
MorphQ++: A Reproducibility Study of Metamorphic Testing on
!antum Compilers

Linsey Kitt
Iowa State University

Ames, IA, USA
ljkitt@iastate.edu

Myra B. Cohen
Iowa State University

Ames, IA, USA
mcohen@iastate.edu

ABSTRACT
Quantum computing has been rapidly expanding, and many plat-
forms for writing programs that can be compiled and run on quan-
tum hardware (or simulated) are being developed. As with any
compiler, transformation correctness is paramount as the machine
readable code must maintain program semantics. Quantum pro-
grams are challenging to test given a lack of benchmark programs
and the di!culty of de"ning an oracle. MorphQ solves both of
these challenges by (1) generating syntactically correct quantum
programs and (2) using metamorphic testing to avoid the oracle
problem. However, Qiskit, the compiler it was built for, is rapidly
evolving. This paper is a reproducibility study of the MorphQ plat-
form, which we call MorphQ++. We have updated the core Mor-
phQ engine to work on a newer version of Qiskit and added new
metamorphic transformations. We "nd that our overall results are
similar: we "nd a portion of the original faults (which were not
yet "xed) and the distributions of types are not very di#erent. Our
new transformations lead to several new faults, suggesting there is
room to expand the core framework. Additionally, we note the lack
of power of the metamorphic relations in this context and suggest
the need for more sophisticated relations and/or oracle evaluations.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Hardware → Quantum technologies.

KEYWORDS
metamorphic testing, quantum, reproducibility
ACM Reference Format:
Linsey Kitt and Myra B. Cohen. 2024. MorphQ++: A Reproducibility Study of
Metamorphic Testing on Quantum Compilers. In Replications and Negative
Results (RENE ’24), October 27-November 1, 2024, Sacramento, CA, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3695750.3695823

1 INTRODUCTION
Quantum computing is a rapidly developing "eld with growing
needs across many domains, including software engineering. Quan-
tum software compilers such as IBM’s Qiskit [1] or Google’s Cirq
[2] are fundamental to quantum computing, creating a space to

This work is licensed under a Creative Commons Attribution International 4.0
License.
RENE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1270-8/24/10
https://doi.org/10.1145/3695750.3695823

write (and simulate) quantum programs which can be compiled and
run on quantum computers. As such, they rely on strong software
testing approaches to ensure their correctness [8, 10, 13, 16, 21].

One challenge is that quantum computing platforms may have
nontraditional bug patterns which are di!cult to identify due to the
added complexities of quantum mechanics [12, 17, 21, 22]. These
quantum computing platforms also must handle quantum programs
which often do not have a known exact output due to the test oracle
problem [3]. This problem is compounded by the relatively young
age of the "eld, limiting the number of programs available to use
as quality test inputs. Having a lack of test inputs can be solved
by program generators such as the well known C-compiler testing
tool which generates random C programs, Csmith[20]. To solve the
oracle problem, metamorphic testing can be used (running sets of
tests and comparing the relationships of their outputs) to determine
program correctness [3, 4, 11, 14, 15]. Recent research by Paltenghi
et al. on testing for quantum computing platforms has combined
these ideas into a framework (and tool) called MorphQ [13].

MorphQ tests the IBM Qiskit quantum computing platform. It
generates syntactically correct quantum programs and then per-
forms metamorphic transformations to use as oracles for faults.
MorphQ demonstrated its ability to tackle these problems with
these methods, identifying 13 faults in 8k program pairs generated
and tested in less than 48 hours. But with the rapid development
seen in quantum computing platforms, this is only a "rst step: evi-
dence of continuing e#ectiveness as systems evolve and the ability
to upgrade and extend the platform is vital to make this a useful
testing method.

To understand the needs of tools such as MorphQ for use in
regression testing for developing quantum computing platforms,
we designed a reproducibility study using MorphQ. The "rst part
of the study was to upgrade MorphQ from the version of Qiskit it
was written for, version 0.33.1, to the latest version at the time of
this experimentation, 0.44.1. We then designed and added six new
metamorphic transformations and extended two of the existing
transformations included in MorphQ. We refer to this updated
and extended MorphQ as MorphQ++. Our approach to creating
MorphQ++ and the challenges faced are covered in the following
sections. We then tested it against the original by running both the
original MorphQ and MorphQ++ three times for 48 hours each.

The contributions of this work are

• A reproducibility study onMorphQ using an updated version
of Qiskit;

• The addition of new metamorphic relations which "nd new
bugs;

• Insights into future directions for the MorphQ framework

15

https://orcid.org/
https://orcid.org/0000-0003-2443-2425
https://doi.org/10.1145/3695750.3695823
https://doi.org/10.1145/3695750.3695823
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3695750.3695823&domain=pdf&date_stamp=2024-10-27

RENE ’24, October 27-November 1, 2024, Sacramento, CA, USA Linsey Ki! and Myra B. Cohen

2 REPRODUCIBILITY STUDY
In this section, we present an evaluation of the Qiskit upgrade and
our new transformations. We "rst describe how we upgraded Mor-
phQ, then discuss our new and extended metamorphic relations.1

2.1 Updating Qiskit
Our "rst focus was updating Qiskit and ensuringMorphQ could still
be run on the newer version. Unfortunately, this was not as simple
as just updating versions. Updating Qiskit caused several issues
with backward compatibility, requiring modi"cations to several
metamorphic transformations and even the base program genera-
tion, as fundamental pieces such as circuit gates and their inputs
were changed. In addition, the update required an upgrade of the
Python version and the update of many Python modules, several of
which resulted in hidden faults in MorphQ. For example, Python’s
AST module had an update that removed a class being used to store
values in the tree, resulting in a modi"cation to the tree’s structure.
Some of MorphQ’s transformations use this AST module to parse
through the Qiskit program to apply the transformation, requiring
careful debugging to resolve the new tree structure. These types
of issues were not unexpected but were still a notable part of the
process of our project.

After making these "xes, we performed a full run of MorphQ
following the original paper for 48 hours as a validation step. While
analyzing the results, we encountered several faults that had been
found before the update but with their exception messages modi-
"ed. This required overhead to track down exceptions that initially
looked new but were actually known faults with more informative
messaging. In the end, we found one new fault that we con"rmed
with developers.

2.2 New Transformations
With Qiskit updated, we started extending MorphQ by adding new
transformations. We looked at Qiskit bug reports to identify the
components causing a user’s program to fail, following regression
testing tenet which uses the fact that components with bugs are
more likely to havemore bugs during evolution [7, 9]. The otherway
we identi"ed transformations was by focusing on the comments
for workarounds. Qiskit developers often leave suggestions on
workarounds until the bug gets "xed. We brie$y describe each next.
(1) Added Three Basis Sets A basis or universal gate set is a set of
gates that can represent any gate. When simulated, a circuit being
transpiled with a speci"ed basis gate set should have the same
output as the original circuit. We added three new gate sets.
(2) QASM3 Open Quantum Assembly Language, or OpenQASM, is
a method of representing quantum circuits in an intermediate rep-
resentation [6]. Since 2017, two versions have been released, Open-
QASM2 and OpenQASM3. Qiskit allows for conversion of quantum
circuits to and from OpenQASM. Converted circuits should main-
tain their same outputs. We added the OpenQASM3 since MorphQ
only translates to OpenQASM2.
(3) Change Transpilation Backend The transpilation process
prepares quantum circuits for speci"c quantum computers opti-
mizing for hardware. MorphQ only transpiles for the AerSimulator
provided by Qiskit; however, other simulators are also available
1Artifacts can be found at https://github.com/LavaOps/RENE24.

on Qiskit. This transformation transpiles for other simulators. The
transpiled circuit is still tested on the AerSimulator, otherwise the
outputs would be di#erent and more di!cult to verify
(4) To QPY and Back In addition to conversion to and from Open-
QASM, Qiskit also has the ability to convert to and from QPY. QPY
is a serialized format for storing and transferring quantum circuits
from Qiskit. It is designed to be backwards compatible for all future
versions of Qiskit. We added a new transformation to support this.
(5) Copy Circuit Another feature of Qiskit is a method that oper-
ates on a circuit by copying it and returning a new identical circuit.
This transformation copies the circuit from the Qiskit program and
veri"es the copied version still runs as the original.
(6) Initialize Circuit Circuit initialization in Qiskit allows a circuit
of qubits to be initialized with any legal value. Qiskit also has a
separate function that allows for the generation of random circuits,
which will randomly assign gates to the circuit. This transformation
"rst turns the circuit in the Qiskit program into a random circuit,
then re-initializes it to a circuit with all qubits set to |0↑. This is an
equality relation.
(7) Reset Circuit Qiskit circuits have a function to reset all of the
qubits to their default state, which should have the same e#ect as
initializing all the qubits to |0↑. This transformation applies the
circuit as usual, then resets all the circuits, and "nally applies the
circuit a second time before proceeding, verifying the reset circuit
is the same.
(8) Add BarrierQiskit allows for the addition of barriers to circuits,
which divide operations on the circuit. This addition is both a visual
change to the circuit diagrams, where diagrams have a barrier
drawn in, and an operation that impacts the transpilation process,
as the transpiler will consider each side of the barrier separately
when compiling and optimizing: it will not optimize across the
barrier. These barriers should not impact the output of the circuits,
only the way they are set up and optimized.

3 RESULTS
We ran the original MorphQ for 48 hours, mimicking the original
paper’s 48 hour run, and MorphQ++ for 48 hours. We repeated this
three times to ensure the results we gathered were not in$uenced
by outliers in the random program generation. We then also ran
MorphQ++ 10 times for two hours each to see how it navigated
the search space given less time (we don’t report those results).
All experiments were performed on Red Hat Enterprise Linux 9.2
with Intel Xeon Gold 6144 CPUs with 32 cores and 366GB of RAM.
We utilized the Jupyter notebooks provided by MorphQ developers
[13] for our analyses and graphs in this paper.

Table 1 summarizes the faults found by MorphQ++, their crash
messages, and the metamorphic transformations leading to them.
The newly added metamorphic transformations involved in the
crashes are underlined and bold. In total, 13 faults were found, "ve
of which were new faults not previously reported to Qiskit. The
table lists these as IDs 6, 7, 10, 11, and 12. These have all been
con"rmed as faults by the developers except for 12, which has not
received a response at the time of writing. Notably, only one of
these faults did not involve any new relations, ID 10, implying it
was a fault introduced in the update from Qiskit 0.33.1 to 0.44.1. We
con"rmed this by running the test on 0.33.1, and it passed.

16

https://github.com/LavaOps/RENE24

MorphQ++: A Reproducibility Study of Metamorphic Testing on"antum Compilers RENE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: Fault crash messages found and reported from running MorphQ++. New transformations are underlined and in bold

ID Report Status Novelty Crash message Metamorphic transformations

1 #7700 con"rmed new in original
MorphQ

too many subscripts
in einsum (numpy)

Change of optimization level,
Inject null-e#ect operations

2 #7641 con"rmed duplicate found in
original MorphQ

Instruction id
not found Change of gate set

3 #7326 "xed duplicate found in
original MorphQ

Mismatch between
parameter_binds Inject parameters

4 #7748 "xed new in original
MorphQ

Cannot bind
parameters not
present in the circuit

Inject parameters

5 #10534 con"rmed duplicate found MorphQ++
Invalid param type
<class \’complex\’>
for gate ry

Initialize circuit,
Change of gate set

6 #11560 con"rmed new in MorphQ++ unknown instruction:
rxx_139974866104288

Roundtrip conversion via QASM3,
Change of gate set,
Change of transpilation backend

7 #11158 "xed new in MorphQ++
Sum of amplitudes-
squared is not 1, but
0.0

Initialize circuit,
Roundtrip conversion via QPY

8 #8050 con"rmed duplicate found in MorphQ++ Cannot apply
Operation: reset

Initialize circuit,
Change of optimization level

9 #10345 con"rmed duplicate found in MorphQ++ eig algorithm (geev)
did not converge Change of transpilation backend

10 #10990 con"rmed new in MorphQ++ list index out of range Roundtrip conversion via QASM2,
Change of optimization level

11 #11558 con"rmed new in MorphQ++
only length-1 arrays
can be converted to
Python scalars

Roundtrip conversion via QASM3

12 #11559 reported found in MorphQ++ KeyError: 0

Change of transpilation backend
OR Change of coupling map,
Roundtrip conversion via QASM3,
Roundtrip conversion via QPY

13 #9746 con"rmed duplicate found in MorphQ++ unpack requires a
bu#er of bytes

Roundtrip conversion via QPY,
Initialize circuit,
Inject null-e#ect operations

In addition, four duplicate faults were found in MorphQ++, IDs 5,
8, 9, and 13. They are listed with their original bug reports made by
other Qiskit users. Two of these, 9 and 13, were $aky tests [5, 18],
i.e., they could not be replicated reliably; in 9, running the same
program almost always succeeds – it is only in rare instances that
it crashes. 13 was not able to be reproduced; among the one quarter
million program pairs tested in this paper, this crash was only found
once. We were unable to generate the same crash message when
rerunning the program, instead getting the crash message from ID 7,
“Sum of amplitudes-squared is not 1, but 0.0.” Given this, we are also
unable to verify which of the three metamorphic transformations of
Roundtrip conversion via QPY, Initialize circuit, and Inject null-e!ect
operations are truly required to generate the fault; it may have been
caused by all three or a subset of these three transformations.

The other four remaining faults were found in the original Mor-
phQ, signaling they were not "xed by the update of Qiskit. They
are the "rst four faults listed in the table. Two were new faults

found in the original MorphQ, while the other two were duplicates
found originally by other users. The original paper found 13 faults,
indicating the other nine not still found in the update were "xed.

Table 2 shows the number of faults each new transformation
contributed towards "nding. As can be seen, several transforma-
tions were productive towards "nding faults, and each of these
contributed towards "nding at least three. In contrast, the remain-
ing transformations did not "nd any. Through this research ques-
tion, we conclude that MorphQ++ is successful at identifying new
faults, especially through four of the added and modi"ed metamor-
phic transformations. Some of these faults come from $aky tests,
however, making them di!cult to "nd and classify.

We next considered how our results compare against the origi-
nal and MorphQ++ by running for 48 hours, three times each. We
created several sets of "gures and tables to analyze the data using
Jupyter Notebooks provided alongside the original MorphQ code.

17

RENE ’24, October 27-November 1, 2024, Sacramento, CA, USA Linsey Ki! and Myra B. Cohen

Table 2: Number of faults by new transformations

New metamorphic transformation Unique bugs found

Roundtrip conversion via QASM3 3
Change of transpilation backend 3
Roundtrip conversion via QPY 3
Copy circuit 0
Initialize Circuit 4
Reset Circuit 0
Add Barrier 0

Table 3: Execution data on three original MorphQ runs

(a) First original run

Number Percentage

Tested program pairs 19,429 100.0%
𝐿→ Crashes in source program 0 0.0 %
𝐿→ Crashes in follow-up program 6,488 33.4 %
𝐿→ Successful executions 12,941 66.6 %

𝐿→ Distribution di#erences 169 0.9 %
(b) Second original run

Number Percentage

Tested program pairs 12,065 100.0%
𝐿→ Crashes in source program 0 0.0 %
𝐿→ Crashes in follow-up program 2,386 19.8 %
𝐿→ Successful executions 9,679 80.2 %

𝐿→ Distribution di#erences 163 1.4 %
(c) Third original run

Number Percentage

Tested program pairs 23,725 100.0%
𝐿→ Crashes in source program 0 0.0 %
𝐿→ Crashes in follow-up program 6,874 29.0 %
𝐿→ Successful executions 16,851 71.0 %

𝐿→ Distribution di#erences 305 1.3 %

3.1 Execution Data
Data from running the original MorphQ can be found in Table 3
and MorphQ++ in Table 4. The most obvious observation here is
the di#erence in the volume of program pairs tested: MorphQ++
generated nearly four times as many program pairs as the original.
There are many possible reasons for this di#erence; improvements
to Qiskit’s algorithms are likely a major cause. An obvious instance
is the introduction of “Layer contains > 2-qubit gates” crash mes-
sages, which occur in the updated version but not the older version
of Qiskit. These seem to occur when, in the older version, Mor-
phQ would time out for taking too long, suggesting computations
that were too complicated to be feasible. Now, the program quickly
crashes rather timing out. There are likely many other optimiza-
tions made across Qiskit updates. There could similarly be speed
increases from the updated Python version including optimizations,

Table 4: Execution data on three MorphQ++ runs

(a) First updated run

Number Percentage

Tested program pairs 79,336 100.0%
𝐿→ Crashes in source program 0 0.0 %
𝐿→ Crashes in follow-up program 12,118 15.3 %
𝐿→ Successful executions 67,218 84.7 %

𝐿→ Distribution di#erences 941 1.2 %
(b) Second updated run

Number Percentage

Tested program pairs 76,923 100.0%
𝐿→ Crashes in source program 0 0.0 %
𝐿→ Crashes in follow-up program 8,465 11.0 %
𝐿→ Successful executions 68,458 89.0 %

𝐿→ Distribution di#erences 872 1.1 %
(c) Third updated run

Number Percentage

Tested program pairs 64,097 100.0%
𝐿→ Crashes in source program 0 0.0 %
𝐿→ Crashes in follow-up program 6,934 10.8 %
𝐿→ Successful executions 57,163 89.2 %

𝐿→ Distribution di#erences 1,136 1.8 %

allowing more program pairs to be generated. One last possible
contributor is the new metamorphic transformations: they may be
faster to run on average than the original transformations, allowing
the generated programs to run faster.

(a) First original run (b) Second original run

(c) Third original run

Figure 1: Frequency of crash clusters in original MorphQ

The next observation is the di#erence in percentage of crashing
programs. Metamorphic transformations led to crashing programs
15% more often in the original MorphQ. In Table 1, nearly all new
faults found in MorphQ++ required at least two speci"c transforma-
tions, with three requiring three di#erent transformations. MorphQ

18

MorphQ++: A Reproducibility Study of Metamorphic Testing on"antum Compilers RENE ’24, October 27-November 1, 2024, Sacramento, CA, USA

(a) First updated run (b) Second updated run

(c) Third updated run

Figure 2: Frequency of crash clusters in MorphQ++

only applies up to four transformations at a time and will often
apply fewer than four. From the original paper, faults found in the
original MorphQ only require two or fewer transformations. This
means faults will be found less often in MorphQ++ because they
are less likely to have their speci"c transformations applied to the
same program, and there will, therefore, be fewer crashes. These
may, however, be more complex faults.

The distribution di#erences in the tables indicate the number of
program pairs where the two programs had statistically signi"cant
di#erences in their outputs even though they were expected to
closely match. As noted in the original paper, the statistical test
used to determine these di#erences uses a 5% p-value, so up to 5%
of programs are expected to have distribution di#erences even if
all the programs are coming from the same distribution. None of
the distribution di#erences across the runs go above 2%.

3.2 Crash Clusters
Figures 1 and 2 show the number of times each crash occurred in
each run in the original and updated MorphQ, respectively. These
graphs have many similarities, as many crashes occur with similar
frequencies across runs in both the original and MorphQ++. There
are a few notable di#erences, however. First, in both the original and
MorphQ++, there are a few crashes that occur with wildly di#erent
frequencies. Looking speci"cally at the original, “Instruction id not
found” occurred an order of magnitude more in the run in Figure
1a compared to the run in Figure 1b, meanwhile “Cannot "nd gate
de"nition for unitary” never occurred at all in Figure 1a. In Mor-
phQ++, “Mismatch between run_con"g.parameter_binds” occurred
two orders of magnitude more in Figure 2a compared to Figure
2c and did not occur at all in Figure 2b. “KeyError: 0” also never
occurred in Figure 2c and “eig algorithm (geev) did not converge”
and “unpack requires a bu#er of bytes” only occurred in Figure
2b. These inconsistencies may be explained by the randomness of
program generation and transformation application and show the
importance of using multiple runs.

3.3 Crashing Programs by Transformation
Figures 3 and 4 show the percentage of crashing programs when a
transformation is applied by itself, with one other transformation,

(a) First original run (b) Second original run

(c) Third original run

Figure 3: Percent of crashing programs in original MorphQ
broken down by transformation: the percentage of programs
that crashed when the transformation was the only one ap-
plied in red, when the transformation was applied with one
other in pink, two others in grey, and three or more, black

two others, or three or more. In both the original and MorphQ++,
the main inconsistencies across runs come from the single transfor-
mation data. In the original, the Inject null-e!ect operations transfor-
mation only causes crashes on its own (Figure 3a). In MorphQ++,
the Change transpilation backend transformation only "nds crashes
by itself (Figure 4a), while the Initialize circuit and Roundtrip conver-
sion via QASM transformations only "nd crashes by themselves in
Figure 4b. The latter found very few crashes in MorphQ++, which
is in contrast to the original, where it consistently caused many
crashes on its own, showing possible improvements to the updates
to Qiskit – it now requires other transformations.

(a) First updated run (b) Second updated run

(c) Third updated run

Figure 4: Percentage of crashing programs in MorphQ++

3.4 Program Generation Distributions
Figures 5 and 6 show that MorphQ++ has more uniform distri-
butions across runs compared to the original. There is a smaller

19

RENE ’24, October 27-November 1, 2024, Sacramento, CA, USA Linsey Ki! and Myra B. Cohen

(a) First original run (b) Second original run

(c) Third original run

Figure 5: Distribution of programs in original MorphQ: the
right!gure shows concentration of programs across the num-
ber of gates and qubits, while left shows the number of pro-
grams with a given number of transformations applied

(a) First updated run (b) Second updated run

(c) Third updated run

Figure 6: Distribution of programs generated by MorphQ++

relative di#erence in the number of programs with one transfor-
mation applied versus two in MorphQ++, and the number of gates
versus the number of qubits is much more consistent. The genera-
tion of Qiskit programs involves randomly generating a number of
gates and qubits to use within a con"gurable size, so the di#erences
found here are likely due to the increase in sample size: MorphQ++
generates signi"cantly more programs.

When looking at the results from the original MorphQ and Mor-
phQ++, we found faults were coming from more complex interac-
tions of Qiskit components in MorphQ++, and there were more
programs generated but with fewer crashes. Neither version showed
any distribution di#erences to be the result of faults, and both ex-
perienced many inconsistencies across their individual runs.

3.5 Discussion
A key advantage of metamorphic testing is the ability to make
conclusions about the correctness of the output without having a
test oracle by comparing related outputs. Although MorphQ (and
MorphQ++) employs metamorphic testing, they did not "nd faults
via this comparison. Rather, they found faults from unexpected
crashes on valid programs. These faults, rather than being found

through the added intelligence embedded in metamorphic testing,
were essentially found via mutation-based fuzzing, another type of
testing method where random inputs to a program are generated
and mutated and run on the program to "nd faults [23], with a
limited set of transformations or mutations. In recent work, Xia
et al. [19] used fuzzing to test MorphQ, suggesting this is a viable
option. Though metamorphic testing was not bene"cial here, this
is not to say it is not worth pursuing in quantum software or that
it cannot "nd faults in any capacity. Rather, it indicates two direc-
tions future research can look to. One is to look towards di#erent
metamorphic strategies and build more robust metamorphic testing
platforms to harness the strengths of metamorphic testing more
e#ectively. A second research direction proposed is to improve the
strategy for testing. Given the increased e#ort required to create
metamorphic transformations and implement their equivalencies,
it may be more e!cient for these crashing faults, especially in the
early phases of developing quantum platforms, to focus on the
mutation-based fuzzing foundation of MorphQ.

Aside from considering metamorphic testing versus fuzzing
strengths, there are still several challenges to be faced by these
testing platforms. These platforms are undergoing a lot of devel-
opment and therefore experience many updates, requiring a lot of
work to keep the testing tools up to date. As discussed, upgrad-
ing MorphQ had several complications, requiring modi"cations to
several transformations and elsewhere in the code. It is expected
to face these types of challenges when working with developing
platforms, and it emphasizes the importance of good code design
to simplify the process of keeping up to date.

The last point of discussion here is looking at the inconsistencies
across runs. As seen across the research questions, individual runs
are unreliable at "nding all faults and performing a uniform search
across the search space. We may want to use a better strategy for
shorter, multiple runs rather than one long run to ensure a more
uniform exploration of the search space. We had some success with
this strategy in a test run.

4 CONCLUSIONS AND FUTUREWORK
We have performed a reproducibility study of the MorphQ testing
platform for quantum compilers. We updated MorphQ to work on
a newer version of Qiskit and added new transformations, which
we call MorphQ++. We found a similar set of faults with relatively
similar distributions of faults; however, we also found new faults,
primarily with our new transformations. One interesting observa-
tion is that the metamorphic relations themselves were not used to
"nd real behavioral di#erences (e.g. subtle changes found between
outcomes). Instead all of the bugs found were crashing type faults,
meaning the metamorphic relations only provided manipulation of
the data, not a change in the oracle. This indicates a fuzzing type
approach of testing could also work.

ACKNOWLEDGMENTS
We would like to thank Jack Lutz for fruitful discussions and feed-
back on this work. We thank the authors of MorphQ for their
valuable comments on the camera ready version. This work was
supported in part by NSF grant #1909688.

20

MorphQ++: A Reproducibility Study of Metamorphic Testing on"antum Compilers RENE ’24, October 27-November 1, 2024, Sacramento, CA, USA

REFERENCES
[1] 2023. Qiskit/Qiskit. https://github.com/Qiskit/qiskit. https://github.com/Qiskit
[2] 2024. quantumlib/Cirq. https://github.com/Qiskit/qiskit. https://github.com/

quantumlib/Cirq
[3] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.

The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software
Engineering 41, 5 (2015), 507–525. https://doi.org/10.1109/TSE.2014.2372785

[4] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H.
Tse, and Zhi Quan Zhou. 2018. Metamorphic Testing: A Review of Challenges
and Opportunities. ACM Comput. Surv. 51, 1, Article 4 (jan 2018), 27 pages.
https://doi.org/10.1145/3143561

[5] Maxime Cordy, Renaud Rwemalika, Adriano Franci, Mike Papadakis, and Mark
Harman. 2022. FlakiMe: laboratory-controlled test $akiness impact assessment.
In Proceedings of the 44th International Conference on Software Engineering (Pitts-
burgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New
York, NY, USA, 982–994. https://doi.org/10.1145/3510003.3510194

[6] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. 2017.
Open Quantum Assembly Language. arXiv:1707.03429 [quant-ph]

[7] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2000. Priori-
tizing test cases for regression testing. In Proceedings of the 2000 ACM SIGSOFT
International Symposium on Software Testing and Analysis (Portland, Oregon,
USA) (ISSTA ’00). Association for Computing Machinery, New York, NY, USA,
102–112. https://doi.org/10.1145/347324.348910

[8] Daniel Fortunato, José Campos, and Rui Abreu. 2022. Mutation testing of quan-
tum programs written in QISKit. In Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion Proceedings (Pittsburgh, Pennsyl-
vania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA,
358–359. https://doi.org/10.1145/3510454.3528649

[9] Jung-Min Kim and Adam Porter. 2002. A history-based test prioritization tech-
nique for regression testing in resource constrained environments. In Proceedings
of the 24th International Conference on Software Engineering (Orlando, Florida)
(ICSE ’02). Association for Computing Machinery, New York, NY, USA, 119–129.
https://doi.org/10.1145/581339.581357

[10] Peixun Long and Jianjun Zhao. 2024. Testing Multi-Subroutine Quantum Pro-
grams: From Unit Testing to Integration Testing. ACM Trans. Softw. Eng. Methodol.
(apr 2024). https://doi.org/10.1145/3656339 Just Accepted.

[11] Christian Murphy, Gail Kaiser, Lifeng Hu, and Leon Wu. 2008. Properties of
Machine Learning Applications for Use in Metamorphic Testing. 867–872.

[12] Matteo Paltenghi and Michael Pradel. 2022. Bugs in Quantum computing plat-
forms: an empirical study. Proceedings of the ACM on Programming Languages 6,
OOPSLA1 (April 2022), 1–27. https://doi.org/10.1145/3527330

[13] Matteo Paltenghi and Michael Pradel. 2023. MorphQ: Metamorphic Testing of the
Qiskit Quantum Computing Platform. In 2023 IEEE/ACM 45th International Con-
ference on Software Engineering (ICSE). IEEE. https://doi.org/10.1109/icse48619.

2023.00202
[14] Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. 2016. A

Survey on Metamorphic Testing. IEEE Transactions on Software Engineering 42, 9
(2016), 805–824. https://doi.org/10.1109/TSE.2016.2532875

[15] Sandro Tolksdorf, Daniel Lehmann, and Michael Pradel. 2019. Interactive Meta-
morphic Testing of Debuggers. In Proceedings of the 28th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (Beijing, China) (ISSTA
2019). Association for Computing Machinery, New York, NY, USA, 273–283.
https://doi.org/10.1145/3293882.3330567

[16] Jiyuan Wang, Qian Zhang, Guoqing Harry Xu, and Miryung Kim. 2021. QD-
i#: Di#erential Testing of Quantum Software Stacks. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 692–704.
https://doi.org/10.1109/ASE51524.2021.9678792

[17] Xinyi Wang, Paolo Arcaini, Tao Yue, and Shaukat Ali. 2022. Quito: a coverage-
guided test generator for quantum programs. In Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering (Melbourne, Aus-
tralia) (ASE ’21). IEEE Press, 1237–1241. https://doi.org/10.1109/ASE51524.2021.
9678798

[18] Chunqiu Steven Xia, Saikat Dutta, Sasa Misailovic, Darko Marinov, and Ling-
ming Zhang. 2023. Balancing E#ectiveness and Flakiness of Non-Deterministic
Machine Learning Tests. In Proceedings of the 45th International Conference on
Software Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press,
1801–1813. https://doi.org/10.1109/ICSE48619.2023.00154

[19] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming
Zhang. 2024. Fuzz4All: Universal Fuzzing with Large Language Models. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering
(ICSE). Article 126. https://doi.org/10.1145/3597503.3639121

[20] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation (San Jose, California, USA)
(PLDI ’11). Association for Computing Machinery, New York, NY, USA, 283–294.
https://doi.org/10.1145/1993498.1993532

[21] Jiaming Ye, Shangzhou Xia, Fuyuan Zhang, Paolo Arcaini, Lei Ma, Jianjun Zhao,
and Fuyuki Ishikawa. 2023. QuraTest: Integrating Quantum Speci"c Features
in Quantum Program Testing. In 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 1149–1161. https://doi.org/10.1109/
ASE56229.2023.00196

[22] Pengzhan Zhao, Jianjun Zhao, and Lei Ma. 2021. Identifying Bug Patterns in
Quantum Programs. arXiv:2103.09069 [cs.SE]

[23] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. 2022. Fuzzing: A
Survey for Roadmap. ACM Comput. Surv. 54, 11s, Article 230 (sep 2022), 36 pages.
https://doi.org/10.1145/3512345

21

https://github.com/Qiskit
https://github.com/Qiskit/qiskit
https://github.com/quantumlib/Cirq
https://github.com/quantumlib/Cirq
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1145/3143561
https://doi.org/10.1145/3510003.3510194
https://arxiv.org/abs/1707.03429
https://doi.org/10.1145/347324.348910
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/581339.581357
https://doi.org/10.1145/3656339
https://doi.org/10.1145/3527330
https://doi.org/10.1109/icse48619.2023.00202
https://doi.org/10.1109/icse48619.2023.00202
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1145/3293882.3330567
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ICSE48619.2023.00154
https://doi.org/10.1145/3597503.3639121
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/ASE56229.2023.00196
https://doi.org/10.1109/ASE56229.2023.00196
https://arxiv.org/abs/2103.09069
https://doi.org/10.1145/3512345

	Abstract
	1 Introduction
	2 Reproducibility Study
	2.1 Updating Qiskit
	2.2 New Transformations

	3 Results
	3.1 Execution Data
	3.2 Crash Clusters
	3.3 Crashing Programs by Transformation
	3.4 Program Generation Distributions
	3.5 Discussion

	4 Conclusions and Future Work
	Acknowledgments
	References

