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A B S T R A C T

Polymer-based nanocomposites (PNCs) are formed by dispersing nanoparticles (NPs) within a 
polymer matrix, which creates polymer interphase regions that drive property enhancement. 
However, data-driven PNC design is challenging due to limited data. To address the challenge, we 
present ViscoNet, a surrogate model for finite element analysis (FEA) simulations of PNC visco-
elastic (VE) response. ViscoNet leverages pre-training and finetuning to accelerate predicting VE 
response of a new PNC system. By predicting the entire VE response, ViscoNet surpasses previous 
scalar-based surrogate models for FEA simulation, offering better fidelity and efficiency. We 
explore ViscoNet’s effectiveness through generalization tasks, both within thermoplastics and 
from thermoplastics to thermosets, reporting a mean absolute percentage error (MAPE) of ω 5 % 
for rubbery modulus and ω 1 % for glassy modulus in all cases and 1.22 % on tan δ peak height 
prediction. With only 500 FEA simulations for finetuning, ViscoNet can generate over 20k VE 
responses within 2 min with 1 CPU, compared to 97 days with 4 CPUs via FEA simulations.

1. Introduction

Polymer-based nanocomposites (PNCs) are materials that combine polymers with nanoscale fillers, forming a material that has 
enhanced properties. These nanofillers can be NPs of various materials such as metals (Faupel et al., 2010), metal oxides (Khan et al., 
2015), clays (Li et al., 2003), carbon-based materials like nanotubes (Wang et al., 2005) or graphene (Pham et al., 2012), and more. 
The geometric and chemical interactions between polymer chains and NPs at the interface creates a region known as the “interphase” 
which causes the property enhancement seen in polymer nanocomposites (Liu et al., 2016). Studies have shown that properties of some 
interphases can be approximated by modifying the pure polymer matrix properties by frequency shifting or broadening around the tan 
δ peak (Li et al., 2019), (Wang et al., 2018).

Materials design continues to be a time-consuming process that spans several years to decades, requiring a deep understanding of 
the complex relationships between processing, structure, and properties (p-s-p relationships) of materials (Schadler et al., 2020), (W. 
Chen et al., 2020). Viscoelastic properties play a crucial role in determining the performance of PNCs, and thus both understanding and 
accurately predicting viscoelastic properties are essential. In recent years, data-driven prediction methods have gained popularity due 
to their ability to learn intricate relationships and have shown promise in aiding understanding p-s-p relationships, provided there is 
sufficient data available (Deagen et al., 2022), (Himanen et al., 2019), (Xu et al., 2021), which is often not the case for PNCs. To address 
this data limitation, our growing FAIR data resource, MaterialsMine, has emerged to make data more accessible and comprehensive 
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(Zhao et al., 2016), (Zhao et al., 2018), (Brinson et al., 2020), (Prabhune et al., 2023).
While efforts are being made to increase the availability of experimental PNC data, the finite element analysis (FEA) simulations 

can presently generate a significant amount of data in a shorter time span. In the computational materials community, high-throughput 
density functional theory (DFT) simulations have proven successful in rapidly exploring a wide range of candidate materials for 
subsequent experimental investigation (Gossett et al., 2018), (Mehl et al., 2017). Similarly, FEA simulations can be applied to 
exploration of the PNC design space. However, FEA simulations are computationally expensive and time-consuming. Therefore, there 
is a need to create a surrogate model that is computationally efficient (Hashemi et al., 2023), and can ideally be effectively used on a 
personal laptop in low-resource settings. The development of inexpensive surrogate models helps democratize material design by 
enabling resource-constrained engineers, companies, and countries to actively participate in the exploration and optimization of PNCs.

Surrogate models are widely adopted in the materials science community for constitutive modeling (Liu et al., 2021). Since the 
emergence of the Artificial Neural Network (ANN), with its powerful capability of modeling non-linearity, it has been widely applied as 
a surrogate model, with some early adopters considered its application on PNCs nearly two decades ago (Zhang and Friedrich, 2003). 
Zhang et al. made an early attempt using a 1-layer feed forward neural network with a hidden size of 25 on 480 experimental data for 
storage modulus and tan δ prediction at given temperature (Zhang et al., 2002). Over the years, a variety of ANN models were 
introduced and applied by researchers on materials science modeling. Recurrent Neural Network (RNN) is a special type of ANN that 
recurrently uses the hidden state emitted by the neuron as input to the next state, granting it the capability of sequential predictions 
(Rumelhart et al., 1986), (Hochreiter and Schmidhuber, 1997). Wu et al. utilized a Gated Recurrent Unit (GRU)-based RNN as a 
surrogate model for micro-scale simulations within the framework of multi-scale analysis in solid mechanics (Wu et al., 2020). The use 
of RNN enables the model to predict the stress history. Similarly, Chen et al. utilized the Long-Short Term Memory (LSTM) model, 
another type of RNN model, as a surrogate for finite-volume direct averaging micromechanics modeling of elastoplastic response of 
heterogeneous materials (Chen et al., 2021). Convolutional Neural Network (CNN) is widely used in image/topology-related tasks due 
to its convolutional and pooling layers for feature extraction from images (LeCun et al., 1998).

Nie, et al. demonstrated that CNN can be used for stress field prediction in a homogenous cantilever (Nie et al., 2020). Chen et al. 
trained a CNN model as an FEA surrogate for thermo-mechanical properties simulation of unidirectional composites (Q. Chen et al., 
2020). FEA-Net incorporates knowledge in physics into the CNN for mechanical response prediction with better physical interpretation 
and supports multi-phrase systems like PNCs (Yao et al., 2020). Another recent work utilized microstructure images of PNCs as input to 
CNN for viscoelastic properties prediction, including tan δ peak, glassy modulus, and rubbery modulus (Wang et al., 2020).

Despite the progress made, there are several challenges in ANN surrogate modeling of PNCs that need to be addressed. First, 
existing surrogate models for PNC FEA simulations often have restricted parameter spaces and are specific to materials systems or other 
parameters. Second, these models often predict scalar metrics derived from the viscoelastic (VE) response curve, rather than the full 
curve itself. Lastly, many surrogate models like RNN and CNN are themselves computationally slow and require extensive resources.

To overcome these challenges, we propose a novel surrogate model, ViscoNet, for FEA simulations of PNC VE response prediction. 
ViscoNet leverages the pre-training then finetuning training scheme, inspired by successful approaches used in the natural language 
processing (NLP) domain (Devlin et al., 2019), (Raffel et al., 2020), (OpenAI 2023). Pre-training the model with a large dataset 
covering a wide parameter space enables it to capture general understanding of VE response. Subsequently, the model is finetuned with 
a smaller dataset specific to the materials system of interest, refining its knowledge for accurate predictions. We utilize a simple 
multilayer perceptron (MLP) architecture, offering fast training and inference times. To address the issue of reducing the VE response 
to an ANN input vector, we employ a frequency-fixing technique, transforming the 2D spectral response curve into a 1D series. In this 
work, we present our surrogate model for PNC VE response prediction, which demonstrates good fidelity and efficiency.

2. Material and methods

2.1. Design space

2.1.1. Microstructure generation
15 random seeds were used to generate 15 sets of microstructures using the combination of parameters described in Table 1.
All microstructures were generated as a 500px-by-500px square grid, representing a physical size of 1μm-by-1μm. Note that the 

standard deviation of particle radius is limited to 20 %→60 % of the mean particle radius. For example, if the mean radius is 20 nm, 
then possible parameter combinations are 20 ↑ 5 nm and 20 ↑ 10 nm because the standard deviation is bounded by 4 nm and 12 nm. 
Particles are positioned randomly without overlap and sequentially until the desired volume fraction is reached; no particle 
agglomeration is considered in this work. For a given particle distribution, we only increase the interphase thickness until it saturates 

Table 1 
Parameter space for microstructure generation.

Parameters Parameter space

Particle radius mean [5, 10, 20, 35, 50] [nm]
Particle radius std. deviation [1, 3, 5, 10, 20, 30] [nm] bounded by [0.2 mean, 0.6 mean]
Fixed RVE size 500 [pixel]
Particle volume fraction [0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50]
Interphase thickness [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] [nm]
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as a two-phase, particle-interphase-only material. Thus, for certain cases, the interphase thickness might be capped at a value smaller 
than 100 nm since higher thicknesses would result in identical material systems with identical performance. Overall, in this design of 
experiments (DOE) from Table 1, 11,289 microstructures were generated.

2.1.2. FEA simulation
2D FEA simulations for VE response of PNCs were done with Abaqus. The pixel-based image was converted into a 500-by-500 mesh 

with four-node plane strain element CPE4R. A 0.5 % tension displacement in x direction was applied to a reference node kinematically 
coupled to boundary nodes. Periodic boundary conditions as implemented in (Li et al., 2019) and (Qiao and Catherine Brinson, 2009) 
were assumed. For the output VE response, 30 intervals were evenly distributed on a log scale between 10→4 Hz and 103 Hz.

To model the interphase properties, we include a shifting factor in {→3, →2, →1}, which indicates shifting the matrix viscoelastic 
properties towards lower frequency by 1 to 3 decades, and a broadening factor in {1, 2, 3}, with 1 being no broadening and 3 being 
widening the frequency range anchored at the tan δ peak by 3 times (Wang et al., 2018). These conditions are most appropriate for 
attractive interactions between the particle surface and matrix.

2.1.3. Materials system
Studies have shown that the viscoelastic properties of PNC are minimally impacted by the NP modulus, both in terms of the 

magnitude and the isotropy (Qiao and Catherine Brinson, 2009). For nanofiller, we picked isotropic elastic silica NPs with a density of 
2.65 g/cm3, a Young’s modulus of 73 GPa, and a Poisson’s ratio of 0.17. For the polymer matrix, Table 2 summarizes the thermo-
plastics and thermosets that we examined for the generalization experiments. For thermoplastics, we examined polycarbonate (PC), 
polymethyl methacrylate (PMMA), and polystyrene (PS). For thermosets, we picked an epoxy.

2.2. Feature engineering

ViscoNet uses two groups of input features: spectral and scalar. As mentioned earlier, we flattened the 2D VE spectral data into a 
feature vector by evaluating the response at fixed frequency output by Abaqus, resulting in 30 features.

For VE response, there are three curves of interest, namely storage modulus (E’), loss modulus (E”), and tan δ. At a given frequency, 
the relation between these quantities is defined by tan δ ↓ Eʹ́εEʹ. Thus, one can predict just two of these three properties and trivially 
calculate the third. In this work, ViscoNet seeks to predict tan δ curves and E’ curves, since an E” curve can be generated from those 
without performing division with a predicted value that may contain substantial error, i.e., generating a Cauchy-distributed prediction.

There are two extra processing steps for the spectral features. Since E’ can range from MPa to GPa, instead of predicting the E’, 
VisoNet predicts the base 10 logarithm log(E’) for numerical stability. To make sure that ViscoNet can handle all types of input and for 
faster convergence, the magnitude of the input log(E’) curves and tan δ curves are each scaled by 

Xiϑ scaled ↓ Xi → min↔X↗
max↔X↗ → min↔X↗

Yiϑ scaled ↓ Yi → min↔X↗
max↔X↗ → min↔X↗

where X stands for the 30 input log(E’) or tan δ values of pure polymer matrix at fixed frequency, and Y stands for the corresponding 
values of PNCs at those frequency. Note that Y is also scaled with the min and max of X. During inference, the (unscaled) VE spectral 
data of pure polymer matrix is provided as original input, so we can use the scaling values to obtain the actual (non-scaled) values of 
the predicted composite property curves. Fig. 1 demonstrates the VE response curves of polymer matrices before and after scaling.

In addition to the spectral data features, ViscoNet also uses an array of scalar features, including mean and standard deviation of 
particle radius (ParRu and ParRv), volume fraction of free particles (Vf), volume fraction of interphase (Vt), shifting factor, broadening 
factor, and a binary percolation flag as input. Percolation happens when the interphase overlaps and forms a pathway across the PNC, 
as illustrated in Fig. 2. Percolation is determined by a Depth-First Search from left to right and top to bottom. It has been shown that 
percolation can bring different levels of property change to the PNC, contingent on the strength of interaction between the polymer 
matrix and NPs (Qiao and Catherine Brinson, 2009), (Zare and Rhee, 2018), (Song and Zheng, 2015).

2.3. ViscoNet

To create our surrogate model, ViscoNet, we evaluated an array of Neural Network (NN) models with two hidden layers, including a 

Table 2 
Properties of polymer matrices used in this study and the FEA data size generated for the associated polymer-silica nanocomposites.

Polymer Type Long-term modulus (MPa) Density (g/cm3) Data size

PC (Fisher et al., 2004) thermoplastic 3.04 1.2 41,209
PMMA (Alves et al., 2004) thermoplastic 7.11 1.2 41,389
PS (Cavaille et al., 1987) thermoplastic 0.001 1.05 47,165
Epoxy (Woo et al., 1991) thermoset 136.7 1.265 23,005
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deep NN model with hidden size 128, a deep NN model with hidden size 256, and a Wide-and-Deep NN (WDNN) model with hidden 
size 256. All NN models have 2 hidden layers. Between every pair of fully connected layers, a Gaussian Error Linear Unit (GELU) 
activation layer and a dropout of 0.2 are implemented (Hendrycks and Gimpel, 2023). Finetuning and inference with the candidate 
ViscoNet models, which are lightweight and low resource, do not require GPU. Illustration of these models are shown in Fig. 3.

WDNN is a well-known NN model for recommender systems (Cheng et al., 2016). Its highlight is that it concatenates important 
categorical features directly to the last hidden layer so that the model memorizes them. Though we do not have categorical features 
other than the percolation flag in our feature set, we do know that features like shifting and broadening have a big impact on the VE 
response. Thus, we also evaluated WDNN with different wide feature selections from our scalar features. Table 3 summarizes the model 
setups evaluated for ViscoNet.

Regardless of network architecture, MSE loss is picked as the training criteria. The NN models were trained on log(E’) and tan δ, but 
not simultaneously which consistently yielded poor performance. Details of training configurations are available in the Supplementary 

Fig. 1. Log(E’) (top) and tan δ (bottom) curves of PC, PMMA, PS, and epoxy, before (left) and after (right) scaling.

Fig. 2. Illustration of microstructures with (left) and without (right) percolation.
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Information section S1. The train/valid/test split is by default 64/16/20, unless otherwise specified.
We evaluate the model by the full curve with MSE loss, and by single-point VE properties that can be induced from the predicted VE 

response curve like peak value for tan δ curves and rubbery/glassy modulus for E’ curves with Mean Average Percentage Error (MAPE).
As mentioned earlier, tan δ curve has a complicated bell shape with many possible asymmetries. As you can see from the example in 

Fig. 4, we can categorize the misprediction of the model into two main types: one for the “shelf” error and the other for peak over- and 
under-prediction. Our observation from a preliminary study with 10k PS data is that “shelf” error can be reflected by a high full-curve 
MSE loss, while the peak over/under-prediction error can be reflected by the MAPE of tan δ peak.

3. Results and discussion

In this section, results from our numerical experiments that evaluate ViscoNet’s capability of generalization from PC, PMMA 
(thermoplastics) to PS (thermoplastics) and from PC, PMMA, PS (thermoplastics) to epoxy (thermosets) are reported. Table 4 sum-
marizes the major pre-training and finetuning experiments. Each model architecture listed in Table 3 was pre-trained and finetuned to 
predict the full PNC VE response curves log(E’) and tan δ.

An impact analysis on the percolation feature is presented in Section 3.3, where we compare the number of tan δ predictions with 
“shelf” error with and without the percolation flag. Another few-shot experiment to discover the progression of model performance 
with an increasing data size for finetuning is reported in Section 3.4. To quantify the gain of ViscoNet in terms of compute time, 
estimations are given in Section 3.5. A few use case scenarios are provided and discussed in Section 3.6, along with a few limitations 
listed in Section 3.7.

3.1. Generalization within thermoplastics

In this subsection, we evaluate the ability of candidate ViscoNet models trained with VE response curves of thermoplastic-based 
PNC to generalize to a new thermoplastic-based PNC with limited examples for finetuning. ViscoNet was pre-trained with 41,209 
PC data points and 41,389 PMMA data points. Then, the pre-trained model was finetuned with only 500 PS data points to predict VE 

Fig. 3. Deep NN (left) and Wide-and-Deep NN (right) evaluated for ViscoNet.

Table 3 
Specifications of NN models evaluated for ViscoNet.

Model code Hidden size Has percolation? Wide feature

VE128np 128 No N/A
VE128 128 Yes N/A
VE256 256 Yes N/A
VE256WDNN5 256 Yes ParRu, ParRv, shifting, broadening, percolation
VE256WDNN3 256 Yes shifting, broadening, percolation

Fig. 4. Peak over/under-prediction error and “shelf” error of tan δ curve.
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responses of PS-based PNC, without freezing any model parameters. 400 PS data were used for training and the 100 remaining were 
used for validation. Pre-training required ~30 min for every 50 epochs, resulting in 30 min training time for tan δ models and 60 min 
for log(E’) models. Finetuning on only 1 CPU for 50 epochs takes 15 min with parallel data loading disabled. The finetuned model was 
evaluated on a test set of 23,119 PS data. All PS data used different microstructures from those used in PC and PMMA FEA simulation.

ViscoNet models of 5 different NN architectures were evaluated by test MSE loss for both log(E’) and tan δ prediction, totaling at 10 
different NNs. For log(E’) prediction, we also report MAPE of rubbery modulus and glassy modulus. For tan δ prediction, we also report 
MAPE of tan δ peak. Table 5 summarizes the results.

ViscoNet models can predict the glassy modulus with ω 0.5 % MAPE and the rubbery modulus with ω 6 % MAPE. For log(E’) 
prediction, VE256 achieved the best performance, and the addition of the wide signals seem to hurt the performance, though the 
decrease is marginal. The result is plausible as E’ curves tend to be simpler in shape as compared to tan δ curves, meaning that it might 
not benefit much from complex structures like WDNN. The percolation signal does not significantly improve log(E’) prediction.

For tan δ prediction, the three VE256-based models had very similar performance. VE256WDNN3 has a marginal advantage in both 
test MSE loss and MAPE on tan δ peak over the other two models. We found that percolation, shifting factor, and broadening factor are 
highly correlated with either shelf error or peak error during our preliminary experiments. Thus, the result agrees with our preliminary 
experiments, showing that for tan δ prediction, it is worthwhile to pass the three features as wide signals directly to the last hidden 
layer. On the other hand, by comparing VE256 and VE256WDNN5, we can tell that wide signals must be carefully selected. Otherwise, 
including excessive features like particle radius mean and standard deviation may introduce noise and hurt the model performance.

Usually, it is meaningless to compare MSE loss of models predicting different targets as it is not normalized. Targets with values of 
order magnitude 10 will have 100 times bigger MSE loss than targets with values of order magnitude 1. In our case, however, since 
both log(E’) data and tan δ data of the input VE master curves were scaled to 0 to 1, and the FEA simulated PNC VE master curves will 
not significantly deviate from this range, we can assume log(E’) and tan δ curves of the PNC have similar range of value. Thus, we can 
roughly compare the test MSE loss between log(E’) models and tan δ models. From Table 5, tan δ models tend to have higher test MSE 
loss than their log(E’) twin, which is aligned with the fact that log(E’) curves are simpler in shape compared to tan δ curves.

To provide a more rich comparison, we picked the best performing models for log(E’) and tan δ prediction from Table 5, and 
visualized them on a random subset of test PS composite samples in Fig. 5.

Fig. 5 broadly agrees with the results of Table 5. The low MSE loss of both log(E’) and tan δ in Table 5 translates into largely 
superposed curves for prediction and ground truth, though a few peak errors and shelf errors mentioned in Fig. 4 can be observed for 
tan δ.

3.2. Generalization from thermoplastics to thermosets

In this section, we take another step to test ViscoNet’s generalization ability by evaluating predictions VE response curves for 
thermoset-based PNCs. The ViscoNet was pre-trained with 41,209 PC, 41,389 PMMA, and 34,964 PS data points, and then finetuned 
with 500 epoxy data points with an 80/20 train/valid split. Since there are about 50 % more data, the time consumption during the 
pre-training stage also increased by 50 %, resulting in around 45 min for tan δ models and 90 min for log(E’) models. The finetuned 
model was then evaluated on an extra 22,505 epoxy data points. Once again, all epoxy data were simulated in FEA with newly 
generated microstructures. Table 6 summarizes the performance.

Overall, this thermoset finetuning case is comparable to the prior example of predictions for an unseen thermoplastic case. 
Increasing hidden dimension from 128 to 256 helps the performance while WDNN architecture has mixed but marginal impact on log 

Table 4 
Major pre-training and finetuning experiments conducted in this work.

Experiment Steps Generalization within thermoplastics Generalization from thermoplastics to thermosets

Pre-training data 41,209 PC ↘ 41,389 PMMA 41,209 PC ↘ 41,389 PMMA ↘ 34,964 PS
Finetuning data 500 PS 500 epoxy
Test data 23,119 PS 22,505 epoxy
Output VE response log(E’) tanδ log(E’) tanδ

Table 5 
Performance of ViscoNet models for generalization within thermoplastics.

Model VE response Test MSE loss MAPE rubbery log modulus MAPE glassy log modulus MAPE tan δ peak

VE128np E’ 0.000180 5.85 % 0.41 % ​
VE128 E’ 0.000155 5.49 % 0.45 % ​
VE256 E’ 0.000137 4.90 % 0.34 % ​
VE256WDNN5 E’ 0.000144 5.93 % 0.35 % ​
VE256WDNN3 E’ 0.000144 5.04 % 0.38 % ​
VE128np tan δ 0.000912 ​ ​ 5.03 %
VE128 tan δ 0.000835 ​ ​ 4.83 %
VE256 tan δ 0.000740 ​ ​ 4.51 %
VE256WDNN5 tan δ 0.000746 ​ ​ 4.50 %
VE256WDNN3 tan δ 0.000720 ​ ​ 4.45 %
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(E’) prediction. Compared to the previous case, it seems that ViscoNet did a slightly better job predicting rubbery modulus and a 
slightly poorer job predicting the glassy modulus for epoxy PNCs.

Interestingly, ViscoNet achieved much better results on tan δ prediction with test MSE loss lower than their log(E’) twin and a tan δ 
peak MAPE lower than 2 %, despite the thermoplastic-to-thermoset generalization task should be more difficult due to the presence of 
a low-frequency plateau in log(E’). The additional 35k PS data for pretraining is a likely reason. By comparing VE128 and VE128np, 
the addition of the percolation signal significantly improves the tan δ prediction. We will discuss the impact of the percolation feature 
in detail in the next section. The selection of the best models for log(E’) and tan δ prediction remains unchanged. Fig. 6 shows the 
ViscoNet vs. FEA visualizations randomly sampled from the epoxy test dataset.

3.3. Impact analysis on the percolation feature

From our experience of studying PNC viscoelastic responses, we hypothesize that the “shelf” error of tan δ prediction is highly 
correlated with interphase percolation. In this section, we seek to confirm or reject this hypothesis. VE128np and VE128 pre-trained 
with thermoplastics and finetuned with thermoset epoxy will be compared here. As we discussed earlier, the “shelf” error can be 
represented by a high MSE loss. Our first task is to determine a threshold for the MSE loss to be considered “high” in our case. Fig. 7
shows MSE loss progression in decile of the VE128np model.

We can tell that there is a sharp increase in MSE loss after the 90th percentile. The corresponding MSE loss is 0.0014, which we 
select as the threshold for determining high “shelf” error. With this threshold, we can compare the number of samples with/without 
high “shelf” error and their ratio for both VE128np and VE128 model and whether the sample is percolated or not. If percolation indeed 
has a big impact on “shelf” error, we expect to see significant with/without ratio change in percolated samples and a relatively stable 
with/without ratio in the rest samples listed in Table 7.

The numbers support our hypothesis. If we just look at the 13,854 percolated samples, VE128np, the model without the percolation 
feature, predicts 1 with high “shelf” error every 7 without. After the addition of the percolation feature in VE128, the ratio drops 
dramatically to 1 with high “shelf” error every 103 without, meaning the inclusion of the percolation feature significantly reduces 

Fig. 5. Comparison between FEA simulated/ground truth (blue) and ViscoNet predicted (orange) log(E’) curve by VE256 (top) and tan δ curve by 
VE256WDNN3 (bottom) after finetuning with 500 PS data.

Table 6 
Performance of ViscoNet models for generalization from thermoplastics to thermosets.

Model VE response Test MSE loss MAPE rubbery modulus MAPE glassy modulus MAPE tan δ peak

VE128np E’ 0.000303 5.12 % 0.81 % ​
VE128 E’ 0.000303 5.00 % 0.89 % ​
VE256 E’ 0.000273 4.18 % 0.70 % ​
VE256WDNN5 E’ 0.000267 4.26 % 0.72 % ​
VE256WDNN3 E’ 0.000268 4.10 % 0.73 % ​
VE128np Tan δ 0.000645 ​ ​ 2.68 %
VE128 Tan δ 0.000279 ​ ​ 1.69 %
VE256 Tan δ 0.000189 ​ ​ 1.37 %
VE256WDNN5 Tan δ 0.000201 ​ ​ 1.27 %
VE256WDNN3 Tan δ 0.000191 ​ ​ 1.22 %
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“shelf” error for percolated samples. As for the 8651 samples that are not percolated, the ratio slightly decreases from 0.063 to 0.046, 
which indicates the overall baseline improvement brought by the percolation feature. We can conclude that percolation is highly 
correlated with the “shelf” error in tan δ prediction. With that in mind, our next step is to evaluate the impact of the size of finetuning 
data on eliminating “shelf” and peak error.

3.4. Few-shot experiment for finetuning

For the pre-training-then-finetuning training scheme, an interesting question to ask is how much finetuning data will be enough. To 
answer this question, a few-shot experiment was conducted on the thermoplastics-to-thermoset tan δ prediction task with the best 
VE256WDNN3 ViscoNet model. Fig. 8 plots the test MSE loss and MAPE of tan δ peak with increasing finetuning epoxy data size.

Note that we apply 80/20 train/validation split to all finetuning data. The finetuning data size reflects the sum of train and valid 

Fig. 6. Comparison between FEA simulated (blue) and ViscoNet predicted (orange) log(E’) curve by VE256 (top) and tan δ curve by VE256WDNN3 
(bottom) after finetuning with 500 epoxy data.

Fig. 7. The MSE loss progression of VE128np tan δ model (epoxy).

Table 7 
Comparison of number of samples with/without “shelf” error before (VE128np) and after (VE128) the addition of percolation feature.

without shelf error with shelf error ratio (with/without)

VE128np ​ ​ ​
Percolated 12,113 1741 0.143
Not percolated 8141 510 0.063
VE128 ​ ​ ​
Percolated 13,721 133 0.010
Not percolated 8271 380 0.046
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split. Test MSE loss converges at around 500 epoxy data and MAPE of tan δ peak is still slowly decreasing from 500 to 1000 epoxy data. 
Recall that we observed that “shelf” error is associated with the full-curve MSE loss, and the peak over- and under-prediction is 
associated with MAPE tan δ peak loss from our preliminary experiments with 10k PS data. The few-shot experiment suggests that 
finetuning with 500 epoxy data is sufficient for minimal “shelf” error and improved peak prediction, while further increasing the 
finetuning data size might further improve peak prediction. Fig. 9 visualizes the prediction history of a tan δ curve with an increasing 
finetuning epoxy data size.

Fig. 9 shows that the pre-trained model with 0 finetuning data can get the general shape of the tan δ curve correctly, demonstrating 
that it achieves a low order approximation of the VE response curve, but still the prediction is noticeably flawed with an MSE loss of 
0.031, which is ϖ160 times higher than the 0.000191 test MSE loss of the VE256WDNN3 model finetuned with 500 epoxy data as 
shown in Table 6. With more finetuning data, the “shelf” area converges to the ground truth quickly with around 200 samples. The 
closer the frequency is to the tan δ peak frequency, the slower the prediction of scaled tan δ converges to the ground truth. This 
observation is consistent with our interpretation of Fig. 8. Our conclusion is that 500 samples are sufficient for finetuning a good 
model. While more data can still improve the accuracy, the gains in accuracy are marginal after a few hundred fine tuning samples.

3.5. Time consumption analysis

In this section, we provide an estimation on how much time can be saved by using ViscoNet as a surrogate model for FEA simulation 
of VE response. Since the pretrained model is readily available online, we will not include the time consumption for pretraining in this 
calculation. According to the few-shot experiment, researchers can run as few as 500 FEA simulations for the model to predict 
reasonably well on a new thermoplastic/thermoset silica nanocomposite system. In prior works, researchers note that the magnitude of 
NP modulus and isotropy have minimal impact on the PNC VE response (Qiao and Catherine Brinson, 2009), and thus the number of 
additional data and time for finetuning for a PNC with a new NP is expected to be low. In our FEA settings, it takes about 7 min for a 
500-by-500 RVE simulation using 4 CPU cores. Thus, 500 simulations take ~58.3 h. With these 500 VE response data, the pretrained 
ViscoNet model (VE256 for log(E’) and VE256WDNN3 for tan δ) can be finetuned (without GPU) for 50 epochs on 1 CPU within 15 min 
with parallel data loading turned off, mimicking a low-resource setup.

From that point on, ViscoNet can be used to generate a surrogate VE response that is within 5 % MAPE for rubbery modulus, 1 % 
MAPE for glassy modulus, and 2 % MAPE for tan δ peak when compared to the FEA simulated VE response resulting from those same 
inputs, based on Table 6. The inference time with ViscoNet is negligible compared to FEA simulation. ViscoNet can generate 20k↘ VE 
response within 2 min using a batch size of 1 and parallel data loading disabled, which otherwise takes FEA 140k minutes on 4 CPU 
cores, or 117 h on 80 CPU cores assuming the simulation speed grows linearly with the number of cores. If we lift the resource limit on 
ViscoNet, with a batch size of 10k and 10 workers for data loading, ViscoNet can generate 1.3 million VE responses within 38 s.

Putting this all together, ViscoNet is a powerful yet lightweight surrogate model for FEA simulation of VE response of PNCs. Unlike 
many other surrogate models that generate a single scalar property value at a specific frequency, like tan δ peak or glassy modulus 
(Wang et al., 2020), ViscoNet generates the full VE response curve itself with a transformation that flattens the curve into a sequence of 
VE response by fixing a finite number of frequencies of interest. Since the scalar properties are derived from the full curve, ViscoNet 
exceeds the capabilities of prior models. Simultaneously, ViscoNet is low-resource friendly due to the relatively small number of 
parameters needed. No GPU is required for finetuning or inference, and data parallelism was not enabled for the time consumption 
estimations above.

Because of these capabilities, researchers can use ViscoNet to quickly populate a database within minutes using only 500 seed FEA 
simulations to finetune ViscoNet. Metamodeling and optimization can then be done with the populated database (Marr et al., 2023). 
Furthermore, ViscoNet lowers the entrance bar to the data science part of the PNC design world and promotes the accessibility of 
data-driven 2D materials design of PNCs by enabling anyone with Internet access to finetune a model on their laptop. If computation of 
500 initial FEA simulations remains a barrier, archived FEA simulations may be found in data archive resources such as MaterialsMine.

Fig. 8. Few-shot analysis of MSE loss and tan δ peak MAPE loss on epoxy test dataset using VE256WDNN3 model finetuned with increasing number 
of epoxy data.
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3.6. Use case scenarios

In this section, we demonstrate how ViscoNet can be applied to quantify the role of interphase in PNC VE response with a case 
study. A specific microstructure of epoxy-nanosilica is selected for the study, as shown in Fig. 10, with particle radius 40 ↑ 20 nm, filler 
volume fraction 0.15, and shifting and broadening factors fixed at -2. The microstructure is generated fresh for the case study, so it is 
unseen data for ViscoNet.

The ViscoNet-generated tan δ curve and the peak height/frequency are tracked with an interphase thickness varying from 0 to 50 
pixels, corresponding to 0 to 100 nm. The 50 ViscoNet inferences, with an interphase growth of 1 pixel at each step, take ω1 second in 
total. To validate the result, 10 full FEA simulations are independently run with an interphase growth of 5 pixels at each step, which 
takes ϖ1 hour in total, massively slower than ViscoNet. Fig. 11 shows the response of full tan δ curve from each interphase fraction 
with a side-by-side comparison of FEA simulated results and ViscoNet generated results.

ViscoNet successfully reproduces the FEA simulations on this new microstructure, but with a finer granularity, helping to reveal the 
impact of percolation on the tan δ response. In the ViscoNet tan δ response plot, a clear gap between the responses can be observed 
when percolation starts (dark orange curve), which cannot be easily found in the FEA plot due to the low granularity caused by the time 
and resource restrictions. The tan δ curve of pure epoxy (solid black curve) and interphase after shifting and broadening (dashed black 
curve) are also provided as a reference. With low interphase fraction (Vt), tan δ curve is dominated by bulk epoxy. With increasing Vt, 
the tan δ curve starts to be dominated by the interphase. The gap as we mentioned earlier indicates that percolation boosts the 
transition of a bulk-epoxy-dominant tan δ curve into an interphase-dominant tan δ curve. Note that all FEA simulated and ViscoNet 
predicted tan δ curves never leave the region bounded by the two reference curves of bulk epoxy and interphase, creating visual 
“stationary points” in the data series where these curves cross.

Looking at tan δ peak height and frequency as a function of Vt in Fig. 12 reveals that peak height decreases initially with Vt and then 
increases, while peak frequency gradually decreases by 2 decades. Fig. 12 also includes the response of tan δ peak height and frequency 
to Vt with varying broadening factors. Three major impacts on the response of tan δ peak height to Vt can be observed from increasing 
the broadening factor from 1, meaning no broadening (dashed line), to 2 (solid line) and 3 (dotted line). 

1. A larger broadening factor tends to weaken the impact of Vt on tan δ peak height – The stationary point at which the flatter 
interphase curve intersects with the bulk epoxy curve at a higher tan δ, causes the lower bound of the tan δ peak height with varying 
Vt to increase, leaving less room for tan δ peak height to change as illustrated in Fig. 13.

2. Increasing the broadening factor extends the zone of decreasing tan δ peak height past the percolation point – With no broadening, 
the peak height of the compsite at percolation (Vt ↓ 0.39) coincides with the low frequency stationary point of that case, and this is 
the minimum peak height. Broadening factors of 2 and 3 shift the peak height at percolation to the right and also delay the increase 
until 0.5–0.6 and 0.6–0.7, respectively.

3. The broadening factor causes and increase in the tan δ peak height at percolation – At percolation, there is likely a “bridged” effect 
described by Senses, et al. (Senses et al., 2017), where a network is formed with bridged polymer chains and nanoparticles, 
resulting in a significant change in the viscoelastic behavior of PNCs. Large broadening factors and the “bridged” effect amplify 
each other, leading a bump in tan δ peak height.

Considering the discussion above about the impact of broadening and Vt on the viscoelastic behavior of PNCs, the parameter we 
have best control over in the lab is Vt via designed chemistries and surface interactions. To better understand the physical implication 
of the observations, it is worthwhile to interpret with some intuition about tan δ and interphase fraction Vt. The tan δ indicates the ratio 
of dissipated energy to the stored energy of the material system when a load is applied. For a viscoelastic material, a high tan δ peak 
suggests that the material is more to the viscous end, and a low tan δ peak suggests it to be more elastic. The case study shows that the 
tan δ peak height is usually not linearly correlated with the filler fraction as nanoparticles can aggregate. Vt is directly impacted by the 

Fig. 9. Prediction history of an epoxy tan δ curve with increasing finetuning data size.
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dispersion of nanoparticles and the thickness of the interphase, which can be interpreted as the region where the mobility of polymer 
chains is impacted by the confinement introduced by the addition of nanoparticles. Thus, surface modification can significantly in-
crease Vt as it not only brings potentially better dispersion, but also impacts more polymer chains in bulk polymer matrix with the 
grafted chains via entanglement. Besides surface modification, there are other approaches to control Vt. Huang et al. conducted a 

Fig. 10. Microstructure of the epoxy-nanosilica composite (left) and its microstructure with a percolated interphase with a thickness of 13 pixels/26 
nm (right) for the use case demo. The percolation pathway is in red.

Fig. 11. Tan δ curve response to interphase fraction, left: FEA, right: ViscoNet. Vt stands for the volume fraction of the interphase; broadening factor 
↓ 2 for this case. Stationary points occur where the interphase and matrix curves intersect. See supporting information for additional broadening 
factor values.

Fig. 12. ViscoNet-generated tan δ peak height and frequency as a function of interphase fraction Vt with a shifting factor of →2 and a broadening 
factor of 1 (dashed), 2 (solid), and 3 (dotted).
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comprehensive survey summarizing the current knowledge of interphase and practical experience on controlling the interphase 
(Huang et al., 2022). It is concluded in their work that the interphase thickness is directly impacted by the radius of gyration (Rg) and 
molecular structure of the polymer chain adsorbed to the surface of nanoparticles. Therefore, increasing the molecular weight of 
polymer matrix should lead to a bigger Rg, a thicker interphase, and hence a larger Vt. In fact, Huang et al. summarized that there is a 
propagated impact via the entangled polymer chains that impacts the chain relaxation behavior in a range of 3–11 Rg from the 
interface (Huang et al., 2022). Thus, finding ways to increase chain entanglement could result in a high Vt by leveraging the prop-
agated impact.

This case study demonstrates that the fast inference speed of ViscoNet and its lightweight nature enables researchers to generate a 
large amount of data with fine granularity. The fine granularity helps reveal the impact of percolation on tan δ curve, which is 
otherwise easily overlooked by FEA simulations due to its prohibitively high computational cost of fine-grained exploration.

3.7. Limitations

There are still a small number of extreme cases (ω 3 %) in which ViscoNet provides poor predictions, with MSE error ϖ 0.002. We 
believe this limitation can be overcome with more pretraining data. Over time, more FEA data will be generated and curated into 
MaterialsMine, enabling better pretraining, benchmarking, and analysis. Another limitation is that the current version of ViscoNet 
trained on PNCs with silica NPs as the filler, 2D microstructure geometries with no agglomerations, and a relatively narrow frequency 
ranging from 10→4 Hz and 103 Hz. This limitation will be addressed in future work by expanding the training to alternate micro-
structures, such as beyond spheroidal nanofillers. The current 2D capability of ViscoNet is a limitation for real PNC design, which 
requires 3D simulation. Currently, ViscoNet represents the initial step toward making PNC design accessible at the 2D level. One of our 
ongoing efforts is to develop a surrogate model that predicts 3D responses based on 2D slices, which aims to bridge this gap. This work 
used a uniform interphase representation for FEA simulation due to simplicity concern. In the future, a gradient interphase repre-
sentation with better compliance with experimental data could be adopted (Li et al., 2019), since the existence of a gradient in the 
interphase was reported by multiple authors (Huang et al., 2022), (Xu et al., 2017). Finally, we suggest that in general using Prony 
series instead of the frequency sweep to represent the VE response could introduce better generalization ability to ViscoNet (Park and 
Schapery, 1999), (Bradshaw and Brinson, 1999).

4. Conclusion

In this work, we propose ViscoNet, a novel surrogate model for finite element analysis (FEA) simulations of PNC viscoelastic (VE) 
response. The 2D VE response curves are reduced to feature vectors by fixing the frequencies of interest. To make ViscoNet compatible 
for any PNC, VE response curves (log(E’) and tan δ) are scaled by the max and min value of those of the pure polymer matrices. We 
explored different model architectures with varying hidden sizes and a WDNN design, with and without the percolation flag. 
Compared to log(E’), predicting tan δ curve is relatively difficult due to its non-monotonic shape, leading to a “shelf” error, captured by 
the full-curve MSE loss, or a peak error, captured by the MAPE loss of tan δ peak.

Two experiments were conducted to evaluate the generalization ability of ViscoNet. First, for log(E’) prediction of PC/PMMA PNC 
data and finetuned with PS PNC data using unseen microstructures, ViscoNet models excelled in predicting glassy modulus with an 
MAPE around 0.3 %→0.4 % and performed well in predicting rubbery modulus with an MAPE around 4 %→5 %. VE256, a deep NN 
model with 2 hidden layers of size 256 dimensions, achieved the best performance in predicting log(E’), with the addition of wide 
signals showing marginal impact, suggesting simpler E’ curves benefit less from complex structures like WDNN. For tan δ prediction, a 
model which includes percolation, shifting factor, and broadening factor as wide signals, showcased a slight advantage in test MSE 
(0.00072) and MAPE on the peak (4.45 %). The importance of careful selection of wide signals is evident, with excessive features 
potentially introducing noise.

The second experiment pre-trained ViscoNet with thermoplastic PC/PMMA/PS PNC data, and then finetuned with epoxy PNC data, 
again using unseen microstructures. The findings parallel those of the thermoplastic-to-unseen thermoplastic scenario. Increasing the 

Fig. 13. Tan δ curve response to interphase fraction with a broadening factor of (a) 1, (b) 2, and (c) 3. The range of tan δ peak height is illustrated 
with bars and arrows in each diagram.
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hidden dimension from 128 to 256 enhances performance, while WDNN moderately impacts log(E’) prediction. Compared to the first 
experiment, ViscoNet slightly improved rubbery modulus prediction towards the lower end of the 4 %→5 % MAPE loss, but was slightly 
less accurate in predicting glassy modulus for epoxy PNCs with an MAPE of 0.7 %→0.8 %. ViscoNet showed notable success in this case 
for tan δ prediction, with lower test MSE loss and tan δ peak MAPE below 2 %, likely due to additional pre-training with 35k PS data.

The percolation feature significantly reduces the ratio of samples with “shelf” error vs. samples without “shelf” error from 0.143 to 
0.010 on the epoxy dataset. The few-shot experiment suggests that finetuning with 500 epoxy data is sufficient for minimal “shelf” 
error and acceptable peak prediction, while further increasing the finetuning data size to 1000 only marginally improves peak 
prediction.

ViscoNet can generate 20k↘ VE response within 2 min using a batch size of 1 and parallel data loading disabled with 1 CPU core, 
which would otherwise take FEA 140k minutes on 4 CPU cores, or 117 h on 80 CPU cores assuming the simulation speed grows linearly 
with the number of cores. This fast, low-resource, yet reliable approach significantly enhances the accessibility of data-driven materials 
design of PNCs. In a VE material design loop, ViscoNet enables insights and discoveries by either replacing the FEA simulation 
component as a surrogate or by directly filling the design space, thanks to its exceptionally rapid inference speed.
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