
Towards Automated Configuration Documentation
Jobayer Ahmmed
Iowa State University
Ames, Iowa, USA

jobayer@iastate.edu

Myra B. Cohen
Iowa State University
Ames, Iowa, USA

mcohen@iastate.edu

Paul Gazzillo
University of Central Florida

Orlando, Florida, USA
paul.gazzillo@ucf.edu

ABSTRACT
Con!gurability is a common property of software allowing pro-
grams to be customized for the user. While con!gurability is per-
vasive, it can also lead to faults (or miscon!gurations) and make
program evolution challenging. Dependencies can be missed, es-
sential code can be left in place when a con!guration option is
removed, or code can be deleted or changed when still in use by
other con!guration options. A key issue is a lack of su"cient docu-
mentation and traceability between con!guration options and code
during software evolution. Existing approaches to solve these prob-
lems include automated documentation, analysis of version control
history, or the use of special program con!guration management
languages. However, none of these provide a su"cient solution
managing con!guration changes over time. In this paper we pro-
pose our vision for an automated approach called Con!Gen, which
provides user-facing documentation along with a back-end analysis
showing de!nitions and uses of con!guration options along with
traceability to lines of program code for evolution. We performed a
case study demonstrating its potential usefulness.

CCS CONCEPTS
• Software and its engineering→ Software evolution; Docu-
mentation; Software product lines.

KEYWORDS
con!guration, software evolution, documentation

ACM Reference Format:
Jobayer Ahmmed, Myra B. Cohen, and Paul Gazzillo. 2024. Towards Auto-
mated Con!guration Documentation. In 39th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE ’24), October 27-November
1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3691620.3695311

1 INTRODUCTION
Software maintenance is an expensive part of the development
lifecycle. Documentation plays a key role, supporting tasks such
as testing and debugging, refactoring, and the design and architec-
ture for new functionality. Yet, documentation is often lacking or
hard to !nd. Even when developers comment individual methods
and modules, without automated documentation support, valuable

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695311

information lies distributed in the code. Recent approaches to doc-
umentation automation have helped to alleviate this concern by
aggregating code level comments into developer usable documents
with traceability back to the code. As maintainers change code they
can leverage this information and ensure consistency over time.
However, most of the commonly used documentation tools, such as
Javadocs [20], Docstrings [13], or Doxygen [14] are monolingual,
meaning they document a single language at a time. This works
well for documentation of variables, methods and classes, but it
leaves a hole for an important dimension of software which may
be critical during maintenance, that of con!gurability.

Much of our software today is con!gurable. Users or adminis-
trators can add and remove features to customize the software’s
behavior. Many software systems have hundreds or even thousands
of con!guration options (features which can be changed during
customization). This has led to a large body of literature on miscon-
!gurations [4, 43, 45, 47], runtime faults due to interacting features
[16], and arguments for less complex con!guration interfaces [42].
While reducing the complexity of con!gurations may help with
some of these issues, most real con!guration spaces are continu-
ally increasing. For instance, the Linux kernel, often used as an
exemplar of con!gurable software, has grown from over 4,000 [19]
in 2010, to more than 15,000 [30] in 2021. The Kcon!g language
[22] has been built to support de!nition and selection of con!gura-
tions at build time, however, this information is isolated within the
Kcon!g documentation.

In recent work [18] we argued for con!gurations to be !rst
class elements in a programming language, and at an abstraction
level that matches the programming languages used by develop-
ers and maintainers. There has been much research on variability
representation languages [1, 3, 33] and at providing con!guration
visualization inside of the programming Interactive Development
Environment or IDE [21]), however this ignores the larger system-
atic problem of ensuring con!gurations are fundamental constructs.

In this paper we propose to make con!gurability a !rst class
element in documentation. We call our approach Con!Gen. To
illustrate its bene!ts, we build a prototype on top of a popular au-
tomated documentation tool; one that extracts user documentation
from code and generates output in user readable forms. We aug-
ment this with static analysis that identi!es usage of the features
in the code and identi!es deletions, additions and modi!cations of
code between versions. We evaluate the potential for Con!Gen on
three popular open source applications. We can generate con!g-
uration information for less than a 1.5% overhead over the base
documentation automatically while documenting between 11-25%
of the !les in each version. These results provide evidence that
(1) documentation about con!gurability is indeed fragmented and
(2) that merging the documentation provides a cohesive view and
traceability of both con!guration de!nition and usage.

2256

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695311&domain=pdf&date_stamp=2024-10-27


ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jobayer Ahmmed, Myra B. Cohen, and Paul Gazzillo

(a) Normal Documentation (b) ConfiGen Documentation

1

2

4

3

Figure 1: Traditional Documentation (a) with con!guration information added (b)

moved

moved

added

2

1

Figure 2: (1) Movement of features shown in git di" (2) Con-
!Gen Analysis shows only the addition of a feature in green

2 MOTIVATION AND RELATEDWORK
We begin with a motivating example to demonstrate the need for
Con!Gen. Figure 1(a) shows automated documentation from a tool
called Doxygen [14]. It extracts method level comments from the

code and provides documentation and traceability for enumera-
tions, classes and functions, etc. Users can con!gure the output
to include macro information, however, it does not provide any
information about con!gurability. While it does support expanding
#ifdef constructs which are often used to represent blocks of code
associated with features, it does not process this in any special way
and information related to features is lost. On the right (b) we see
documentation from our prototype tool that includes con!guration
information. #1 shows the list of features de!ned in Kcon!g !les.
Each of the features is detailed after enumerations. In this case we
see the !rst feature ENABLE_FEATURE_2_4_MODULES (#2). #3 shows
documentation extracted from the Kcon!g documentation and #4
lists the uses within the !le by line number.

Figure 2 on the other hand, demonstrates a challenge seen during
system evolution. The top portion (#1) shows the di# between two
versions of a system taken from GitHub. Lines 236-7, 248, 242-243,
and 246 are removed, while there are also a number of additions
(216-217, 242-243, 246, 248-249 and 252). Looking more closely we
see some of the code has been moved (shown by annotation arrows)
and some is brand new (e.g. 242-243). It is not easy to determine
what has happened in this di#. All of this churn is simply the result
of a single addition of a feature, MKFS_REISER. An addition on line
242 can be seen, but the complete behavior is di"cult to ascertain.
Yet it is important for a tester or debugger to understand what has
happened. The bottom portion (#2) shows a di# from Con!Gen’s
analysis showing that a feature is added.

2.1 Related Work
There has been a large body of research on miscon!gurations [9, 11,
17, 44–46], performance issues related to con!gurability[2, 29, 41],
modeling of con!gurations [5, 24, 36] and software product lines

2257



Towards Automated Configuration Documentation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Output 
Generator

Language 
Parser

C 
pre-processor

Data 
Organizer

Config 
symbols

Config 
uses

HTML

ConfiGen
XML

Other 
Formats

source
.c  .h

Doxygen
Config Parser

kextractKconfig
.in  .src

cscope
modified

new

original

legend

1 2

3

4

5

Figure 3: Overview of Con!Gen. The blue portion is the Doxygen work#ow. Gray boxes are unchanged, light blue dashed boxes
are modi!ed by us from their original source, and the solid blue-green boxes indicate new modules we added.

[31, 35]. In addition, there is research on reverse engineering con-
!guration variables and constraints [28, 32, 34]. Others have per-
formed empirical analyses of con!guration spaces [26, 27] and their
evolution [6, 25]. The reverse engineering research is closest to our
work however it does not provide documentation. Some researchers
have de!ned variational languages (e.g. choice calculus [10, 15]),
however it expects the programmer to encode their con!guration
options using a low level programming language construct. Tools
such as Javadoc, Doxygen and DocStrings [13, 14, 20] provide an
automated process to create a systematic set of documentation with
traceability. We leverage Doxygen in this work, however it does
not have the idea of con!gurability built in.

3 CONFIGEN
Figure 3 shows an overview of Con!Gen. The blue portion in the
middle of the !gure is the main part of the work$ow of the Doxy-
gen documentation tool [14]. In this !gure, the gray boxes are
unchanged parts, the light blue dashed boxes are modi!ed by us
from their original source, and the solid blue-green boxes indicate
new modules we added. Con!Gen starts by taking in the source
code of a C application (e.g. the .h and .c) !les (#1). This is passed
to the Doxygen C pre-processor and language parser (#3), existing
(and unchanged modules) that create the standard documentation.

We use kextract (part of the kmax tool suite [23]) to parse the
Kcon!g !les (.in and .src). It reads and parses con!guration !les that
use Kcon!g as their con!guration management tool. Kcon!g sym-
bols are de!ned in the Kcon!g !les. Each symbol contains attributes
such as its type de!nition, input prompt, default value, dependen-
cies, reverse dependencies, weak reverse dependencies, numerical
ranges, and help text. Kextract supports di#erent argument options
for parsing. One limitation is that if there is a dependency for the
range attribute, it does not output that dependency. It also does
not provide information about where a speci!c Kcon!g symbol is
de!ned, i.e., in which Kcon!g !le and at what line. We extended
kextract and created a new option to include all the attribute val-
ues of a Kcon!g symbol. We added the precise location information

of a Kcon!g symbol - (which Kcon!g !le and line the symbol is
de!ned on). Last, we changed it to output the dependencies for the
range attribute.

Con!Gen keeps the output of kextract in a Con!g symbols data
dictionary. This builds a new dataset inside of the Doxygen data
organizer (Config symbols). We then read this and use Cscope

[12] to !nd uses of these con!gurations in the source (.c and .h)
!les and store these in a second data set (Config uses).

Doxygen also has a module it calls the Config Parser used for
internal con!gurations of the Doxygen tool (not for features of the
applications being documented). We modi!ed this. From the two
new data sets we create an XML that contains all of the con!gura-
tion and uses in our system (#4). In Doxygen, the Data Organizer

module builds dictionaries of the extracted classes, !les, names-
paces, variables, functions, packages, pages, and groups from the
source code. We added the Config symbols and Config uses data
dictionaries. We use this data to create XML !les, used for further
analysis of the con!guration space, i.e. during system evolution.
The output generator module uses the information generated by
the data organizer module. We extended the HTML generator to
present the con!guration information in the HTML documentation
!les, including Kcon!g symbols’ attributes, the de!ned locations,
and traceability of the symbols used in the source code.

4 CASE STUDY
We performed a case study to understand the potential of Con!Gen.
We evaluate its ability to provide relevant information and compare
Con!Gen against the state of the art tools.1

4.1 Subjects Studied
We choose three subjects that use Kcon!g as their con!guration
language and have a long development history. Berger et al. [6] pre-
sented 11 projects that use the Kcon!g language. We selected three
open source projects, that are variants of Unix utilities: BusyBox,
uClibc-ng, and Toybox. BusyBox [7, 8] is a C library that combines

1Supplementary data website: https://github.com/myracohen/Con!Gen-NIER24

2258



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jobayer Ahmmed, Myra B. Cohen, and Paul Gazzillo

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1.4.0 ('0
7)

1.6.1 ('0
7)

1.7.3 ('0
7)

1.8.2 ('0
7)

1.10.0 ('0
8)

1.11.3 ('0
8)

1.12.4 ('0
8)

1.13.4 ('0
9)

1.14.4 ('0
9)

1.16.0 ('1
0)

1.17.2 ('1
0)

1.18.2 ('1
1)

1.19.1 ('1
1)

1.20.1 ('1
2)

1.22.1 ('1
4)

1.24.1 ('1
5)

1.26.1 ('1
7)

1.28.0 ('1
8)

1.29.0 ('1
8)

1.30.1 ('1
9)

1.33.0 ('2
0)

1.35.0 ('2
1)

Ra
tio

Version (year)

Files with Configuration Symbols

Configuration Symbols Per File

Figure 4: Ratio of Kcon!g symbols in Con!Gen-generated documentation of BusyBox. The top line shows the ratio of feature
changes per !le and the bottom line shows the number of !les that have feature changes.

many essential Unix utilities into a small executable, used often in
embedded systems. uClibc-ng [39, 40] is a C library for embedded
Linux systems. Toybox [37, 38] is a command-line tool that com-
bines many Linux command-line utilities into a small executable.

We implemented a prototype of Con!Gen on top of Doxygen in
C++. We ran both Doxygen and Con!Gen on the full history for
the three subjects. For BusyBox, this includes v1.4.0 (2007) - v1.36.1
(2023), for uClibc-ng: v1.0.0 (2015) - v1.0.45 (2023), and for Toybox:
v0.0.2 (2007) - v0.8.10 (2023). We failed to analyze v0.8.6 of Toybox
because of a recursive dependency.

4.2 Results

Our study suggests the potential for Con!Gen. (1) features
are a signi!cant part of the code; (2) they are distributed
between !les; and (3) the overhead for Con!Gen is small.

Table 1 shows data from our analysis for the number of versions
analyzed, the average (and standard deviation) of the number of !les
in each version, the average (and standard deviation) of those !les
which have con!guration options in the version, and the average
number of con!guration symbols (or features) in those !les. We
can see that all of these repositories have signi!cant churn over the
years. The percent of !les with con!guration-related code, ranges
from 12.9% for uClibc-ng, to 39.9% for BusyBox. The number of
times individual features are used within !les, is between 1.4 and
3.3 times per !le, suggesting the changes to con!gurations are
distributed and can impact maintenance negatively.

Table 1: Number of versions for each subject, average number
of !les in version, average number of !les with con!guration
symbols, and average number of con!guration symbols.

No. Files with Con!gs Con!g Symbs
Subject Vers. avg std avg std avg std
BusyBox 108 715.73 60.21 285.06 47.02 938.33 241.79
uClibc-ng 46 3762.07 328.91 483.70 29.41 812.02 37.80
Toybox 47 192.83 87.61 48.17 27.24 66.64 35.31

Figure 4 shows this graphically over time, normalized as ratios.
The top line is the number of features per !le (for those !les with
con!guration symbols) and the bottom line is the ratio of the num-
ber of !les with con!guration symbols (or features).

Table 2: Timing data for analysis of a single version across
all versions (seconds)

Doxygen Con!Gen
Subj. Avg Std Avg Std OvHead
BusyBox 13.57 1.73 18.37 2.88 1.35
uClibc-ng 24.96 3.00 29.00 6.74 1.16
Toybox 2.85 1.30 4.02 1.77 1.42

Busybox uclibc−ng Toybox

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Subject

An
al

ys
is 

O
ve

rh
ea

d

Figure 5: Overhead of Con!Gen over Doxygen

We now turn to the performance/overhead of using Con!Gen.
Table 2 shows the average and standard deviation on seconds to
generate documentation both using Doxygen and Con!Gen. As we
can see the overhead (last column) ranges from 1.16 to 1.42. Last,
Figure 5 shows a boxplot of this data. Given that the average time
to create documentation for Con!Gen is less than half a minute
this seems to be a practically useful tool.

5 CONCLUSIONS AND FUTUREWORK
We have presented Con!Gen, an approach to build con!guration
documentation into an automated documentation system. We be-
lieve this has potential to make con!guration documentation !rst
class and can aide with common maintenance tasks such as testing,
debugging and refactoring. As future work we will build a more
robust version of Con!Gen and evaluate this to understand its
ability to help with these use cases. We will also add in runtime
con!gurability (not yet supported) which does not rely on Kcon!g.

ACKNOWLEDGMENTS
This work was funded in part by the National Science Foundation,
CNS-2234908, CNS-2234909, CCF-1941816, and CCF-1909688.

2259



Towards Automated Configuration Documentation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

REFERENCES
[1] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2013.

FAMILIAR: A domain-speci!c language for large scale management of feature
models. Sci. Comput. Program. 78, 6 (jun 2013), 657–681. https://doi.org/10.1016/
j.scico.2012.12.004

[2] Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel. 2020.
Sampling E#ect on Performance Prediction of Con!gurable Systems: A Case
Study. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering (ICPE ’20). 277–288. https://doi.org/10.1145/3358960.3379137

[3] Maurice H. ter Beek, Klaus Schmid, and Holger Eichelberger. 2019. Textual
Variability Modeling Languages: An Overview and Considerations. In Proceedings
of the 23rd International Systems and Software Product Line Conference - Volume B
(Paris, France) (SPLC ’19). 151–157. https://doi.org/10.1145/3307630.3342398

[4] Farnaz Behrang, Myra B. Cohen, and Alessandro Orso. 2015. Users beware:
preference inconsistencies ahead. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). 295–306.
https://doi.org/10.1145/2786805.2786869

[5] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
analysis of feature models 20 years later: a literature review. Information Systems
35, 6 (2010), 615–636.

[6] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Transactions on Software Engineering 39, 12 (2013), 1611–
1640. https://doi.org/10.1109/TSE.2013.34

[7] BusyBox Git Repository [n. d.]. busybox - BusyBox: The Swiss Army Knife of
Embedded Linux. Retrieved 2024 from https://git.busybox.net/busybox

[8] BusyBox Library [n. d.]. BusyBox. Retrieved Jun 10, 2024 from https://busybox.
net/about.html

[9] Qingrong Chen, Teng Wang, Owolabi Legunsen, Shanshan Li, and Tianyin Xu.
2020. Understanding and Discovering Software Con!guration Dependencies in
Cloud and Datacenter Systems. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). 362–374. https:
//doi.org/10.1145/3368089.3409727

[10] Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2012. An error-tolerant type
system for variational lambda calculus. SIGPLAN Not. 47, 9 (sep 2012), 29–40.
https://doi.org/10.1145/2398856.2364535

[11] Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu. 2021. Test-
Case Prioritization for Con!guration Testing. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis (Virtual,
Denmark) (ISSTA 2021). 452–465. https://doi.org/10.1145/3460319.3464810

[12] Cscope [n. d.]. Cscope Home Page. Retrieved Jun 10, 2024 from https://cscope.
sourceforge.net

[13] DocString [n. d.]. PEP 257 – Docstring Conventions | peps.python.org. Retrieved
Jun 10, 2024 from https://peps.python.org/pep-0257/#what-is-a-docstring

[14] Doxygen [n. d.]. Doxygen homepage. Retrieved Jun 10, 2024 from https://www.
doxygen.nl

[15] Martin Erwig and Eric Walkingshaw. 2011. The Choice Calculus: A Represen-
tation for Software Variation. ACM Trans. Softw. Eng. Methodol. 21, 1, Article 6
(dec 2011), 27 pages. https://doi.org/10.1145/2063239.2063245

[16] Brady J. Garvin and Myra B. Cohen. 2011. Feature Interaction Faults Revisited:
An Exploratory Study. In 2011 IEEE 22nd International Symposium on Software
Reliability Engineering. 90–99. https://doi.org/10.1109/ISSRE.2011.25

[17] Paul Gazzillo. 2020. Inferring and Securing Software Con!gurations Using
Automated Reasoning. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Virtual Event, USA) (ESEC/FSE 2020). 1517–1520. https://doi.org/10.
1145/3368089.3417041

[18] Paul Gazzillo and Myra B. Cohen. 2022. Bringing Together Con!guration Re-
search: Towards a Common Ground. In Proceedings of the 2022 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Re!ections on Pro-
gramming and Software (Onward! 2022). 259–269. https://doi.org/10.1145/3563835.
3568737

[19] Ayelet Israeli and Dror G. Feitelson. 2010. The Linux kernel as a case study
in software evolution. Journal of Systems and Software 83, 3 (2010), 485–501.
https://doi.org/10.1016/j.jss.2009.09.042

[20] Javadoc [n. d.]. javadoc. Retrieved Jun 10, 2024 from https://docs.oracle.com/
javase/8/docs/technotes/tools/windows/javadoc.html

[21] Christian Kastner, Thomas Thum, Gunter Saake, Janet Feigenspan, Thomas Leich,
Fabian Wielgorz, and Sven Apel. 2009. FeatureIDE: A tool framework for feature-
oriented software development. In 2009 IEEE 31st International Conference on
Software Engineering. 611–614. https://doi.org/10.1109/ICSE.2009.5070568

[22] Kcon!g Language [n. d.]. Kcon"g Language — The Linux Kernel documenta-
tion. Retrieved Jun 10, 2024 from https://www.kernel.org/doc/html/next/kbuild/
kcon!g-language.html

[23] Kmax Toolset [n. d.]. paulgazz/kmax: A collection of analysis tools for Kcon"g and
Kbuild constraints. Retrieved Jun 10, 2024 from https://github.com/paulgazz/kmax

[24] Elias Kuiter, Sebastian Krieter, Jacob Krüger, Thomas Leich, and Gunter Saake.
2019. Foundations of Collaborative, Real-Time Feature Modeling. In Proceedings
of the 23rd International Systems and Software Product Line Conference - Volume A
(SPLC). ACM, 257–264.

[25] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej
W%sowski. 2010. Evolution of the Linux kernel variability model. In Software
Product Lines: Going Beyond: 14th International Conference, SPLC 2010, Jeju Island,
South Korea, September 13-17, 2010. Proceedings 14. Springer, 136–150.

[26] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A Comparison of 10 Sampling Algorithms for Con!gurable Systems. In
Proceedings of the 38th International Conference on Software Engineering (ICSE).
ACM Press, New York, NY, 643–654. https://doi.org/10.1145/2884781.2884793

[27] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and Gunter
Saake. 2016. On Essential Con!guration Complexity: Measuring Interactions In
Highly-Con!gurable Systems. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). ACM Press, New York, NY,
483–494. https://doi.org/10.1145/2970276.2970322

[28] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. 2014.
Mining con!guration constraints: static analyses and empirical results. In Pro-
ceedings of the 36th International Conference on Software Engineering (ICSE 2014).
140–151. https://doi.org/10.1145/2568225.2568283

[29] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. 2017. Using Bad
Learners to Find Good Con!gurations. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2017). 257–267. https:
//doi.org/10.1145/3106237.3106238

[30] Jeho Oh, Necip Fazıl Yıldıran, Julian Braha, and Paul Gazzillo. 2021. Finding
Broken Linux Con!guration Speci!cations by Statically Analyzing the Kcon!g
Language. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Athens, Greece) (ESEC/FSE 2021). 893–905. https://doi.org/10.1145/3468264.
3468578

[31] Philipp Dominik Schubert, Paul Gazzillo, Zach Patterson, Julian Braha, Fabian
Schiebel, Ben Hermann, Shiyi Wei, and Eric Bodden. 2022. Static Data-Flow
Analysis for Software Product Lines in C. Automated Software Engineering (2022),
35 pages. https://doi.org/10.1007/s10515-022-00333-1 To appear..

[32] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej W%sowski, and Krzysztof
Czarnecki. 2011. Reverse Engineering Feature Models. In Proceedings of the 33rd
International Conference on Software Engineering (ICSE). ACM, 461–470.

[33] Chico Sundermann, Kevin Feichtinger, Dominik Engelhardt, Rick Rabiser, and
Thomas Thüm. 2021. Yet another textual variability language? a community e#ort
towards a uni!ed language. In Proceedings of the 25th ACM International Systems
and Software Product Line Conference - Volume A (Leicester, United Kingdom)
(SPLC ’21). 136–147. https://doi.org/10.1145/3461001.3471145

[34] Thammasak Thianniwet and Myra. B. Cohen. 2015. SPLRevO: Optimizing com-
plex feature models in search based reverse engineering of software product
lines. In Proceedings of the 1st North American Search Based Software Engineering
Symposium (NasBASE). 1–16.

[35] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
2014. A classi!cation and survey of analysis strategies for software product lines.
ACM Computing Surveys (CSUR) 47, 1, Article 6 (2014), 45 pages.

[36] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-
oriented software development. Science of Computer Programming 79 (2014), 70 –
85. Experimental Software and Toolkits (EST 4): A special issue of the Workshop
on Academic Software Development Tools and Techniques (WASDeTT-3 2010).

[37] Toybox Git Repository [n. d.]. landley/toybox: toybox. Retrieved Jun 10, 2024
from https://github.com/landley/toybox

[38] Toybox Library [n. d.]. What is toybox? Retrieved Jun 10, 2024 from https:
//landley.net/toybox

[39] uClibc-ng Git Repository [n. d.]. wbx-github/uclibc-ng: Embedded C Library
(mirror). Retrieved Jun 10, 2024 from https://github.com/wbx-github/uclibc-ng

[40] uClibc-ng Library [n. d.]. Welcome to uClibc-ng! - Embedded C library. Retrieved
Jun 10, 2024 from https://uclibc-ng.org

[41] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian Käst-
ner. 2021. White-Box Analysis over Machine Learning: Modeling Performance of
Con!gurable Systems. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). 1072–1084. https://doi.org/10.1109/ICSE43902.2021.00100

[42] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. 2015. Hey, you have givenme toomany knobs!: understanding
and dealing with over-designed con!guration in system software. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo,
Italy) (ESEC/FSE 2015). 307–319. https://doi.org/10.1145/2786805.2786852

[43] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do not blame users for mis-
con!gurations. In Proceedings of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles (Farminton, Pennsylvania) (SOSP ’13). 244–259. https:
//doi.org/10.1145/2517349.2522727

2260



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jobayer Ahmmed, Myra B. Cohen, and Paul Gazzillo

[44] Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tackling Con!gu-
ration Errors: A Survey. ACM Comput. Surv. 47, 4, Article 70 (July 2015), 41 pages.
https://doi.org/10.1145/2791577

[45] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasun-
daram, and Shankar Pasupathy. 2011. An empirical study on con!guration
errors in commercial and open source systems. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (Cascais, Portugal) (SOSP ’11).
159–172. https://doi.org/10.1145/2043556.2043572

[46] Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu. 2021. Static Detection
of Silent Miscon!gurations with Deep Interaction Analysis. Proc. ACM Program.
Lang. 5, OOPSLA, Article 140, 30 pages. https://doi.org/10.1145/3485517

[47] Sai Zhang and Michael D. Ernst. 2014. Which con!guration option should I
change?. In Proceedings of the 36th International Conference on Software Engineer-
ing (Hyderabad, India) (ICSE 2014). 152–163. https://doi.org/10.1145/2568225.
2568251

2261


