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ABSTRACT

Configurability is a common property of software allowing pro-
grams to be customized for the user. While configurability is per-
vasive, it can also lead to faults (or misconfigurations) and make
program evolution challenging. Dependencies can be missed, es-
sential code can be left in place when a configuration option is
removed, or code can be deleted or changed when still in use by
other configuration options. A key issue is a lack of sufficient docu-
mentation and traceability between configuration options and code
during software evolution. Existing approaches to solve these prob-
lems include automated documentation, analysis of version control
history, or the use of special program configuration management
languages. However, none of these provide a sufficient solution
managing configuration changes over time. In this paper we pro-
pose our vision for an automated approach called ConfiGen, which
provides user-facing documentation along with a back-end analysis
showing definitions and uses of configuration options along with
traceability to lines of program code for evolution. We performed a
case study demonstrating its potential usefulness.
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« Software and its engineering — Software evolution; Docu-
mentation; Software product lines.
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1 INTRODUCTION

Software maintenance is an expensive part of the development
lifecycle. Documentation plays a key role, supporting tasks such
as testing and debugging, refactoring, and the design and architec-
ture for new functionality. Yet, documentation is often lacking or
hard to find. Even when developers comment individual methods
and modules, without automated documentation support, valuable
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information lies distributed in the code. Recent approaches to doc-
umentation automation have helped to alleviate this concern by
aggregating code level comments into developer usable documents
with traceability back to the code. As maintainers change code they
can leverage this information and ensure consistency over time.
However, most of the commonly used documentation tools, such as
Javadocs [20], Docstrings [13], or Doxygen [14] are monolingual,
meaning they document a single language at a time. This works
well for documentation of variables, methods and classes, but it
leaves a hole for an important dimension of software which may
be critical during maintenance, that of configurability.

Much of our software today is configurable. Users or adminis-
trators can add and remove features to customize the software’s
behavior. Many software systems have hundreds or even thousands
of configuration options (features which can be changed during
customization). This has led to a large body of literature on miscon-
figurations [4, 43, 45, 47], runtime faults due to interacting features
[16], and arguments for less complex configuration interfaces [42].
While reducing the complexity of configurations may help with
some of these issues, most real configuration spaces are continu-
ally increasing. For instance, the Linux kernel, often used as an
exemplar of configurable software, has grown from over 4,000 [19]
in 2010, to more than 15,000 [30] in 2021. The Kconfig language
[22] has been built to support definition and selection of configura-
tions at build time, however, this information is isolated within the
Kconfig documentation.

In recent work [18] we argued for configurations to be first
class elements in a programming language, and at an abstraction
level that matches the programming languages used by develop-
ers and maintainers. There has been much research on variability
representation languages [1, 3, 33] and at providing configuration
visualization inside of the programming Interactive Development
Environment or IDE [21]), however this ignores the larger system-
atic problem of ensuring configurations are fundamental constructs.

In this paper we propose to make configurability a first class
element in documentation. We call our approach ConfiGen. To
illustrate its benefits, we build a prototype on top of a popular au-
tomated documentation tool; one that extracts user documentation
from code and generates output in user readable forms. We aug-
ment this with static analysis that identifies usage of the features
in the code and identifies deletions, additions and modifications of
code between versions. We evaluate the potential for ConfiGen on
three popular open source applications. We can generate config-
uration information for less than a 1.5% overhead over the base
documentation automatically while documenting between 11-25%
of the files in each version. These results provide evidence that
(1) documentation about configurability is indeed fragmented and
(2) that merging the documentation provides a cohesive view and
traceability of both configuration definition and usage.
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Figure 1: Traditional Documentation (a) with configuration information added (b)
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Figure 2: (1) Movement of features shown in git diff (2) Con-
fiGen Analysis shows only the addition of a feature in green

2 MOTIVATION AND RELATED WORK

We begin with a motivating example to demonstrate the need for
ConfiGen. Figure 1(a) shows automated documentation from a tool
called Doxygen [14]. It extracts method level comments from the

code and provides documentation and traceability for enumera-
tions, classes and functions, etc. Users can configure the output
to include macro information, however, it does not provide any
information about configurability. While it does support expanding
#ifdef constructs which are often used to represent blocks of code
associated with features, it does not process this in any special way
and information related to features is lost. On the right (b) we see
documentation from our prototype tool that includes configuration
information. #1 shows the list of features defined in Kconfig files.
Each of the features is detailed after enumerations. In this case we
see the first feature ENABLE_FEATURE_2_4_MODULES (#2). #3 shows
documentation extracted from the Kconfig documentation and #4
lists the uses within the file by line number.

Figure 2 on the other hand, demonstrates a challenge seen during
system evolution. The top portion (#1) shows the diff between two
versions of a system taken from GitHub. Lines 236-7, 248, 242-243,
and 246 are removed, while there are also a number of additions
(216-217, 242-243, 246, 248-249 and 252). Looking more closely we
see some of the code has been moved (shown by annotation arrows)
and some is brand new (e.g. 242-243). It is not easy to determine
what has happened in this diff. All of this churn is simply the result
of a single addition of a feature, MKFS_REISER. An addition on line
242 can be seen, but the complete behavior is difficult to ascertain.
Yet it is important for a tester or debugger to understand what has
happened. The bottom portion (#2) shows a diff from ConfiGen’s
analysis showing that a feature is added.

2.1 Related Work

There has been a large body of research on misconfigurations [9, 11,
17, 44-46], performance issues related to configurability[2, 29, 41],
modeling of configurations [5, 24, 36] and software product lines
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Figure 3: Overview of ConfiGen. The blue portion is the Doxygen workflow. Gray boxes are unchanged, light blue dashed boxes
are modified by us from their original source, and the solid blue-green boxes indicate new modules we added.

[31, 35]. In addition, there is research on reverse engineering con-
figuration variables and constraints [28, 32, 34]. Others have per-
formed empirical analyses of configuration spaces [26, 27] and their
evolution [6, 25]. The reverse engineering research is closest to our
work however it does not provide documentation. Some researchers
have defined variational languages (e.g. choice calculus [10, 15]),
however it expects the programmer to encode their configuration
options using a low level programming language construct. Tools
such as Javadoc, Doxygen and DocStrings [13, 14, 20] provide an
automated process to create a systematic set of documentation with
traceability. We leverage Doxygen in this work, however it does
not have the idea of configurability built in.

3 CONFIGEN

Figure 3 shows an overview of ConfiGen. The blue portion in the
middle of the figure is the main part of the workflow of the Doxy-
gen documentation tool [14]. In this figure, the gray boxes are
unchanged parts, the light blue dashed boxes are modified by us
from their original source, and the solid blue-green boxes indicate
new modules we added. ConfiGen starts by taking in the source
code of a C application (e.g. the .h and .c) files (#1). This is passed
to the Doxygen C pre-processor and language parser (#3), existing
(and unchanged modules) that create the standard documentation.

We use kextract (part of the kmax tool suite [23]) to parse the
Kconfig files (.in and .src). It reads and parses configuration files that
use Kconfig as their configuration management tool. Kconfig sym-
bols are defined in the Kconfig files. Each symbol contains attributes
such as its type definition, input prompt, default value, dependen-
cies, reverse dependencies, weak reverse dependencies, numerical
ranges, and help text. Kextract supports different argument options
for parsing. One limitation is that if there is a dependency for the
range attribute, it does not output that dependency. It also does
not provide information about where a specific Kconfig symbol is
defined, i.e., in which Kconfig file and at what line. We extended
kextract and created a new option to include all the attribute val-
ues of a Kconfig symbol. We added the precise location information
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of a Kconfig symbol - (which Kconfig file and line the symbol is
defined on). Last, we changed it to output the dependencies for the
range attribute.

ConfiGen keeps the output of kextract in a Config symbols data
dictionary. This builds a new dataset inside of the Doxygen data
organizer (Config symbols). We then read this and use Cscope
[12] to find uses of these configurations in the source (.c and .h)
files and store these in a second data set (Config uses).

Doxygen also has a module it calls the Config Parser used for
internal configurations of the Doxygen tool (not for features of the
applications being documented). We modified this. From the two
new data sets we create an XML that contains all of the configura-
tion and uses in our system (#4). In Doxygen, the Data Organizer
module builds dictionaries of the extracted classes, files, names-
paces, variables, functions, packages, pages, and groups from the
source code. We added the Config symbols and Config uses data
dictionaries. We use this data to create XML files, used for further
analysis of the configuration space, i.e. during system evolution.
The output generator module uses the information generated by
the data organizer module. We extended the HTML generator to
present the configuration information in the HTML documentation
files, including Kconfig symbols’ attributes, the defined locations,
and traceability of the symbols used in the source code.

4 CASE STUDY

We performed a case study to understand the potential of ConfiGen.
We evaluate its ability to provide relevant information and compare
ConfiGen against the state of the art tools.!

4.1 Subjects Studied

We choose three subjects that use Kconfig as their configuration
language and have a long development history. Berger et al. [6] pre-
sented 11 projects that use the Kconfig language. We selected three
open source projects, that are variants of Unix utilities: BusyBox,
uClibc-ng, and Toybox. BusyBox [7, 8] is a C library that combines

Supplementary data website: https://github.com/myracohen/ConfiGen-NIER24
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Figure 4: Ratio of Kconfig symbols in ConfiGen-generated documentation of BusyBox. The top line shows the ratio of feature
changes per file and the bottom line shows the number of files that have feature changes.

many essential Unix utilities into a small executable, used often in
embedded systems. uClibc-ng [39, 40] is a C library for embedded
Linux systems. Toybox [37, 38] is a command-line tool that com-
bines many Linux command-line utilities into a small executable.

We implemented a prototype of ConfiGen on top of Doxygen in
C++. We ran both Doxygen and ConfiGen on the full history for
the three subjects. For BusyBox, this includes v1.4.0 (2007) - v1.36.1
(2023), for uClibc-ng: v1.0.0 (2015) - v1.0.45 (2023), and for Toybox:
v0.0.2 (2007) - v0.8.10 (2023). We failed to analyze v0.8.6 of Toybox
because of a recursive dependency.

4.2 Results

Our study suggests the potential for ConfiGen. (1) features
are a significant part of the code; (2) they are distributed
between files; and (3) the overhead for ConfiGen is small.

Table 1 shows data from our analysis for the number of versions
analyzed, the average (and standard deviation) of the number of files
in each version, the average (and standard deviation) of those files
which have configuration options in the version, and the average
number of configuration symbols (or features) in those files. We
can see that all of these repositories have significant churn over the
years. The percent of files with configuration-related code, ranges
from 12.9% for uClibc-ng, to 39.9% for BusyBox. The number of
times individual features are used within files, is between 1.4 and
3.3 times per file, suggesting the changes to configurations are
distributed and can impact maintenance negatively.

Table 1: Number of versions for each subject, average number
of files in version, average number of files with configuration
symbols, and average number of configuration symbols.

No. Files with Configs Config Symbs
Subject Vers. avg std avg std avg std
BusyBox 108 715.73 60.21 | 285.06 | 47.02 | 938.33 | 241.79
uClibc-ng 46 | 3762.07 | 32891 | 483.70 | 29.41 | 812.02 37.80
Toybox 47 192.83 87.61 48.17 | 27.24 66.64 3531

Figure 4 shows this graphically over time, normalized as ratios.
The top line is the number of features per file (for those files with
configuration symbols) and the bottom line is the ratio of the num-
ber of files with configuration symbols (or features).
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Table 2: Timing data for analysis of a single version across
all versions (seconds)

Doxygen ConfiGen
Subj. Avg | Std | Avg | Std | OvHead
BusyBox 13.57 | 1.73 | 18.37 | 2.88 1.35
uClibc-ng | 24.96 | 3.00 | 29.00 | 6.74 1.16
Toybox 2.85 | 1.30 4.02 | 1.77 1.42
g 8 s S
g 7 . =
% 2 | o Ea— _—-- - —
e

00 05

T T T
Busybox uclibe-ng Toybox
Subject

Figure 5: Overhead of ConfiGen over Doxygen

We now turn to the performance/overhead of using ConfiGen.
Table 2 shows the average and standard deviation on seconds to
generate documentation both using Doxygen and ConfiGen. As we
can see the overhead (last column) ranges from 1.16 to 1.42. Last,
Figure 5 shows a boxplot of this data. Given that the average time
to create documentation for ConfiGen is less than half a minute
this seems to be a practically useful tool.

5 CONCLUSIONS AND FUTURE WORK

We have presented ConfiGen, an approach to build configuration
documentation into an automated documentation system. We be-
lieve this has potential to make configuration documentation first
class and can aide with common maintenance tasks such as testing,
debugging and refactoring. As future work we will build a more
robust version of ConfiGen and evaluate this to understand its
ability to help with these use cases. We will also add in runtime
configurability (not yet supported) which does not rely on Kconfig.
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