
SynBioTrace: Integrating Safety and Security
Artifacts to Build Assurance Cases for Synthetic

Biology Applications
Justin Firestone

Dept. of Computer Science & Engineering
University of Nebraska–Lincoln

Lincoln, NE 68588
justin.firestone@unl.edu

Myra B. Cohen, Robyn R. Lutz
Dept. of Computer Science

Iowa State University
Ames, IA 50011

{mcohen,rlutz}@iastate.edu

Abstract—The rapidly advancing cyber-physical domain of
synthetic biology modifies the functionality of micro-organisms
which can act as living computational devices. Applications
include intelligent drug delivery, customized cancer therapies,
and pollution detection and mitigation. While many synthetic
biology applications have been proposed, prototyped, and even
deployed, these systems often lack standard approaches to
verify their safety and security. One approach, the assurance
case, provides evidence demonstrating proper implementation
in the target application, and is often used in other safety-
critical domains. However, synthetic biologists lack guidance in
developing assurance arguments and tracing safety and security
requirements to evidence as required for building assurance
cases. Although there has been some research combining safety
and security artifacts, such techniques often require extensive
expertise from different domains and may not be accessible
to synthetic biologists. In this paper we propose SynBioTrace,
an assistive process to help propagate information from risk-
based analyses of such systems to preliminary assurance cases.
SynBioTrace preserves traceability among its steps so that the
assurance case can be further refined. We apply and evaluate
it through a case study based on a real-world synthetic biology
application. Our case study suggests this approach could aid
synthetic biologists in identifying, documenting, and structuring
safety and security artifacts, as well as linking evidence to support
traceability for a complete, integrated assurance case.

Index Terms—Assurance Cases, Synthetic Biology, Safety &
Security Evidence

I. INTRODUCTION

Synthetic biology is the practice of engineering living organ-
isms by modifying their DNA. The discipline has progressed
rapidly over the last 30 years due to advances that provided
solutions for key technical challenges [1]. Synthetic biology
has been defined as a process “to design new, or modify
existing, organisms to produce biological systems with new
or enhanced functionality according to quantifiable design
criteria.” Successful projects include engineering bacteria to
produce synthetic biofuels, to sense and mitigate pollution,
to organize and generate body tissues, to perform medical
diagnostics, and, increasingly, to perform sophisticated com-
putations [2].

Synthetic biologists design new functionality, encode it
into DNA strands, and insert those DNA strands into living
organisms such as the common (non-toxic) K-12 strain of
Escherichia coli (E. coli). The engineered organisms replicate
this new DNA along with its native DNA to build proteins
that perform designed functionalities. It is possible to encode
different types of logic within cells using different DNA
sequences [3]. Engineers design bacteria which, similar to
silicon devices, can sense, actuate, compute, and communicate
based on the flow of molecular signals at the nanoscale. These
new organisms, and the focus of this paper, can be described
as living computational systems or even biological software.

Biological software, like traditional software, must be
tested, validated, and verified for correctness and dependabil-
ity within its run-time environment. Unlike many traditional
silicon-based systems, engineered bacteria can interact with
other life and with the environment while performing com-
putational functions. Hence many of these applications are
safety-critical, and likely more are safety critical than those
previously considered to be, such as medical diagnostics and
therapeutics [4].

Given the rapid growth in quantity and quality of syn-
thetic biology applications in a wide variety of safety-critical
domains, there has been increasing attention on the need
for regulation and certification of biological software [5]–[7].
However, synthetic biologists are unlikely to have expertise
in software testing and safety assurance, and if we are to
expect certification of the safety and security of their biological
software, we should assist them and all other stakeholders
by providing initial guidance on how to generate meaningful,
suitable artifacts. Research has suggested assurance cases [8]–
[10], can be built for synthetic biology as a way to facilitate
regulatory oversight [11]–[13].

This paper focuses on two current challenges for building
synthetic biology assurance cases: (1) synthetic biologists lack
guidance for creating assurance cases; and (2) any proposed
solution needs to address safety together with security to
support of traceability of evidence. To overcome these chal-



lenges, we are inspired by the safety community and build
on prior work regarding traceable links between safety and
security artifacts [14]–[16]. Fault trees and attack-defense trees
are often the first artifacts regulators request. We show how
to integrate information from these artifacts to incrementally
build an initial assurance case that provides traceability among
goals, strategies, assumptions, contexts, and evidence. We call
the process of generating these artifacts and their traceable
relationships across domains SynBioTrace. The main contri-
butions of this work are:

1) A hazards-based, assistive process to help develop and
refine assurance cases for synthetic biology applications,
and

2) A case study of a synthetic biology kill-switch to demon-
strate SynBioTrace’s potential.

In the next section we present some background and a
motivating example. In Section III we provide an overview
of SynBioTrace. We apply and evaluate it on a case study in
Section IV and discuss the results in Section V. Section VI
describes related work. We end with conclusions and future
work.

II. MOTIVATING EXAMPLE

We present a motivating example based on a temperature-
sensitive kill-switch from a synthetic biology application to
inhibit methane production in cattle (methanogenesis). This
kill-switch was a team project entered in an international
synthetic biology competition (iGEM) which has over 400
team entries and thousands of attendees per year [17]. (See
Section IV for a more complete description of the kill-
switch.) Recently, some winning iGEM teams have created
partial assurance cases for their synthetic biology applications.
However, guidance on how to develop an assurance case
for a synthetic biology system is lacking. In our example
application, the high-level goal is to engineer bacteria that
lives in a cattle’s rumen and reduces its methane output. This
has both environmental and economic benefits: it reduces the
amount of methane released into the atmosphere and lowers
costs by increasing feed efficiency. However, to be released
into the environment, it needs to be trusted and safe.

The complete methane-inhibition system requires adding
engineered bacteria to cattle feed so the bacteria become part
of the biome in digestive systems. The bacteria then interact
with the methane metabolic pathway to reduce the production
of methane [17]. To prevent the engineered bacteria from
interacting with the external environment, the team added a
safety requirement that the bacteria are only able to live and
operate within the digestive system of the cattle.

Biological kill-switches are defined as “artificial systems
that result in cell death under certain conditions” [18], and are
an important safety mechanism built into many synthetic biol-
ogy applications. A kill-switch ensures engineered organisms
will not grow out of control after their necessary functions
have been performed, limiting their opportunity and ability to
perform harmful or unintended actions.

To ensure bacteria do not survive after excretion, a
temperature-sensitive kill-switch (“cryodeath”) was chosen to
meet the safety requirement [18]. The kill-switch was designed
to be stable (inactive) at temperature ranges normally found
inside cattle digestive systems (around 37°C). It begins acti-
vating at temperatures below this. For our purposes, we use
room temperature of 22°C and below as the kill-switch trigger.

Figure 1 shows an example of how these kinds of kill-
switches operate. On the left side of this figure (normal
rumen temperature range) there is an equilibrium between kill-
switch toxin and antitoxin production; i.e., the engineered cells
continue to live inside the intestine, as intended. However,
when the temperature drops below 22°C (right side of figure),
the production of the toxin increases, causing the cells to
intentionally die.

Clearly, prior to deploying mechanisms like toxin/antitoxin
kill-switches, their designers should be able to provide evi-
dence to certify that they are safe and secure for use in their
intended environments. However, there is currently a lack of
guidance as to what type of artifacts are appropriate for attest-
ing to the safety and security of synthetic biology applications,
and how this information can be identified, structured, and
communicated. It is this gap which we seek to address with
SynBioTrace.

III. SYNBIOTRACE

We now present SynBioTrace, a four-step process that uses
the information from fault trees and attack-defense trees to
develop assurance cases addressing both safety and security.
Figure 2 shows an overview of the process, which begins with
the generation of a fault tree and attack-defense tree.

A. Step 1: Hazard Analysis
Hazard analysis is the foundation of building safe systems,

so SynBioTrace begins there, as shown at the left of Figure
2. An assurance case for a synthetic biology application
must consider failures that threaten its safety and attacks
that threaten its security. The fault-tree analysis focuses on
the internal logic (or computation) of the synthetic biology
application’s behavior. It considers logical faults that might
be caused by missing/corrupt input or by unwanted events,
and that contribute to hazardous failures. The attack-defense
tree analysis addresses faults that can be caused by contextual
elements and adjacent systems, including the physical envi-
ronment, human agents, and manufacturing systems.

We have observed that fault-tree analysis is a form of hazard
analysis that appears to be intuitive to synthetic biologists
and feasible for them to build [13]. We speculate that
this is because of its similarity to the top-down diagnostic
visualizations using AND/OR trees often seen in laboratory
notebooks.

As Knight has pointed out, “Attack trees provide a lot of
insight into how an attacker might succeed just as fault trees
provide a lot of insight into how a system might fail” [16].
Malicious attacks can cause critical computational failures.
Attacks also can invalidate assumptions regarding run-time

2



Fig. 1. The kill-switch produces roughly the same amount of toxins and antitoxins at the permissive temperature range (inside the digestive system), but an
excess amount of toxins at and below (when excreted externally), killing the engineered bacteria. Image adapted from [18].

input, hardware platforms, and operational environments, cre-
ating risks to its safety. To investigate threats to the security of
the cryodeath kill-switch, SynBioTrace incorporates an attack-
defense tree analysis.

The outputs from Step 1 of Figure 2 are three development
artifacts: a fault tree, an attack-defense tree, and an initial
assurance case. These artifacts would be developed by syn-
thetic biologists, potentially with help from safety and security
experts. Their purposes are to: (1) specify requirements for
the system to be developed, along with assumptions about
their operational contexts; (2) identify feasible risks to system
safety along with safety requirements to mitigate them; and
(3) identify security attacks and mitigations to defend against
them. Synthetic biology projects typically have much of this
information in laboratory notebooks, but safety and security
experts might need to help create appropriate documentation
for assurance cases. The information gathered in Step 1 is used
in Step 2.

B. Step 2: Goals and Context

In Step 2, shown at the mid-left in Figure 2, synthetic
biologists, having generated the design of the DNA parts
appropriate for the desired behavior of the engineered applica-
tion, must connect the design verification with the information
from the hazard analyses in Step 1. They use SynBioTrace to
develop two intermediate trace tables showing the relationships
between the artifacts. These tables add structure and rigor
to the process of tracing hazards to mitigations and their
implementation and validation. Table I shows the elements
used to establish these traceability links in the fault-mitigation
table and attack-defense table.

Column headings for these trace tables, shown in Table I,
track relationships between the elements that derive from the
fault-tree analysis and the attack-defense tree analysis:

• the events potentially causing the hazard
• the derived safety requirements to mitigate the hazard,

together with the reasoning supporting why each require-
ment is justifiably believed to mitigate the hazard

• assumptions addressing leaf nodes related to the intended
operational use of the system

• the cognizant agent responsible for confirming the traces
• the planned verification and validation to show that each

requirement is satisfied in the implemented system

TABLE I
DESCRIPTION OF TRACE TABLES FOR SYNBIOTRACE.

Table
Name

Lead
Roles

Column Headings Purpose

Fault-
mitigation
table

Synthetic
Biologist
or Safety
Engineer

• Fault Nodes
• Safety Requirements
• Assumptions
• Responsible Agents
• Plan to Verify & Validate
• Assurance Case Nodes

Plan strategies;
identify contexts
and assumptions;
trace mitigation
requirements to
assurance case
nodes

Attack-
defense
table

Synthetic
Biologist
or
Security
Engineer

• Attack Nodes
• Defense Requirements
• Assumptions
• Responsible Agents
• Plan to Verify & Validate
• Assurance Case Nodes

Plan strategies;
identify contexts
and assumptions;
trace defense
requirements to
assurance case
nodes

• the labeled nodes in the initial assurance case to which
this element traces (empty until Step 3).

The columns in the attack-defense tree are similar, as shown
in the lower half of Table I and are not further explained here.

The output from Step 2 of Figure 2 is the two SynBioTrace
tables: the fault-mitigation table and the attack-defense table.
Populating these structured entries assists synthetic biologists
in linking their hazard-based requirements to the verification
artifacts they produce (e.g., model simulations or laboratory
experiments) for their application’s design and implementa-
tion. The information gathered in Step 2 of SynBioTrace
is then used in Step 3, with the verification and validation
activities tracing to the assurance case’s evidence nodes.

C. Step 3: Initial Assurance Case

Step 3, shown on the right of Figure 2 helps the synthetic
biologist develop an initial assurance case. This is achieved
by propagating information forward, gathered from the fault-
mitigation table and the attack-defense table. Each leaf node
identified in the tables should be traced to one or more
elements in the assurance case as it is built up. The mitigation
requirements traced from the fault tree support a sub-goal of
safety, and the defense requirements traced from the attack-
defense tree support a sub-goal of security. An advantage is
that the initial assurance case can be started before evidence

3



Attack-Defense Tree and 
Attack-Defense Table

Fault Tree and
Fault Mitigation Table

Initial 
Assurance Case

Identify Mitigations

Identify 
Operational 
Environments

Identify Requirements 
for Biological System

Promoter

RBS

Coding Sequence

Terminator

Refine 
Assurance Case

Identify Hazards 
and Threats

• Lab Notebook:
• Design
• Simulations, laboratory 

experiments, prototype testing

• NIST cybersecurity 
framework

• Biosafety Level I
Evidence

Process

Fig. 2. Four steps of the SynBioTrace process integrating the fault tree and attack-defense tree with biological safety requirements to show evidence of
implemented mitigations in the assurance case. Mitigations are implemented in the design and code. An initial assurance case checks whether there is
sufficient evidence that the product satisfies the safety and security requirements for the identified operational environments. The assurance case will likely
need iterative refactoring because the application and environment typically evolve over time.

is available, and could be a tool for acquiring feedback from
regulators or other stakeholders.

Every mitigation in the tables should lead to well-developed
evidence elements within the assurance case. Rationales in the
tables can suggest appropriate strategies for the assurance case.
Assumptions about the operational environment, originating in
the fault nodes and captured in the tables, are now considered
for inclusion in the initial assurance case, depending upon the
operational environment.

The tables from Step 2 thus serve as a useful mechanism
for confirming that mitigations have been properly considered
and their implementations verified with traces linking them to
evidence elements in the assurance case. Note that although
Step 3 considers fault-tree and attack-defense tree nodes
separately, Step 4 will consider them jointly in order to further
integrate the analysis of their relationships, and to consider
potential trade-offs related to safety and security [14].

The output from Step 3 of Figure 2 is an initial assurance
case for the synthetic biology application. The information and
traceability relationships captured in Step 2 assist synthetic
biologists to systematically build up the initial assurance case.
To provide backward traceability, the elements added to the
initial assurance case are given unique labels that are now
entered into the last column of the SynBioTrace tables created
in Step 2. The initial assurance case is then used in Step 4.

D. Step 4: Refinement

Step 4 is an incremental process for refining and refactoring
the assurance case by determining whether some evidence
nodes can be combined, expanded, or marked as undeveloped.
The nodes are also refined based upon updated experimental
data or modified requirements.

For example, if the host organisms evolve or mutate to
bypass a safety feature, it could mean that a mitigation is
defeated or that a new fault exists. Explicitly recognizing

Ratio of toxins to 
antitoxins is not stable

F6

Kill switch fails

F1

Kill switch fails to trigger 
when temperature is 

outside permissive range

F2

Kill-switch system mutates 
to produce excessive 

antitoxins

F8

Kill switch improperly 
triggers within permissive 

temperature range

F3

Kill-switch system 
mutates to produce 
insufficient toxins

F9

Ratio of antitoxins to 
toxins is too high

F4

Kill-switch system 
produces excessive 

toxins

F10

Kill-switch system 
produces insufficient 

antitoxins

F11

Excessive mutation of 
cells overcomes kill-

switch system

F7

Plasmid conjugation 
removes kill switch

F5

Fig. 3. Fault tree for the cryodeath kill-switch.

this could trigger either manual or automated processes to
update system requirements which follow the traceability
relationships, as well as facilitate cooperation across domains
of expertise and provide greater modularity and reuse for
engineers. Importantly, this also can provide regulators with
improved coherence among the different artifacts needed to
certify a cross-disciplinary, safety-critical system.

IV. APPLICATION OF SYNBIOTRACE

This section describes our application and evaluation of
SynBioTrace on the kill-switch application. We provide ad-
ditional artifacts and full-size figures on our supplementary
website (http://sites.google.com/view/biotrace). We note that
a complete analysis of the system in which the kill-switch
operates would also include the methane-reduction system and
supply-chain attacks.

A. Step 1: Hazard Analysis of Kill Switch
In accordance with the inputs to SynBioTrace shown in

Figure 2, we identified the kill-switch’s high-level safety
requirement to be that it shall prevent the engineered bacteria
from surviving after excretion, and its planned operational

4

http://sites.google.com/view/biotrace


Fig. 4. Attack-defense tree for the cryodeath kill-switch. Red nodes with an “A” label represent attack vectors and green nodes with an “M” label represent
mitigations of those attack vectors.

context to be that the organism is E. coli strain Dh10ω and
the operating temperature is 22-37°C. The hazard of concern is
that a failure of the kill-switch could cause engineered bacteria
to survive after excretion, violating the system-level safety
requirement described above.

As in Figure 2, we performed a fault-tree analysis (Figure
3), finding feasible events that could cause a kill-switch failure.
These involve either the DNA of the kill-switch mutating, or
the cells themselves mutating to bypass the kill-switch by not
passing the kill-switch’s code to the cells’ children.

We developed the attack-defense tree (Figure 4) to identify
malicious attacks that could cause the kill-switch to trigger
when it should not, and attacks that could prevent the kill-
switch from triggering when it should. This analysis found
another five additional ways that attacks could cause failure of
the kill-switch. Figure 4 shows that certain malicious actions
violate assumptions about the operational environment, such
as that a malevolent agent could disable the kill-switch by
hacking the machine that synthesized (manufactured) it or by
gaining access to the cattle’s feeding facility.

We identified eight mitigations, M1-M8, that defended
against these attacks. These involved securing access to
the physical facilities (manufacturing and feeding), screening
users and operators, qualifying and certifying hardware, and
maintaining the manufacturing software. (Node A4 was judged
to be too improbable to justify mitigation resources.)

B. Step 2: Goals and Context of Kill-Switch

In Step 2, we documented the relationships between the
elements that derived from the fault-tree analysis in a fault-
mitigation table. This included mitigations, rationales, and
assumptions, etc. as described in Table I. We also developed an

attack-defense table based on the attacks and mitigations from
the attack-defense tree. We anticipate that populating these
tables would involve discussions with other domain experts
(e.g., other synthetic biologists) to determine whether the
mitigation requirements are adequate and feasible, and if they
are not, appropriate updates to the tables would be necessary.
The agents identified as responsible for the planned mitigations
in the table may be software or hardware processes, regula-
tory standards, or individuals. These will ultimately provide
evidence to support whether assurance claims have been met.

C. Step 3: Initial Assurance Case for Kill-Switch

In this SynBioTrace step, we generated an initial, candidate
assurance case. It incorporated sub-goals for safety and secu-
rity, and evidence node(s) for every leaf node in the tables.
Evidence came from domain-specific knowledge and from
documented experimental results.

We do not show the initial safety case here, but instead
provide our refined candidate assurance case in Step 4 below.
In Step 3 we also labeled each node in the initial assurance
case and updated the information in the fault-mitigation and
attack-defense tables with the appropriate traceability links.

D. Step 4: Refinement of Kill-Switch Assurance Case

In Step 4 of SynBioTrace, we, playing the role of a synthetic
biologist, iterated over evidence nodes to identify which could
be combined or refactored. First, we collapsed some evidence
nodes with guidance provided by the trace tables where
repetition of mitigation requirements or responsible agents
suggested which nodes were good candidates for combination.
Some nodes trace to multiple evidence nodes, while other
nodes may be deleted or marked as undeveloped. We found

5



Fig. 5. A candidate assurance case derived from the fault-mitigation table and attack-defense table, then refined to eliminate unwanted redundancies. The
orange nodes are expanded in detail in Figures 6 and 7.

Fig. 6. This is the safety piece of the assurance case continued from the top
level. The orange nodes are from Figure 5.

Fig. 7. This is the security piece of the assurance case continued from the
top level. The orange nodes are from Figure 5.

no safety or security conflicts in the kill-switch; however,
guidance exists to handle them in assurance cases if they
are discovered [14], [19], and their resolution could lead to
deletion or modification of nodes. Finally, we updated the

assurance-node columns in Table I to preserve round-trip
traceability among the artifacts and their elements.

Figures 5, 6, and 7 show our candidate assurance case
produced using SynBioTrace. The assurance case was built
based on the final Step 4 refactoring, using the AdvoCATE
tool from Denney and Pai [9].

Our intent is that a regulator should be able to review the
SynBioTrace artifacts (the fault-tree and the attack-defense
tree, their associated trace tables, and the refined version of
the initial assurance case built from them) to readily check
that all faults have been properly and adequately mitigated for
the synthetic biology application.

V. DISCUSSION

Observations from our application of SynBioTrace to the
synthetic biology kill-switch case study include:

1) Fault trees and attack-defense trees each provided their
own unique benefits for developing an assurance case.
The fault-tree analysis considered events that could
cause the switch’s logic to fail directly, e.g., mutation
of either the switch or the system in which it is embed-
ded, while the attack-defense tree considered malicious
events that could break assumptions about the manu-
facturing or operational environment, e.g., disabling the
kill-switch by posing as an imposter operator.

2) Even the relatively simple case study here needed more
domain expertise than anticipated. This inclines us to
propose that synthetic biologists take lead in developing
the initial assurance case, assisted by safety experts.

3) Our experience confirmed advice in the literature to start
early and to build the assurance case incrementally [16],

6



[20], [21]. The best case would be where, as suggested
above, a synthetic biologist has primary responsibility
for producing the assurance case, so development of
the application and the assurance case can be performed
somewhat in tandem. SynBioTrace is designed to assist
with this likely scenario.

4) Using tree structures for the safety and security analyses
and for the initial assurance case facilitated readability
and two-way traceability of the links among the artifacts,
as well as providing support for future automation.

5) Our experience confirmed reports by others that it is hard
to find the right balance between too much and too little
information in creating an assurance case. We chose
to keep the argument structures simple for review and
maintenance purposes. However, more explanation was
occasionally needed to establish why a certain evidence
node sufficed to satisfy a sub-goal. Specifically for syn-
thetic biology, we see a need to incorporate probability
measures into the fault-tree analysis and assurance case.
We agree that assurance cases can provide a unified view
that helps manage uncertainty [22].

Two limitations of this study are that we, as researchers
with some background in synthetic biology and molecular
programming, simulated roles as synthetic biologists. The
SynBioTrace process should be tested in a more realistic
setting to determine its usefulness and effectiveness with full-
time practitioners of synthetic biology. Although SynBioTrace
was only applied to the kill-switch, it is fairly representative
of other synthetic biology systems with safety and security
aspects that we are likely to see deployed in the near future.

VI. RELATED WORK

In related work, the AMASS tool platform adopts and
extends existing technologies for management and assurance
of compliance for cyber-physical systems [23]. It can inte-
grate artifacts from other platforms to provide traceability
for meeting standards and regulations, and supports evidence
management and assurance case specification. It is intended for
traditional cyber-physical systems and platforms rather than
synthetic biology. Others have proposed more formal methods
for integrating attack trees with fault trees [24].

Johnson and Kelly identified the challenges of co-assurance
across the domains of safety and security and introduced
the Safety-Security Assurance Framework (SSAF) to better
integrate them [14]. Extension of SSAF to synthetic biology
applications would be an interesting research direction.

There has been some prior work on applying assurance
cases to synthetic biology. Cohen, et al., proposed the use
of a dynamic assurance case, called an assurance timeline, to
address biological evolution [12]. In follow-on work, Firestone
and Cohen suggested using parameterized patterns called as-
surance recipes to help non-experts build assurance cases [11].
We anticipate that ongoing work on formal verification of
molecular devices [4], [25], [26] will lead to use of such
evidence in synthetic biology assurance cases. Lutz proposed
the use of a molecular program’s artifacts, including its safety

requirements and model verification results, as building blocks
for preliminary safety-case arguments and evidence [13].

There are many extensions for assurance cases aimed at
facilitating their creation and improving their overall quality
and usage. Denney and Pai created a foundation for producing
hierarchical cases through formal patterns [10]. Their Advo-
CATE tool now supports bowtie diagrams and analysis, includ-
ing trace links to hazard tables [27]. A survey by Makismov,
Kokaly, and Chechik describes the various tools available
which support assurance case assessment [28]. Chowdhury, et
al., provided criteria for developers and external reviewers as
guidance for evaluating the structure and content of assurance
cases [29].

The field of “cyberbiosecurity” has been rapidly growing,
with some suggesting the discipline of synthetic biology
developed with a naı̈ve sense of trust [7], [30]. One research
team has demonstrated the potential for a malicious actor
to compromise DNA synthesis equipment by sending DNA
samples tailored to compromise commonly used software [31].

Recent work to design a language called CRN++ provides
a comprehensive framework for molecular programming that
enables formal verification [32]. Domain-specific languages
which allow for formal verification through languages like
CRN++ will be an important component for certifying depend-
ability by providing evidence for the assurance case nodes.

Similar work has also been proposed for helping stake-
holders from different disciplines create assurance cases for
AI-enabled systems. Kass et al., suggested a “sociotechnical”
approach to help satisfy regulatory expectations by creating
assurance cases to support justifying the fairness of such
systems throughout their lifecycles [33].

VII. CONCLUSIONS AND FUTURE WORK

In this work we presented SynBioTrace, a four-step process
to build assurance cases for synthetic biology applications that
incorporates both safety and security requirements. Aimed at
use by synthetic biologists, SynBioTrace starts from fault trees
and attack-defense trees and uses them to guide development
of an initial assurance case which can then be refactored.
These artifacts are integrated and traced to the resulting as-
surance case, providing concrete evidence for mitigations. We
performed a case study on a synthetic biology kill-switch to
demonstrate SynBioTrace’s feasibility. The evaluation results
suggest the potential for SynBioTrace to improve the safety
and security of future synthetic biology applications and to
make it easier to build their assurance cases.

ACKNOWLEDGMENT

This work was supported in part by National Science Foun-
dation Grants CCF-1901543, CCF-1909688, CCF-1900716,
CCF-1513717, and by the National Institute of Justice Grant
2016-R2-CX-0023. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation or National Institute of Justice.
We thank Ewen Denney for providing the AdvoCATE tool.

7



REFERENCES

[1] D. E. Cameron, C. J. Bashor, and J. J. Collins, “A brief history of
synthetic biology,” Nature Reviews Microbiology, vol. 12, no. 5, p. 381,
2014.

[2] W. Weber and M. Fussenegger, “Emerging biomedical applications of
synthetic biology,” Nature Reviews Genetics, vol. 13, no. 1, p. 21, 2012.

[3] G. Baldwin, Synthetic Biology: A Primer. World Scientific, 2016.
[4] S. J. Ellis, T. H. Klinge, J. I. Lathrop, J. H. Lutz, R. R. Lutz, A. S. Miner,

and H. D. Potter, “Runtime fault detection in programmed molecular
systems,” ACM Transactions on Software Engineering Methodology,
vol. 28, no. 2, pp. 6:1–6:20, 2019.

[5] W. E. Forum, “Biosecurity innovation and risk reduction: A global
framework for accessible, safe and secure DNA synthesis,” 2020.

[6] G. N. Mandel and G. E. Marchant, “The living regulatory challenges of
synthetic biology,” Iowa L. Rev., vol. 100, p. 155, 2014.

[7] J. Firestone, “The need for soft law to regulate synthetic biology,”
Jurimetrics, vol. 60, pp. 139–173, 2020.

[8] D. J. Rinehart, J. C. Knight, and J. Rowanhill, “Current practices
in constructing and evaluating assurance cases with applications to
aviation,” NASA, Tech. Rep., 2015.

[9] E. Denney and G. Pai, “Tool support for assurance case development,”
Autom. Softw. Eng., vol. 25, no. 3, pp. 435–499, 2018.

[10] E. W. Denney and G. J. Pai, “Safety case patterns: theory and applica-
tions,” 2015.

[11] J. Firestone and M. B. Cohen, “The assurance recipe: Facilitating
assurance patterns,” in Computer Safety, Reliability, and Security -
SAFECOMP. Springer International Publishing, 2018, pp. 22–30.

[12] M. B. Cohen, J. Firestone, and M. Pierobon, “The assurance timeline:
Building assurance cases for synthetic biology,” in Computer Safety, Re-
liability, and Security - SAFECOMP. Springer International Publishing,
2016, pp. 75–86.

[13] R. R. Lutz, “Requirements engineering for safety-critical molecular
programs,” in 30th IEEE International Requirements Engineering Con-
ference, RE 2022, Melbourne, Australia, August 15-19, 2022. IEEE,
2022, pp. 302–308.

[14] N. Johnson and T. Kelly, “Devil’s in the detail: Through-life safety and
security co-assurance using SSAF,” in Computer Safety, Reliability, and
Security. Springer International Publishing, 2019, pp. 299–314.

[15] N. G. Leveson, Engineering a Safer World: Systems Thinking Applied
to Safety. MIT Press, 2012.

[16] J. Knight, Fundamentals of Dependable Computing for Software Engi-
neers. CRC Press, 2012.

[17] “UNL 2017 iGEM Team Page,” http://2017.igem.org/Team:
UNebraska-Lincoln, last accessed: January 26, 2020.

[18] F. Stirling, L. Bitzan, S. O’Keefe, E. Redfield, J. W. Oliver, J. Way,
and P. A. Silver, “Rational design of evolutionarily stable microbial kill
switches,” Molecular Cell, vol. 68, no. 4, pp. 686 – 697, 2017.

[19] I. Friedberg, K. McLaughlin, P. Smith, D. M. Laverty, and S. Sezer,
“STPA-SafeSec: Safety and security analysis for cyber-physical sys-
tems,” Journal of Information Security and Applications, vol. 34, pp.
183–196, 2017.

[20] T. Kelly and R. Weaver, “The Goal Structuring Notation – A Safety
Argument Notation,” in Proceedings on Dependable Systems and Net-
works, 2004.

[21] R. R. Lutz and A. Patterson-Hine, “Using fault modeling in safety cases,”
in 19th Int’l Symposium on Software Reliability Engineering, ISSRE,
2008, pp. 271–276.

[22] M. Chechik, R. Salay, T. Viger, S. Kokaly, and M. Rahimi, “Software as-
surance in an uncertain world,” in Fundamental Approaches to Software
Engineering - 22nd Int’l Conf FASE, ETAPS, ser. LNCS, vol. 11424,
2019, pp. 3–21.

[23] J. L. de la Vara, A. Ruiz, and G. Blondelle, “Assurance and certification
of cyber-physical systems: The AMASS open source ecosystem,” J. Syst.
Softw., vol. 171, p. 110812, 2021.

[24] I. Nai Fovino, M. Masera, and A. De Cian, “Integrating cyber attacks
within fault trees,” Reliability Engineering & System Safety, vol. 94,
no. 9, pp. 1394–1402, 2009, eSREL 2007, 18th European Safety and
Reliability Conference.

[25] L. Cardelli, M. Kwiatkowska, and M. Whitby, “Chemical reaction
network designs for asynchronous logic circuits,” Natural Computing,
vol. 17, no. 1, pp. 109–130, 2018.

[26] J. I. Lathrop, J. H. Lutz, R. R. Lutz, H. D. Potter, and M. R. Riley,
“Population-induced phase transitions and the verification of chemical
reaction networks,” Natural Computing, vol. 23, no. 2, pp. 347–363,
2024.

[27] E. Denney, G. Pai, and I. Whiteside, “The role of safety architectures
in aviation safety cases,” Reliability Engineering & System Safety, vol.
191, p. 106502, 2019.

[28] M. Maksimov, S. Kokaly, and M. Chechik, “A survey of tool-
supported assurance case assessment techniques,” ACM Computing
Surveys, vol. 52, no. 5, pp. 101:1–101:34, 2019.

[29] T. Chowdhury, A. Wassyng, R. F. Paige, and M. Lawford, “Criteria
to systematically evaluate (safety) assurance cases,” in 30th IEEE Int’l
Symp on Software Reliability Engineering ISSRE, K. Wolter, I. Schiefer-
decker, B. Gallina, M. Cukier, R. Natella, N. Ivaki, and N. Laranjeiro,
Eds. IEEE, 2019, pp. 380–390.

[30] J. Peccoud, J. E. Gallegos, R. Murch, W. G. Buchholz, and S. Ra-
man, “Cyberbiosecurity: from naive trust to risk awareness,” Trends in
biotechnology, vol. 36, no. 1, pp. 4–7, 2018.

[31] P. Ney, K. Koscher, L. Organick, L. Ceze, and T. Kohno, “Computer
security, privacy, and DNA sequencing: Compromising computers with
synthesized DNA, privacy leaks, and more,” in 26th USENIX Security
Symposium, 2017, pp. 765–779.

[32] M. Vasic, D. Soloveichik, and S. Khurshid, “CRN++: molecular pro-
gramming language,” Nat. Comput., vol. 19, no. 2, pp. 391–407, 2020.

[33] M. H. Kaas, C. Burr, Z. Porter, B. Ozturk, P. Ryan, M. Katell, N. Polo,
K. Westerling, and I. Habli, “Fair by design: A sociotechnical approach
to justifying the fairness of ai-enabled systems across the lifecycle,”
arXiv preprint arXiv:2406.09029, 2024.

8

http://2017.igem.org/Team:UNebraska-Lincoln
http://2017.igem.org/Team:UNebraska-Lincoln

	Introduction
	Motivating Example
	SynBioTrace
	Step 1: Hazard Analysis
	Step 2: Goals and Context
	Step 3: Initial Assurance Case
	Step 4: Refinement

	Application of SynBioTrace
	Step 1: Hazard Analysis of Kill Switch
	Step 2: Goals and Context of Kill-Switch
	Step 3: Initial Assurance Case for Kill-Switch
	Step 4: Refinement of Kill-Switch Assurance Case

	Discussion
	Related Work
	Conclusions and Future Work
	References

