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ARTICLE INFO ABSTRACT

Dataset link: https:// Acoustic metamaterials are a subject of increasing study and utility. Through designed combinations of geometries
github.com/trutheresy/UQ-2D-Metamaterials with material properties, acoustic metamaterials can be built to arbitrarily manipulate acoustic waves for various
Keywords: applications. Despite the theoretical advances in this field, however, acoustic metamaterials have seen limited
Uncertainty quantification penetration into industry and commercial use. This is largely due to the difficulty of manufacturing the intricate
Metamaterials geometries that are integral to their function and the sensitivity of metamaterial designs to material batch
Acoustics variability and manufacturing defects. Capturing the effects of stochastic material properties and geometric
Spectral projection defects requires empirical testing of manufactured samples, but this can quickly become prohibitively expensive
Polynomial chaos expansion with higher precision requirements or with an increasing number of input variables. This paper demonstrates how
uncertainty quantification techniques, and more specifically the use of polynomial chaos expansions and spectral
projections, can be used to greatly reduce sampling needs for characterizing acoustic metamaterial dispersion
curves. With a novel method of encoding geometric defects in a 1D, interpretable, resolution-independent way,
our uncertainty quantification approach allows for both stochastic material properties and geometric defects to be
considered simultaneously. Two to three orders of magnitude sampling reductions down to ~ 10° and ~ 10! were
achieved in 1D and 7D input space scenarios, respectively. Remarkably, this reduction in sampling was possible
while preserving accurate output probability distributions of the metamaterial performance characteristics

(bandgap size and location).
1. Introduction perform as designed, one must be able to characterize the effects of
stochasticity in the material properties that constitute the metamate-
Acoustic metamaterials have gained enormous attention in recent rial, as well as of the geometric defects that arise during manufacturing
decades for their capabilities in manipulating acoustic waves in myriad on relevant performance characteristics. This can always be done by
ways from designed combinations of geometry and material properties brute force experimental sampling, but because the intricate geometry

[1,2]. These acoustic wave manipulations have much applicability in ar-
eas of engineering and scientific research [3], as well as commercial use
(wave guides [4-6], bandpass filters [7,8], vibration dampeners [9,10],
tunable controllers [11-13], noise reducers [14], etc.). The efficient op-
timization of metamaterial topologies remains a developing field, with
various reduced order and statistical methods being trialed [15-17].

of metamaterials usually leads to higher manufacturing costs compared
to simpler shapes, this strategy can become prohibitively expensive. To
address this practical sampling constraint, techniques from the field of
uncertainty quantification (UQ) can be leveraged to greatly reduce sam-
pling requirements [20-23] while assessing stochasticity of performance

For real world manufacturing, there is the additional challenge [18] characteristics of interest. Previous work in this area is fairly limited and
of stochasticity in both the material properties and fabricated geome- has examined the effects of one to three stochastic material properties
try of the metamaterial, which can substantially impact the resulting on 1D metamaterials [24], the effects of three stochastic macro-scale
wave manipulations [19]. To ensure a manufactured metamaterial will geometric parameters on 3D metamaterials [25], and the effects of six
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stochastic material properties on 2D metamaterials for fixed geometries
[26].

In this paper, we examine the previously unexplored case of simul-
taneous stochasticity in six material properties and the geometry of the
metamaterial, resulting in a seven-dimensional space for 2D dual-phase
metamaterials. Our scenario reflects realistic manufacturing situations
where one seeks to quantify the effects of variations in material bulk
moduli, shear moduli, densities, as well as geometry defects on meta-
material dispersion curves. The accommodation of geometry into the
UQ requires a novel, resolution-independent method to both specify ge-
ometry variations without incurring the curse of dimensionality and be
interpretable and practical to use in real-world manufacturing scenarios.
In our analysis, we demonstrate the utility of UQ techniques, including
representation through polynomial chaos expansions and propagation
using spectral projections [27-30]. These techniques are used to capture
the variability propagating from stochastic inputs (material properties
and geometric defects), to output wave dispersion characteristics. A fi-
nite element model was used to generate ground truth datasets to which
UQ surrogate models are compared. Orders of magnitude reductions in
sampling needs were achieved with these methods, which serve as a
general toolkit for researchers to reduce their sampling requirements
to reach an arbitrary level of confidence for their metamaterial perfor-
mance characteristics.

This paper is organized as follows. After this introduction, Section 2
describes our methods for computing the dispersion characteristics of
a metamaterial given its material properties and geometry, encoding
the geometry defects, and the UQ sampling and modeling process. Sec-
tion 3 then showcases results from three studies with different types
of distributions, input space dimensionality, and design geometries to
demonstrate the generalizability of the UQ techniques. Section 4 will fi-
nally summarize the study findings and the applicability and utility of
the UQ methods in this paper on metamaterial stochasticity.

2. Methodology
2.1. Acoustic metamaterials

Here we provide a brief overview of how acoustic metamaterials
work, and how the bandgap locations and widths in frequency space
are computed as a function of the material properties and geometry of
a given metamaterial.

2.1.1. Material properties

By definition, an acoustic metamaterial achieves its acoustic function
through some combination of its geometry and its material properties.
These material properties influence the propagation of vibration waves
through the material, which will be detailed in Section 2.1.3. The meta-
materials in the following studies are all comprised of two materials,
with properties shown in Table 1. Note that the stiffer of the two mate-
rials is representative of a steel alloy, and the softer of the two materials
is representative of some soft polymer matrix. These two sets of ma-
terial properties were chosen because of known bandgap presences in
dual phase materials from previous work by [31] which makes it expe-
dient to set up a UQ problem, and finally because this combination is
manufacturable should real world testing be desired.

Table 1
7D Material Property & Geometry Input Distributions.

Material Property Soft Material Nominal Value  Stiff Material Nominal Value

Bulk modulus (K) 278 MPa 152 GPa
Shear modulus (G) 72.5 MPa 78.1 GPa
Young’s modulus (E) 200 MPa 200 GPa
Poisson ratio (v) 0.38 0.28
Density (p) 1000 kg/m? 8000 kg/m’
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2.1.2. Geometry

The metamaterials in this paper are 2D geometries, which have unit
cells that are represented as a matrix of Os and 1s, representing place-
ments of soft and stiff material respectively. These matrices can be
visualized like in Fig. 1, with black pixels representing 1s, and white
pixels representing Os. For purposes of finite element simulations, these
unit cells are considered to be tiled infinitely in 2D space to form the
metamaterial.

Fig. 1. Arbitrarily selected unit cell geometries for this paper’s studies.

2.1.3. Dispersion relations and bandgaps

Given the material properties and geometry of an acoustic metama-
terial, its dispersion relation can be calculated by solving the Navier
equations [see 32],

2
(AT) + p(@)V(V - u) + p(r)Viu = p(r)(j)T;l (@D

where A is the Lamé constant, yu is the shear modulus, u is the displace-
ment vector, and p is the density. Because regular metamaterials are
formed by tiling a unit cell, we can reduce the domain of our analysis
in Eq. (1) to a unit cell under Bloch-Floquet periodic boundary condi-
tions. According to Bloch-Floquet theory, in a periodic domain, we can
express the displacement field as [33]

u(r +a) = u(r)e’*? (2

where r is the position vector, a is the lattice vector, and k is the wave
vector. To solve Eq. (1) in our reduced domain, we discretize a unit cell
using the finite element (FE) method and rewrite the formulation as a
generalized eigenvalue problem.

(K(K) — 0*M)U =0 3

where K and M are the stiffness and mass matrices of the unit cell re-
spectively. By solving Eq. (3) with a finite element solver using flexible
mesh sizes ranging from 10x10 to 40x40 pixel elements, we can find
the relation between eigenfrequency (w) and wave vector (k), which
forms the dispersion curves. By examining the dispersion curves, we can
identify bandgaps where propagation of waves with certain frequencies
is prohibited by the metamaterial [34]. Previous studies have shown
that these FE computed bandgaps are experimentally verifiable, with
discrepancies attributed partly to manufacturing inaccuracies. [35,36]
These bandgaps will be characterized in the following studies by their
center frequency and bandwidth.

2.2. Uncertainty quantification

The purpose of UQ is to endow predictions with some probabilis-
tic measure of confidence [37]. One important aspect in UQ concerns
the propagation of uncertainties (given some input-output model f)
from the stochastic input space to an output quantity of interest. Let
X =(X;,X5,...,X,,)T represent our stochastic m-dimensional input to
f (with statistically independent components), defined on a probability
space (O, F, P). We denote by Py the probability measure of X, defined
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by the probability density function px with respect to the Lebesgue mea-
sure dx in R™: Px(dx) = px(x)dx. Let Py be the pushed-forward (i.e.,
image) measure through f, associated with the stochastic g-dimensional
output Y = f(X). We denote by py the probability density function
defining Py. The task is then to estimate Py, given Px. In the context
of the metamaterials studies in this paper, Px would be the probabil-
ity measure of some material properties and geometric defects, whereas
Py would be the probability measure of bandgap size and location. This
can be achieved through various techniques, including Monte Carlo sam-
pling and surrogate modeling methods.

2.2.1. Monte Carlo sampling
The Monte Carlo (MC) approach involves the following steps:

1. Generate a large number (M) of random samples X;,X,,...
drawn from Px.

2. Evaluate the associated output samples: Y; = f(X;) for i =1,2, ...,
M.

3. Estimate py (using a kernel density estimate, for instance) and/or
analyze statistical moments of Y (e.g., the mean and the covariance
matrix).

X

Monte Carlo sampling approximates the true probability distribution
with a large enough sample size but may be inefficient or infeasible in
terms of computation cost to generate many samples of X. This approach
serves as a baseline that can be used to assess the relevance of alternative
techniques, including the ones demonstrated in this paper.

2.2.2. Polynomial Chaos Expansion (PCE)

Polynomial Chaos Expansion (PCE) is used in this paper to construct
computationally cheaper surrogate models to the assumed ground truth
FE model. In this paper, PCE surrogate models are constructed by explic-
itly computing relatively few bandgap sizes and locations from material
property and/or defective geometry samples. This surrogate model can
then be sampled at negligible cost to reveal the statistical distribution
of metamaterial bandgap properties given some stochasticity on ma-
terial properties and geometry. This technique works by representing
any given black-box model with smooth and bounded outputs as a lin-
ear combination of polynomial basis functions tailored to be orthogonal
with respect to the input space probability distribution [38,39]. This
orthogonality property allows for each polynomial to capture unique
information about the true black box model. A brief mathematical de-
scription of the method follows.

Assume that Y = f(X) is a second-order random variable, with
E{||Y||?} < +c0, where E denotes the mathematical expectation and
|| - || is the standard Euclidean norm (in RY). The polynomial chaos ex-
pansion (PCE) of Y is then written as

Y=Y a,0,X) “
n=0

where {®,},5( are multivariate polynomials that are orthonormal with
respect to Px (that is, E{®,(X)®,(X)} =6,,,, where §,,, is the Kro-
necker delta), and {q, },,5( are expansion coefficients [40,37]. The above
representation defines a surrogate model that, once calibrated, enables
the characterization of Y. The coefficients can be computed by exploit-
ing the orthogonality of the Hilbertian basis:

a,=E{fX)®,X)} = / S ()P, (x)px (x)dx %)
Rm
The choice of the polynomials depends on the distribution on X [41,42];
see Table 2. For arbitrary distributions, families of polynomial bases can
be constructed via ad hoc orthonormalization techniques [43]. One com-
mon technique, which is implemented in the Python package Chaospy
[44] and used in this paper, is the Stieltjes procedure [45].
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Table 2
Example standard distributions and
their associated basis polynomials.

Distribution Basis Polynomials
Gaussian Hermite

Uniform Legendre

Gamma Laguerre

Beta Jacobi

In practice, the PCE representation is truncated by restricting the
polynomial order. Adopting a simplified notation (in lieu of the standard
notation based on multi-indices), we write

N
Y~ ) a,®,X) (6
n=0

The above equation defines is a mean-square convergent approximation,
implying that a convergence analysis must be performed with respect to

N.
In this work, PCE expansions are generated with the Python package
Chaospy, which is a general purpose UQ toolkit [44]. Some strategies
to compute the PCE coefficients are reviewed in the next Section 2.2.3.

2.2.3. Evaluation of the chaos coefficients

There exist various techniques to compute the set of coefficients
{a,},50, including intrusive and non-intrusive techniques; see [46,37]
for reviews. In this paper, we consider the following techniques to gener-
ate sample nodes to compute the chaos coefficients according to spectral
projection Eq. (5) (and rely on their implementation in the Python pack-
age Chaospy) These techniques are standard in the field of UQ and
more details on their mathematical description and advantages/disad-
vantages can be found in the UQ handbook. [37].

» Monte Carlo sampling: in this case, the mathematical expectation
in Eq. (5) is estimated through

1
W
i

Mz

FXN®, X)) )
1

This strategy presents a low convergence rate (note that this draw-
back can be partially circumvented using more efficient sampling
strategies), which is however independent of m (the dimension of
the stochastic input). It remains applicable when the forward model
f is reasonably cheap to evaluate.

* Quadrature rule: Alternatively, the integral in Eq. (5) can be eval-
uated using a deterministic (e.g., Gaussian) quadrature rule:

No
a, x w; f(X;) (8)
i=1
No No .
where {w,-}l,:1 and {Xi},-: denote the weights and nodes of the
Ny -point cubature. Such rules are typically formulated using a ten-
sorization of one-dimensional cubatures when m > 1. Notably, this
method suffers from the curse of dimensionality, requiring a sample
number Ny = (Npp — 1), where Np, is the PCE degree.

» Smolyak sparse grid: In order to circumvent the curse of dimen-
sionality arising in tensor product formula, a sparse grid can be used
where a subset of quadrature points is identified based on a given
criterion (constraining the sum of all one-dimensional levels of accu-
racy). This leads to a much smaller number of quadrature points, and
enables integration for large values of m. Here we use the Smolyak
sparse grid introduced in [47].

2.2.4. Geometry defects

As seen in Section 2.2.3, the dimensionality of the input space
severely affects the amount of computation needed to generate PCE sur-
rogate models. Thus, there is intrinsic motivation to keep input space
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dimensionality low, leading to the natural issue of dealing with increas-
ing resolution and the quadratic scaling in pixel count for 2D metama-
terials. It would be infeasible in practice to use a method which requires
one dimension input for every pixel in a geometry, and such a method
would only work for very crude geometry representations.

In manufacturing processes, the stochastic nature of defects is not
usually a function of the arbitrary resolution one chooses to represent
their geometry with, but instead of some scale independent parame-
ter such as lithography laser precision, 3D printing nozzle size, or mill
head diameter in CNC machining. Motivated by this, we sought a single
scale invariant parameter which define stochastic defects on the de-
signed geometry, and decided to use an edge pixel “flip proportion” (FP)
parameter. Our algorithm for generating geometry defects with this FP
parameter is as follows.

1. Design a defect-free geometry.

2. Identify all the edge pixels in the design geometry. These are stiff
material pixels which share an edge with a soft material pixel, or
vice versa.

3. Randomly pick a proportion of the edge pixels equal to FP and flip
these pixels to the other material.

Fig. 2. Palette of possible defective geometries for the same flip proportion pa-
rameter (FP =5%).

The main benefit of this algorithm is that it offers a way to capture
realistic cases of processing defects with a single scale invariant param-
eter.

There are three concerns with this algorithm. The first is that only
edge pixels can be flipped. Because the most serious defects and devi-
ations in manufacturing occur at the edges of geometries, we chose to
limit the flipping to only edge pixels. However, our algorithm is capable
of flipping a proportion of all pixels.

The second concern is that this algorithm no longer leads to a deter-
ministic output space as multiple defective geometries are possible for
the same FP 2. This leads to the question of whether the FP parameter is
a valid representation of the input geometry. If the possible model out-
puts from a single FP parameter, all else held fixed, varies wildly, then
this would cause problems with the PCE fitting process as the fit cannot
satisfy multivalued functions. If instead the output variation due to from
a FP is small relative to the average variation caused by different FP val-
ues, then this FP method is a pseudo-deterministic scenario where the
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variation introduced by multivalued defective geometries can be con-
sidered model noise in an otherwise deterministic model and PCE will
have a good chance of successfully fitting surrogate models. This varia-
tion comparison will be tested in results presented in Section 3.1.

A third concern is that because only edge pixels are flipped, as reso-
lution increases, less of the shape area is comprised of edge pixels and
thus less area is subject to random flipping. This problem was exam-
ined by looking for convergence in the effects of defects as the shape
resolution increased, with results also presented in Section 3.1.

3. Results and discussion

The following subsections detail the accuracy of the UQ techniques
(see Section 2.2) in representing the true statistical distribution of
bandgap sizes and locations given in 1D (material property) and 7D (ma-
terial properties and geometric defects) stochastic input space scenarios.
The techniques will be demonstrated in the following sections on 4 dif-
ferent types of standard distributions, the uniform, normal, gamma, and
beta, and for two different design geometries. For purposes of brevity,
not all combinations of distributions and methods are shown in the
following results, but the methods do generalize to all distributions ex-
amined in this paper.

3.1. Geometry resolution effects on bandgap computations

In this study, we examine the effects of increasing geometry resolu-
tion on the FE solver outputs, and investigate whether the FP parameter
is a viable scale invariant way to represent geometric defects. In general,
for FE solvers, the more crude the resolution, and the fewer the elements,
the more error there will be in the FE calculations. Mesh refinement
techniques are typically used to strategically refine the resolution at
places where more accuracy is needed or where rapid transitions in ge-
ometry or loadings occur. For our 2D unit cell design, we scale geometry
resolution from 10x10 to 100x100 pixels and plot the FE solver outputs
in Fig. 3.

Fig. 3 shows a clear asymptotic trend of output values as resolution
increases. For low image resolutions of 10 to 30 pixels, substantially
higher error is introduced into the finite element model from elements
being too crude in resolution. As the resolution increases to 40 pixels
and above, there are diminishing returns on approximating the asymp-
totic output value and quadratically increasing computational effort. At
40x40 pixels, the error is less than 1% (~ 10°Hz) of the asymptotic
value, and this error is about two orders of magnitude smaller than the
effects of varying other parameters. Therefore, for the rest of the studies
in this paper, geometries were generated and computed with a resolu-
tion of 40x40 pixels. The FEA mesh used for each sample computation is
also the same as the pixel geometry, because the same figure above sug-
gests that beyond a 40x40 pixel mesh, the predictions of the quantities
of interest have converged.

With FE solver convergence confirmed, we next investigate the con-
cern regarding the “flip proportion” (FP) defect generation parameter.
Since our algorithm only flips edge pixels, a higher image resolution
implies a smaller proportion of the total pixels that are subject to flip-
ping. As a result, flipping at higher resolution likely has smaller effects
on bandgap outputs. To check how bandgap size and location distri-
butions changes with increasing resolution, we hold FP constant and
vary the geometry resolution from 10x10 to 70x70 pixels, computing
the bandgap size, top, and bottom. Note that because our algorithm is
pseudo-deterministic, with one FP parameter yielding multiple similar
but different possible defect geometries, we average over 100 samples to
obtain a statistically significant representation of effects from possible
defect geometries from the same FP parameter. The results are shown
in Fig. 4.

From FE computations on realistic stochastic material property
ranges, it was found that output ranges for bandgap size and center
position spanned several hundred Hertz. Therefore we would want any
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Fig. 3. The bandgap size a) and center location b) of a random but representative sample defect geometry scaled in resolution by 1x to 10x in length (10 pixels to
100 pixels edge length), as computed by the finite element solver. The flipping of pixels was applied before resolution scaling. From this figure we gather that 40x40
pixel resolution yields sufficiently good accuracy relative to the sizes of bandgap perturbations introduced by stochastic input parameters.
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Fig. 4. Study results on output variation introduced by non-deterministic FP parameter for generating geometric defects. Histogram of computed a) bandgap size
and b) center frequency of 100 geometrically defective samples generated with the same FP value of 0.05 and paired with the same material properties for pixel
resolutions of 10x10, 20x20, 30x30, and 40x40. Histogram of computed bandgap c) size and d) center frequency location of 100 geometrically defective samples
generated with the same FP value of 0.05 and paired with the same material properties for pixel resolutions of 40x40, 5050, 60x60, and 70x70. Resolutions at
40%40 and above can be considered to be convergent relative to the bandgap variations introduced by material property stochasticity.

noise effects like the differences between defect geometries of the same
FP to be well below this magnitude in variation. Fig. 4 shows that at be-
low 30 pixels, we have unacceptably large variations in the hundreds to
even thousands of Hz, due to each flipped pixel removing or adding a
relatively large portion of the overall structure. At over 40 pixel image
resolution, the variance from the many possible defective geometries
starts to be convergent asymptotically to a range on the order of tens of
Hertz. This means that the variation within a single FP value (noise) is at

least an order of magnitude lower relative to the variation introduced by
the stochastic material properties and FP value (signal). This result sug-
gests that FP can be considered to be effectively deterministic and used
as a valid representation of geometric defects. Furthermore, because the
defect rate is primarily the deterministic parameter of bandgap proper-
ties, and not the specific pixel locations of defects, our assumption of
periodic tiling in the defective geometry case is also validated, which
makes for simpler computation. Thus for following studies, each set of
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Table 3
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7D Gamma Material Property & Beta Geometry Input Distributions.

Material Property Distribution Mean (p) Standard Deviation (o) Shape () Rate/Shape ()
Soft bulk modulus (K, ;,) Gamma 278 MPa 0.08u 1.56 - 10? 1.78 - 10°
Stiff bulk modulus (K, /) Gamma 152 GPa 0.02u 2.50-10°  6.06-107
Soft shear modulus (G, ,) Gamma 72.5 MPa 0.08u 1.56-10>  4.64-10°
Stiff shear modulus (G, /) Gamma 78.1 GPa 0.02u 250-10°  3.13-107
Soft density (p,,,) Gamma 1000 kg/m?> 0.08u 1.56 - 102 6.4
Stiff density (py;;//) Gamma 8000 kg/m*  0.02u 2.50-10° 32
Geometry flip proportion (FP)  Beta 0.025 0.08u 1.52-10? 5.94-10°
6 %10 3 %10 0.02
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2 2 2 0015
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Fig. 5. 10000 Monte Carlo samples of the 7D gamma and beta input space, for visualization of the input space distribution shapes, for a) density of the soft material,
b) density of the stiff material, ¢) bulk modulus of the soft material, d) bulk modulus of the stiff material, e) shear modulus of the soft material, f) shear modulus of
the stiff material, and g) the flip proportion parameter for generating geometry defects.

sampled material properties will be paired with one defective geometry
randomly generated with a sampled FP parameter.

3.2. 6D Gamma + 1D beta (material properties + geometry) input study

In this study, the stochastic (independent) input parameters include
six material properties, assumed to be gamma distributed, and the ge-
ometry defect parameter FP, assumed to be beta distributed. The defi-
nition of the material property distributions follows the previous works
[48,49] which showed, using information theory, that the gamma distri-
bution constitutes an objective choice in stochastic isotropic elasticity.
The choice of beta distribution ensures that the geometry flip proportion
parameter takes values between 0 and 1. The distribution parameters
are provided in Table 3, and the associated histograms for Monte Carlo
sampling are shown in Fig. 5.

The sampled geometry FP parameters are then used to randomly
generate defective geometries to pair with each set of sampled material
properties. The typical process and result of the geometry defect gener-
ation process is shown in Fig. 6.

For the three spectral projection “sampling strategies” (defined in
Section 2.2.3), the method parameters and corresponding number of
sample points are shown in Table 4. Note that following a convergence
study, the 10000 Monte Carlo sample set is taken to represent the ground
truth for computing the true probability density function (PDF) of the
output space (bandgap size and center location). The degree for the
quadrature rule approach was set to be 2, since due to the exponential
nature of the full tensor grid product, degree 3 or higher would require
more points and computation than the 10000 MC samples and would
thus be useless as a way to approximate the output space PDF. For the

000

(®)

(a) (c)

Fig. 6. a) The defect-free design geometry, b) edge pixels of the design geometry
subject to random flipping, and c) a defective geometry after flipping a preset
proportion of edge pixels.

Table 4
Polynomial degree (PD) and number of sample
points for each of the spectral projection meth-

ods.
Sampling Method  Degree  Number of Points
Monte Carlo N/A 100, 1000, 10000
Quadrature Rule 1,2 128, 2187
Sparse Grid 1 15

sparse grid approach, we look to maximize computational savings and
so choose the lowest grid order as a comparison point.

For visualization purposes, some of the results of running the finite
element model on the above Monte Carlo sampled datasets are shown
in Fig. 7. It would be difficult for the human eye to perceive the exact
shape of the output distributions until some number of samples between
103 or 10%, and so the purpose of this study is to see if the same output



H. Zhang, R.K. Mahabadi, C. Rudin et al.

Computers and Structures 305 (2024) 107511

0.012 0.012 0.012
001 I Bandgap size 001 I Bandgap size 001 I Bandgap size
%‘ O I Bandgap center % ~ | | Bandgap center %‘ ~| | Bandgap center
S 0.008 S 0.008 S 0.008
© el ©
£ 0.006 £ 0.006 £ 0.006
a a o
8 0.004 & 0.004 & 0.004
[ o Qo
& 0.002 & 0.002 & 0.002
0 0 0
1200 1400 1600 1800 2000 1000 1200 1400 1600 1800 2000 1000 1500 2000
Model output (Hz) Model output (Hz) Model output (Hz)
(a) (b) (c)
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data the UQ surrogate models are ingesting and compared against.
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Fig. 8. Probability density functions of a) bandgap size and b) center frequency from 1% and 2" PCE degree surrogate models constructed from 100 Monte Carlo
samples, overlaid on histograms of 100, 1000, and 10000 FE computed Monte Carlo samples. The curves in each pane are generated with kernel density estimation
(KDE) on 1000 surrogate output samples and show the surrogate performance relative to the MC ground truth.

distribution shape can be captured for much fewer than ~ 10° samples
via the UQ techniques.

These outputs and inputs are then fed into PCE models for fitting.
Only one set of representative fit results is shown in Fig. 8 for visu-
alization purposes and brevity. The fit process for all the datasets in
Table 4 is the same and generates comparable results. The PCE surro-
gate fit however, will fail in cases where there are insufficient samples to
fit all the polynomial coefficients (underdetermined problem), but usu-
ally does not suffer from overfitting issues as the PCE model does not
aim to converge pointwise to the true model, instead only converging in
probability distribution (as implied by the mean-square convergence).
Fig. 8 shows the performance of surrogate models constructed from 100
Monte Carlo samples compared with the baseline histograms of 100,
1000, and 10000 Monte Carlo samples.

In Fig. 9 we compare the fit results of the three spectral projec-
tion sampling strategies and PCE surrogates with 10000 Monte Carlo
computed samples which represents ground truth. The figure shows a
heatmap of the existence of band gaps for the geometry shown in Fig. 6
as the material properties and geometric defects are varied. One can
see that with orders of magnitude fewer samples, we have very closely

matched the probability distribution of the actual output space. Even
the surrogate model fitted with just 15 sparse grid samples was able to
faithfully represent, albeit with slight differences, the probability distri-
bution of the output space.

3.3. 7D Gaussian input space study

This study demonstrates the applicability of the spectral projection
and PCE methods to a different set of distributions, with different ma-
terial properties, and a different unit cell geometry. Like the previous
study, the input space consists of six stochastic material properties and
a geometry defect parameter. However unlike previously, all 7 inputs
now have truncated normal distributions bounded by four standard de-
viations above and below the mean. This distribution choice represents
another popular choice in the literature for representing material param-
eters and are detailed in Table 5 and Fig. 10. The material properties
have also been swapped in this study from bulk and shear moduli to
their counterparts, the Young’s Modulus and Poisson ratio, to demon-
strate the generalizability of the UQ methods to choice of parameters.
While the Young’s Modulus numerically is on the same scale as the bulk
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Fig. 9. 2D heatmaps of bandgap sizes and center locations. The 10000 Monte Carlo FE computed samples represents the ground truth. For comparison are the
surrogate models trained on 128 quadrature rule samples, 100 Monte Carlo samples, and 15 sparse grid samples.

Probability density

Table 5
7D Gaussian Input Space Material & Geometry Property Distributions and Parameters.
Material Property Distribution Mean (u) Standard Deviation (¢) ~ Lower Trunc.  Upper Trunc.
Soft Young’s Modulus (Eg, ;) Truncated Normal 200 MPa 0.08u —40 4o
Stiff Young’s Modulus (Eg,; /) Truncated Normal 200 GPa 0.02u —40 40
Soft density (ps,,) Truncated Normal 1000 kg/m? 0.08u —4c 4o
Stiff density (pg;;7/) Truncated Normal 8000 kg/m®  0.02u —40 40
Soft Poisson ratio (vg,,) Truncated Normal ~ 0.38 0.02u —40 40
Stiff Poisson ratio (v, ;) Truncated Normal ~ 0.28 0.02u —40 4o
Geometry flip proportion (FP)  Truncated Normal  0.025 0.08u —4o 40
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Fig. 10. 10000 Monte Carlo samples of the 7D Gaussian input space, for visualization of the input space distribution shapes for a) density of the soft material, b)
density of the stiff material, ¢) Young’s modulus of the soft material, d) Young’s modulus of the stiff material, ) Poisson ratio of the soft material, f) Poisson ratio of
the stiff material, and g) flip proportion parameter for generating geometry defects.



H. Zhang, R.K. Mahabadi, C. Rudin et al.

(a)

Fig. 11. a) The defect-free design geometry, b) edge pixels of the design ge-
ometry subject to random flipping, and c) a defective geometry after flipping a
preset 5% proportion of the edge pixels.

and shear moduli (GPa and MPa for the stiff and soft materials respec-
tively), the Poisson ratio is on a completely different scale, bounded
between 0 and 0.5, and presents an opportunity to test if the UQ meth-
ods and software packages are robust to input distributions at vastly
different scales, which in theory should be of no issue.

Like before, the sampled geometry FP parameters are used to ran-
domly generate defective geometries to pair with each set of sampled

Computers and Structures 305 (2024) 107511

material properties. The typical process and result of the geometry de-
fect generation process is shown in Fig. 11.

The three spectral projection sampling strategies, shown in Table 6
are the same as in the previous study. Like before, the 10000 Monte
Carlo sample set is taken to represent the ground truth for computing
the true probability density function (PDF) of the output space (bandgap
size and center location).

Table 6
Polynomial degree and sample points for each of
the spectral projection methods.

Sampling Method Degree Number of Points
Monte Carlo N/A 100, 1000, 10000
Quadrature Rule 1,2 128, 2187

Sparse Grid 1 15

For visualization purposes, some of the results of running the finite
element model on the above Monte Carlo sampled datasets are shown
in Fig. 12. Like previously, it is difficult for the human eye to perceive
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Fig. 12. Histograms of the FE outputs (bandgap size and center frequency) for a) 100, b) 1000, c) 10000 Monte Carlo input samples. These histograms illustrate the

data the UQ surrogate models are ingesting and compared against.
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Fig. 14. 2D heatmaps of bandgap sizes and center locations. The 10000 Monte Carlo FE computed samples represents the ground truth. For comparison are the
surrogate models trained on 128 quadrature rule samples, 100 Monte Carlo samples, and 15 sparse grid samples.

the exact shape of the output distributions until sample number reaches
somewhere near 10° or 10*, and so we try again to see if the true output
distribution shape can be captured for much fewer than ~ 103 sam-
ples.

These outputs and inputs are fed into PCE models for fitting, which
similar to the previous study in Section 3.2, produced very similar results
for each dataset, so for the purpose of visualization and brevity, only one
set of representative surrogate fit results are shown in Fig. 13. The figure
shows the performance of surrogate models constructed from 128 and
2187 quadrature rule samples compared with the baseline histograms
of 100, 1000, and 10000 Monte Carlo samples.

In Fig. 14, we compare the fit results of the three spectral projec-
tion sampling strategies and their PCE surrogates with 10000 Monte
Carlo computed samples which represents ground truth. Like with the
previous study, the probability distribution of the actual output space
is closely matched by the surrogate models fitted on order(s) of mag-
nitude fewer samples. The sparse grid surrogate, using only 15 points,
deviates further from the true distribution than the previous study, but
is still reasonably good at about 12.5% wider spread in the domain on
both outputs.

3.4. 1D uniform

In this study, we examine how the Monte Carlo and quadrature rule
sampling strategies perform in the low dimension case, with just one
input. Note that the sparse grid strategy does not really make sense to
be employed here as it essentially degenerates into the same strategy as
quadrature rule for the 1D case. The distribution chosen for this study is
the uniform, which gives us yet another comparison distribution for the
methods’ performance, but also represents scenarios where one is able
to produce or choose a material with a tunable property, and wants to
ascertain the effects of all setpoints of that property on an output of
interest. In Fig. 15, we see the Monte Carlo sampled inputs and finite
element model outputs of three datasets. Because the process works the
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same way and achieves comparable levels of performance regardless of
which material property is varied, for the sake of brevity and visual-
ization, we present only the case of varying the soft material stiffness
E,, . Again we observe that with the Monte Carlo sampling approach,
a large number of samples is required to capture the output probability
distribution.

For the quadrature rule sampling strategy, we will look at orders
N =2to5, which corresponds in the 1D case (m = 1) to a number of
points n=(N + 1)" =3 to 6.

From the results in Fig. 16, we can see that at orders 2 and above,
the surrogate model output distribution is virtually indistinguishable
from the true output probability density. This is a remarkable result
that demonstrates with just 3 to 6 samples (and appropriate weights),
we are able to capture the underlying probability distribution governing
these samples.

3.5. Geometry encoding schema

In general, there are three types of approaches to encoding geome-
tries, each of which suffer from different advantages and disadvantages.
The brute force way of explicitly defining each pixel of a given geometry
is the most straightforward, offers the most control, but is computa-
tionally very costly, with input dimensionality scaling quadratically (in
2D) with resolution, which when coupled with the exponential scaling
of sampling requirements with input dimensionality for UQ sampling
strategies, renders only Monte Carlo sampling as an option for doing
UQ on this encoding schema.

A second class of approaches is to encode the geometry as a set of la-
tent features, an approach that is popular in many machine learning and
deep learning endeavors [50]. This approach can be highly efficient, and
theoretically can be the most efficient with appropriate regularization
in the loss function penalizing redundant or unnecessary latent features.
However, the main drawback of this approach is that often the number
of latent features and their physical meaning is not interpretable. This
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Fig. 16. Histograms of a) 10000 FE computed outputs on MC samples, compared to PCE surrogate models fitted to b) 3, c) 4, d) 5, and e) 6 quadrature rule samples.

also means it can be extremely difficult for technicians or engineers to
examine samples in a realistic manufacturing scenario and ascribe prob-
ability distributions to each of the latent features, a step that is necessary
to leverage the power of PCE and spectral projection.

The final class of approaches are those like the algorithm detailed in
methodology Section 2.2.4. These are interpretable encodings that rely
on some symmetry or intuition of the physical world in order to reduce
the set of all possible deformations to the set of those likely or interest-
ing to a given problem. For our problem setup, it was the intuition of
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how such acoustic metamaterials would be manufactured that informed
restricting geometric defects to occur at the edges.

Our novel approach to encoding geometry defects allows geome-
try stochasticity to be captured in a one-dimensional, scale-invariant
parameter “flip proportion”, for UQ or statistical analysis. This encod-
ing schema serves as a highly efficient default encoding schema which
can be further refined by “depth” parameters which control how deep
the defects can occur within the bulk geometry or “skew” parameters
which bias the defects to occur in certain regions of the geometry.
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Such parameters were not needed however to demonstrate the utility
of UQ techniques for the studies in this paper and so were not im-
plemented. The concerns regarding the non-determinism of defective
geometries with the same FP parameter were mitigated by studying the
bandgap size and location variance of sample geometries with the same
FP parameter, which was much smaller than the effects of material prop-
erty variance, justifying the representation of possible defects with the
pseudo-deterministic FP parameter. This also implies that in an infinite
grid of unit cell geometries with different exact defects each, the com-
bined effect of their defects will be small relative to material property
stochasticity and be well represented by the FP parameter.

3.6. Spectral projection & PCE

From the studies in Section 3.2 and Section 3.3, we found that all of
the three spectral projection sampling strategies (namely, MC sampling,
quadrature rule, and sparse grid) were able to capture the probability
distribution of the 2D output space of bandgap size and location given
a 7D input space of 6 material properties and a geometry defect param-
eter. We see the most extreme sample size savings for the sparse grid
approach, which with ~ 15 points, was able to capture fairly accurately
the output probability distribution. The sparse grid approach however,
despite working well for this application, may not work as well for out-
put landscapes with many local features, which may be missed by the
sparse grid points. Quadrature rule sampling, which returns a full grid
instead of a sparse grid of points in the input space, is less likely to
miss local features, but scales exponentially with input dimension and
so is not computationally practical for much higher of a input space
dimensionality than what is done in this paper’s studies. Monte Carlo
sampling paired with PCE is relatively less effective at lower dimensions,
but because it does not scale directly with the input space dimensionality
(although it can scale through indirect means, such as model complexity
which typically increases with input dimensionality). For that same rea-
son however, Monte Carlo outperforms at higher dimensions, slightly
beating out quadrature rule in our studies at 100 points to achieve good
fit over 128 points for the 1%t degree quadrature rule. As seen in Sec-
tion 3.4 however, in the 1D case, quadrature rule spectral projection
dominates, requiring only a handful of samples (3-6) to faithfully cap-
ture the output probability distribution of a finite element model. These
results are in line with prevailing wisdom about the different spectral
projection sampling strategies. In general, spectral projection and PCE is
a powerful tool for analysing acoustic metamaterial performance char-
acteristics in the context of stochastic material properties or geometry
and potentially of great practical use to characterizing manufacturing
processes.

4. Conclusions

In this paper, we applied the UQ techniques of representation
through polynomial chaos expansions and propagation using spectral
projections on three different scenarios to demonstrate the utility and
generalizability of such techniques in capturing the probability distri-
butions of performance characteristics given simultaneous stochasticity
in up to seven input parameters.

From the three studies performed in this paper on different design
geometries, material property distributions, and input space dimension-
ality, we find the sparse grid sampling strategy performs well when
input space dimensionality is low, whereas quadrature rule performs
well when input space dimensionality is high. Monte Carlo sampling
strikes a balance, underperforming relative to the other two strategies
in low dimensional input spaces but eventually becoming the most ef-
ficient method for very high dimension input spaces. These sampling
strategies combined with PCE and spectral projection very accurately
represented the effects of stochastic material input parameters with 10s
to 100s of samples for the 7D case, versus 1000s to 10000s for brute
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force sampling, and with less than 10 samples for the 1D case, com-
pared to 100s of samples for brute force sampling. We can conclude
that PCE and spectral projection are powerful UQ methods which can
reduce sampling needs by orders of magnitude and generally applicable
to capturing stochastic effects on metamaterial performance character-
istics.

The “edge-pixel flip proportion” method introduced used in this pa-
per proved to be an effective schema for encoding geometry stochastic-
ity. This method constrained the input dimensionality for representing
geometry to just one dimension, while being scale invariant, physically
meaningful, and realistic in representing real world defects. The pseudo-
deterministic nature of this method, where the same FP parameter maps
to multiple defect geometries, proved to be no issue for UQ because the
metamaterial characteristics’ variations for the same flip proportion pa-
rameter were orders of magnitude smaller than variations for different
flip proportion parameters and for different material properties.

In a realistic manufacturing scenario, this drastic reduction (of sev-
eral orders of magnitude) in sampling needs—which results from effi-
cient geometry encoding and the use of appropriate UQ techniques—can
allow for conservation of time and resources during the design and test-
ing of metamaterials. Such techniques therefore show great economic
promise in industrial fabrication as well as academic experimentation,
without requiring much startup cost to adopt in typical design cycles.
Further refinements can be explored in the sampling techniques, sur-
rogate model construction methods, as well as how to encode more
complex defects in geometries, to increase the utility of such methods
and widen their applicability to other metamaterial or material design
and manufacturing problems.
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