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Abstract

Ultrasonic metal welding (UMW) is a key joining technology with widespread
industrial applications. Condition monitoring (CM) capabilities are critically
needed in UMW applications because process anomalies, such as tool degrada-
tion and workpiece surface contamination, significantly deteriorate the joining
quality. Recently, machine learning models emerged as a promising tool for CM
in many manufacturing applications. Yet, many existing models lack the gener-
alizability or adaptability and cannot be directly applied to new manufacturing
process configurations (i.e., domains). Although several domain generalization
techniques have been proposed, their successful deployment often requires sub-
stantial training data, which can be expensive and time-consuming to collect
in a single factory. Such issues may be potentially alleviated by pooling data
across factories, but data sharing raises critical data privacy concerns that have
prohibited data sharing for collaborative model training in the industry. To ad-
dress these challenges, this paper presents a Federated Domain Generalization
for Condition Monitoring (FDG-CM) framework that provides domain gener-
alization capabilities in distributed learning while ensuring data privacy. By

effectively learning a unified representation from the feature space, FDG-CM
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can adapt CM models for new clients (factories) with different process con-
figurations. To demonstrate the effectiveness of FDG-CM, we investigate two
distinct UMW CM tasks, including tool condition monitoring and workpiece sur-
face condition classification. Compared with state-of-the-art federated learning
algorithms, FDG-CM achieves a 5.35%-8.08% improvement in CM accuracy.
FDG-CM is also shown to achieve excellent performance in challenging scenar-
ios involving unbalanced data distributions and limited participating clients.
Furthermore, by implementing the FDG-CM method on an edge-cloud archi-
tecture, we show that this method is both viable and efficient in practice. The
FDG-CM framework is readily extensible to other manufacturing applications.
Keywords: Federated learning, Condition monitoring, Anomaly detection,

Ultrasonic metal welding, Domain generalization, Quality control

1. Introduction

Ultrasonic metal welding (UMW) is an advanced joining technology that uti-
lizes high-frequency oscillation shear forces to create a strong solid-state joint.
It has been used in a wide range of industrial applications, including automo-
tive body construction [1, 2] and lithium-ion battery assembly [3, 4]. Compared
to conventional fusion welding methods, UMW offers several important advan-
tages, such as reduced energy consumption, lower emissions, higher production
rates, and environmental friendliness [5]. Therefore, it is one of the promising
dissimilar metal joining techniques for sustainable manufacturing.

Despite numerous advantages, the quality of UMW joint is significantly in-
fluenced by process anomalies that may take different forms. Tool degradation
and surface contamination of workpieces are two major causes of such anomalies
in UMW [6, 7, 8]. As such, developing effective and efficient condition monitor-
ing (CM) methods to ensure the quality and reliability of UMW has attracted
in-depth research attention [6, 8]. In recent years, the application of machine
learning methods in UMW CM has yielded promising outcomes. This success

can be attributed to these models’ ability to extract and learn complex patterns
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from high-dimensional data [9, 10].

Most machine learning-based CM methods are developed under the assump-
tion that the training and test data are generated from the same manufacturing
process configuration (i.e., domain), which guarantees same or highly similar
data distributions. Nevertheless, this assumption does not always hold in the
real world. Process reconfiguration takes place rather frequently in modern
manufacturing [11]. In the industrial applications of UMW, manufacturers may
adapt an UMW machine for different joining tasks, where different materials,
welding parameters, and workpiece conditions are involved. Such process con-
figurations often lead to distinct data distributions (domains). Consequently,
the accuracy of a well-trained model substantially drops [12], leading to the
phenomenon known as domain shift. To address the domain shift issue, recent
works [12, 13] have developed CM models for UMW based on domain gen-
eralization and domain adaptation techniques. However, the success of these
techniques requires full access to raw data from diverse process configurations
(domains). Collecting such data can be both expensive and time-consuming in
manufacturing, often leaving a single company without sufficient data to cover
multiple configurations [14].

Pooling data from diverse configurations across different factories or compa-
nies, can offer a potential solution to the data availability problem [15]. How-
ever, collaborative model training through data pooling may raise significant
data privacy concerns as the resistance to data integration can occur even within
different departments of the same organization [16, 17]. To alleviate privacy con-
straints, the federated learning (FL) paradigm can be utilized, wherein models
are trained locally, and only their weights are transmitted. However, FL’s re-
striction on simultaneous access to raw data from diverse configurations, makes
it challenging to accurately learn domain-invariant features and develop well-
generalized models [18]. This dilemma can be addressed by federated domain
generalization techniques [19], which enable multiple source domains to collabo-
ratively learn a model that generalizes well to unseen domains while maintaining

data privacy.
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Generalizing federated models under domain shifts is a significant technical
challenge that has received limited attention in existing research, particularly
in the manufacturing sector [18]. To address this research gap, this paper devel-
ops an innovative Federated Domain Generalization for Condition Monitoring
(FDG-CM) framework. FDG-CM is designed to operate across two or more dis-
tinct UMW CM tasks, such as tool condition monitoring and workpiece surface
condition classification. These tasks are explored under various UMW process
configurations. FDG-CM is able to effectively transfer knowledge by learning a
generalized representation of the feature space shared across different datasets
acquired from different companies while preserving privacy. Additionally, we
introduce a new loss function to improve both the generalizability and conver-
gence of the model under varying configurations. The main contributions of this

research are summarized as follows:

1. The FDG-CM framework successfully achieves domain generalization in
the context of FL. Compared with state-of-the-art FL algorithms, our
framework exhibits superior performance, with an accuracy improvement

of 5.35%—-8.08% in new, previously unseen domains.

2. To the best of our knowledge, this research is the first to realize CM for
UMW in an FL setting. This addresses the industry-wide concerns of data
safety and data privacy, laying a foundation of large-scale collaborations

among companies that use UMW in their production.

3. To demonstrate the industrial applicability of FDG-CM, we implement it
in a real-world cyber-manufacturing environment. Running on an edge-
cloud architecture, FDG-CM proves to be both data-efficient and time-

efficient.

The remainder of this paper is organized as follows. In Section 2, the ex-
isting literature is reviewed in detail. Section 3 formulates the problem and
describes the dataset used in this study. Section 4 introduces the proposed

FDG-CM framework and Section 5 presents its implementation details. Several
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case studies are presented in Section 6 to thoroughly evaluate the effectiveness
of the FDG-CM framework. Subsequently, Section 7 provides an in-depth dis-
cussion about the learning process, implications of the findings, and directions
for future research. Finally, Section 8 concludes the paper. The developed code

is publicly available at https://github.com/AhmadrezaNia/FDG-CM.

2. Related Work and Background

2.1. Data-driven CM for UMW

Data-driven CM methods are becoming increasingly crucial in many indus-
trial applications [20, 21, 22|, such as additive manufacturing, machining, and
air brake systems [23, 24, 25, 26]. Similarly, in recent years, machine learn-
ing methods for monitoring UMW processes have also yielded promising out-
comes [8, 9, 10]. For example, Nazir and Shao [8] developed an online sensing
system and investigated several machine learning algorithms, such as logistic
regression and K-nearest neighbors, to predict tool conditions in a real-time
fashion. Wu et al. [9] utilized residual networks to predict joint quality in
UMW with sensing signals. Schwarz et al. [27] improved process monitoring of
UMW by using linear regression as well as multi-layer perceptron (MLP) regres-
sion to predict tensile shear strength. Most recently, Lu et al. [10] implemented
an MLP classifier for identifying mixed welding disturbances, focusing on tool
conditions and material surface conditions.

Despite these advances, a common challenge among most of these studies is
their limited generalization ability across varying industrial situations due to the
domain shift issue [12, 22, 28]. Ouly a few studies have aimed at addressing this
challenge for the CM of UMW processes. Tian et al. [13] introduced a neural
network (NN) model that incorporates an augmentation strategy to tackle the
issue of domain shift in CM tasks within UMW. Meng et al. [12] developed a
few-shot learning method to address the variability of configurations in anomaly
detection for UMW. Despite good performance, this model encounters difficul-

ties when there are no data available for new domains. Additionally, these
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methods presume the availability of data from diverse process configurations,
a resource typically not accessible within a single factory. Building a model
using training data across different companies, emerges as a viable solution to
overcome data constraints. However, implementation of this approach often

encounters privacy concerns, posing a significant barrier in many cases [29].

2.2. Federated learning
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Figure 1: A schematic for training process in FL regime.

In recent years, FL. has emerged as a promising solution to the challenges
of data availability and privacy in distributed learning environments [30, 31].
The FedAvg method, a widely recognized baseline introduced by McMahan et
al. [32], facilitates collaborative training across multiple data resources/clients
without sharing raw data. Figure 1 illustrates a typical FL procedure. In each
server round, the central server initially sends the model parameters to each par-
ticipating client. Subsequently, clients independently train the received model
on their local data and then transmit their local models’ parameter updates
back to the central server, which then aggregates these updates. The server
round iterates until the model meets convergence criteria or a predetermined
number of iterations is achieved.

Not all devices are available for local training at any given time. Thus, the
FedAvg algorithm assumes m available clients from a total of M per server

round, defining the ratio §; as the client fraction (C'). The total number of
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data points (N) is obtained by summing ny, the data points from each of the m

clients. FedAvg’s objective is to minimize the following optimization function:

argrrbinF(Q):%an‘Fk(@), (1)
k=1
s.t. Fy(0) = nik ij(e), (2)

where 6 represents the model parameters, Fj () is the loss function of the k-th
client, and f;(6) represents the loss of each individual data point.

To effectively utilize FedAvg, it is essential to define some key parameters:
the local learning rate (1), the number of local training epochs (FE) per client
per server round, and the local mini-batch size (B).

To enhance Fed Avg’s convergence, Li et al. (2020) [33] proposed the FedProx
method by adding a proximal term to the client loss, thereby limiting the impact

of variable local updates. The objective function of each client in FedProx is:

win hy (6: 6,) = FL(6) + 5116 — 61]1”. 3)

where y represents a parameter controlling the proximal term, and || — 6;||?
denotes the squared norm of the difference between the current model 6 and
the previous model §;. A large p may lead to slower convergence by keeping
updates near the initial point, while a small ;1 may not make any difference.
The model’s ability to generalize to new users is paramount in FL. In this
regard, Nguyen et al. (2022) [34] developed the FedL2R algorithm that incor-
porates an L2-norm regularizer (L2R) into the representation of the network to

improve the generalizability across new domains by limiting the representation’s

information capacity. Thus, the final local objective function of each client k is:

min F (6) + ol 2R 2Ry, (4)

t rL2R _ i S (n) 12 5

st L= > Iz, (5)
n=1
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where z](c") represents the model representation of a specific layer for the client

k and data point n, and o%?%

is a hyper-parameter. It was demonstrated that
in domain generalization tasks, FedL2R surpasses relevant FL baselines, such
as the federated adversarial domain generalization method introduced in [35].

The aforementioned works mainly targeted cross-device decentralized learn-
ing. Yet, existing research has underscored the value of cross-silo FL, where
fewer but resource-rich organizations like manufacturers, hospitals, and banks
serve as clients [36]. FL has recently received attention in the manufacturing
sector [37]. For instance, Ahn et al. [38] employed FL for anomaly detection
and predictive maintenance in pumps. FL methods were developed for defect
detection in metal additive manufacturing [15] and fault diagnosis in rotating
machinery [16]. Despite these advances, there is a notable lack of research on
FL for UMW. CM in UMW poses more significant challenges due to complex
process physics and limited understanding of process mechanisms. Moreover,
the presence of multiple types of anomalies complicates online monitoring [10].

While FL can address the data availability issue in CM applications by
enabling secure collaboration among data sources, its restriction on accessing
raw data can impair the effectiveness of traditional domain generalization tech-
niques in coping with the domain shift issue [37]. To address domain shift in
FL settings, a few federated domain generalization techniques have been pro-
posed, e.g., [39, 40, 41]. Kevin et al. [40] developed a federated transfer learning
method for cross-domain knowledge transfer, achieving better accuracy in target
applications with less data and time. However, this framework was not tested
on manufacturing datasets and lacked test data from entirely unseen domains.
In a separate effort, Chung et al. [41] proposed the FedEntropy framework, a
personalized FL method using flat minima, which is known to perform better on
unseen data than sharp minima, to enhance generalization. Yet, the effective-
ness of their framework in real-world scenarios is unknown, as it was evaluated
using a synthetic dataset on aircraft engine degradation.

In summary, although FL has been investigated in manufacturing applica-
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tions, methods that specifically address the domain shift in these applications,

including CM for UMW, have been limitedly studied. Moreover, effective meth-

ods using real-world test data from entirely unseen domains are generally lacking

among these studies.

3. Problem Formulation and Data Description

3.1. Problem statement

This paper investigates the domain shift problem, particularly federated do-

main generalization, in CM for UMW, under the following general assumptions.

Data privacy preservation: The raw data remains localized and is not

shared between clients and the central server.

Similar feature space across datasets: We assume the availability of at
least two datasets, each possessing a similar feature space but potentially

encompassing distinct domain spaces and classification tasks.

Data distribution heterogeneity: It is assumed that participating domains
have distinct but related data distributions. This diversity motivates the

need for domain generalization.

Common task objective: Each dataset’s domains share a common task or
objective despite their differences, and the goal is to develop a model for
each dataset that can generalize across these domains to make accurate

predictions on the common task.

Evaluation on unseen domains: The model’s performance is evaluated

based on its ability to generalize to unseen domains during testing.

Consider a scenario where data from several source domains with the same

task is available for training. The goal is to develop a model that performs well

on a different domain, known as the target domain, for the same task. In CM

for UMW, we consider different process configurations, which are characterized
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by different workpiece materials, welding parameters, etc., as different domains.
These domains share a common task, such as classifying tool conditions. The
primary goal in domain generalization is to develop a model that utilizes data
from the source domains/configurations to effectively perform the common task
on never-before-seen data from the target domain/configuration. We assume
that each client in the FL network corresponds to a company with access solely

to data from a specific configuration.

3.2. Dataset description and preprocessing

Table 1: Design of experiments for domain groups M, S, and T configurations [12].

(a) Domain group M configuration

Domain Material Welding time Data size Classification goal
AC Al-Cu 0.5s 200
cC Cu-Cu 0.9s 200 TC1, TC2, TC3, TC4
CA Cu-Al 0.5s 200
AA Al-Al 0.9s 200
(b) Domain group S configuration (¢) Domain group T configuration
Domain Data size  Classification goal Domain Data size Classification goal
Clean 90 DMGD 90
Polished 90 New, Worn, DMGD  New 90 Clean, Polished, Contam
Contam 90 Worn 90

We utilize datasets from a previous work [12] for CM of UMW. In UMW,
the joint quality is influenced by the interplay of process configurations, tool
conditions, and workpiece properties [10]. The experiments were carried out
using the Branson Ultraweld L20 ultrasonic welding machine that is equipped
with an online monitoring system. Figure A.1 in Appendix A shows data
collected by the monitoring system from four sensors: a built-in linear variable

differential transformer (LVDT), a built-in power sensor, an acoustic emission

10
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(AE) sensor, and a microphone. In these datasets, different types of materials,
tool conditions, and surface conditions are categorized into the following three
distinct groups.

Domain group M: The welding samples are generated by combining dif-
ferent materials from either 0.25 mm thick Copper (Cu) or Aluminum (Al)
sheets, each subjected to varying welding times, as detailed in Table la. Each
combination/domain comprises 200 samples, evenly distributed across four tool
conditions, serving as the classes: new horn/new anvil (TC1), new horn/worn
anvil (TC2), worn horn/new anvil (TC3), and worn horn/worn anvil (TC4).

Domain group S: In this setup, 0.20 mm Cu sheets are welded for fixed
welding time of 1.0 second. As detailed in Table 1b, different domains are char-
acterized by distinct surface conditions, including a “Clean” surface prepared
using alcoholic wipes, a “Polished” surface achieved by sandpapering the con-
tact faces, and a “Contam” (Contaminated) surface created by contaminating
the surface by cutting fluid. The objective of the S domains is to classify three
tool conditions: new horn/new anvil (New), worn horn/worn anvil (Worn), and
damaged horn/damaged anvil (DMGD). 30 samples were generated for each
combination of workpiece surface condition and tool condition, resulting in a
total of 270 samples.

Domain group T: In this domain group, the data is identical to that in
domain group S. However, the primary objective shifts to classifying the sur-
face conditions while maintaining different domains representing distinct tool
conditions, as outlined in Table 1c.

To capture high-frequency information, the monitoring system samples data
at over 200 kHz, resulting in each raw data instance containing four signals, each
exceeding 100,000 data points. To tackle the challenge of high dimensionality,
we apply discrete wavelet transformation (DWT) [5] to decompose the original
signals into 13 levels of wavelet coefficients, and 12 statistical indexes are com-
puted for each level. These indexes include entropy, zero crossing rate, mean
crossing rate, various percentiles, median, mean, standard deviation, variance,

and root mean square value. A detailed explanation of each index is avail-

11
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Figure 2: Comparison of the distribution of standard deviation at the first wavelet coefficient
level from the AE signal between (a) Domain Cu-Cu and (b) Domain Al-Cu, both from Domain
Group M. The classes represent different tool conditions: TC1 (New horn/New anvil), TC2
(New horn/Worn anvil), TC3 (Worn horn/New anvil), and TC4 (Worn horn/Worn anvil).

The distribution is estimated by kernel density estimation.

able in [5]. This approach yields a total of 624 features for each data instance.
Figure 2 compares the standard deviation at the first wavelet coeflicient level
for the AE signal between the Cu-Cu and Al-Cu domains across different tool
conditions (classes). The results show that the distribution of different tool con-
ditions in the feature space varies significantly across domains, highlighting the
domain shift issue. The observed distribution shift is primarily due to the dif-
ferences in material properties between Cu and Al, such as melting temperature
and thermal conductivity. For instance, Al has a lower melting temperature
and higher thermal conductivity than Cu, leading to distinct vibration patterns
for different material combinations [42]. These unique patterns are reflected in

the feature distributions captured by the sensors.

4. Methodology

This section presents the details of the FDG-CM framework. Specifically,
Section 4.1 elaborates on the novel approach used for aggregating model pa-
rameters. This aggregation method, along with the loss function introduced in

Section 4.2, aims to overcome the domain shift issue in FL settings and enable

12
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domain generalization capabilities for CM models.

4.1. The FDG-CM framework

In this framework, knowledge is transferred between at least two domain
groups that have the same feature space. In a typical NN-based model, differ-
ent features are extracted in different layers. The lower layers extract low-level
features that are very likely to be transferrable between heterogeneous appli-
cations [40]. For instance, in the CM of industrial processes, while there are
differences between the domains and tasks among different datasets, certain
fundamental characteristics of the processes, rooted in the underlying physics,
remain consistent. This consistency in the underlying physics and feature space
enables the learning of invariant features that can be generalized across different
domain groups. Therefore, the goal is to commonly train the initial layers across
various domain groups, to facilitate the collaborative extraction of low-level in-
formation of the common feature space. This approach not only broadens the
data pool for these shared layers but also enables them to see data from different
domain spaces.

Although the feature space across domain groups is similar, the significance
of specific features may differ between domain groups and tasks. Accordingly,
the framework is designed to yield a personalized final model for each domain
group, customizing these models to their specific tasks. To achieve this personal-
ization, the framework leverages model parameters from clients within the same
domain group to train a set of upper layers that capture domain-specific fea-
tures. These layers are then integrated with the earlier-mentioned lower layers to
construct a comprehensive NN model. This strategy of knowledge transfer and
model personalization is anticipated to significantly improve the performance of
the final models, especially in tasks requiring domain generalization.

Utilizing a shared base layer among all clients, accompanied by personalized
layers for each, has been previously implemented in the FedPer algorithm [43].
However, FedPer restricts collaboration among clients with similar tasks, as it

does not allow for the sharing of personalized layers with the server. In contrast,

13
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Figure 3: Illustration of the proposed FDG-CM structure. Note that in this framework, the
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can differ.

our approach promotes collaboration by enabling the aggregation of common
25 personalized layers among clients with identical tasks and domain groups.

For simplicity, we illustrate our framework using two CM classification tasks
with domain shift issues, though it is designed to be scalable for more tasks.
Figure 3 presents the details of implementing the FDG-CM framework on two
hypothetical datasets from domain group H and domain group F, each associ-

s0 ated with a specific task and assigned to a separate group of clients. In the
first step, the server initializes and distributes two distinct models to the two
groups of clients. Each model consists of shared base layers, depicted in green
in the accompanying figure, followed by personalized layers tailored specifically

to each dataset. For domain group H, these personalized layers are highlighted

14
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in orange, while for domain group F, they are shown in blue.

In the next step, each client trains the provided model on its local data and
returns the updated model to the server. Then, the server aggregates the base
layers from all clients while only aggregating the personalized layers from the
clients of the same domain group. The server then sends the two aggregated
models back to the clients. These steps iterate until both models converge. This
approach ensures that the base layer, learning a general data representation,
benefits from both datasets, while the personalized layers, which extract task-
specific information, are learned exclusively from their respective datasets.

In this approach, the number of base layers (K ) is considered as a hyper-
parameter, and all preceding parameters are the base parameters (). Further-
more, Kpj and K ps represent the number of personalized layers in each model,
with corresponding parameters denoted as 6p; and 0ps. The total number of
clients in each domain group is M; and Ms. Hyper-parameters, such as client
fractions (C1, C2), must be specified individually for each client set. Notably, as
the same base layer is employed for both sets of clients, a unified learning rate
(1), client epoch (E), and batch size (B) are defined for all clients to enhance

convergence. Algorithm 1 shows the details of the server and client steps.

4.2. The FDG-CM loss function

Using a shared base layer in different models that serve clients with var-
ious domains and tasks may lead to divergence issues. To counter this, we
incorporate the FedProx [33] loss term into the loss function. As mentioned in
Section 2.2, this addition effectively reduces the disparity in local updates by
penalizing changes in local parameters. Moreover, to address the domain shift
issue, we include an L2R term [34] on the output of the shared base layer(s).
The L2R term aids in learning a simpler representation from the feature space
by constraining this representation, thus improving the model’s generalization
across various domains. Consequently, the objective function of our framework
is defined as:

min F(9) + a2 - LER(9) + L0 - 0,1, (6)

15



Algorithm 1 FDG-CM Method

2:

10:

12:

14:

16:

18:

Server side:
Initialize parameters 6%, 6%, 6%,
for each server round t =1,2,... do
select random subsets my, mg with [Cy - M1] , [Cs - Ma] number of clients
Send the model 0% ' + 0%, and 0! + 6%," to the selected my and mo
clients respectively.
for each client k1 € m; in parallel do
0% (k1), 0%, (k1) < ClientUpdate(k;, 6%, 0%, ")
end for
for each client ko € mo in parallel do
0% (k2), 0%, (k2) < ClientUpdate(ks, 0% ", 05,")
end for
Np1 ¢ Y00 e
Npa < Y oy Nk
N <~ Np1 + Npo
05 %(22?:1 ny1 - 05 (k1) + 2%2:1 Nz - 0 (k2))
O0p1 < N i - 0y (K1)
b < w3 oy k2 - O (k2)

end for

Client side:
for each local epoch i =1,2,...,F do
for each mini-batch b of size B do
0+ 60—nVF(@O,Db)
end for
end for

Send the updated local model € to the server

16
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) is the output of the

where o*2% and p are hyper-parameters. Additionally, z,i”
latest base layer for client k with data point n. Combining L2R and FedProx
terms in this optimization function aims to achieve superior generalization and

enhance model convergence.

5. Implementation Details

5.1. NN architecture

Figure A.1 in Appendix A shows the designed MLP architecture with four
layers. The MLP was chosen due to its demonstrated effectiveness in the liter-
ature for CM of UMW using DWT features [5, 10, 12]. Additionally, given the
limited number of data points available at each client, the MLP architecture is
more suitable than deeper neural networks, reducing the risk of overfitting. The
model takes 624 DWT features as input, and the output layer provides the clas-
sification results for each specific dataset (4 classes for domain group M and 3
classes for domain groups S and T). For the first three hidden layers, the model
has 175, 125, and 50 neurons, respectively. The rectified linear unit is chosen as
the activation function, and the adaptive moment estimation is selected as the

solver.

5.2. Edge-cloud implementation

To emulate a manufacturing environment, we train models on single-board
computers, specifically using Raspberry Pis! due to their common use as edge
devices. Typically, multiple welding machines operate within a single factory;
thus, each Raspberry Pi can represent a factory, training models for several
welding machines. These devices, emulating companies, connect to a remote

central server via the Internet for collaborative model training. The entire

IRaspberry Pi is a trademark of Raspberry Pi Ltd

17



360

365

Client Nodes

370

375

training process is coordinated by the central server, which defines all learning
strategies, including the methods used, model hyperparameters, the selection
of participating clients, and the number of server rounds. Clients receive the
model and hyperparameters from the server, and then conduct their training
independently.

The RabbitMQ broker, a publish-subscribe system, connects the server node
and client nodes in a bi-directional manner [44]. In RabbitMQ, messages are
published to exchanges and delivered to queues based on routing rules defined
by bindings and routing keys. This decoupling of producers and consumers
enhances scalability, flexibility, and robustness. Secure connections to the Rab-
bitMQ broker require the server and clients to authenticate using a username

and password.
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Figure 4: A schematic of edge-cloud implementation for the FDG-CM method.

Figure 4 illustrates the details of message routing in our implementation.
For simplicity, we consider clients on only one Raspberry Pi—two from domain
group H and the other two from domain group F. Initially, the server publishes
two initialized models and corresponding hyperparameters as two JSON files
each tagged with a specific routing key, “Domain F” or “Domain H,” to the

broker. These routing keys are essential for the direct exchange model, labeled as
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“To clients exchange,” to route messages accurately to the corresponding client
queues. Then each client subscribes to its queue to retrieve its parameters for the
next round. After the training of the received models on their private data, each
client publishes a JSON file with their updated parameters and a topic indicating
their domain group to the “To server exchange.” This exchange is another direct
model that forwards messages to the “Server Queue.” The server subscribes
to this queue to retrieve all the updated models from all clients. The server
identifies the domain groups of retrieved messages using their topics as filters.
It then aggregates the weights as per the framework shown in Figure 3, resulting
in two updated models. These updated global models are then published to the
broker to continue the process. Note that clients, the broker, and the central

server are on separate nodes, connected through the Internet.

5.3. Hardware and software

Our setup includes four Raspberry Pi devices, each capable of running four
clients, and a server that manages and distributes messages using a RabbitMQ
broker. The server has a 12th Gen Intel(R) Core(TM) i9-12900F processor,
an NVIDIA GeForce RTX 3070 Ti 8GB GDDR6X, and 16 GB of RAM. Each
Raspberry Pi 4B model has a 4-core ARMv8 CPU and 4 GB of RAM. Network
connectivity is provided by the University of Illinois Internet. For software,
we use TensorFlow (2.10.0), Python (3.9.2), and the Raspberry Pi OS (64-bit)
based on Debian Bullseye. We use the RabbitMQ broker with the Pika (1.3.2)

library in Python for message routing between the central server and clients.

6. Case Studies

This section compares the FDG-CM method with multiple baseline methods
to demonstrate its effectiveness. Additionally, we investigate the performance
of FDG-CM under unbalanced data distributions and different client fractions.
The training efficiency of FDG-CM in a real cloud manufacturing environment

is also evaluated.
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6.1. Experimental setting

We use 5-fold cross-validation and categorical cross-entropy as the base loss
function. To assess the domain generalization of all the models, we evaluate
them on data from unseen domains. Instead of random initialization, the server
uses the “Kaiming normal” [45] to initialize the models’ weights. As explained
in Section 3, three datasets with domain groups M, S, and T are available. For
simplicity, we concentrate on the collaboration between just two datasets for
the FDG-CM method. However, we do not combine domain groups S and T, as
they represent the same data but with different domains and classes. Therefore,
we investigate the combinations of domain groups M vs. S and M vs. T.

The client distribution is as follows: One domain from each domain group is
considered the target domain, while the other domains are equally distributed
among three clients as source domains. Table A.1 in Appendix A illustrates
this for domain group M, with Al-Al as the target domain. Each of the source
domains (Al-Cu, Cu-Cu, Cu-Al) is randomly divided among three clients, with
each client receiving about 67 data points, resulting in a total of 9 clients for
domain group M. Tables A.2 and A.3 in Appendix A show a similar approach
for other domain groups (S and T), resulting in 6 training clients per group,
each with 30 data points. This distribution mirrors real-world scenarios where
each client has access to data from only one configuration. The limited data
availability and single-domain access pose significant challenges for the effective

domain generalization of the model.

Table 2: Experimental Setup for Domain M and Domain S Configurations

Domain S / Domain M Cu-Al Cu-Cu Al-Cu Al-Al Accuracy | Goal
Clean CL.CA CLCC CLLAC CLLAA Ave(CL*)
Contam Co_CA Co_CC Co_AC Co_AA Ave(Co_*)
DMGD, New, Worn
Polished P_CA P_CC P_AC P_AA Ave(P_*)
Accuracy Ave(*_.CA) Ave(*_CC) Ave(*_AC) Ave(*_AA)
Goal N-N, W-N, N-W, W-W

In all experiments, the same NN model presented in Section 5.1 serves as
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Table 3: Experimental Setup for Domain M and Domain T Configurations

Domain T / Domain M Cu-Al Cu-Cu Al-Cu Al-Al Accuracy | Goal
DMGD D_CA D_CC D_AC D_AA Ave(D_*)
New N_CA N_CC N_AC N_AA Ave(N_*)
Clean, Contam, Polished
Worn W_CA w_.CC W_AC W_AA Ave(W_*)
Accuracy Ave(*_CA) Ave(*_CC) Ave(*_AC) Ave(*_AA)
Goal N-N, W-N, N-W, W-W

the basis for all training paradigms. To address the randomness in NN models,
all experiments are repeated 5 times. We report the accuracy of the proposed
method for each configuration, treating it as the target for one dataset and
considering all possible target domain combinations for the other dataset, as
depicted in Tables 2 and 3. For instance, in training domain group M vs. do-
main group T, to report the accuracy for the Al-Al as the target in domain
group M, we conduct the experiment three times. Each time involves selecting
a different configuration as the target domain in domain group T. This approach
ensures a thorough evaluation of the FDG-CM method across a range of domain
configurations. Consequently, for the Al-Al target in domain group M, each of
the three target domain combinations from domain group T is tested five times,
resulting in a total of 15 accuracy measurements. The reported accuracy repre-
sents the average and standard deviation of these tests. This is achieved by first
calculating the mean and standard deviation for each of the three combinations
separately, and then averaging these means and standard deviations across all
three combinations. This process ensures a comprehensive and accurate reflec-
tion of the model’s performance for the never-before-seen target.

We use random search to tune hyper-parameter values, exclusively based on
the validation set from source domains, ensuring no data leakage from the target
domain. This protocol facilitates a fair comparison among the methods [46].
The hyper-parameters for the FDG-CM method are set identically across both
domain group combinations. Following this protocol, the first layer is selected
as the base layer, with the next three layers designated as personalized layers.

The mini-batch size is set to 8, and the learning rate to 0.0005, with one epoch
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selected for local training. Additionally, the proximal term and L2 regularization
hyperparameters are determined to be 0.01 and 0.001, respectively. 150 server
rounds are used for all experiments, as convergence for all clients is achieved
within this number. Details on the hyperparameters for other models will be

provided in their respective sections.

6.2. Performance comparison with other learning paradigms

This section aims to assess the domain generalization capability of the FDG-
CM model in CM tasks for UMW. We compare FDG-CM with centralized
learning (CL), individual learning (IL), and centralized transfer learning (CTL).
In CL, data from all clients is combined for training, while in IL, each client uses
only their own data. Given that FDG-CM involves knowledge transfer between
datasets, we also study CTL, where the model is initially trained on one dataset
and, after freezing the base layers (first layer in this case), it is fine-tuned with
another dataset. In this study, the average performance of all clients trained
individually is used to indicate the performance of IL. To ensure consistency, the
same target data are employed across all models: IL, CL, CTL, and FDG-CM.
These models are configured with a batch size of 8 and a learning rate of 0.0005.

Each model underwent training for a total of 150 epochs.

6.2.1. Domain group M vs. domain group S
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Figure 5: Performance comparison with IL, CL, and CTL for domain groups M vs. S: (a)
tool classification accuracy for different material targets and (b) tool classification accuracy

for different surface targets.
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470 In this case study, we consider a collaboration between domain group M, with
4 material configurations, and domain group S, with 3 surface configurations.
Selecting one configuration from each dataset as the target domain results in 12
different combinations, as depicted in Table 2. The task for both datasets is the
tool condition classification, with domain group M having 4 classes and domain

a5 group S having 3 classes. Figure 5 shows that the FDG-CM method surpasses
both IL and CL in nearly all instances, with an average improvement of 20.82%
and 4.72%, respectively. Additionally, the FDG-CM method outperforms the
CTL model by an average of 3.08%.

6.2.2. Domain group M vs. domain group T
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Figure 6: Performance comparison with IL, CL, and CTL for domain groups M vs. T: (a) tool
classification accuracy for different material targets and (b) surface classification accuracy for

different tool targets.

480 Table 3 shows the details of the collaboration between domain groups M and
T. In this case study, the task in domain group M, which is tool condition classifi-
cation, is completely different from the task in domain group T, which is surface
condition classification. Figure 6 shows the comparative results, demonstrating
that the FDG-CM method surpasses both IL and CL in all instances, with av-

w5 erage improvements of 20.85% and 6.16%, respectively. Notably, in most cases,
our method exhibits less variation in performance, suggesting enhanced robust-
ness compared to these two paradigms. Furthermore, on average, the FDG-CM

method outperforms the CTL paradigm with an improvement of 4.60%. This
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improvement shows the FDG-CM method’s effectiveness in transferring knowl-

edge among clients working on two distinct CM tasks.

6.3. Performance comparison with other FL methods

This section compares FDG-CM with state-of-the-art FL models including
FedAvg, FedProx, and FedL.2R. These FL methods use the same client distri-

bution as mentioned previously for a consistent comparison. A batch size of 8

and a learning rate of 0.0005 are chosen for these three models. Additionally,

for FedProx, the proximal term is set to 0.1, and for FedL2R, the regularization

term is 0.01. All these models iterate for 150 server rounds.
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Figure 7: Performance comparison with other FL methods for domain groups M vs. S: (a)

tool classification accuracy for different material targets and (b) tool classification accuracy

for different surface targets.
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Figures 7 and 8 present the comparative results for domain groups M vs. S

and M vs. T, respectively. It is seen that FDG-CM outperforms FedAvg, Fed-

so Prox, and FedL2R with average improvements of 8.08%, 7.19%, and 5.35%,
respectively. It is worth noting that FDG-CM outperforms Fed.2R, which is
considered as a state-of-the-art domain generalization FL method, by a signifi-

cant margin.

6.4. Performance comparison between balanced and unbalanced data distribution

505 This section further mimics industrial scenarios by introducing unbalanced
data distributions among clients, which is a significant challenge in FL perfor-
mance. We investigate how the FDG-CM model copes with this challenge using
the domain groups M and S combination. To create an unbalanced distribution,
we assign 30, 60, and 110 data points to the three clients of each training do-

s main in domain group M, and 15, 25, and 50 data points to the clients in each
training domain of domain group S. This aims to replicate a near-worst-case

scenario in industrial settings.
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Figure 9: Balanced vs unbalanced performance comparison for the FDG-CM model in domain
groups S vs M combinations: (a) tool classification accuracy for different material targets and

(b) surface classification accuracy for different tool targets.

Figure 9a shows that the accuracy of the FDG-CM model under unbalanced
distribution is similar to that of the balanced distribution, with less than a 2.05%
sis  drop, indicating robust performance for domain group M. However, Figure 9b

shows that in domain group S, while the accuracy drops for the clean and
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polished domains are negligible, the Contam domain exhibits a significant drop

of 7.17%.

6.5. Performance comparison for different client fractions

To evaluate the data efficiency of FDG-CM, the effect of varying client frac-
tions on the training of the model is examined. For this purpose, we select a
combination of domain groups M and S to conduct our investigation. In each
server round, 1, 2, and all 3 clients in each source domain are randomly selected.
This results in collaborations involving 3, 6, and 9 clients from domain group M,
as well as 2, 4, and 6 clients from domain group S to represent client fractions

of 1/3, 2/3, and 1, respectively.

100

| | 3 c=13
. 3 3 3 $ c=23
& 901 | [ I | § c=1
IR
Wi | | ﬁ
5] 1 1 1
< . : :
3 : : :
e E | .
60 L— ‘ — — .
Cu-Al Cu-Cu Al-Cu A-Al

Target Domain

Figure 10: The FDG-CM’s accuracy results for various material target domains in domain

groups S vs M combination with different client fractions (C).

Figure 10 shows that within domain group M, FDG-CM’s performance im-
proves as the number of participating clients increases. This improvement is
due to the larger and more diverse dataset available for training the model,
consequently boosting model performance. Notably, the performance of the
FDG-CM method with a client fraction of 1/3 is comparable to that of other

baseline FL. methods with a client fraction of 1, and even the CL method.

6.6. Comparative time analysis of FL methodologies

Given that the FDG-CM method develops at least two personalized models

during the training phase, evaluating its time efficiency is essential. We select
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the combination of domain groups M and S for this purpose. The aim is to
compare the time efficiency of the FDG-CM model with that of single-dataset
FL frameworks, including FedAvg, FedProx, and a combination of FedL.2R with
FedProx, which employs a similar loss function to that of the FDG-CM method.
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Figure 11: Time consumption for different FL models including FedAvg, FedProx, FedProx
with L2R, and the FDG-CM Model for training two models for domain groups S and M.

We implement the edge-cloud architecture presented in Section 5.2. The time
measurement is done from the moment the central server begins distributing the
initial weights to clients until the completion of 10 server rounds, with a client
fraction of C' = 1. It is important to note that the proposed model outputs two
distinct models, one for each of the domain groups M and S, whereas traditional
single-dataset FL frameworks would output only one model for either domain
groups M or S. Figure 11 compares the time consumption of different FL. models.
It shows that our proposed framework is less time-consuming compared to other

FL approaches for training two separate models.
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7. Discussion

7.1. CM performance

The results reported in Sections 6.2 and 6.3 lead to several important find-
ings. First, individual clients do not have sufficient data to train their mod-
els effectively. This is shown by the significantly lower performance in CM
for IL compared to the collaborative methods (CL, CTL, or any FL) used in
this study. Second, the FDG-CM can solve the domain shift issue in CM by
learning a shared, simplified representation across various domain spaces and
using the proposed new loss function. This is evident by Figures 5-8, which
show the FDG-CM’s performance generally exceeds the performance of other
FL paradigms, IL, and CL. Third, a comparison between CTL and the proposed
method, as shown in Figures 5 and 6, shows that the FDG-CM surpasses CTL
in most cases. This observation reveals that the enhancement in domain gener-
alization by the proposed method is not solely due to the transfer of knowledge
between datasets. The manner of this knowledge transfer and the application
of generalization techniques, such as the L2R loss, play crucial roles as well.

Additionally, we evaluate the proposed method under unbalanced data dis-
tribution, which is a key challenge in FL settings. Figure 9 shows that FDG-CM
yields similar results in both balanced and unbalanced data conditions in most
cases. The decrease in accuracy for the Contam domain under unbalanced con-
ditions, as shown in Figure 9b, might be attributed to the specific characteristics
of the contaminated surface, such as the presence of oil drops, which introduce
a wide range of variability. This agrees with previous studies [12], which found
CM tasks under contaminated surface conditions to be more challenging. The
model’s increased sensitivity to unbalanced conditions could also be a potential
reason for this drop in accuracy. Moreover, the limited number of data points
available to some clients in domain group S, potentially as few as 15, may fur-
ther affect the model’s performance. However, it is important to note that the
unbalanced accuracy for the Contam domain in domain group S still exceeds the

performance of IL, CL, CTL, and other FL models under balanced conditions,
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as evidenced by comparing Figure 9b with Figures 5b and 7b.

7.2. Training efficiency

The efficiency of the proposed model is evaluated in terms of data and time
efficiency. For data efficiency, Figure 10 shows that engaging more clients leads
to improved performance, as the FL. model is trained on a larger dataset. Com-
paring the performance with one-third of clients in Figure 10 to Figure 5 re-
veals that even limited collaboration among clients, one client from each source
domain, significantly boosts the accuracy of models over IL. Moreover, this
minimum of collaboration yields results comparable to those achieved by CL.

Additionally, comparing Figures 7 and 10 shows that the FDG-CM frame-
work with a client fraction of 1/3, yields results that are comparable to or better
than other FL approaches with a client fraction of 1. This suggests that FDG-
CM, using only two clients from domain group S (60 data points) and three
clients from domain group M (200 data points), can outperform state-of-the-art
FL methods that use all 600 data points from domain group M. This improve-
ment is likely due to efficient representation learning between clients across both
datasets.

Figure 11 shows that our framework is more time-efficient in training models
compared to traditional FL frameworks. For instance, the FedAvg framework,
considered the simplest FL model, requires over 20% more training time. When
using an FL framework with the same loss function as FDG-CM, the extra time
needed increases to over 50%. Notably, within the single-dataset frameworks
for domain groups M and S, there are 9 and 6 clients running on 3 and 2 edge
devices, respectively. By combining these two groups of clients, the FDG-CM
method includes a total of 15 clients implemented on 4 edge devices, which can
raise the latency in the edge-cloud implementation. Despite this, FDG-CM is
more time-efficient overall. Additionally, the training time for 10 server rounds
is under two minutes, which is reasonable for industrial implementation.

Figure A.2 in Appendix A illustrates the convergence of the FDG-CM frame-

work with and without the FedProx term. The FedProx term, designed to reduce
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local parameter disparities, significantly enhances the stability of convergence.
As depicted in the figure, the model without the FedProx term exhibits consider-
able fluctuations and requires more time to converge, if it converges at all. This
shows that using the FedProx term improves the overall training efficiency of the
FDG-CM framework by stabilizing and accelerating the convergence process.
Based on these observations, the FDG-CM framework is both data-efficient
and time-efficient. This combination makes it an effective solution for real-world

manufacturing FL applications.

7.3. Limitations and future work

Our study highlights the importance of both data volume and integration
approaches in the FL paradigm within industrial settings. It also emphasizes
the need for additional model optimization to improve its ability to handle
unbalanced data distributions, particularly in complex scenarios like the Con-
tam domain. Future research should focus on adaptive learning strategies or
domain-specific adjustments to address these challenges and enhance overall
model effectiveness.

Additionally, our approach to privacy is foundational, serving as a solid base
for further enhancements. FL clients face various security threats, such as data
poisoning, model evasion, and data inference attacks, which could originate from
either participating clients or a malicious server. In the field of FL, techniques
such as differential privacy and homomorphic encryption are discussed for pro-
tecting client data. These methods for enhancing privacy should be examined
and incorporated into our framework. Implementing these security measures
would not only enhance data protection but also increase the trustworthiness

and practicality of the FL paradigm in industrial settings.

8. Conclusion

The ever-changing and varied configurations in modern manufacturing, com-

bined with limited data availability, have posed a significant challenge of domain

30



640

645

650

655

660

shift in applying machine learning, especially in CM. To address this challenge,
this paper presents a novel FDG-CM framework, enhancing domain generaliza-
tion capabilities in FL. By learning a unified representation from the feature
space, FDG-CM can adapt CM models for clients in distinct domain groups.
Implementations on real-world UMW datasets demonstrate that FDG-CM out-
performs other learning paradigms and state-of-the-art FL. methods. Compared
with baseline FL algorithms, FDG-CM shows a 5.35%-8.08% improvement in
accuracy for domain generalization tasks. FDG-CM also achieves excellent per-
formance in challenging scenarios involving unbalanced data distributions and
limited client fractions. Moreover, the FDG-CM method is implemented on an
edge-cloud architecture, showing both viability and efficiency in practice. No-
tably, the FDG-CM framework is readily extensible to various other industrial
applications where challenges of data availability and data privacy are present

simultaneously.

Acknowledgments

This research has been supported by the National Science Foundation under

Grant Nos. 1944345, 2433484, and 2126246.

CRediT authorship contribution statement

Ahmadreza Eslaminia: Conceptualization, Methodology, Software, For-
mal analysis, Investigation, Validation, Visualization, Writing — original draft,
Writing — review & editing. Yuquan Meng: Conceptualization, Formal analy-
sis, Investigation, Data curation, Visualization, Writing — original draft, Writing
— review & editing. Klara Nahrstedt: Conceptualization, Methodology, Re-
sources, Investigation, Visualization, Writing — original draft, Writing — review
& editing, Supervision, Project administration, Funding acquisition. Chen-
hui Shao: Conceptualization, Methodology, Resources, Investigation, Visu-
alization, Writing — original draft, Writing — review & editing, Supervision,

Project administration, Funding acquisition.

31



o5 Appendix A.

Table A.1: Domain group M client distribution in case of taking Al-Al as target domain (N
(New) - W (Worn))

Domains/Classes TC1 (N-N) TC2 (N-W) TC3 (W-N) TC4 (W-N)

Al-Al Target Domains

Al-Cu 200 data points in 3 training clients (about 67 each)
Cu-Cu 200 data points in 3 training clients (about 67 each)
Cu-Al 200 data points in 3 training clients (about 67 each)

Table A.2: Domain group S client distribution in case of taking clean as target domain

Domain/Classes DMGD New Worn

Clean Target domain

Contam 90 data points in 3 training clients (30 each)
Polished 90 data points in 3 training clients (30 each)

Table A.3: Domain group T client distribution in case of taking DMGD as target domain

Domain/Classes Clean Contam Polished
DMGD Target domain

New 90 data points in 3 training clients (30 each)
Worn 90 data points in 3 training clients (30 each)
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