MorphQ++: A Reproducibility Study of Metamorphic Testing on
Quantum Compilers

Linsey Kitt
Iowa State University
Ames, 1A, USA
ljkitt@iastate.edu

ABSTRACT

Quantum computing has been rapidly expanding, and many plat-
forms for writing programs that can be compiled and run on quan-
tum hardware (or simulated) are being developed. As with any
compiler, transformation correctness is paramount as the machine
readable code must maintain program semantics. Quantum pro-
grams are challenging to test given a lack of benchmark programs
and the difficulty of defining an oracle. MorphQ solves both of
these challenges by (1) generating syntactically correct quantum
programs and (2) using metamorphic testing to avoid the oracle
problem. However, Qiskit, the compiler it was built for, is rapidly
evolving. This paper is a reproducibility study of the MorphQ plat-
form, which we call MorphQ++. We have updated the core Mor-
phQ engine to work on a newer version of Qiskit and added new
metamorphic transformations. We find that our overall results are
similar: we find a portion of the original faults (which were not
yet fixed) and the distributions of types are not very different. Our
new transformations lead to several new faults, suggesting there is
room to expand the core framework. Additionally, we note the lack
of power of the metamorphic relations in this context and suggest
the need for more sophisticated relations and/or oracle evaluations.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; - Hardware — Quantum technologies.

KEYWORDS
metamorphic testing, quantum, reproducibility

ACM Reference Format:

Linsey Kitt and Myra B. Cohen. 2024. MorphQ++: A Reproducibility Study of
Metamorphic Testing on Quantum Compilers. In Replications and Negative
Results (RENE ’24), October 27-November 1, 2024, Sacramento, CA, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3695750.3695823

1 INTRODUCTION

Quantum computing is a rapidly developing field with growing
needs across many domains, including software engineering. Quan-
tum software compilers such as IBM’s Qiskit [1] or Google’s Cirq
[2] are fundamental to quantum computing, creating a space to

This work is licensed under a Creative Commons Attribution International 4.0
License.

RENE °24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1270-8/24/10

https://doi.org/10.1145/3695750.3695823

Myra B. Cohen

Iowa State University
Ames, IA, USA
mcohen@iastate.edu

write (and simulate) quantum programs which can be compiled and
run on quantum computers. As such, they rely on strong software
testing approaches to ensure their correctness [8, 10, 13, 16, 21].

One challenge is that quantum computing platforms may have
nontraditional bug patterns which are difficult to identify due to the
added complexities of quantum mechanics [12, 17, 21, 22]. These
quantum computing platforms also must handle quantum programs
which often do not have a known exact output due to the test oracle
problem [3]. This problem is compounded by the relatively young
age of the field, limiting the number of programs available to use
as quality test inputs. Having a lack of test inputs can be solved
by program generators such as the well known C-compiler testing
tool which generates random C programs, Csmith[20]. To solve the
oracle problem, metamorphic testing can be used (running sets of
tests and comparing the relationships of their outputs) to determine
program correctness [3, 4, 11, 14, 15]. Recent research by Paltenghi
et al. on testing for quantum computing platforms has combined
these ideas into a framework (and tool) called MorphQ [13].

MorphQ tests the IBM Qiskit quantum computing platform. It
generates syntactically correct quantum programs and then per-
forms metamorphic transformations to use as oracles for faults.
MorphQ demonstrated its ability to tackle these problems with
these methods, identifying 13 faults in 8k program pairs generated
and tested in less than 48 hours. But with the rapid development
seen in quantum computing platforms, this is only a first step: evi-
dence of continuing effectiveness as systems evolve and the ability
to upgrade and extend the platform is vital to make this a useful
testing method.

To understand the needs of tools such as MorphQ for use in
regression testing for developing quantum computing platforms,
we designed a reproducibility study using MorphQ. The first part
of the study was to upgrade MorphQ from the version of Qiskit it
was written for, version 0.33.1, to the latest version at the time of
this experimentation, 0.44.1. We then designed and added six new
metamorphic transformations and extended two of the existing
transformations included in MorphQ. We refer to this updated
and extended MorphQ as MorphQ++. Our approach to creating
MorphQ++ and the challenges faced are covered in the following
sections. We then tested it against the original by running both the
original MorphQ and MorphQ++ three times for 48 hours each.

The contributions of this work are

o A reproducibility study on MorphQ using an updated version
of Qiskit;

o The addition of new metamorphic relations which find new
bugs;

e Insights into future directions for the MorphQ framework

https://orcid.org/
https://orcid.org/0000-0003-2443-2425
https://doi.org/10.1145/3695750.3695823
https://doi.org/10.1145/3695750.3695823
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3695750.3695823&domain=pdf&date_stamp=2024-10-27

RENE ’24, October 27-November 1, 2024, Sacramento, CA, USA

2 REPRODUCIBILITY STUDY

In this section, we present an evaluation of the Qiskit upgrade and
our new transformations. We first describe how we upgraded Mor-
phQ, then discuss our new and extended metamorphic relations.!

2.1 Updating Qiskit

Our first focus was updating Qiskit and ensuring MorphQ could still
be run on the newer version. Unfortunately, this was not as simple
as just updating versions. Updating Qiskit caused several issues
with backward compatibility, requiring modifications to several
metamorphic transformations and even the base program genera-
tion, as fundamental pieces such as circuit gates and their inputs
were changed. In addition, the update required an upgrade of the
Python version and the update of many Python modules, several of
which resulted in hidden faults in MorphQ. For example, Python’s
AST module had an update that removed a class being used to store
values in the tree, resulting in a modification to the tree’s structure.
Some of MorphQ’s transformations use this AST module to parse
through the Qiskit program to apply the transformation, requiring
careful debugging to resolve the new tree structure. These types
of issues were not unexpected but were still a notable part of the
process of our project.

After making these fixes, we performed a full run of MorphQ
following the original paper for 48 hours as a validation step. While
analyzing the results, we encountered several faults that had been
found before the update but with their exception messages modi-
fied. This required overhead to track down exceptions that initially
looked new but were actually known faults with more informative
messaging. In the end, we found one new fault that we confirmed
with developers.

2.2 New Transformations

With Qiskit updated, we started extending MorphQ by adding new
transformations. We looked at Qiskit bug reports to identify the
components causing a user’s program to fail, following regression
testing tenet which uses the fact that components with bugs are
more likely to have more bugs during evolution [7, 9]. The other way
we identified transformations was by focusing on the comments
for workarounds. Qiskit developers often leave suggestions on
workarounds until the bug gets fixed. We briefly describe each next.
(1) Added Three Basis Sets A basis or universal gate set is a set of
gates that can represent any gate. When simulated, a circuit being
transpiled with a specified basis gate set should have the same
output as the original circuit. We added three new gate sets.

(2) QASM3 Open Quantum Assembly Language, or OpenQASM, is
a method of representing quantum circuits in an intermediate rep-
resentation [6]. Since 2017, two versions have been released, Open-
QASM2 and OpenQASMS3. Qiskit allows for conversion of quantum
circuits to and from OpenQASM. Converted circuits should main-
tain their same outputs. We added the OpenQASM3 since MorphQ
only translates to OpenQASM2.

(3) Change Transpilation Backend The transpilation process
prepares quantum circuits for specific quantum computers opti-
mizing for hardware. MorphQ only transpiles for the AerSimulator
provided by Qiskit; however, other simulators are also available

! Artifacts can be found at https://github.com/LavaOps/RENE24.

16

Linsey Kitt and Myra B. Cohen

on Qiskit. This transformation transpiles for other simulators. The
transpiled circuit is still tested on the AerSimulator, otherwise the
outputs would be different and more difficult to verify

(4) To QPY and Back In addition to conversion to and from Open-
QASM, Qiskit also has the ability to convert to and from QPY. QPY
is a serialized format for storing and transferring quantum circuits
from Qiskit. It is designed to be backwards compatible for all future
versions of Qiskit. We added a new transformation to support this.
(5) Copy Circuit Another feature of Qiskit is a method that oper-
ates on a circuit by copying it and returning a new identical circuit.
This transformation copies the circuit from the Qiskit program and
verifies the copied version still runs as the original.

(6) Initialize Circuit Circuit initialization in Qiskit allows a circuit
of qubits to be initialized with any legal value. Qiskit also has a
separate function that allows for the generation of random circuits,
which will randomly assign gates to the circuit. This transformation
first turns the circuit in the Qiskit program into a random circuit,
then re-initializes it to a circuit with all qubits set to |0). This is an
equality relation.

(7) Reset Circuit Qiskit circuits have a function to reset all of the
qubits to their default state, which should have the same effect as
initializing all the qubits to |0). This transformation applies the
circuit as usual, then resets all the circuits, and finally applies the
circuit a second time before proceeding, verifying the reset circuit
is the same.

(8) Add Barrier Qiskit allows for the addition of barriers to circuits,
which divide operations on the circuit. This addition is both a visual
change to the circuit diagrams, where diagrams have a barrier
drawn in, and an operation that impacts the transpilation process,
as the transpiler will consider each side of the barrier separately
when compiling and optimizing: it will not optimize across the
barrier. These barriers should not impact the output of the circuits,
only the way they are set up and optimized.

3 RESULTS

We ran the original MorphQ for 48 hours, mimicking the original
paper’s 48 hour run, and MorphQ++ for 48 hours. We repeated this
three times to ensure the results we gathered were not influenced
by outliers in the random program generation. We then also ran
MorphQ++ 10 times for two hours each to see how it navigated
the search space given less time (we don’t report those results).
All experiments were performed on Red Hat Enterprise Linux 9.2
with Intel Xeon Gold 6144 CPUs with 32 cores and 366GB of RAM.
We utilized the Jupyter notebooks provided by MorphQ developers
[13] for our analyses and graphs in this paper.

Table 1 summarizes the faults found by MorphQ++, their crash
messages, and the metamorphic transformations leading to them.
The newly added metamorphic transformations involved in the
crashes are underlined and bold. In total, 13 faults were found, five
of which were new faults not previously reported to Qiskit. The
table lists these as IDs 6, 7, 10, 11, and 12. These have all been
confirmed as faults by the developers except for 12, which has not
received a response at the time of writing. Notably, only one of
these faults did not involve any new relations, ID 10, implying it
was a fault introduced in the update from Qiskit 0.33.1 to 0.44.1. We
confirmed this by running the test on 0.33.1, and it passed.

https://github.com/LavaOps/RENE24

MorphQ++: A Reproducibility Study of Metamorphic Testing on Quantum Compilers

RENE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: Fault crash messages found and reported from running MorphQ++. New transformations are underlined and in bold

ID Report Status Novelty Crash message Metamorphic transformations
1 #7700 confirmed D€V iR original "[oo many subscripts C}'lange of optlmlzatlon.level,
MorphQ in einsum (numpy) Inject null-effect operations
licate f i Instruction i
2 #7641 confirmed du.p Jeate ound in nstruction id Change of gate set
original MorphQ not found
duplicate found in Mismatch between .
3 #7326 fixed original MorphQ parameter binds Inject parameters
new in original Cannot bind
4 #7748 fixed & parameters not Inject parameters
MorphQ . -
present in the circuit
Invalid param type e e .
5 #10534 confirmed duplicate found MorphQ++ <class \'complex\’> Initialize circuit,
Change of gate set
for gate ry
I instracti Roundtrip conversion via QASM3,
6 #11560 confirmed new in MorphQ++ Hnidown mstuction: Change of gate set,
rxx_139974866104288 .
Change of transpilation backend
;e fed i Morph sqvared ot .t nitilize cirut,
xe new in MorphQ++ Zq(;lare 18 1ot L, bu Roundtrip conversion via QPY
. . Cannot apply Initialize circuit,
8 #8050 confirmed duplicate found in MorphQ++ Operation: reset Change of optimization level
9 #10345 confirmed duplicate found in MorphQ-++ el.g algorithm (geev) Change of transpilation backend
did not converge
10 #10990 confirmed new in MorphQ++ list index out of range Roundtrip con'Vellrsm.n via QASM2,
Change of optimization level
only length-1 arrays
11 #11558 confirmed new in MorphQ++ can be converted to Roundtrip conversion via QASM3
Python scalars
Change of transpilation backend
) OR Change of coupling map,
12 #11559 reported found in MorphQ++ KeyError: 0 Roundtrip conversion via QASM3,
Roundtrip conversion via QPY
K . Roundtrip conversion via QPY,
13 #9746 confirmed duplicate found in MorphQ++ unpack requires a Initialize circuit,

buffer of bytes

Inject null-effect operations

In addition, four duplicate faults were found in MorphQ++, IDs 5,
8,9, and 13. They are listed with their original bug reports made by
other Qiskit users. Two of these, 9 and 13, were flaky tests [5, 18],
i.e., they could not be replicated reliably; in 9, running the same
program almost always succeeds - it is only in rare instances that
it crashes. 13 was not able to be reproduced; among the one quarter
million program pairs tested in this paper, this crash was only found
once. We were unable to generate the same crash message when
rerunning the program, instead getting the crash message fromID 7,
“Sum of amplitudes-squared is not 1, but 0.0” Given this, we are also
unable to verify which of the three metamorphic transformations of
Roundtrip conversion via QPY, Initialize circuit, and Inject null-effect
operations are truly required to generate the fault; it may have been
caused by all three or a subset of these three transformations.

The other four remaining faults were found in the original Mor-
phQ, signaling they were not fixed by the update of Qiskit. They
are the first four faults listed in the table. Two were new faults

17

found in the original MorphQ, while the other two were duplicates
found originally by other users. The original paper found 13 faults,
indicating the other nine not still found in the update were fixed.

Table 2 shows the number of faults each new transformation
contributed towards finding. As can be seen, several transforma-
tions were productive towards finding faults, and each of these
contributed towards finding at least three. In contrast, the remain-
ing transformations did not find any. Through this research ques-
tion, we conclude that MorphQ++ is successful at identifying new
faults, especially through four of the added and modified metamor-
phic transformations. Some of these faults come from flaky tests,
however, making them difficult to find and classify.

We next considered how our results compare against the origi-
nal and MorphQ++ by running for 48 hours, three times each. We
created several sets of figures and tables to analyze the data using
Jupyter Notebooks provided alongside the original MorphQ code.

RENE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 2: Number of faults by new transformations

New metamorphic transformation Unique bugs found

Roundtrip conversion via QASM3 3
Change of transpilation backend
Roundtrip conversion via QPY
Copy circuit

Initialize Circuit

Reset Circuit

Add Barrier

O O O W W

Table 3: Execution data on three original MorphQ runs

(a) First original run

Number Percentage

Tested program pairs 19,429 100.0%
> Crashes in source program 0 0.0 %
< Crashes in follow-up program 6,488 334 %
< Successful executions 12,941 66.6 %

— Distribution differences 169 0.9 %

(b) Second original run

Number Percentage

Tested program pairs 12,065 100.0%
< Crashes in source program 0 0.0 %
> Crashes in follow-up program 2,386 19.8 %
< Successful executions 9,679 80.2 %

— Distribution differences 163 14 %
(¢) Third original run

Number Percentage

Tested program pairs 23,725 100.0%
< Crashes in source program 0 0.0 %
> Crashes in follow-up program 6,874 29.0 %
< Successful executions 16,851 71.0 %

< Distribution differences 305 1.3%

3.1 Execution Data

Data from running the original MorphQ can be found in Table 3
and MorphQ++ in Table 4. The most obvious observation here is
the difference in the volume of program pairs tested: MorphQ++
generated nearly four times as many program pairs as the original.
There are many possible reasons for this difference; improvements
to Qiskit’s algorithms are likely a major cause. An obvious instance
is the introduction of “Layer contains > 2-qubit gates” crash mes-
sages, which occur in the updated version but not the older version
of Qiskit. These seem to occur when, in the older version, Mor-
phQ would time out for taking too long, suggesting computations
that were too complicated to be feasible. Now, the program quickly
crashes rather timing out. There are likely many other optimiza-
tions made across Qiskit updates. There could similarly be speed
increases from the updated Python version including optimizations,

18

Linsey Kitt and Myra B. Cohen

Table 4: Execution data on three MorphQ++ runs

(a) First updated run

Number Percentage
Tested program pairs 79,336 100.0%
> Crashes in source program 0 0.0 %
< Crashes in follow-up program 12,118 153 %
< Successful executions 67,218 84.7 %
> Distribution differences 941 1.2 %

(b) Second updated run
Number Percentage
Tested program pairs 76,923 100.0%
< Crashes in source program 0 0.0 %
< Crashes in follow-up program 8,465 11.0 %
< Successful executions 68,458 89.0 %
< Distribution differences 872 1.1 %

(c) Third updated run

Number Percentage
Tested program pairs 64,097 100.0%
< Crashes in source program 0 0.0 %
< Crashes in follow-up program 6,934 10.8 %
< Successful executions 57,163 89.2 %
< Distribution differences 1,136 1.8 %

allowing more program pairs to be generated. One last possible
contributor is the new metamorphic transformations: they may be

faster to run on average than the original transformations, allowing

the generated programs to run faster.

Duplicate declaration for gate 'rzx’ Duplicate declaration for gate 'rzx'

Instruction id not found
match between run_config.parameter_binds
Unable to map source basis

Gate or opaque call to 'subcircuit’

too many subscripts in einsum

Cannot bind parameters

Cannot find gate definition for 'rzx"
Duplicate declaration for gate 'ryy'

5

Cannot bind parameters
Unable to map source basis

Gate or opaque call to 'subcircuit’
Duplicate declaration for gate 'ryy"
Instruction id not found

Cannot find gate definition for ‘c3sx'
£ Cannot find gate definition for ‘rzx’
& Mismatch between run_config.parameter_binds
too many subscripts in einsum

Cannot find gate definition for ‘c3sx" Cannot find gate definition for ‘rccex’
Cannot find gate definition for ‘rcccx’ Cannot find gate definition for unitary

10' 107 10°

mbey
crashing programs

10" 102 10°
Number of
crashing programs

(a) First original run (b) Second original run

Instruction id not found

Duplicate declaration for gate 'rzx'
Cannot bind parameters

Unable to map source basis

Cannot find gate definition for ‘c3sx'
Gate or opaque call to ‘subcircuit
Cannot find gate definition for 'rzx'
Mismatch between run_config.parameter_binds
too many subscripts in einsum
Duplicate declaration for gate 'ryy'
Cannot find gate definition for 'rcccx'

Custer-level Warning
Representatives

102 10°

crashing programs

(c) Third original run

Figure 1: Frequency of crash clusters in original MorphQ

The next observation is the difference in percentage of crashing
programs. Metamorphic transformations led to crashing programs
15% more often in the original MorphQ. In Table 1, nearly all new
faults found in MorphQ++ required at least two specific transforma-
tions, with three requiring three different transformations. MorphQ

MorphQ++: A Reproducibility Study of Metamorphic Testing on Quantum Compilers

Cannot bind parameters

Instruction id not found

Cannot bind parameters

Sum of amplitudes-squared is not 1, but 0.0
t apply Operation: reset

Mismatch between run_config.parameter_binds
Cannot unroll the circuit to the giver basis
t00 many subscripts in einsum

KeyError: 0

Invalid param type for gate ry

Layer contains > 2-qubit gates

only length-1 arrays can be converted
unknown instruction: nex

Sum of amplitudes-squared is not 1, but 0.0
Cannot unroll the circuit to the given basis
list index out of range
only length-1 arays can be converted
walid param type for gate ry
100 iy Sabat s Sinsury
yError: 0

known instruction: rxx
yer contains > 2-qubit gates

eig a\gor\mm (geev) did not converge
npack requires a buffer of bytes

Custer-level Warning
Representatives
Custer-level Warning
Representatives

100 10 102 10
Number of Number of
crashing programs crashing programs

(b) Second updated run

Cannot bind parameters

Sum of amplitudes-squared is not 1, but 0.0
Instruction id not found

Layer contains > 2-qubit gates

Cannot apply Operation: reset

Cannot unroll the circuit to the given basis
only length-1 arrays can be converted

to0 many subscripts in einsum

Invalid param type for gate ry

list index out of range

unknown instruction: rxx_

Mismatch between run_config.parameter_binds

(a) First updated run

Custer-level Warning
Representatives

107 10

crashing programs

(c) Third updated run

Figure 2: Frequency of crash clusters in MorphQ++

only applies up to four transformations at a time and will often
apply fewer than four. From the original paper, faults found in the
original MorphQ only require two or fewer transformations. This
means faults will be found less often in MorphQ++ because they
are less likely to have their specific transformations applied to the
same program, and there will, therefore, be fewer crashes. These
may, however, be more complex faults.

The distribution differences in the tables indicate the number of
program pairs where the two programs had statistically significant
differences in their outputs even though they were expected to
closely match. As noted in the original paper, the statistical test
used to determine these differences uses a 5% p-value, so up to 5%
of programs are expected to have distribution differences even if
all the programs are coming from the same distribution. None of
the distribution differences across the runs go above 2%.

3.2 Crash Clusters

Figures 1 and 2 show the number of times each crash occurred in
each run in the original and updated MorphQ, respectively. These
graphs have many similarities, as many crashes occur with similar
frequencies across runs in both the original and MorphQ++. There
are a few notable differences, however. First, in both the original and
MorphQ++, there are a few crashes that occur with wildly different
frequencies. Looking specifically at the original, “Instruction id not
found” occurred an order of magnitude more in the run in Figure
la compared to the run in Figure 1b, meanwhile “Cannot find gate
definition for unitary” never occurred at all in Figure 1a. In Mor-
phQ++, “Mismatch between run_config.parameter_binds” occurred
two orders of magnitude more in Figure 2a compared to Figure
2c¢ and did not occur at all in Figure 2b. “KeyError: 0” also never
occurred in Figure 2c and “eig algorithm (geev) did not converge”
and “unpack requires a buffer of bytes” only occurred in Figure
2b. These inconsistencies may be explained by the randomness of
program generation and transformation application and show the
importance of using multiple runs.

3.3 Crashing Programs by Transformation

Figures 3 and 4 show the percentage of crashing programs when a
transformation is applied by itself, with one other transformation,

RENE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Roundtrip conversion via QASM Roundtrip conversion via QASM ——
Change of gate set Partitioned execution ——

Partitioned execution Inject null-effect operations —

Inject parameters. Change of gate set —

Inject null-effect operations

Add quantum register

Change of coupling map -{ss BI_Single transf.
Change of optimization leve! g 1 +1 other
Change of backend +2 others

Inject parameters - s—
Change of coupling Map Jesmmm

Add quantum register Jgn. BEE Single transf.
[+1 other
B +2 others
W 43 others

Change of optimization level s
Change of backend e,

+3 others

Change of DIt Orde | Change of qubit order s

0 20 40 60 80 100 0 20 40 60 80 100

% of crashing programs % of crashing programs

Metamorphic Transformation
Metamorphic Transformation

(a) First original run (b) Second original run

Change of gate set
Partitioned execution
Roundtrip conversion via QASM
Inject null-effect operations
Inject parameters
Add quantum register |
Change of coupling Map | B Single transf.
Change of optimization level s —— *+1 other
Change of qubit order g T +2 Others
Change of backend W +3 others

20 40 60 80 100
% of crashing programs

(c) Third original run

Figure 3: Percent of crashing programs in original MorphQ
broken down by transformation: the percentage of programs
that crashed when the transformation was the only one ap-
plied in red, when the transformation was applied with one
other in pink, two others in grey, and three or more, black

two others, or three or more. In both the original and MorphQ++,
the main inconsistencies across runs come from the single transfor-
mation data. In the original, the Inject null-effect operations transfor-
mation only causes crashes on its own (Figure 3a). In MorphQ-++,
the Change transpilation backend transformation only finds crashes
by itself (Figure 4a), while the Initialize circuit and Roundtrip conver-
sion via QASM transformations only find crashes by themselves in
Figure 4b. The latter found very few crashes in MorphQ++, which
is in contrast to the original, where it consistently caused many
crashes on its own, showing possible improvements to the updates
to Qiskit — it now requires other transformations.

Change of gate set
Initialize circuit
Partitioned executior
Roundtrip conversion via QP
Change transpilation backend
Reset circuit
Change of optimization level
arameters
Quantim register
Inject nuu ifect operations
ange of backend

Change of gate set
initialize circuit

Roundip conversion via GPY
rtitioned execution

Change tranipiasion backend
Inject parameters

Roundtrip conversion via QASM
Change of optimization level
inject null-effect operations

t circuit

= Single transf.

opy circuit Cromaedi gt oraer 1 +1 other
Change of coupling map L |mmm +3 others Copy circuit B +2 others

Metamorphic Transformation
Metamorphic Transformation

Add barrier
Change of coupling map
Roundtrip conversion via QASM

0 20 40 60 80 100 0 20 40 60 80 100
9% of crashing programs 9% of crashing programs.

-3 others

" mm +3others

Change of backend

(a) First updated run (b) Second updated run

Change of gate set
Initialize Circuit J——
Partitioned execution
Roundtrip conversion via OPY
Inject parameters
Change transplation backend

Roundirip Converion via
"Add quantum register
Copy ol = Single transf.

3 +1other

Change of backend Jem— MR +2 others
barrier i mEm +3 others
Change of coupiing map

Metamorphic Transformation

20 40 60 80 100
9% of crashing programs

(c) Third updated run

Figure 4: Percentage of crashing programs in MorphQ++

3.4 Program Generation Distributions

Figures 5 and 6 show that MorphQ++ has more uniform distri-
butions across runs compared to the original. There is a smaller

RENE ’24, October 27-November 1, 2024, Sacramento, CA, USA

7000
6000 10 4000
5000

. 3000

© 3000 © 2000

2000

1000
1000

0
123 4

3
No. Transf. Applied No. Transf. Applied

(a) First original run

12

eosssseessssssssssssesseseenses

0
123 4
No. Transf. Applied

(c) Third original run

Figure 5: Distribution of programs in original MorphQ: the
right figure shows concentration of programs across the num-
ber of gates and qubits, while left shows the number of pro-
grams with a given number of transformations applied

coseeesseecscssensaccosseccsece 25000

20000 20000

+ 15000 15000

2 10000

No. Qubits.
No. Qubits

“ 10000

5000 5000

0

123 4 1234
No. Transf. Applied No. Transf. Applied

(a) First updated run

123 4
No. Transf. Applied

(c) Third updated run

Figure 6: Distribution of programs generated by MorphQ++

relative difference in the number of programs with one transfor-
mation applied versus two in MorphQ++, and the number of gates
versus the number of qubits is much more consistent. The genera-
tion of Qiskit programs involves randomly generating a number of
gates and qubits to use within a configurable size, so the differences
found here are likely due to the increase in sample size: MorphQ++
generates significantly more programs.

When looking at the results from the original MorphQ and Mor-
phQ++, we found faults were coming from more complex interac-
tions of Qiskit components in MorphQ++, and there were more
programs generated but with fewer crashes. Neither version showed
any distribution differences to be the result of faults, and both ex-
perienced many inconsistencies across their individual runs.

3.5 Discussion

A key advantage of metamorphic testing is the ability to make
conclusions about the correctness of the output without having a
test oracle by comparing related outputs. Although MorphQ (and
MorphQ++) employs metamorphic testing, they did not find faults
via this comparison. Rather, they found faults from unexpected
crashes on valid programs. These faults, rather than being found

20

Linsey Kitt and Myra B. Cohen

through the added intelligence embedded in metamorphic testing,
were essentially found via mutation-based fuzzing, another type of
testing method where random inputs to a program are generated
and mutated and run on the program to find faults [23], with a
limited set of transformations or mutations. In recent work, Xia
et al. [19] used fuzzing to test MorphQ, suggesting this is a viable
option. Though metamorphic testing was not beneficial here, this
is not to say it is not worth pursuing in quantum software or that
it cannot find faults in any capacity. Rather, it indicates two direc-
tions future research can look to. One is to look towards different
metamorphic strategies and build more robust metamorphic testing
platforms to harness the strengths of metamorphic testing more
effectively. A second research direction proposed is to improve the
strategy for testing. Given the increased effort required to create
metamorphic transformations and implement their equivalencies,
it may be more efficient for these crashing faults, especially in the
early phases of developing quantum platforms, to focus on the
mutation-based fuzzing foundation of MorphQ.

Aside from considering metamorphic testing versus fuzzing
strengths, there are still several challenges to be faced by these
testing platforms. These platforms are undergoing a lot of devel-
opment and therefore experience many updates, requiring a lot of
work to keep the testing tools up to date. As discussed, upgrad-
ing MorphQ had several complications, requiring modifications to
several transformations and elsewhere in the code. It is expected
to face these types of challenges when working with developing
platforms, and it emphasizes the importance of good code design
to simplify the process of keeping up to date.

The last point of discussion here is looking at the inconsistencies
across runs. As seen across the research questions, individual runs
are unreliable at finding all faults and performing a uniform search
across the search space. We may want to use a better strategy for
shorter, multiple runs rather than one long run to ensure a more
uniform exploration of the search space. We had some success with
this strategy in a test run.

4 CONCLUSIONS AND FUTURE WORK

We have performed a reproducibility study of the MorphQ testing
platform for quantum compilers. We updated MorphQ to work on
a newer version of Qiskit and added new transformations, which
we call MorphQ++. We found a similar set of faults with relatively
similar distributions of faults; however, we also found new faults,
primarily with our new transformations. One interesting observa-
tion is that the metamorphic relations themselves were not used to
find real behavioral differences (e.g. subtle changes found between
outcomes). Instead all of the bugs found were crashing type faults,
meaning the metamorphic relations only provided manipulation of
the data, not a change in the oracle. This indicates a fuzzing type
approach of testing could also work.

ACKNOWLEDGMENTS

We would like to thank Jack Lutz for fruitful discussions and feed-
back on this work. We thank the authors of MorphQ for their
valuable comments on the camera ready version. This work was
supported in part by NSF grant #1909688.

MorphQ++: A Reproducibility Study of Metamorphic Testing on Quantum Compilers

REFERENCES

[1] 2023. Qiskit/Qiskit. https://github.com/Qiskit/qiskit. https://github.com/Qiskit
[2] 2024. quantumlib/Cirq. https://github.com/Qiskit/qiskit. https://github.com/

[3

[7

8

[10

[11

[12

(13

]

[

=

=

]

]

quantumlib/Cirq

Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.
The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software
Engineering 41, 5 (2015), 507-525. https://doi.org/10.1109/TSE.2014.2372785
Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H.
Tse, and Zhi Quan Zhou. 2018. Metamorphic Testing: A Review of Challenges
and Opportunities. ACM Comput. Surv. 51, 1, Article 4 (jan 2018), 27 pages.
https://doi.org/10.1145/3143561

Maxime Cordy, Renaud Rwemalika, Adriano Franci, Mike Papadakis, and Mark
Harman. 2022. FlakiMe: laboratory-controlled test flakiness impact assessment.
In Proceedings of the 44th International Conference on Software Engineering (Pitts-
burgh, Pennsylvania) (ICSE 22). Association for Computing Machinery, New
York, NY, USA, 982-994. https://doi.org/10.1145/3510003.3510194

Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. 2017.
Open Quantum Assembly Language. arXiv:1707.03429 [quant-ph]

Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2000. Priori-
tizing test cases for regression testing. In Proceedings of the 2000 ACM SIGSOFT
International Symposium on Software Testing and Analysis (Portland, Oregon,
USA) (ISSTA °00). Association for Computing Machinery, New York, NY, USA,
102-112. https://doi.org/10.1145/347324.348910

Daniel Fortunato, José Campos, and Rui Abreu. 2022. Mutation testing of quan-
tum programs written in QISKit. In Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion Proceedings (Pittsburgh, Pennsyl-
vania) (ICSE "22). Association for Computing Machinery, New York, NY, USA,
358-359. https://doi.org/10.1145/3510454.3528649

Jung-Min Kim and Adam Porter. 2002. A history-based test prioritization tech-
nique for regression testing in resource constrained environments. In Proceedings
of the 24th International Conference on Software Engineering (Orlando, Florida)
(ICSE ’02). Association for Computing Machinery, New York, NY, USA, 119-129.
https://doi.org/10.1145/581339.581357

Peixun Long and Jianjun Zhao. 2024. Testing Multi-Subroutine Quantum Pro-
grams: From Unit Testing to Integration Testing. ACM Trans. Softw. Eng. Methodol.
(apr 2024). https://doi.org/10.1145/3656339 Just Accepted.

Christian Murphy, Gail Kaiser, Lifeng Hu, and Leon Wu. 2008. Properties of
Machine Learning Applications for Use in Metamorphic Testing. 867-872.
Matteo Paltenghi and Michael Pradel. 2022. Bugs in Quantum computing plat-
forms: an empirical study. Proceedings of the ACM on Programming Languages 6,
OOPSLA1 (April 2022), 1-27. https://doi.org/10.1145/3527330

Matteo Paltenghi and Michael Pradel. 2023. MorphQ: Metamorphic Testing of the
Qiskit Quantum Computing Platform. In 2023 IEEE/ACM 45th International Con-
ference on Software Engineering (ICSE). IEEE. https://doi.org/10.1109/icse48619.

21

[14

[15

[16

(17

(18

[19

[20

[21

[22

[23

]

]

RENE ’24, October 27-November 1, 2024, Sacramento, CA, USA

2023.00202

Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. 2016. A
Survey on Metamorphic Testing. IEEE Transactions on Software Engineering 42, 9
(2016), 805-824. https://doi.org/10.1109/TSE.2016.2532875

Sandro Tolksdorf, Daniel Lehmann, and Michael Pradel. 2019. Interactive Meta-
morphic Testing of Debuggers. In Proceedings of the 28th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (Beijing, China) (ISSTA
2019). Association for Computing Machinery, New York, NY, USA, 273-283.
https://doi.org/10.1145/3293882.3330567

Jiyuan Wang, Qian Zhang, Guoqing Harry Xu, and Miryung Kim. 2021. QD-
iff: Differential Testing of Quantum Software Stacks. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 692-704.
https://doi.org/10.1109/ASE51524.2021.9678792

Xinyi Wang, Paolo Arcaini, Tao Yue, and Shaukat Ali. 2022. Quito: a coverage-
guided test generator for quantum programs. In Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering (Melbourne, Aus-
tralia) (ASE "21). IEEE Press, 1237-1241. https://doi.org/10.1109/ASE51524.2021.
9678798

Chungiu Steven Xia, Saikat Dutta, Sasa Misailovic, Darko Marinov, and Ling-
ming Zhang. 2023. Balancing Effectiveness and Flakiness of Non-Deterministic
Machine Learning Tests. In Proceedings of the 45th International Conference on
Software Engineering (Melbourne, Victoria, Australia) (ICSE "23). IEEE Press,
1801-1813. https://doi.org/10.1109/ICSE48619.2023.00154

Chungiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming
Zhang. 2024. Fuzz4All: Universal Fuzzing with Large Language Models. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering
(ICSE). Article 126. https://doi.org/10.1145/3597503.3639121

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation (San Jose, California, USA)
(PLDI ’11). Association for Computing Machinery, New York, NY, USA, 283-294.

https://doi.org/10.1145/1993498.1993532
Jiaming Ye, Shangzhou Xia, Fuyuan Zhang, Paolo Arcaini, Lei Ma, Jianjun Zhao,

and Fuyuki Ishikawa. 2023. QuraTest: Integrating Quantum Specific Features
in Quantum Program Testing. In 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 1149-1161. https://doi.org/10.1109/
ASE56229.2023.00196

Pengzhan Zhao, Jianjun Zhao, and Lei Ma. 2021. Identifying Bug Patterns in
Quantum Programs. arXiv:2103.09069 [cs.SE]

Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. 2022. Fuzzing: A
Survey for Roadmap. ACM Comput. Surv. 54, 11s, Article 230 (sep 2022), 36 pages.
https://doi.org/10.1145/3512345

https://github.com/Qiskit
https://github.com/Qiskit/qiskit
https://github.com/quantumlib/Cirq
https://github.com/quantumlib/Cirq
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1145/3143561
https://doi.org/10.1145/3510003.3510194
https://arxiv.org/abs/1707.03429
https://doi.org/10.1145/347324.348910
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/581339.581357
https://doi.org/10.1145/3656339
https://doi.org/10.1145/3527330
https://doi.org/10.1109/icse48619.2023.00202
https://doi.org/10.1109/icse48619.2023.00202
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1145/3293882.3330567
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ICSE48619.2023.00154
https://doi.org/10.1145/3597503.3639121
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/ASE56229.2023.00196
https://doi.org/10.1109/ASE56229.2023.00196
https://arxiv.org/abs/2103.09069
https://doi.org/10.1145/3512345

	Abstract
	1 Introduction
	2 Reproducibility Study
	2.1 Updating Qiskit
	2.2 New Transformations

	3 Results
	3.1 Execution Data
	3.2 Crash Clusters
	3.3 Crashing Programs by Transformation
	3.4 Program Generation Distributions
	3.5 Discussion

	4 Conclusions and Future Work
	Acknowledgments
	References

