Check for
Updates

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Towards Automated Configuration Documentation

Jobayer Ahmmed
Iowa State University
Ames, Iowa, USA
jobayer@iastate.edu

ABSTRACT

Configurability is a common property of software allowing pro-
grams to be customized for the user. While configurability is per-
vasive, it can also lead to faults (or misconfigurations) and make
program evolution challenging. Dependencies can be missed, es-
sential code can be left in place when a configuration option is
removed, or code can be deleted or changed when still in use by
other configuration options. A key issue is a lack of sufficient docu-
mentation and traceability between configuration options and code
during software evolution. Existing approaches to solve these prob-
lems include automated documentation, analysis of version control
history, or the use of special program configuration management
languages. However, none of these provide a sufficient solution
managing configuration changes over time. In this paper we pro-
pose our vision for an automated approach called ConfiGen, which
provides user-facing documentation along with a back-end analysis
showing definitions and uses of configuration options along with
traceability to lines of program code for evolution. We performed a
case study demonstrating its potential usefulness.

CCS CONCEPTS

« Software and its engineering — Software evolution; Docu-
mentation; Software product lines.

KEYWORDS

configuration, software evolution, documentation

ACM Reference Format:

Jobayer Ahmmed, Myra B. Cohen, and Paul Gazzillo. 2024. Towards Auto-
mated Configuration Documentation. In 39th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE °24), October 27-November
1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3691620.3695311

1 INTRODUCTION

Software maintenance is an expensive part of the development
lifecycle. Documentation plays a key role, supporting tasks such
as testing and debugging, refactoring, and the design and architec-
ture for new functionality. Yet, documentation is often lacking or
hard to find. Even when developers comment individual methods
and modules, without automated documentation support, valuable

This work is licensed under a Creative Commons Attribution International 4.0 License.
ASE °24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695311

2256

Myra B. Cohen
Iowa State University
Ames, Iowa, USA
mcohen@iastate.edu

Paul Gazzillo
University of Central Florida
Orlando, Florida, USA
paul.gazzillo@ucf.edu

information lies distributed in the code. Recent approaches to doc-
umentation automation have helped to alleviate this concern by
aggregating code level comments into developer usable documents
with traceability back to the code. As maintainers change code they
can leverage this information and ensure consistency over time.
However, most of the commonly used documentation tools, such as
Javadocs [20], Docstrings [13], or Doxygen [14] are monolingual,
meaning they document a single language at a time. This works
well for documentation of variables, methods and classes, but it
leaves a hole for an important dimension of software which may
be critical during maintenance, that of configurability.

Much of our software today is configurable. Users or adminis-
trators can add and remove features to customize the software’s
behavior. Many software systems have hundreds or even thousands
of configuration options (features which can be changed during
customization). This has led to a large body of literature on miscon-
figurations [4, 43, 45, 47], runtime faults due to interacting features
[16], and arguments for less complex configuration interfaces [42].
While reducing the complexity of configurations may help with
some of these issues, most real configuration spaces are continu-
ally increasing. For instance, the Linux kernel, often used as an
exemplar of configurable software, has grown from over 4,000 [19]
in 2010, to more than 15,000 [30] in 2021. The Kconfig language
[22] has been built to support definition and selection of configura-
tions at build time, however, this information is isolated within the
Kconfig documentation.

In recent work [18] we argued for configurations to be first
class elements in a programming language, and at an abstraction
level that matches the programming languages used by develop-
ers and maintainers. There has been much research on variability
representation languages [1, 3, 33] and at providing configuration
visualization inside of the programming Interactive Development
Environment or IDE [21]), however this ignores the larger system-
atic problem of ensuring configurations are fundamental constructs.

In this paper we propose to make configurability a first class
element in documentation. We call our approach ConfiGen. To
illustrate its benefits, we build a prototype on top of a popular au-
tomated documentation tool; one that extracts user documentation
from code and generates output in user readable forms. We aug-
ment this with static analysis that identifies usage of the features
in the code and identifies deletions, additions and modifications of
code between versions. We evaluate the potential for ConfiGen on
three popular open source applications. We can generate config-
uration information for less than a 1.5% overhead over the base
documentation automatically while documenting between 11-25%
of the files in each version. These results provide evidence that
(1) documentation about configurability is indeed fragmented and
(2) that merging the documentation provides a cohesive view and
traceability of both configuration definition and usage.


https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695311&domain=pdf&date_stamp=2024-10-27

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Jobayer Ahmmed, Myra B. Cohen, and Paul Gazzillo

Ismod.c File Reference
oo the source code of tis i,
Enumerations

enum {TAINT_PROPRIETORY_MODULE = (1 <<0),, TAINT_FORCED MODULE = (1 <<1), TAINT_UNSAFE SMP=(1<<2)}

Functions
staticvoid check tainted (voic)

it Ismod_main (nt arge, char **arg) MAIN_EXTERNALLY_VISIBLE

int_Ismod_main (int argc UNUSED_PARAM, char *‘argv UNUSED_PARAM)

Enumeration Type Documentation

+anonymous enum
anonymous enum

Enumerstor
TAINT_PROPRIETORY_MODULE
TAINT_FORCED_MODULE
TANT_UNSAFE_SWP.

Defintion at fine 14 of file IsmodL.c.

Function Documentation

«check_tainted()

statc void check tanted (vaid ) [}

Defintion a ine 20 of file IsmodL.c.

+Ismod_main() 11/2]

Ismod.c File Reference

Go to the source code af this fl,

Kconfigs
ENABLE FEATURE 2 4 MODULES

ENABLE FEATURE GHEGK TAINTED MODULE
ENABLE FEATURE CLEAN UP
ENABLE FEATURE LSMOD PRETTY 2 6 OUTPUT
ENABLE UNICODE SUPPORT

Enumerations

enum {TAINT PROPRIETORY_MODULE = (1 <<0), TAINT_FORCED MODULE = (1 <<1) , TAINT UNSAFE SMP=(1<<2)}

Functions
statc vod_check tainted (void)
int_Ismod_main (nt arge,char *argu) MAIN_EXTERNALLY_VISIBLE
it Ismod_main (int argc UNUSED_PARAM, char **argy UNUSED_PARAM)

Kconfig Documentation

K ENABLE_FEATURE_2_4_MODULES e

Name: FEATURE_2_4_MODULES
Type: bool

Default: 0if (INSMOD || RMMOD || LSMOD)

Prompt: "Support version 2.2/2.4 Linux kemels’ if (INSMOD || RMMOD || LSMOD)
Depends on: (INSOD [| RMMOD || LSMOD)

Help:

‘Support module loading for 22 and 2.4 Linux kemels.
This increases size considerably. Say N unless you plan
0 run ancient kernes.

Defined at i 122 of fle modutisiConiigin.
Qm atline 54 of fle modutiis/ismodL.c.

(a) Normal Documentation

(b) ConfiGen Documentation

Figure 1: Traditional Documentation (a) with configuration information added (b)

+ -} 18 mmmm" util-linux/Config.in [0

kS @@ ~213,6 +213,12 @@ config FSCK_MINIX
213 213 check for and attempt to repair any corruption that occurs to a minix
24 2w filesysten.
215 215
216+ config MKFS_EXTZ —
A7 bool “mkfs_ext2"
218 [‘ Gefault n }
219 (+ help B
20 + Utility to create EXT2 filesystems.
216 222 config MKFS_MINIX
217 3 bool. "mifs_minix" \
218 224 default n \
3 @@ 233,17 +239,17 @@ config FEATURE_MINIX2 \

config WKFS_VFAT }\
L bool “mkfs vfat" -

config MKFS_RELSER
bool “mkfs_reiser"

default n
help -
Utility to create FAT32 filesystem J N

Utility to create ReiserFS filesystenms.

config WKFS_EXTZ
bool “mkfs_ext2"
‘config MKFS_VFAT

bool “mkfs_vfat"

244 default n

245) help //

24| Utility to create EXT2 filesystem Z
252 + Utility to create FAT32 filesystems.

247 753
d784b65 ~ OdBea6d
Kconfig Definition Changes e
Keonfig Commit d784b65 Commit 0d8ea6d
config MKFS_REISER
bool "mkfs_reiser
MKFS_REISER default0
hel
Utilty to create ReiserFS filesystems.

Figure 2: (1) Movement of features shown in git diff (2) Con-
fiGen Analysis shows only the addition of a feature in green

2 MOTIVATION AND RELATED WORK

We begin with a motivating example to demonstrate the need for
ConfiGen. Figure 1(a) shows automated documentation from a tool
called Doxygen [14]. It extracts method level comments from the

code and provides documentation and traceability for enumera-
tions, classes and functions, etc. Users can configure the output
to include macro information, however, it does not provide any
information about configurability. While it does support expanding
#ifdef constructs which are often used to represent blocks of code
associated with features, it does not process this in any special way
and information related to features is lost. On the right (b) we see
documentation from our prototype tool that includes configuration
information. #1 shows the list of features defined in Kconfig files.
Each of the features is detailed after enumerations. In this case we
see the first feature ENABLE_FEATURE_2_4_MODULES (#2). #3 shows
documentation extracted from the Kconfig documentation and #4
lists the uses within the file by line number.

Figure 2 on the other hand, demonstrates a challenge seen during
system evolution. The top portion (#1) shows the diff between two
versions of a system taken from GitHub. Lines 236-7, 248, 242-243,
and 246 are removed, while there are also a number of additions
(216-217, 242-243, 246, 248-249 and 252). Looking more closely we
see some of the code has been moved (shown by annotation arrows)
and some is brand new (e.g. 242-243). It is not easy to determine
what has happened in this diff. All of this churn is simply the result
of a single addition of a feature, MKFS_REISER. An addition on line
242 can be seen, but the complete behavior is difficult to ascertain.
Yet it is important for a tester or debugger to understand what has
happened. The bottom portion (#2) shows a diff from ConfiGen’s
analysis showing that a feature is added.

2.1 Related Work

There has been a large body of research on misconfigurations [9, 11,
17, 44-46], performance issues related to configurability[2, 29, 41],
modeling of configurations [5, 24, 36] and software product lines

2257



Towards Automated Configuration Documentation

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

* legend
% ¢ Com)
\ \
n modified
0 source| Keonfig a Kkextract cscope
.c.h .in .src
\ / new
e ﬂ HTML
[ o [ Language ]
- Config Config
pre-processor l Parser a4 . Generator Other
Formats
N\ Doxygen
K Config Parser Data

doxygen

)

Organizer

ConfiGen
XML

Figure 3: Overview of ConfiGen. The blue portion is the Doxygen workflow. Gray boxes are unchanged, light blue dashed boxes
are modified by us from their original source, and the solid blue-green boxes indicate new modules we added.

[31, 35]. In addition, there is research on reverse engineering con-
figuration variables and constraints [28, 32, 34]. Others have per-
formed empirical analyses of configuration spaces [26, 27] and their
evolution [6, 25]. The reverse engineering research is closest to our
work however it does not provide documentation. Some researchers
have defined variational languages (e.g. choice calculus [10, 15]),
however it expects the programmer to encode their configuration
options using a low level programming language construct. Tools
such as Javadoc, Doxygen and DocStrings [13, 14, 20] provide an
automated process to create a systematic set of documentation with
traceability. We leverage Doxygen in this work, however it does
not have the idea of configurability built in.

3 CONFIGEN

Figure 3 shows an overview of ConfiGen. The blue portion in the
middle of the figure is the main part of the workflow of the Doxy-
gen documentation tool [14]. In this figure, the gray boxes are
unchanged parts, the light blue dashed boxes are modified by us
from their original source, and the solid blue-green boxes indicate
new modules we added. ConfiGen starts by taking in the source
code of a C application (e.g. the .h and .c) files (#1). This is passed
to the Doxygen C pre-processor and language parser (#3), existing
(and unchanged modules) that create the standard documentation.

We use kextract (part of the kmax tool suite [23]) to parse the
Kconfig files (.in and .src). It reads and parses configuration files that
use Kconfig as their configuration management tool. Kconfig sym-
bols are defined in the Kconfig files. Each symbol contains attributes
such as its type definition, input prompt, default value, dependen-
cies, reverse dependencies, weak reverse dependencies, numerical
ranges, and help text. Kextract supports different argument options
for parsing. One limitation is that if there is a dependency for the
range attribute, it does not output that dependency. It also does
not provide information about where a specific Kconfig symbol is
defined, i.e., in which Kconfig file and at what line. We extended
kextract and created a new option to include all the attribute val-
ues of a Kconfig symbol. We added the precise location information

2258

of a Kconfig symbol - (which Kconfig file and line the symbol is
defined on). Last, we changed it to output the dependencies for the
range attribute.

ConfiGen keeps the output of kextract in a Config symbols data
dictionary. This builds a new dataset inside of the Doxygen data
organizer (Config symbols). We then read this and use Cscope
[12] to find uses of these configurations in the source (.c and .h)
files and store these in a second data set (Config uses).

Doxygen also has a module it calls the Config Parser used for
internal configurations of the Doxygen tool (not for features of the
applications being documented). We modified this. From the two
new data sets we create an XML that contains all of the configura-
tion and uses in our system (#4). In Doxygen, the Data Organizer
module builds dictionaries of the extracted classes, files, names-
paces, variables, functions, packages, pages, and groups from the
source code. We added the Config symbols and Config uses data
dictionaries. We use this data to create XML files, used for further
analysis of the configuration space, i.e. during system evolution.
The output generator module uses the information generated by
the data organizer module. We extended the HTML generator to
present the configuration information in the HTML documentation
files, including Kconfig symbols’ attributes, the defined locations,
and traceability of the symbols used in the source code.

4 CASE STUDY

We performed a case study to understand the potential of ConfiGen.
We evaluate its ability to provide relevant information and compare
ConfiGen against the state of the art tools.!

4.1 Subjects Studied

We choose three subjects that use Kconfig as their configuration
language and have a long development history. Berger et al. [6] pre-
sented 11 projects that use the Kconfig language. We selected three
open source projects, that are variants of Unix utilities: BusyBox,
uClibc-ng, and Toybox. BusyBox [7, 8] is a C library that combines

Supplementary data website: https://github.com/myracohen/ConfiGen-NIER24



ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Jobayer Ahmmed, Myra B. Cohen, and Paul Gazzillo

4
35
3

Q25
- e i .
s, - - Files with Configuration Symbols
15 ~a-Configuration Symbols Per File
1
05
pawren
0
R S T T S T
o ~ ) v % » > v » > » > » o o > N
W K3 Y K3 o > B » o & ) B o WV s L i P o (i g
» ~ ~ ~ » » ~ » 5 ~ » ! ! » » ~ ~

Version (year)

Figure 4: Ratio of Kconfig symbols in ConfiGen-generated documentation of BusyBox. The top line shows the ratio of feature
changes per file and the bottom line shows the number of files that have feature changes.

many essential Unix utilities into a small executable, used often in
embedded systems. uClibc-ng [39, 40] is a C library for embedded
Linux systems. Toybox [37, 38] is a command-line tool that com-
bines many Linux command-line utilities into a small executable.

We implemented a prototype of ConfiGen on top of Doxygen in
C++. We ran both Doxygen and ConfiGen on the full history for
the three subjects. For BusyBox, this includes v1.4.0 (2007) - v1.36.1
(2023), for uClibc-ng: v1.0.0 (2015) - v1.0.45 (2023), and for Toybox:
v0.0.2 (2007) - v0.8.10 (2023). We failed to analyze v0.8.6 of Toybox
because of a recursive dependency.

4.2 Results

Our study suggests the potential for ConfiGen. (1) features
are a significant part of the code; (2) they are distributed
between files; and (3) the overhead for ConfiGen is small.

Table 1 shows data from our analysis for the number of versions
analyzed, the average (and standard deviation) of the number of files
in each version, the average (and standard deviation) of those files
which have configuration options in the version, and the average
number of configuration symbols (or features) in those files. We
can see that all of these repositories have significant churn over the
years. The percent of files with configuration-related code, ranges
from 12.9% for uClibc-ng, to 39.9% for BusyBox. The number of
times individual features are used within files, is between 1.4 and
3.3 times per file, suggesting the changes to configurations are
distributed and can impact maintenance negatively.

Table 1: Number of versions for each subject, average number
of files in version, average number of files with configuration
symbols, and average number of configuration symbols.

No. Files with Configs Config Symbs
Subject Vers. avg std avg std avg std
BusyBox 108 715.73 60.21 | 285.06 | 47.02 | 938.33 | 241.79
uClibc-ng 46 | 3762.07 | 32891 | 483.70 | 29.41 | 812.02 37.80
Toybox 47 192.83 87.61 48.17 | 27.24 66.64 3531

Figure 4 shows this graphically over time, normalized as ratios.
The top line is the number of features per file (for those files with
configuration symbols) and the bottom line is the ratio of the num-
ber of files with configuration symbols (or features).

2259

Table 2: Timing data for analysis of a single version across
all versions (seconds)

Doxygen ConfiGen
Subj. Avg | Std | Avg | Std | OvHead
BusyBox 13.57 | 1.73 | 18.37 | 2.88 1.35
uClibc-ng | 24.96 | 3.00 | 29.00 | 6.74 1.16
Toybox 2.85 | 1.30 4.02 | 1.77 1.42
g 8 s S
g 7 . =
% 2 | o Ea— _—-- - —
e

00 05

T T T
Busybox uclibe-ng Toybox
Subject

Figure 5: Overhead of ConfiGen over Doxygen

We now turn to the performance/overhead of using ConfiGen.
Table 2 shows the average and standard deviation on seconds to
generate documentation both using Doxygen and ConfiGen. As we
can see the overhead (last column) ranges from 1.16 to 1.42. Last,
Figure 5 shows a boxplot of this data. Given that the average time
to create documentation for ConfiGen is less than half a minute
this seems to be a practically useful tool.

5 CONCLUSIONS AND FUTURE WORK

We have presented ConfiGen, an approach to build configuration
documentation into an automated documentation system. We be-
lieve this has potential to make configuration documentation first
class and can aide with common maintenance tasks such as testing,
debugging and refactoring. As future work we will build a more
robust version of ConfiGen and evaluate this to understand its
ability to help with these use cases. We will also add in runtime
configurability (not yet supported) which does not rely on Kconfig.

ACKNOWLEDGMENTS

This work was funded in part by the National Science Foundation,
CNS-2234908, CNS-2234909, CCF-1941816, and CCF-1909688.



Towards Automated Configuration Documentation

REFERENCES

(1]

A

(3

=

[4

=

[10

(1]

[12

[13]

[14

[15]

[16]

[17

=
&

[19

[20]

[21

[22

[23]

Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2013.
FAMILIAR: A domain-specific language for large scale management of feature
models. Sci. Comput. Program. 78, 6 (jun 2013), 657-681. https://doi.org/10.1016/
j-scico.2012.12.004

Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel. 2020.
Sampling Effect on Performance Prediction of Configurable Systems: A Case
Study. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering (ICPE °20). 277-288. https://doi.org/10.1145/3358960.3379137
Maurice H. ter Beek, Klaus Schmid, and Holger Eichelberger. 2019. Textual
Variability Modeling Languages: An Overview and Considerations. In Proceedings
of the 23rd International Systems and Software Product Line Conference - Volume B
(Paris, France) (SPLC ’19). 151-157. https://doi.org/10.1145/3307630.3342398
Farnaz Behrang, Myra B. Cohen, and Alessandro Orso. 2015. Users beware:
preference inconsistencies ahead. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). 295-306.
https://doi.org/10.1145/2786805.2786869

David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
analysis of feature models 20 years later: a literature review. Information Systems
35, 6 (2010), 615-636.

Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Transactions on Software Engineering 39, 12 (2013), 1611-
1640. https://doi.org/10.1109/TSE.2013.34

BusyBox Git Repository [n.d.]. busybox - BusyBox: The Swiss Army Knife of
Embedded Linux. Retrieved 2024 from https://git.busybox.net/busybox
BusyBox Library [n.d.]. BusyBox. Retrieved Jun 10, 2024 from https://busybox.
net/about.html

Qingrong Chen, Teng Wang, Owolabi Legunsen, Shanshan Li, and Tianyin Xu.
2020. Understanding and Discovering Software Configuration Dependencies in
Cloud and Datacenter Systems. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). 362-374. https:
//doi.org/10.1145/3368089.3409727

Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2012. An error-tolerant type
system for variational lambda calculus. SIGPLAN Not. 47, 9 (sep 2012), 29-40.
https://doi.org/10.1145/2398856.2364535

Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu. 2021. Test-
Case Prioritization for Configuration Testing. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis (Virtual,
Denmark) (ISSTA 2021). 452-465. https://doi.org/10.1145/3460319.3464810
Cscope [n.d.]. Cscope Home Page. Retrieved Jun 10, 2024 from https://cscope.
sourceforge.net

DocString [n.d.]. PEP 257 — Docstring Conventions | peps.python.org. Retrieved
Jun 10, 2024 from https://peps.python.org/pep-0257/#what-is-a-docstring
Doxygen [n.d.]. Doxygen homepage. Retrieved Jun 10, 2024 from https://www.
doxygen.nl

Martin Erwig and Eric Walkingshaw. 2011. The Choice Calculus: A Represen-
tation for Software Variation. ACM Trans. Softw. Eng. Methodol. 21, 1, Article 6
(dec 2011), 27 pages. https://doi.org/10.1145/2063239.2063245

Brady J. Garvin and Myra B. Cohen. 2011. Feature Interaction Faults Revisited:
An Exploratory Study. In 2011 IEEE 22nd International Symposium on Software
Reliability Engineering. 90-99. https://doi.org/10.1109/ISSRE.2011.25

Paul Gazzillo. 2020. Inferring and Securing Software Configurations Using
Automated Reasoning. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Virtual Event, USA) (ESEC/FSE 2020). 1517-1520. https://doi.org/10.
1145/3368089.3417041

Paul Gazzillo and Myra B. Cohen. 2022. Bringing Together Configuration Re-
search: Towards a Common Ground. In Proceedings of the 2022 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward! 2022). 259-269. https://doi.org/10.1145/3563835.
3568737

Ayelet Israeli and Dror G. Feitelson. 2010. The Linux kernel as a case study
in software evolution. Journal of Systems and Software 83, 3 (2010), 485-501.
https://doi.org/10.1016/j.jss.2009.09.042

Javadoc [n.d.]. javadoc. Retrieved Jun 10, 2024 from https://docs.oracle.com/
javase/8/docs/technotes/tools/windows/javadoc.html

Christian Kastner, Thomas Thum, Gunter Saake, Janet Feigenspan, Thomas Leich,
Fabian Wielgorz, and Sven Apel. 2009. FeatureIDE: A tool framework for feature-
oriented software development. In 2009 IEEE 31st International Conference on
Software Engineering. 611-614. https://doi.org/10.1109/ICSE.2009.5070568
Kconfig Language [n.d.]. Kconfig Language — The Linux Kernel documenta-
tion. Retrieved Jun 10, 2024 from https://www.kernel.org/doc/html/next/kbuild/
kconfig-language.html

Kmax Toolset [n.d.]. paulgazz/kmax: A collection of analysis tools for Kconfig and
Kbuild constraints. Retrieved Jun 10, 2024 from https://github.com/paulgazz/kmax

2260

[24

[25

[26

(28]

[29]

[31

[32

[33

(34

[35

[36

[37

[38

[39

[40

[41

[42

[43

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Elias Kuiter, Sebastian Krieter, Jacob Kriiger, Thomas Leich, and Gunter Saake.
2019. Foundations of Collaborative, Real-Time Feature Modeling. In Proceedings
of the 23rd International Systems and Software Product Line Conference - Volume A
(SPLC). ACM, 257-264.

Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej
Wasowski. 2010. Evolution of the Linux kernel variability model. In Software
Product Lines: Going Beyond: 14th International Conference, SPLC 2010, Jeju Island,
South Korea, September 13-17, 2010. Proceedings 14. Springer, 136—150.

Flavio Medeiros, Christian Késtner, Marcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A Comparison of 10 Sampling Algorithms for Configurable Systems. In
Proceedings of the 38th International Conference on Software Engineering (ICSE).
ACM Press, New York, NY, 643-654. https://doi.org/10.1145/2884781.2884793
Jens Meinicke, Chu-Pan Wong, Christian Kastner, Thomas Thiim, and Gunter
Saake. 2016. On Essential Configuration Complexity: Measuring Interactions In
Highly-Configurable Systems. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). ACM Press, New York, NY,
483-494. https://doi.org/10.1145/2970276.2970322

Sarah Nadi, Thorsten Berger, Christian Késtner, and Krzysztof Czarnecki. 2014.
Mining configuration constraints: static analyses and empirical results. In Pro-
ceedings of the 36th International Conference on Software Engineering (ICSE 2014).
140-151. https://doi.org/10.1145/2568225.2568283

Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. 2017. Using Bad
Learners to Find Good Configurations. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2017). 257-267. https:
//doi.org/10.1145/3106237.3106238

Jeho Oh, Necip Fazil Yildiran, Julian Braha, and Paul Gazzillo. 2021. Finding
Broken Linux Configuration Specifications by Statically Analyzing the Kconfig
Language. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Athens, Greece) (ESEC/FSE 2021). 893-905. https://doi.org/10.1145/3468264.
3468578

Philipp Dominik Schubert, Paul Gazzillo, Zach Patterson, Julian Braha, Fabian
Schiebel, Ben Hermann, Shiyi Wei, and Eric Bodden. 2022. Static Data-Flow
Analysis for Software Product Lines in C. Automated Software Engineering (2022),
35 pages. https://doi.org/10.1007/s10515-022-00333-1 To appear..

Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof
Czarnecki. 2011. Reverse Engineering Feature Models. In Proceedings of the 33rd
International Conference on Software Engineering (ICSE). ACM, 461-470.

Chico Sundermann, Kevin Feichtinger, Dominik Engelhardt, Rick Rabiser, and
Thomas Thiim. 2021. Yet another textual variability language? a community effort
towards a unified language. In Proceedings of the 25th ACM International Systems
and Software Product Line Conference - Volume A (Leicester, United Kingdom)
(SPLC ’21). 136-147. https://doi.org/10.1145/3461001.3471145

Thammasak Thianniwet and Myra. B. Cohen. 2015. SPLRevO: Optimizing com-
plex feature models in search based reverse engineering of software product
lines. In Proceedings of the 1st North American Search Based Software Engineering
Symposium (NasBASE). 1-16.

Thomas Thiim, Sven Apel, Christian Késtner, Ina Schaefer, and Gunter Saake.
2014. A classification and survey of analysis strategies for software product lines.
ACM Computing Surveys (CSUR) 47, 1, Article 6 (2014), 45 pages.

Thomas Thiim, Christian Késtner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-
oriented software development. Science of Computer Programming 79 (2014), 70 —
85. Experimental Software and Toolkits (EST 4): A special issue of the Workshop
on Academic Software Development Tools and Techniques (WASDeTT-3 2010).
Toybox Git Repository [n.d.]. landley/toybox: toybox. Retrieved Jun 10, 2024
from https://github.com/landley/toybox
Toybox Library [n.d.]. What is toybox?
//landley.net/toybox

uClibc-ng Git Repository [n.d.]. wbx-github/uclibc-ng: Embedded C Library
(mirror). Retrieved Jun 10, 2024 from https://github.com/wbx-github/uclibc-ng
uClibe-ng Library [n.d.]. Welcome to uClibc-ng! - Embedded C library. Retrieved
Jun 10, 2024 from https://uclibc-ng.org

Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian Kast-
ner. 2021. White-Box Analysis over Machine Learning: Modeling Performance of
Configurable Systems. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). 1072-1084. https://doi.org/10.1109/ICSE43902.2021.00100
Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. 2015. Hey, you have given me too many knobs!: understanding
and dealing with over-designed configuration in system software. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo,
Italy) (ESEC/FSE 2015). 307-319. https://doi.org/10.1145/2786805.2786852
Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do not blame users for mis-
configurations. In Proceedings of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles (Farminton, Pennsylvania) (SOSP ’13). 244-259. https:
//doi.org/10.1145/2517349.2522727

Retrieved Jun 10, 2024 from https:



ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

[44] Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tackling Configu-

[45

]

ration Errors: A Survey. ACM Comput. Surv. 47, 4, Article 70 (July 2015), 41 pages.
https://doi.org/10.1145/2791577

Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasun-
daram, and Shankar Pasupathy. 2011. An empirical study on configuration
errors in commercial and open source systems. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (Cascais, Portugal) (SOSP ’11).
159-172. https://doi.org/10.1145/2043556.2043572

2261

Jobayer Ahmmed, Myra B. Cohen, and Paul Gazzillo

[46] Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu. 2021. Static Detection

[47]

of Silent Misconfigurations with Deep Interaction Analysis. Proc. ACM Program.
Lang. 5, OOPSLA, Article 140, 30 pages. https://doi.org/10.1145/3485517

Sai Zhang and Michael D. Ernst. 2014. Which configuration option should I
change?. In Proceedings of the 36th International Conference on Software Engineer-
ing (Hyderabad, India) (ICSE 2014). 152-163. https://doi.org/10.1145/2568225.
2568251



