
Federated Domain Generalization for Condition
Monitoring in Ultrasonic Metal Welding

Ahmadreza Eslaminiaa,b, Yuquan Menga, Klara Nahrstedtb, Chenhui Shaoa,c,∗

aDepartment of Mechanical Science and Engineering, University of Illinois at
Urbana-Champaign, Urbana, IL 61801, USA

bCoordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL
61801, USA

cDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109,
USA

Abstract

Ultrasonic metal welding (UMW) is a key joining technology with widespread

industrial applications. Condition monitoring (CM) capabilities are critically

needed in UMW applications because process anomalies, such as tool degrada-

tion and workpiece surface contamination, significantly deteriorate the joining

quality. Recently, machine learning models emerged as a promising tool for CM

in many manufacturing applications. Yet, many existing models lack the gener-

alizability or adaptability and cannot be directly applied to new manufacturing

process configurations (i.e., domains). Although several domain generalization

techniques have been proposed, their successful deployment often requires sub-

stantial training data, which can be expensive and time-consuming to collect

in a single factory. Such issues may be potentially alleviated by pooling data

across factories, but data sharing raises critical data privacy concerns that have

prohibited data sharing for collaborative model training in the industry. To ad-

dress these challenges, this paper presents a Federated Domain Generalization

for Condition Monitoring (FDG-CM) framework that provides domain gener-

alization capabilities in distributed learning while ensuring data privacy. By

effectively learning a unified representation from the feature space, FDG-CM
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can adapt CM models for new clients (factories) with different process con-

figurations. To demonstrate the effectiveness of FDG-CM, we investigate two

distinct UMWCM tasks, including tool condition monitoring and workpiece sur-

face condition classification. Compared with state-of-the-art federated learning

algorithms, FDG-CM achieves a 5.35%–8.08% improvement in CM accuracy.

FDG-CM is also shown to achieve excellent performance in challenging scenar-

ios involving unbalanced data distributions and limited participating clients.

Furthermore, by implementing the FDG-CM method on an edge-cloud archi-

tecture, we show that this method is both viable and efficient in practice. The

FDG-CM framework is readily extensible to other manufacturing applications.

Keywords: Federated learning, Condition monitoring, Anomaly detection,

Ultrasonic metal welding, Domain generalization, Quality control

1. Introduction

Ultrasonic metal welding (UMW) is an advanced joining technology that uti-

lizes high-frequency oscillation shear forces to create a strong solid-state joint.

It has been used in a wide range of industrial applications, including automo-

tive body construction [1, 2] and lithium-ion battery assembly [3, 4]. Compared5

to conventional fusion welding methods, UMW offers several important advan-

tages, such as reduced energy consumption, lower emissions, higher production

rates, and environmental friendliness [5]. Therefore, it is one of the promising

dissimilar metal joining techniques for sustainable manufacturing.

Despite numerous advantages, the quality of UMW joint is significantly in-10

fluenced by process anomalies that may take different forms. Tool degradation

and surface contamination of workpieces are two major causes of such anomalies

in UMW [6, 7, 8]. As such, developing effective and efficient condition monitor-

ing (CM) methods to ensure the quality and reliability of UMW has attracted

in-depth research attention [6, 8]. In recent years, the application of machine15

learning methods in UMW CM has yielded promising outcomes. This success

can be attributed to these models’ ability to extract and learn complex patterns
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from high-dimensional data [9, 10].

Most machine learning-based CM methods are developed under the assump-

tion that the training and test data are generated from the same manufacturing20

process configuration (i.e., domain), which guarantees same or highly similar

data distributions. Nevertheless, this assumption does not always hold in the

real world. Process reconfiguration takes place rather frequently in modern

manufacturing [11]. In the industrial applications of UMW, manufacturers may

adapt an UMW machine for different joining tasks, where different materials,25

welding parameters, and workpiece conditions are involved. Such process con-

figurations often lead to distinct data distributions (domains). Consequently,

the accuracy of a well-trained model substantially drops [12], leading to the

phenomenon known as domain shift. To address the domain shift issue, recent

works [12, 13] have developed CM models for UMW based on domain gen-30

eralization and domain adaptation techniques. However, the success of these

techniques requires full access to raw data from diverse process configurations

(domains). Collecting such data can be both expensive and time-consuming in

manufacturing, often leaving a single company without sufficient data to cover

multiple configurations [14].35

Pooling data from diverse configurations across different factories or compa-

nies, can offer a potential solution to the data availability problem [15]. How-

ever, collaborative model training through data pooling may raise significant

data privacy concerns as the resistance to data integration can occur even within

different departments of the same organization [16, 17]. To alleviate privacy con-40

straints, the federated learning (FL) paradigm can be utilized, wherein models

are trained locally, and only their weights are transmitted. However, FL’s re-

striction on simultaneous access to raw data from diverse configurations, makes

it challenging to accurately learn domain-invariant features and develop well-

generalized models [18]. This dilemma can be addressed by federated domain45

generalization techniques [19], which enable multiple source domains to collabo-

ratively learn a model that generalizes well to unseen domains while maintaining

data privacy.
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Generalizing federated models under domain shifts is a significant technical

challenge that has received limited attention in existing research, particularly50

in the manufacturing sector [18]. To address this research gap, this paper devel-

ops an innovative Federated Domain Generalization for Condition Monitoring

(FDG-CM) framework. FDG-CM is designed to operate across two or more dis-

tinct UMW CM tasks, such as tool condition monitoring and workpiece surface

condition classification. These tasks are explored under various UMW process55

configurations. FDG-CM is able to effectively transfer knowledge by learning a

generalized representation of the feature space shared across different datasets

acquired from different companies while preserving privacy. Additionally, we

introduce a new loss function to improve both the generalizability and conver-

gence of the model under varying configurations. The main contributions of this60

research are summarized as follows:

1. The FDG-CM framework successfully achieves domain generalization in

the context of FL. Compared with state-of-the-art FL algorithms, our

framework exhibits superior performance, with an accuracy improvement

of 5.35%–8.08% in new, previously unseen domains.65

2. To the best of our knowledge, this research is the first to realize CM for

UMW in an FL setting. This addresses the industry-wide concerns of data

safety and data privacy, laying a foundation of large-scale collaborations

among companies that use UMW in their production.

3. To demonstrate the industrial applicability of FDG-CM, we implement it70

in a real-world cyber-manufacturing environment. Running on an edge-

cloud architecture, FDG-CM proves to be both data-efficient and time-

efficient.

The remainder of this paper is organized as follows. In Section 2, the ex-

isting literature is reviewed in detail. Section 3 formulates the problem and75

describes the dataset used in this study. Section 4 introduces the proposed

FDG-CM framework and Section 5 presents its implementation details. Several
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case studies are presented in Section 6 to thoroughly evaluate the effectiveness

of the FDG-CM framework. Subsequently, Section 7 provides an in-depth dis-

cussion about the learning process, implications of the findings, and directions80

for future research. Finally, Section 8 concludes the paper. The developed code

is publicly available at https://github.com/AhmadrezaNia/FDG-CM.

2. Related Work and Background

2.1. Data-driven CM for UMW

Data-driven CM methods are becoming increasingly crucial in many indus-85

trial applications [20, 21, 22], such as additive manufacturing, machining, and

air brake systems [23, 24, 25, 26]. Similarly, in recent years, machine learn-

ing methods for monitoring UMW processes have also yielded promising out-

comes [8, 9, 10]. For example, Nazir and Shao [8] developed an online sensing

system and investigated several machine learning algorithms, such as logistic90

regression and K-nearest neighbors, to predict tool conditions in a real-time

fashion. Wu et al. [9] utilized residual networks to predict joint quality in

UMW with sensing signals. Schwarz et al. [27] improved process monitoring of

UMW by using linear regression as well as multi-layer perceptron (MLP) regres-

sion to predict tensile shear strength. Most recently, Lu et al. [10] implemented95

an MLP classifier for identifying mixed welding disturbances, focusing on tool

conditions and material surface conditions.

Despite these advances, a common challenge among most of these studies is

their limited generalization ability across varying industrial situations due to the

domain shift issue [12, 22, 28]. Only a few studies have aimed at addressing this100

challenge for the CM of UMW processes. Tian et al. [13] introduced a neural

network (NN) model that incorporates an augmentation strategy to tackle the

issue of domain shift in CM tasks within UMW. Meng et al. [12] developed a

few-shot learning method to address the variability of configurations in anomaly

detection for UMW. Despite good performance, this model encounters difficul-105

ties when there are no data available for new domains. Additionally, these
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methods presume the availability of data from diverse process configurations,

a resource typically not accessible within a single factory. Building a model

using training data across different companies, emerges as a viable solution to

overcome data constraints. However, implementation of this approach often110

encounters privacy concerns, posing a significant barrier in many cases [29].

2.2. Federated learning

Figure 1: A schematic for training process in FL regime.

In recent years, FL has emerged as a promising solution to the challenges

of data availability and privacy in distributed learning environments [30, 31].

The FedAvg method, a widely recognized baseline introduced by McMahan et115

al. [32], facilitates collaborative training across multiple data resources/clients

without sharing raw data. Figure 1 illustrates a typical FL procedure. In each

server round, the central server initially sends the model parameters to each par-

ticipating client. Subsequently, clients independently train the received model

on their local data and then transmit their local models’ parameter updates120

back to the central server, which then aggregates these updates. The server

round iterates until the model meets convergence criteria or a predetermined

number of iterations is achieved.

Not all devices are available for local training at any given time. Thus, the

FedAvg algorithm assumes m available clients from a total of M per server125

round, defining the ratio m
M as the client fraction (C). The total number of
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data points (N) is obtained by summing nk, the data points from each of the m

clients. FedAvg’s objective is to minimize the following optimization function:

argmin
θ

F (θ) =
1

N

m∑
k=1

nk · Fk(θ), (1)

s.t. Fk(θ) =
1

nk

nk∑
j=1

fj(θ), (2)

where θ represents the model parameters, Fk(θ) is the loss function of the k-th

client, and fj(θ) represents the loss of each individual data point.130

To effectively utilize FedAvg, it is essential to define some key parameters:

the local learning rate (η), the number of local training epochs (E) per client

per server round, and the local mini-batch size (B).

To enhance FedAvg’s convergence, Li et al. (2020) [33] proposed the FedProx

method by adding a proximal term to the client loss, thereby limiting the impact135

of variable local updates. The objective function of each client in FedProx is:

min
θ

hk(θ; θt) = Fk(θ) +
µ

2
∥θ − θt∥2, (3)

where µ represents a parameter controlling the proximal term, and ∥θ − θt∥2

denotes the squared norm of the difference between the current model θ and

the previous model θt. A large µ may lead to slower convergence by keeping

updates near the initial point, while a small µ may not make any difference.140

The model’s ability to generalize to new users is paramount in FL. In this

regard, Nguyen et al. (2022) [34] developed the FedL2R algorithm that incor-

porates an L2-norm regularizer (L2R) into the representation of the network to

improve the generalizability across new domains by limiting the representation’s

information capacity. Thus, the final local objective function of each client k is:145

min
θ

Fk(θ) + αL2R · LL2R
k (θ), (4)

s.t. LL2R
k =

1

nk

nk∑
n=1

∥z(n)k ∥
2
2, (5)
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where z
(n)
k represents the model representation of a specific layer for the client

k and data point n, and αL2R is a hyper-parameter. It was demonstrated that

in domain generalization tasks, FedL2R surpasses relevant FL baselines, such

as the federated adversarial domain generalization method introduced in [35].

The aforementioned works mainly targeted cross-device decentralized learn-150

ing. Yet, existing research has underscored the value of cross-silo FL, where

fewer but resource-rich organizations like manufacturers, hospitals, and banks

serve as clients [36]. FL has recently received attention in the manufacturing

sector [37]. For instance, Ahn et al. [38] employed FL for anomaly detection

and predictive maintenance in pumps. FL methods were developed for defect155

detection in metal additive manufacturing [15] and fault diagnosis in rotating

machinery [16]. Despite these advances, there is a notable lack of research on

FL for UMW. CM in UMW poses more significant challenges due to complex

process physics and limited understanding of process mechanisms. Moreover,

the presence of multiple types of anomalies complicates online monitoring [10].160

While FL can address the data availability issue in CM applications by

enabling secure collaboration among data sources, its restriction on accessing

raw data can impair the effectiveness of traditional domain generalization tech-

niques in coping with the domain shift issue [37]. To address domain shift in

FL settings, a few federated domain generalization techniques have been pro-165

posed, e.g., [39, 40, 41]. Kevin et al. [40] developed a federated transfer learning

method for cross-domain knowledge transfer, achieving better accuracy in target

applications with less data and time. However, this framework was not tested

on manufacturing datasets and lacked test data from entirely unseen domains.

In a separate effort, Chung et al. [41] proposed the FedEntropy framework, a170

personalized FL method using flat minima, which is known to perform better on

unseen data than sharp minima, to enhance generalization. Yet, the effective-

ness of their framework in real-world scenarios is unknown, as it was evaluated

using a synthetic dataset on aircraft engine degradation.

In summary, although FL has been investigated in manufacturing applica-175
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tions, methods that specifically address the domain shift in these applications,

including CM for UMW, have been limitedly studied. Moreover, effective meth-

ods using real-world test data from entirely unseen domains are generally lacking

among these studies.

3. Problem Formulation and Data Description180

3.1. Problem statement

This paper investigates the domain shift problem, particularly federated do-

main generalization, in CM for UMW, under the following general assumptions.

• Data privacy preservation: The raw data remains localized and is not

shared between clients and the central server.185

• Similar feature space across datasets: We assume the availability of at

least two datasets, each possessing a similar feature space but potentially

encompassing distinct domain spaces and classification tasks.

• Data distribution heterogeneity: It is assumed that participating domains

have distinct but related data distributions. This diversity motivates the190

need for domain generalization.

• Common task objective: Each dataset’s domains share a common task or

objective despite their differences, and the goal is to develop a model for

each dataset that can generalize across these domains to make accurate

predictions on the common task.195

• Evaluation on unseen domains: The model’s performance is evaluated

based on its ability to generalize to unseen domains during testing.

Consider a scenario where data from several source domains with the same

task is available for training. The goal is to develop a model that performs well

on a different domain, known as the target domain, for the same task. In CM200

for UMW, we consider different process configurations, which are characterized
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by different workpiece materials, welding parameters, etc., as different domains.

These domains share a common task, such as classifying tool conditions. The

primary goal in domain generalization is to develop a model that utilizes data

from the source domains/configurations to effectively perform the common task205

on never-before-seen data from the target domain/configuration. We assume

that each client in the FL network corresponds to a company with access solely

to data from a specific configuration.

3.2. Dataset description and preprocessing

Table 1: Design of experiments for domain groups M, S, and T configurations [12].

(a) Domain group M configuration

Domain Material Welding time Data size Classification goal

AC Al-Cu 0.5 s 200

CC Cu-Cu 0.9 s 200 TC1, TC2, TC3, TC4

CA Cu-Al 0.5 s 200

AA Al-Al 0.9 s 200

(b) Domain group S configuration

Domain Data size Classification goal

Clean 90

Polished 90 New, Worn, DMGD

Contam 90

(c) Domain group T configuration

Domain Data size Classification goal

DMGD 90

New 90 Clean, Polished, Contam

Worn 90

We utilize datasets from a previous work [12] for CM of UMW. In UMW,210

the joint quality is influenced by the interplay of process configurations, tool

conditions, and workpiece properties [10]. The experiments were carried out

using the Branson Ultraweld L20 ultrasonic welding machine that is equipped

with an online monitoring system. Figure A.1 in Appendix A shows data

collected by the monitoring system from four sensors: a built-in linear variable215

differential transformer (LVDT), a built-in power sensor, an acoustic emission
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(AE) sensor, and a microphone. In these datasets, different types of materials,

tool conditions, and surface conditions are categorized into the following three

distinct groups.

Domain group M: The welding samples are generated by combining dif-220

ferent materials from either 0.25 mm thick Copper (Cu) or Aluminum (Al)

sheets, each subjected to varying welding times, as detailed in Table 1a. Each

combination/domain comprises 200 samples, evenly distributed across four tool

conditions, serving as the classes: new horn/new anvil (TC1), new horn/worn

anvil (TC2), worn horn/new anvil (TC3), and worn horn/worn anvil (TC4).225

Domain group S: In this setup, 0.20 mm Cu sheets are welded for fixed

welding time of 1.0 second. As detailed in Table 1b, different domains are char-

acterized by distinct surface conditions, including a “Clean” surface prepared

using alcoholic wipes, a “Polished” surface achieved by sandpapering the con-

tact faces, and a “Contam” (Contaminated) surface created by contaminating230

the surface by cutting fluid. The objective of the S domains is to classify three

tool conditions: new horn/new anvil (New), worn horn/worn anvil (Worn), and

damaged horn/damaged anvil (DMGD). 30 samples were generated for each

combination of workpiece surface condition and tool condition, resulting in a

total of 270 samples.235

Domain group T: In this domain group, the data is identical to that in

domain group S. However, the primary objective shifts to classifying the sur-

face conditions while maintaining different domains representing distinct tool

conditions, as outlined in Table 1c.

To capture high-frequency information, the monitoring system samples data240

at over 200 kHz, resulting in each raw data instance containing four signals, each

exceeding 100,000 data points. To tackle the challenge of high dimensionality,

we apply discrete wavelet transformation (DWT) [5] to decompose the original

signals into 13 levels of wavelet coefficients, and 12 statistical indexes are com-

puted for each level. These indexes include entropy, zero crossing rate, mean245

crossing rate, various percentiles, median, mean, standard deviation, variance,

and root mean square value. A detailed explanation of each index is avail-
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Figure 2: Comparison of the distribution of standard deviation at the first wavelet coefficient

level from the AE signal between (a) Domain Cu-Cu and (b) Domain Al-Cu, both from Domain

Group M. The classes represent different tool conditions: TC1 (New horn/New anvil), TC2

(New horn/Worn anvil), TC3 (Worn horn/New anvil), and TC4 (Worn horn/Worn anvil).

The distribution is estimated by kernel density estimation.

able in [5]. This approach yields a total of 624 features for each data instance.

Figure 2 compares the standard deviation at the first wavelet coefficient level

for the AE signal between the Cu-Cu and Al-Cu domains across different tool250

conditions (classes). The results show that the distribution of different tool con-

ditions in the feature space varies significantly across domains, highlighting the

domain shift issue. The observed distribution shift is primarily due to the dif-

ferences in material properties between Cu and Al, such as melting temperature

and thermal conductivity. For instance, Al has a lower melting temperature255

and higher thermal conductivity than Cu, leading to distinct vibration patterns

for different material combinations [42]. These unique patterns are reflected in

the feature distributions captured by the sensors.

4. Methodology

This section presents the details of the FDG-CM framework. Specifically,260

Section 4.1 elaborates on the novel approach used for aggregating model pa-

rameters. This aggregation method, along with the loss function introduced in

Section 4.2, aims to overcome the domain shift issue in FL settings and enable
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domain generalization capabilities for CM models.

4.1. The FDG-CM framework265

In this framework, knowledge is transferred between at least two domain

groups that have the same feature space. In a typical NN-based model, differ-

ent features are extracted in different layers. The lower layers extract low-level

features that are very likely to be transferrable between heterogeneous appli-

cations [40]. For instance, in the CM of industrial processes, while there are270

differences between the domains and tasks among different datasets, certain

fundamental characteristics of the processes, rooted in the underlying physics,

remain consistent. This consistency in the underlying physics and feature space

enables the learning of invariant features that can be generalized across different

domain groups. Therefore, the goal is to commonly train the initial layers across275

various domain groups, to facilitate the collaborative extraction of low-level in-

formation of the common feature space. This approach not only broadens the

data pool for these shared layers but also enables them to see data from different

domain spaces.

Although the feature space across domain groups is similar, the significance280

of specific features may differ between domain groups and tasks. Accordingly,

the framework is designed to yield a personalized final model for each domain

group, customizing these models to their specific tasks. To achieve this personal-

ization, the framework leverages model parameters from clients within the same

domain group to train a set of upper layers that capture domain-specific fea-285

tures. These layers are then integrated with the earlier-mentioned lower layers to

construct a comprehensive NN model. This strategy of knowledge transfer and

model personalization is anticipated to significantly improve the performance of

the final models, especially in tasks requiring domain generalization.

Utilizing a shared base layer among all clients, accompanied by personalized290

layers for each, has been previously implemented in the FedPer algorithm [43].

However, FedPer restricts collaboration among clients with similar tasks, as it

does not allow for the sharing of personalized layers with the server. In contrast,
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Figure 3: Illustration of the proposed FDG-CM structure. Note that in this framework, the

number of classes for each domain group and the neuron count in the blue and orange layers

can differ.

our approach promotes collaboration by enabling the aggregation of common

personalized layers among clients with identical tasks and domain groups.295

For simplicity, we illustrate our framework using two CM classification tasks

with domain shift issues, though it is designed to be scalable for more tasks.

Figure 3 presents the details of implementing the FDG-CM framework on two

hypothetical datasets from domain group H and domain group F, each associ-

ated with a specific task and assigned to a separate group of clients. In the300

first step, the server initializes and distributes two distinct models to the two

groups of clients. Each model consists of shared base layers, depicted in green

in the accompanying figure, followed by personalized layers tailored specifically

to each dataset. For domain group H, these personalized layers are highlighted
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in orange, while for domain group F, they are shown in blue.305

In the next step, each client trains the provided model on its local data and

returns the updated model to the server. Then, the server aggregates the base

layers from all clients while only aggregating the personalized layers from the

clients of the same domain group. The server then sends the two aggregated

models back to the clients. These steps iterate until both models converge. This310

approach ensures that the base layer, learning a general data representation,

benefits from both datasets, while the personalized layers, which extract task-

specific information, are learned exclusively from their respective datasets.

In this approach, the number of base layers (KB) is considered as a hyper-

parameter, and all preceding parameters are the base parameters (θB). Further-315

more, KP1 and KP2 represent the number of personalized layers in each model,

with corresponding parameters denoted as θP1 and θP2. The total number of

clients in each domain group is M1 and M2. Hyper-parameters, such as client

fractions (C1, C2), must be specified individually for each client set. Notably, as

the same base layer is employed for both sets of clients, a unified learning rate320

(η), client epoch (E), and batch size (B) are defined for all clients to enhance

convergence. Algorithm 1 shows the details of the server and client steps.

4.2. The FDG-CM loss function

Using a shared base layer in different models that serve clients with var-

ious domains and tasks may lead to divergence issues. To counter this, we325

incorporate the FedProx [33] loss term into the loss function. As mentioned in

Section 2.2, this addition effectively reduces the disparity in local updates by

penalizing changes in local parameters. Moreover, to address the domain shift

issue, we include an L2R term [34] on the output of the shared base layer(s).

The L2R term aids in learning a simpler representation from the feature space330

by constraining this representation, thus improving the model’s generalization

across various domains. Consequently, the objective function of our framework

is defined as:

min
θ

Fk(θ) + αL2R · LL2R
k (θ) +

µ

2
∥θ − θt∥2, (6)
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Algorithm 1 FDG-CM Method

Server side:

2: Initialize parameters θ0B , θ
0
P1, θ

0
P2

for each server round t = 1, 2, . . . do

4: select random subsets m1,m2 with [C1 ·M1] , [C2 ·M2] number of clients

Send the model θt−1
B + θt−1

P1 and θt−1
B + θt−1

P2 to the selected m1 and m2

clients respectively.

6: for each client k1 ∈ m1 in parallel do

θtB(k1), θ
t
P1(k1)← ClientUpdate(k1, θ

t−1
B , θt−1

P1 )

8: end for

for each client k2 ∈ m2 in parallel do

10: θtB(k2), θ
t
P2(k2)← ClientUpdate(k2, θ

t−1
B , θt−1

P2 )

end for

12: NP1 ←
∑m1

k1=1 nk1

NP2 ←
∑m2

k2=1 nk2

14: N ← NP1 +NP2

θtB ← 1
N (

∑m1
k1=1 nk1 · θtB(k1) +

∑m2
k2=1 nk2 · θtB(k2))

16: θtP1 ← 1
NP1

∑m1
k1=1 nk1 · θtP1(k1)

θtP2 ← 1
NP2

∑m2
k2=1 nk2 · θtP2(k2)

18: end for

Client side:

2: for each local epoch i = 1, 2, . . . , E do

for each mini-batch b of size B do

4: θ ← θ − η∇F(θ, b)

end for

6: end for

Send the updated local model θ to the server
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s.t. LL2R
k =

1

nk

nK∑
n=1

∥z(n)k ∥
2
2, (7)

where αL2R and µ are hyper-parameters. Additionally, z
(n)
k is the output of the

latest base layer for client k with data point n. Combining L2R and FedProx335

terms in this optimization function aims to achieve superior generalization and

enhance model convergence.

5. Implementation Details

5.1. NN architecture

Figure A.1 in Appendix A shows the designed MLP architecture with four340

layers. The MLP was chosen due to its demonstrated effectiveness in the liter-

ature for CM of UMW using DWT features [5, 10, 12]. Additionally, given the

limited number of data points available at each client, the MLP architecture is

more suitable than deeper neural networks, reducing the risk of overfitting. The

model takes 624 DWT features as input, and the output layer provides the clas-345

sification results for each specific dataset (4 classes for domain group M and 3

classes for domain groups S and T). For the first three hidden layers, the model

has 175, 125, and 50 neurons, respectively. The rectified linear unit is chosen as

the activation function, and the adaptive moment estimation is selected as the

solver.350

5.2. Edge-cloud implementation

To emulate a manufacturing environment, we train models on single-board

computers, specifically using Raspberry Pis1 due to their common use as edge

devices. Typically, multiple welding machines operate within a single factory;

thus, each Raspberry Pi can represent a factory, training models for several355

welding machines. These devices, emulating companies, connect to a remote

central server via the Internet for collaborative model training. The entire

1Raspberry Pi is a trademark of Raspberry Pi Ltd
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training process is coordinated by the central server, which defines all learning

strategies, including the methods used, model hyperparameters, the selection

of participating clients, and the number of server rounds. Clients receive the360

model and hyperparameters from the server, and then conduct their training

independently.

The RabbitMQ broker, a publish-subscribe system, connects the server node

and client nodes in a bi-directional manner [44]. In RabbitMQ, messages are

published to exchanges and delivered to queues based on routing rules defined365

by bindings and routing keys. This decoupling of producers and consumers

enhances scalability, flexibility, and robustness. Secure connections to the Rab-

bitMQ broker require the server and clients to authenticate using a username

and password.

Figure 4: A schematic of edge-cloud implementation for the FDG-CM method.

Figure 4 illustrates the details of message routing in our implementation.370

For simplicity, we consider clients on only one Raspberry Pi—two from domain

group H and the other two from domain group F. Initially, the server publishes

two initialized models and corresponding hyperparameters as two JSON files

each tagged with a specific routing key, “Domain F” or “Domain H,” to the

broker. These routing keys are essential for the direct exchange model, labeled as375
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“To clients exchange,” to route messages accurately to the corresponding client

queues. Then each client subscribes to its queue to retrieve its parameters for the

next round. After the training of the received models on their private data, each

client publishes a JSON file with their updated parameters and a topic indicating

their domain group to the “To server exchange.” This exchange is another direct380

model that forwards messages to the “Server Queue.” The server subscribes

to this queue to retrieve all the updated models from all clients. The server

identifies the domain groups of retrieved messages using their topics as filters.

It then aggregates the weights as per the framework shown in Figure 3, resulting

in two updated models. These updated global models are then published to the385

broker to continue the process. Note that clients, the broker, and the central

server are on separate nodes, connected through the Internet.

5.3. Hardware and software

Our setup includes four Raspberry Pi devices, each capable of running four

clients, and a server that manages and distributes messages using a RabbitMQ390

broker. The server has a 12th Gen Intel(R) Core(TM) i9-12900F processor,

an NVIDIA GeForce RTX 3070 Ti 8GB GDDR6X, and 16 GB of RAM. Each

Raspberry Pi 4B model has a 4-core ARMv8 CPU and 4 GB of RAM. Network

connectivity is provided by the University of Illinois Internet. For software,

we use TensorFlow (2.10.0), Python (3.9.2), and the Raspberry Pi OS (64-bit)395

based on Debian Bullseye. We use the RabbitMQ broker with the Pika (1.3.2)

library in Python for message routing between the central server and clients.

6. Case Studies

This section compares the FDG-CM method with multiple baseline methods

to demonstrate its effectiveness. Additionally, we investigate the performance400

of FDG-CM under unbalanced data distributions and different client fractions.

The training efficiency of FDG-CM in a real cloud manufacturing environment

is also evaluated.
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6.1. Experimental setting

We use 5-fold cross-validation and categorical cross-entropy as the base loss405

function. To assess the domain generalization of all the models, we evaluate

them on data from unseen domains. Instead of random initialization, the server

uses the “Kaiming normal” [45] to initialize the models’ weights. As explained

in Section 3, three datasets with domain groups M, S, and T are available. For

simplicity, we concentrate on the collaboration between just two datasets for410

the FDG-CM method. However, we do not combine domain groups S and T, as

they represent the same data but with different domains and classes. Therefore,

we investigate the combinations of domain groups M vs. S and M vs. T.

The client distribution is as follows: One domain from each domain group is

considered the target domain, while the other domains are equally distributed415

among three clients as source domains. Table A.1 in Appendix A illustrates

this for domain group M, with Al-Al as the target domain. Each of the source

domains (Al-Cu, Cu-Cu, Cu-Al) is randomly divided among three clients, with

each client receiving about 67 data points, resulting in a total of 9 clients for

domain group M. Tables A.2 and A.3 in Appendix A show a similar approach420

for other domain groups (S and T), resulting in 6 training clients per group,

each with 30 data points. This distribution mirrors real-world scenarios where

each client has access to data from only one configuration. The limited data

availability and single-domain access pose significant challenges for the effective

domain generalization of the model.425

Table 2: Experimental Setup for Domain M and Domain S Configurations

Domain S / Domain M Cu-Al Cu-Cu Al-Cu Al-Al Accuracy Goal

Clean Cl CA Cl CC Cl AC Cl AA Ave(Cl *)

DMGD, New, Worn
Contam Co CA Co CC Co AC Co AA Ave(Co *)

Polished P CA P CC P AC P AA Ave(P *)

Accuracy Ave(* CA) Ave(* CC) Ave(* AC) Ave(* AA)

Goal N-N, W-N, N-W, W-W

In all experiments, the same NN model presented in Section 5.1 serves as
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Table 3: Experimental Setup for Domain M and Domain T Configurations

Domain T / Domain M Cu-Al Cu-Cu Al-Cu Al-Al Accuracy Goal

DMGD D CA D CC D AC D AA Ave(D *)

Clean, Contam, Polished
New N CA N CC N AC N AA Ave(N *)

Worn W CA W CC W AC W AA Ave(W *)

Accuracy Ave(* CA) Ave(* CC) Ave(* AC) Ave(* AA)

Goal N-N, W-N, N-W, W-W

the basis for all training paradigms. To address the randomness in NN models,

all experiments are repeated 5 times. We report the accuracy of the proposed

method for each configuration, treating it as the target for one dataset and

considering all possible target domain combinations for the other dataset, as430

depicted in Tables 2 and 3. For instance, in training domain group M vs. do-

main group T, to report the accuracy for the Al-Al as the target in domain

group M, we conduct the experiment three times. Each time involves selecting

a different configuration as the target domain in domain group T. This approach

ensures a thorough evaluation of the FDG-CM method across a range of domain435

configurations. Consequently, for the Al-Al target in domain group M, each of

the three target domain combinations from domain group T is tested five times,

resulting in a total of 15 accuracy measurements. The reported accuracy repre-

sents the average and standard deviation of these tests. This is achieved by first

calculating the mean and standard deviation for each of the three combinations440

separately, and then averaging these means and standard deviations across all

three combinations. This process ensures a comprehensive and accurate reflec-

tion of the model’s performance for the never-before-seen target.

We use random search to tune hyper-parameter values, exclusively based on

the validation set from source domains, ensuring no data leakage from the target445

domain. This protocol facilitates a fair comparison among the methods [46].

The hyper-parameters for the FDG-CM method are set identically across both

domain group combinations. Following this protocol, the first layer is selected

as the base layer, with the next three layers designated as personalized layers.

The mini-batch size is set to 8, and the learning rate to 0.0005, with one epoch450
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selected for local training. Additionally, the proximal term and L2 regularization

hyperparameters are determined to be 0.01 and 0.001, respectively. 150 server

rounds are used for all experiments, as convergence for all clients is achieved

within this number. Details on the hyperparameters for other models will be

provided in their respective sections.455

6.2. Performance comparison with other learning paradigms

This section aims to assess the domain generalization capability of the FDG-

CM model in CM tasks for UMW. We compare FDG-CM with centralized

learning (CL), individual learning (IL), and centralized transfer learning (CTL).

In CL, data from all clients is combined for training, while in IL, each client uses460

only their own data. Given that FDG-CM involves knowledge transfer between

datasets, we also study CTL, where the model is initially trained on one dataset

and, after freezing the base layers (first layer in this case), it is fine-tuned with

another dataset. In this study, the average performance of all clients trained

individually is used to indicate the performance of IL. To ensure consistency, the465

same target data are employed across all models: IL, CL, CTL, and FDG-CM.

These models are configured with a batch size of 8 and a learning rate of 0.0005.

Each model underwent training for a total of 150 epochs.

6.2.1. Domain group M vs. domain group S

Figure 5: Performance comparison with IL, CL, and CTL for domain groups M vs. S: (a)

tool classification accuracy for different material targets and (b) tool classification accuracy

for different surface targets.
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In this case study, we consider a collaboration between domain group M, with470

4 material configurations, and domain group S, with 3 surface configurations.

Selecting one configuration from each dataset as the target domain results in 12

different combinations, as depicted in Table 2. The task for both datasets is the

tool condition classification, with domain group M having 4 classes and domain

group S having 3 classes. Figure 5 shows that the FDG-CM method surpasses475

both IL and CL in nearly all instances, with an average improvement of 20.82%

and 4.72%, respectively. Additionally, the FDG-CM method outperforms the

CTL model by an average of 3.08%.

6.2.2. Domain group M vs. domain group T

Figure 6: Performance comparison with IL, CL, and CTL for domain groups M vs. T: (a) tool

classification accuracy for different material targets and (b) surface classification accuracy for

different tool targets.

Table 3 shows the details of the collaboration between domain groups M and480

T. In this case study, the task in domain group M, which is tool condition classifi-

cation, is completely different from the task in domain group T, which is surface

condition classification. Figure 6 shows the comparative results, demonstrating

that the FDG-CM method surpasses both IL and CL in all instances, with av-

erage improvements of 20.85% and 6.16%, respectively. Notably, in most cases,485

our method exhibits less variation in performance, suggesting enhanced robust-

ness compared to these two paradigms. Furthermore, on average, the FDG-CM

method outperforms the CTL paradigm with an improvement of 4.60%. This
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improvement shows the FDG-CM method’s effectiveness in transferring knowl-

edge among clients working on two distinct CM tasks.490

6.3. Performance comparison with other FL methods

This section compares FDG-CM with state-of-the-art FL models including

FedAvg, FedProx, and FedL2R. These FL methods use the same client distri-

bution as mentioned previously for a consistent comparison. A batch size of 8

and a learning rate of 0.0005 are chosen for these three models. Additionally,495

for FedProx, the proximal term is set to 0.1, and for FedL2R, the regularization

term is 0.01. All these models iterate for 150 server rounds.

Figure 7: Performance comparison with other FL methods for domain groups M vs. S: (a)

tool classification accuracy for different material targets and (b) tool classification accuracy

for different surface targets.

Figure 8: Performance comparison with other FL methods for domain groups M vs. T: (a)

tool classification accuracy for different material targets and (b) surface classification accuracy

for different tool targets.
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Figures 7 and 8 present the comparative results for domain groups M vs. S

and M vs. T, respectively. It is seen that FDG-CM outperforms FedAvg, Fed-

Prox, and FedL2R with average improvements of 8.08%, 7.19%, and 5.35%,500

respectively. It is worth noting that FDG-CM outperforms FedL2R, which is

considered as a state-of-the-art domain generalization FL method, by a signifi-

cant margin.

6.4. Performance comparison between balanced and unbalanced data distribution

This section further mimics industrial scenarios by introducing unbalanced505

data distributions among clients, which is a significant challenge in FL perfor-

mance. We investigate how the FDG-CM model copes with this challenge using

the domain groups M and S combination. To create an unbalanced distribution,

we assign 30, 60, and 110 data points to the three clients of each training do-

main in domain group M, and 15, 25, and 50 data points to the clients in each510

training domain of domain group S. This aims to replicate a near-worst-case

scenario in industrial settings.

Figure 9: Balanced vs unbalanced performance comparison for the FDG-CM model in domain

groups S vs M combinations: (a) tool classification accuracy for different material targets and

(b) surface classification accuracy for different tool targets.

Figure 9a shows that the accuracy of the FDG-CM model under unbalanced

distribution is similar to that of the balanced distribution, with less than a 2.05%

drop, indicating robust performance for domain group M. However, Figure 9b515

shows that in domain group S, while the accuracy drops for the clean and
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polished domains are negligible, the Contam domain exhibits a significant drop

of 7.17%.

6.5. Performance comparison for different client fractions

To evaluate the data efficiency of FDG-CM, the effect of varying client frac-520

tions on the training of the model is examined. For this purpose, we select a

combination of domain groups M and S to conduct our investigation. In each

server round, 1, 2, and all 3 clients in each source domain are randomly selected.

This results in collaborations involving 3, 6, and 9 clients from domain group M,

as well as 2, 4, and 6 clients from domain group S to represent client fractions525

of 1/3, 2/3, and 1, respectively.

Figure 10: The FDG-CM’s accuracy results for various material target domains in domain

groups S vs M combination with different client fractions (C).

Figure 10 shows that within domain group M, FDG-CM’s performance im-

proves as the number of participating clients increases. This improvement is

due to the larger and more diverse dataset available for training the model,

consequently boosting model performance. Notably, the performance of the530

FDG-CM method with a client fraction of 1/3 is comparable to that of other

baseline FL methods with a client fraction of 1, and even the CL method.

6.6. Comparative time analysis of FL methodologies

Given that the FDG-CM method develops at least two personalized models

during the training phase, evaluating its time efficiency is essential. We select535
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the combination of domain groups M and S for this purpose. The aim is to

compare the time efficiency of the FDG-CM model with that of single-dataset

FL frameworks, including FedAvg, FedProx, and a combination of FedL2R with

FedProx, which employs a similar loss function to that of the FDG-CM method.

Figure 11: Time consumption for different FL models including FedAvg, FedProx, FedProx

with L2R, and the FDG-CM Model for training two models for domain groups S and M.

We implement the edge-cloud architecture presented in Section 5.2. The time540

measurement is done from the moment the central server begins distributing the

initial weights to clients until the completion of 10 server rounds, with a client

fraction of C = 1. It is important to note that the proposed model outputs two

distinct models, one for each of the domain groups M and S, whereas traditional

single-dataset FL frameworks would output only one model for either domain545

groups M or S. Figure 11 compares the time consumption of different FL models.

It shows that our proposed framework is less time-consuming compared to other

FL approaches for training two separate models.
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7. Discussion

7.1. CM performance550

The results reported in Sections 6.2 and 6.3 lead to several important find-

ings. First, individual clients do not have sufficient data to train their mod-

els effectively. This is shown by the significantly lower performance in CM

for IL compared to the collaborative methods (CL, CTL, or any FL) used in

this study. Second, the FDG-CM can solve the domain shift issue in CM by555

learning a shared, simplified representation across various domain spaces and

using the proposed new loss function. This is evident by Figures 5–8, which

show the FDG-CM’s performance generally exceeds the performance of other

FL paradigms, IL, and CL. Third, a comparison between CTL and the proposed

method, as shown in Figures 5 and 6, shows that the FDG-CM surpasses CTL560

in most cases. This observation reveals that the enhancement in domain gener-

alization by the proposed method is not solely due to the transfer of knowledge

between datasets. The manner of this knowledge transfer and the application

of generalization techniques, such as the L2R loss, play crucial roles as well.

Additionally, we evaluate the proposed method under unbalanced data dis-565

tribution, which is a key challenge in FL settings. Figure 9 shows that FDG-CM

yields similar results in both balanced and unbalanced data conditions in most

cases. The decrease in accuracy for the Contam domain under unbalanced con-

ditions, as shown in Figure 9b, might be attributed to the specific characteristics

of the contaminated surface, such as the presence of oil drops, which introduce570

a wide range of variability. This agrees with previous studies [12], which found

CM tasks under contaminated surface conditions to be more challenging. The

model’s increased sensitivity to unbalanced conditions could also be a potential

reason for this drop in accuracy. Moreover, the limited number of data points

available to some clients in domain group S, potentially as few as 15, may fur-575

ther affect the model’s performance. However, it is important to note that the

unbalanced accuracy for the Contam domain in domain group S still exceeds the

performance of IL, CL, CTL, and other FL models under balanced conditions,
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as evidenced by comparing Figure 9b with Figures 5b and 7b.

7.2. Training efficiency580

The efficiency of the proposed model is evaluated in terms of data and time

efficiency. For data efficiency, Figure 10 shows that engaging more clients leads

to improved performance, as the FL model is trained on a larger dataset. Com-

paring the performance with one-third of clients in Figure 10 to Figure 5 re-

veals that even limited collaboration among clients, one client from each source585

domain, significantly boosts the accuracy of models over IL. Moreover, this

minimum of collaboration yields results comparable to those achieved by CL.

Additionally, comparing Figures 7 and 10 shows that the FDG-CM frame-

work with a client fraction of 1/3, yields results that are comparable to or better

than other FL approaches with a client fraction of 1. This suggests that FDG-590

CM, using only two clients from domain group S (60 data points) and three

clients from domain group M (200 data points), can outperform state-of-the-art

FL methods that use all 600 data points from domain group M. This improve-

ment is likely due to efficient representation learning between clients across both

datasets.595

Figure 11 shows that our framework is more time-efficient in training models

compared to traditional FL frameworks. For instance, the FedAvg framework,

considered the simplest FL model, requires over 20% more training time. When

using an FL framework with the same loss function as FDG-CM, the extra time

needed increases to over 50%. Notably, within the single-dataset frameworks600

for domain groups M and S, there are 9 and 6 clients running on 3 and 2 edge

devices, respectively. By combining these two groups of clients, the FDG-CM

method includes a total of 15 clients implemented on 4 edge devices, which can

raise the latency in the edge-cloud implementation. Despite this, FDG-CM is

more time-efficient overall. Additionally, the training time for 10 server rounds605

is under two minutes, which is reasonable for industrial implementation.

Figure A.2 in Appendix A illustrates the convergence of the FDG-CM frame-

work with and without the FedProx term. The FedProx term, designed to reduce
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local parameter disparities, significantly enhances the stability of convergence.

As depicted in the figure, the model without the FedProx term exhibits consider-610

able fluctuations and requires more time to converge, if it converges at all. This

shows that using the FedProx term improves the overall training efficiency of the

FDG-CM framework by stabilizing and accelerating the convergence process.

Based on these observations, the FDG-CM framework is both data-efficient

and time-efficient. This combination makes it an effective solution for real-world615

manufacturing FL applications.

7.3. Limitations and future work

Our study highlights the importance of both data volume and integration

approaches in the FL paradigm within industrial settings. It also emphasizes

the need for additional model optimization to improve its ability to handle620

unbalanced data distributions, particularly in complex scenarios like the Con-

tam domain. Future research should focus on adaptive learning strategies or

domain-specific adjustments to address these challenges and enhance overall

model effectiveness.

Additionally, our approach to privacy is foundational, serving as a solid base625

for further enhancements. FL clients face various security threats, such as data

poisoning, model evasion, and data inference attacks, which could originate from

either participating clients or a malicious server. In the field of FL, techniques

such as differential privacy and homomorphic encryption are discussed for pro-

tecting client data. These methods for enhancing privacy should be examined630

and incorporated into our framework. Implementing these security measures

would not only enhance data protection but also increase the trustworthiness

and practicality of the FL paradigm in industrial settings.

8. Conclusion

The ever-changing and varied configurations in modern manufacturing, com-635

bined with limited data availability, have posed a significant challenge of domain

30



shift in applying machine learning, especially in CM. To address this challenge,

this paper presents a novel FDG-CM framework, enhancing domain generaliza-

tion capabilities in FL. By learning a unified representation from the feature

space, FDG-CM can adapt CM models for clients in distinct domain groups.640

Implementations on real-world UMW datasets demonstrate that FDG-CM out-

performs other learning paradigms and state-of-the-art FL methods. Compared

with baseline FL algorithms, FDG-CM shows a 5.35%–8.08% improvement in

accuracy for domain generalization tasks. FDG-CM also achieves excellent per-

formance in challenging scenarios involving unbalanced data distributions and645

limited client fractions. Moreover, the FDG-CM method is implemented on an

edge-cloud architecture, showing both viability and efficiency in practice. No-

tably, the FDG-CM framework is readily extensible to various other industrial

applications where challenges of data availability and data privacy are present

simultaneously.650
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Appendix A.665

Table A.1: Domain group M client distribution in case of taking Al-Al as target domain (N

(New) - W (Worn))

Domains/Classes TC1 (N-N) TC2 (N-W) TC3 (W-N) TC4 (W-N)

Al-Al Target Domains

Al-Cu 200 data points in 3 training clients (about 67 each)

Cu-Cu 200 data points in 3 training clients (about 67 each)

Cu-Al 200 data points in 3 training clients (about 67 each)

Table A.2: Domain group S client distribution in case of taking clean as target domain

Domain/Classes DMGD New Worn

Clean Target domain

Contam 90 data points in 3 training clients (30 each)

Polished 90 data points in 3 training clients (30 each)

Table A.3: Domain group T client distribution in case of taking DMGD as target domain

Domain/Classes Clean Contam Polished

DMGD Target domain

New 90 data points in 3 training clients (30 each)

Worn 90 data points in 3 training clients (30 each)
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Figure A.1: Data preprocessing and classification procedure.

Figure A.2: Convergence of the FDG-CM method with and without the FedProx term, using

Al-Cu as the target for domain groups M.
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