow behaviour in ultrasonic micro-
injection moulding through design of experiments. Journal of Manufactur-

ing Processes, 102:513-527, September 2023.

Hojun Na, Jeonghyun Yoo, and Hyungson Ki. Prediction of surface mor-
phology and reflection spectrum of laser-induced periodic surface structures
using deep learning. Journal of Manufacturing Processes, 84:1274-1283,
December 2022.

Bo Mao, Arpith Siddaiah, Yiliang Liao, and Pradeep L. Menezes. Laser
surface texturing and related techniques for enhancing tribological per-
formance of engineering materials: A review. Journal of Manufacturing

Processes, 53:153-173, May 2020.

Hansong Chen, Zongbao Shen, Pin Li, and Lei Zhang. Fabrication of ho-
mogeneous multiscale microtexture surfaces on copper foil by laser shock
imprinting with two-step overlapping laser shock path. Journal of Manu-

facturing Processes, 86:10-29, January 2023.

Huimin Wang, Daxiang Deng, Zhenjie Zhai, and Yingxue Yao. Laser-
processed functional surface structures for multi-functional applications-a

review. Journal of Manufacturing Processes, 116:247-283, April 2024.

Yu Guo and Haibin Zhao. Femtosecond laser processed superhydrophobic

surface. Journal of Manufacturing Processes, 109:250-287, January 2024.

A. Fouathiya, S. Meziani, M. Sahli, and T. Barriére. Experimental inves-
tigation of microtextured cutting tool performance in titanium alloy via

turning. Journal of Manufacturing Processes, 69:33-46, September 2021.

Avik Samanta, Qinghua Wang, Gurjap Singh, Scott K. Shaw, Fatima Toor,
Albert Ratner, and Hongtao Ding. Nanosecond pulsed laser processing
turns engineering metal alloys antireflective and superwicking. Journal of

Manufacturing Processes, 54:28-37, June 2020.

35



740

755

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

Chenhui Shao, Tae Hyung Kim, S Jack Hu, Jionghua Jin, Jeffrey A Abell,
and J Patrick Spicer. Tool wear monitoring for ultrasonic metal welding of
lithium-ion batteries. Journal of Manufacturing Science and Engineering,

138(5), 2016.

Yuhang Yang and Chenhui Shao. Spatial interpolation for periodic sur-
faces in manufacturing using a bessel additive variogram model. Journal

of Manufacturing Science and Engineering, 140(6), 2018.

Holger Wendland. Scattered Data Approximation. Cambridge University
Press, December 2004.

Robert Marks. Introduction to Shannon Sampling and Interpolation The-
ory. Springer Texts in Electrical Engineering. Springer-Verlag, New York,
1991.

Robert J. Adler. Random fields and geometry. Number 115 in Springer

monographs in mathematics. Springer, New York, 2007.

Michael Scheuerer. Regularity of the sample paths of a general second order
random field. Stochastic Processes and their Applications, 120(10):1879—
1897, September 2010.

Peter J Brockwell and Richard A Davis. Time series: theory and methods.
Springer Science & Business Media, 2009.

Serge Seguret and Philippe Huchon. TrigonometricK riging: A New
Methodf or Removingt he Diurnal Variation From Geomagnetic Data.

Journal of Geophysical Research: Solid Earth, 95(B13):21383-21397, 1990.

X. F. Zhang, J. C. H. Van Eijkeren, and A. W. Heemink. On the weighted
least-squares method for fitting a semivariogram model. Computers & Geo-

sciences, 21(4):605-608, May 1995.

36



